EP2091947A2 - Glucokinaseaktivatoren - Google Patents

Glucokinaseaktivatoren

Info

Publication number
EP2091947A2
EP2091947A2 EP07869377A EP07869377A EP2091947A2 EP 2091947 A2 EP2091947 A2 EP 2091947A2 EP 07869377 A EP07869377 A EP 07869377A EP 07869377 A EP07869377 A EP 07869377A EP 2091947 A2 EP2091947 A2 EP 2091947A2
Authority
EP
European Patent Office
Prior art keywords
alkyl
hetero
cycloalkyl
bicycloaryl
aryl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07869377A
Other languages
English (en)
French (fr)
Inventor
Zacharia Cheruvallath
Jun Feng
Prasuna Guntupalli
Stephen L. Gwaltney
Joanne Miura
Mark Sabat
Mingnam Tang
Haxia Wang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takeda California Inc
Original Assignee
Takeda San Diego Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takeda San Diego Inc filed Critical Takeda San Diego Inc
Publication of EP2091947A2 publication Critical patent/EP2091947A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • A61P15/08Drugs for genital or sexual disorders; Contraceptives for gonadal disorders or for enhancing fertility, e.g. inducers of ovulation or of spermatogenesis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/04Anorexiants; Antiobesity agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • A61P5/48Drugs for disorders of the endocrine system of the pancreatic hormones
    • A61P5/50Drugs for disorders of the endocrine system of the pancreatic hormones for increasing or potentiating the activity of insulin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/62Oxygen or sulfur atoms
    • C07D213/63One oxygen atom
    • C07D213/64One oxygen atom attached in position 2 or 6
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/62Oxygen or sulfur atoms
    • C07D213/70Sulfur atoms
    • C07D213/71Sulfur atoms to which a second hetero atom is attached
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/72Nitrogen atoms
    • C07D213/75Amino or imino radicals, acylated by carboxylic or carbonic acids, or by sulfur or nitrogen analogues thereof, e.g. carbamates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/06Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/04Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/06Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/12Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D407/00Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00
    • C07D407/14Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/06Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/12Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/04Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/12Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D513/00Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00
    • C07D513/02Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00 in which the condensed system contains two hetero rings
    • C07D513/04Ortho-condensed systems

Definitions

  • the present invention relates to compounds that may be used to activate hexokinases, as well as compositions of matter, kits and articles of manufacture comprising these compounds.
  • the invention also relates to methods for activating hexokinases and treatment methods using compounds according to the present invention.
  • the invention relates to methods of making the compounds of the present invention, as well as intermediates useful in such methods.
  • the present invention relates to glucokinase activators; compositions of matter, kits and articles of manufacture comprising these compounds; methods for activating glucokinase; and methods and intermediates useful for making the glucokinase activators.
  • Glucokinase (GK, Hexokinase IV) is one of four hexokinases that are found in mammals (Colowick, S. P., in The Enzymes, Vol. 9 (P. Boyer, ed.) Academic Press, New York, N.Y., pages 1-48, 1973).
  • the hexokinases catalyze the first step in the metabolism of glucose, i.e., the conversion of glucose to glucose-6-phosphate.
  • Glucokinase is found principally in pancreatic ⁇ -cells and liver parenchymal cells, two cell types that are known to play critical roles in whole-body glucose homeostasis.
  • GK is a rate- controlling enzyme for glucose metabolism in these two cell types (Chipkin, S. R., Kelly, K. L., and Ruderman, N. B. in Joslin's Diabetes (C. R. Khan and G. C. Wier, eds.), Lea and Febiger, Philadelphia, Pa., pages 97-115, 1994).
  • the concentration of glucose at which GK demonstrates half-maximal activity is approximately 8 mM.
  • the other three hexokinases are saturated with glucose at much lower concentrations ( ⁇ 1 mM). Therefore, the flux of glucose through the GK pathway rises as the concentration of glucose in the blood increases from fasting levels (5 mM) to postprandial levels following a carbohydrate-containing meal (about 10-15 mM) (Printz, R. G., Magnuson, M. A., and Granner, D. K. in Ann. Rev. Nutrition Vol. 13 (R. E. Olson, D. M. Bier, and D. B. McCormick, eds.), Annual Review, Inc., Palo Alto, Calif, pages 463-496, 1993).
  • GK functions as a glucose sensor in ⁇ -cells and hepatocytes (Meglasson, M. D. and Matschinsky, F. M. Amer. J Physiol. 246, E1-E13, 1984).
  • GK does indeed play a critical role in whole-body glucose homeostasis. Animals that do not express GK die within days of birth with severe diabetes, while animals overexpressing GK have improved glucose tolerance (Grupe, A., Hultgren, B., Ryan, A. et al, Cell 83, 69-78, 1995; Ferrie, T., Riu, E., Bosch, F.
  • Glucokinase activators should increase the flux of glucose metabolism in ⁇ -cells and hepatocytes, which will be coupled to increased insulin secretion.
  • hexokinases specifically but not limited to glucokinase, are especially attractive targets for the discovery of new therapeutics due to their important role in diabetes, hyperglycemia and other diseases.
  • the present invention relates to compounds that activate glucokinase.
  • the present invention also provides compositions, articles of manufacture and kits comprising these compounds.
  • the invention relates to methods of making the compounds of the present invention, as well as intermediates useful in such methods.
  • a pharmaceutical composition is provided that comprises a glucokinase activator according to the present invention as an active ingredient.
  • Pharmaceutical compositions according to the invention may optionally comprise 0.001%- 100% of one or more activators of this invention.
  • compositions may be administered or coadministered by a wide variety of routes, including for example, orally, parenterally, intraperitoneally, intravenously, intraarterially, transdermally, sublingually, intramuscularly, rectally, transbuccally, intranasally, liposomally, via inhalation, vaginally, intraoccularly, via local delivery (for example by catheter or stent), subcutaneously, intraadiposally, intraarticularly, or intrathecally.
  • the compositions may also be administered or coadministered in slow release dosage forms.
  • the invention is also directed to kits and other articles of manufacture for treating disease states associated with glucokinase.
  • a kit comprising a composition comprising at least one glucokinase activator of the present invention in combination with instructions.
  • the instructions may indicate the disease state for which the composition is to be administered, storage information, dosing information and/or instructions regarding how to administer the composition.
  • the kit may also comprise packaging materials.
  • the packaging material may comprise a container for housing the composition.
  • the kit may also optionally comprise additional components, such as syringes for administration of the composition.
  • the kit may comprise the composition in single or multiple dose forms.
  • an article of manufacture is provided that comprises a composition comprising at least one glucokinase activator of the present invention in combination with packaging materials.
  • the packaging material may comprise a container for housing the composition.
  • the container may optionally comprise a label indicating the disease state for which the composition is to be administered, storage information, dosing information and/or instructions regarding how to administer the composition.
  • the kit may also optionally comprise additional components, such as syringes for administration of the composition.
  • the kit may comprise the composition in single or multiple dose forms.
  • the compounds, compositions, kits and articles of manufacture are used to modulate glucokinase.
  • the compounds, compositions, kits and articles of manufacture can be used to activate glucokinase.
  • the compounds, compositions, kits and articles of manufacture are used to treat a disease state for which increasing glucokinase activity ameliorates the pathology and/or symptomology of the disease state.
  • a compound is administered to a subject wherein glucokinase activity within the subject is altered and, in one embodiment, increased.
  • a prodrug of a compound is administered to a subject that is converted to the compound in vivo where it activates glucokinase.
  • a method of activating glucokinase comprises contacting glucokinase with a compound according to the present invention.
  • a method of activating glucokinase comprises causing a compound according to the present invention to be present in a subject in order to activate glucokinase in vivo.
  • a method of activating glucokinase comprises administering a first compound to a subject that is converted in vivo to a second compound wherein the second compound activates glucokinase in vivo.
  • the compounds of the present invention may be the first or second compounds.
  • a therapeutic method comprises administering a compound according to the present invention.
  • a method of treating a condition in a patient that is known to be mediated by glucokinase, or which is known to be treated by glucokinase activators comprising administering to the patient a therapeutically effective amount of a compound according to the present invention.
  • a method for treating a disease state for which increasing glucokinase activity ameliorates the pathology and/or symptomology of the disease state comprising: causing a compound according to the present invention to be present in a subject in a therapeutically effective amount for the disease state.
  • a method for treating a disease state for which increasing glucokinase activity ameliorates the pathology and/or symptomology of the disease state comprising: administering a first compound to a subject that is converted in vivo to a second compound such that the second compound is present in the subject in a therapeutically effective amount for the disease state.
  • the compounds of the present invention may be the first or second compounds.
  • a method for treating a disease state for which increasing glucokinase activity ameliorates the pathology and/or symptomology of the disease state comprising: administering a compound according to the present invention to a subject such that the compound is present in the subject in a therapeutically effective amount for the disease state.
  • a method for using a compound according to the present invention in order to manufacture a medicament for use in the treatment of a disease state that is known to be mediated by glucokinase, or that is known to be treated by glucokinase activators.
  • the present invention is intended to encompass all pharmaceutically acceptable ionized forms (e.g., salts) and solvates (e.g., hydrates) of the compounds, regardless of whether such ionized forms and solvates are specified since it is well known in the art to administer pharmaceutical agents in an ionized or solvated form. It is also noted that unless a particular stereochemistry is specified, recitation of a compound is intended to encompass all possible stereoisomers (e.g., enantiomers or diastereomers depending on the number of chiral centers), independent of whether the compound is present as an individual isomer or a mixture of isomers.
  • pharmaceutically acceptable ionized forms e.g., salts
  • solvates e.g., hydrates
  • prodrugs may also be administered which are altered in vivo and become a compound according to the present invention.
  • the various methods of using the compounds of the present invention are intended, regardless of whether prodrug delivery is specified, to encompass the administration of a prodrug that is converted in vivo to a compound according to the present invention.
  • certain compounds of the present invention may be altered in vivo prior to activating glucokinase and thus may themselves be prodrugs for another compound.
  • Such prodrugs of another compound may or may not themselves independently have glucokinase activity.
  • Figure 1 illustrates SEQ. ID No. 1 referred to in this application.
  • Alicyclic means a moiety comprising a non-aromatic ring structure. Alicyclic moieties may be saturated or partially unsaturated with one, two or more double or triple bonds. Alicyclic moieties may also optionally comprise heteroatoms such as nitrogen, oxygen and sulfur. The nitrogen atoms can be optionally quaternerized or oxidized and the sulfur atoms can be optionally oxidized.
  • alicyclic moieties include, but are not limited to moieties with (C3_s) rings such as cyclopropyl, cyclohexane, cyclopentane, cyclopentene, cyclopentadiene, cyclohexane, cyclohexene, cyclohexadiene, cycloheptane, cycloheptene, cycloheptadiene, cyclooctane, cyclooctene, and cyclooctadiene.
  • “Aliphatic” means a moiety characterized by a straight or branched chain arrangement of constituent carbon atoms and may be saturated or partially unsaturated with one, two or more double or triple bonds.
  • alkenyl include vinyl, allyl, isopropenyl, pentenyl, hexenyl, heptenyl, 1-propenyl, 2-butenyl, 2-methyl-2-butenyl, and the like.
  • alkenyl either alone or represented along with another radical, can be a (C 2 - 2 o)alkenyl, a (C 2-1 s)alkenyl, a (C 2 - 10 )alkenyl, a (C 2 -s)alkenyl or a (C 2 _ 3 )alkenyl.
  • alkenyl either alone or represented along with another radical, can be a (C 2 )alkenyl, a (C 3 )alkenyl or a (C 4 )alkenyl.
  • alkenylene include ethene-l,2-diyl, propene-l,3-diyl, methylene- 1,1-diyl, and the like.
  • alkenylene either alone or represented along with another radical, can be a (C 2-20 ) alkenylene, a (C 2-15 ) alkenylene, a (C 2-10) alkenylene, a (C 2-5 ) alkenylene or a (C 2-3 ) alkenylene.
  • alkenylene either alone or represented along with another radical, can be a (C 2 ) alkenylene, a (C3) alkenylene or a (C 4 ) alkenylene.
  • Alkoxy means an oxygen moiety having a further alkyl substituent. The alkoxy groups of the present invention can be optionally substituted.
  • Alkyl represented by itself means a straight or branched, saturated or unsaturated, aliphatic radical having a chain of carbon atoms, optionally with one or more of the carbon atoms being replaced with oxygen (See “oxaalkyl”), a carbonyl group (See “oxoalkyl”), sulfur (See “thioalkyl”), and/or nitrogen (See “azaalkyl”).
  • oxaalkyl a straight or branched, saturated or unsaturated, aliphatic radical having a chain of carbon atoms, optionally with one or more of the carbon atoms being replaced with oxygen (See “oxaalkyl”), a carbonyl group (See “oxoalkyl”), sulfur (See “thioalkyl”), and/or nitrogen (See “azaalkyl”).
  • (C ⁇ )alkyl and (C ⁇ . ⁇ )alkyl are typically used where X and Y indicate the number of carbon atoms in the chain.
  • (C 1-6 )alkyl includes alkyls that have a chain of between 1 and 6 carbons (e.g., methyl, ethyl, propyl, isopropyl, butyl, sec-butyl, isobutyl, tert-butyi, vinyl, allyl, 1-propenyl, isopropenyl, 1-butenyl, 2-butenyl, 3-butenyl, 2-methylallyl, ethynyl, 1-propynyl, 2-propynyl, and the like).
  • 1 and 6 carbons e.g., methyl, ethyl, propyl, isopropyl, butyl, sec-butyl, isobutyl, tert-butyi, vinyl, allyl, 1-propenyl, isopropenyl, 1-butenyl, 2-butenyl, 3-butenyl, 2-methylallyl, ethynyl, 1-propyny
  • Alkyl represented along with another radical means a straight or branched, saturated or unsaturated aliphatic divalent radical having the number of atoms indicated or when no atoms are indicated means a bond (e.g., (C 6 - 10 )aryl(C 1-3 )alkyl includes, benzyl, phenethyl, 1-phenylethyl, 3-phenylpropyl, 2-thienylmethyl, 2-pyridinylmethyl and the like).
  • alkyl either alone or represented along with another radical, can be a (C 1-2 o)alkyl, a (C 1- is)alkyl, a (C 1-10 )alkyl, a (C 1-5 )alkyl or a (C 1-3 )alkyl.
  • alkyl either alone or represented along with another radical, can be a (Ci)alkyl, a (C 2 )alkyl or a (C 3 )alkyl.
  • alkylene unless indicated otherwise, means a straight or branched, saturated or unsaturated, aliphatic, divalent radical.
  • (C ⁇ )alkylene and (C ⁇ _ ⁇ )alkylene are typically used where X and Y indicate the number of carbon atoms in the chain.
  • alkylene either alone or represented along with another radical, can be a (C 1-2 o)alkylene, a (C 1- i 5 )alkylene, a (C 1-10 )alkylene, a (C 1-5 )alkylene or a (C 1-3 )alkylene.
  • alkylene either alone or represented along with another radical, can be a (Ci)alkylene, a (C 2 )alkylene or a (C 3 )alkylene.
  • Alkylidene means a straight or branched, saturated or unsaturated, aliphatic radical connected to the parent molecule by a double bond.
  • (C ⁇ )alkylidene and (C ⁇ _ ⁇ )alkylidene are typically used where X and Y indicate the number of carbon atoms in the chain.
  • alkylidene either alone or represented along with another radical, can be a (C 1-2 o)alkylidene, a (C 1- i 5 )alkylidene, a (C 1- i O )alkylidene, a (C 1-5 )alkylidene or a (C 1-3 )alkylidene.
  • alkylidene either alone or represented along with another radical, can be a (Ci)alkylidene, a (C 2 )alkylidene or a (C 3 )alkylidene.
  • Alkynyl means a straight or branched, carbon chain that contains at least one carbon-carbon triple bond (-C ⁇ C- or -C ⁇ CR, wherein R is hydrogen or a further substituent).
  • alkynyl include ethynyl, propargyl, 3 -methyl- 1-pentynyl, 2- heptynyl and the like.
  • alkynyl either alone or represented along with another radical, can be a (C 2 _ 2 o)alkynyl, a (C 2-1 s)alkynyl, a (C 2-10 )alkynyl, a (C 2 _ 5 )alkynyl or a (C 2 _ 3 )alkynyl.
  • alkynyl either alone or represented along with another radical, can be a (C 2 )alkynyl, a (C 3 )alkynyl or a (C 4 )alkynyl.
  • Alkynylene means a straight or branched, divalent carbon chain having one or more carbon-carbon triple bonds (-CR ⁇ CR'-, wherein R and R are each independently hydrogen or further substituents).
  • alkynylene include ethyne-l,2-diyl, propyne-l,3-diyl, and the like.
  • alkynylene either alone or represented along with another radical, can be a (C 2 _ 2 o) alkynylene, a (C 2-1 s) alkynylene, a (C 2-10 ) alkynylene, a (C 2 _s) alkynylene or a (C 2 _ 3 ) alkynylene.
  • alkynylene either alone or represented along with another radical, can be a (C 2 ) alkynylene, a (C 3 ) alkynylene or a (C 4 ) alkynylene.
  • amino means a nitrogen moiety having two further substituents where, for example, a hydrogen or carbon atom is attached to the nitrogen.
  • representative amino groups include -NH 2 , -NHCH 3 , -N(CH 3 ) 2 , -NH((C 1-10 )alkyl), -N(CC 1 . 10 )alkyl) 2 , -NH(aryl), -NH(heteroaryl), -N(aryl) 2 , -N(heteroaryl) 2 , and the like.
  • the two substituents together with the nitrogen may also form a ring.
  • the compounds of the invention containing amino moieties may include protected derivatives thereof. Suitable protecting groups for amino moieties include acetyl, te/t-butoxycarbonyl, benzyloxycarbonyl, and the like.
  • Animal includes humans, non-human mammals (e.g., dogs, cats, rabbits, cattle, horses, sheep, goats, swine, deer, and the like) and non-mammals (e.g., birds, and the like).
  • non-human mammals e.g., dogs, cats, rabbits, cattle, horses, sheep, goats, swine, deer, and the like
  • non-mammals e.g., birds, and the like.
  • Aromatic means a moiety wherein the constituent atoms make up an unsaturated ring system, all atoms in the ring system are sp 2 hybridized and the total number of pi electrons is equal to 4n+2.
  • An aromatic ring may be such that the ring atoms are only carbon atoms or may include carbon and non-carbon atoms (See “heteroaryl”).
  • Aryl means a monocyclic or polycyclic ring assembly wherein each ring is aromatic or when fused with one or more rings forms an aromatic ring assembly. If one or more ring atoms is not carbon (e.g., N, S), the aryl is a heteroaryl. (C ⁇ )aryl and (C ⁇ . ⁇ )aryl are typically used where X and Y indicate the number of carbon atoms in the ring.
  • "aryl,” either alone or represented along with another radical can be a (C 3-14 )aryl, a (C 3-10 )aryl, a (C 3-7 )aryl, a (Cg- 10 )aryl or a (C 5-7 )aryl.
  • aryl either alone or represented along with another radical, can be a (C 3-14 )aryl, a (C 3-10 )aryl, a (C 3-7 )aryl, a (Cg- 10 )aryl or a (C 5-7 )aryl.
  • aryl either alone or represented along with another radical, can be a (C 5 )aryl, a (Ce)aryl, a (C 7 )aryl, a (Cg)aryl., a (Cc > )aryl or a (C 10 )aryl.
  • Azaalkyl and “aminoalkyl” mean an alkyl, as defined above, except where one or more of the carbon atoms forming the alkyl chain are replaced with substituted or unsubstituted nitrogen atoms (-NR- or -NRR', wherein R and R are each independently hydrogen or further substituents).
  • a (C 1-10 )azaalkyl refers to a chain comprising between 1 and 10 carbons and one or more nitrogen atoms.
  • Bicycloalkyl means a saturated or partially unsaturated fused, spiro or bridged bicyclic ring assembly.
  • "bicycloalkyl,” either alone or represented along with another radical can be a (C 4 - I s)bicycloalkyl, a (C 4-10 )bicycloalkyl, a (Ce- 10 )bicycloalkyl or a (C 8 - 10 )bicycloalkyl.
  • "bicycloalkyl” either alone or represented along with another radical, can be a (Cg)bicycloalkyl, a (Cc > )bicycloalkyl or a
  • Bicycloaryl means a fused, spiro or bridged bicyclic ring assembly wherein at least one of the rings comprising the assembly is aromatic.
  • (C ⁇ )bicycloaryl and (C ⁇ _ ⁇ )bicycloaryl are typically used where X and Y indicate the number of carbon atoms in the bicyclic ring assembly and directly attached to the ring.
  • "bicycloaryl,” either alone or represented along with another radical, can be a (a
  • bicycloalkyl either alone or represented along with another radical, can be a (Cg)bicycloaryl, a (Cc > )bicycloaryl or a (C 10 )bicycloaryl.
  • “Bridging ring” and “bridged ring” as used herein refer to a ring that is bonded to another ring to form a compound having a bicyclic or polycyclic structure where two ring atoms that are common to both rings are not directly bound to each other.
  • Non-exclusive examples of common compounds having a bridging ring include borneol, norbornane, 7- oxabicyclo[2.2.1]heptane, and the like.
  • One or both rings of the bicyclic system may also comprise heteroatoms.
  • Carbamoyl means the radical -OC(O)NRR', wherein R and R' are each independently hydrogen or further substituents.
  • Carbocycle means a ring consisting of carbon atoms.
  • Cyano means the radical -CN.
  • Cycloalkyl means a non-aromatic, saturated or partially unsaturated, monocyclic, bicyclic or polycyclic ring assembly.
  • (C ⁇ )cycloalkyl and (C ⁇ _ ⁇ )cycloalkyl are typically used where X and Y indicate the number of carbon atoms in the ring assembly.
  • (C 3-10 )cycloalkyl includes cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclohexenyl, 2,5-cyclohexadienyl, bicyclo[2.2.2]octyl, adamantan-1-yl, decahydronaphthyl, oxocyclohexyl, dioxocyclohexyl, thiocyclohexyl,
  • cycloalkyl either alone or represented along with another radical, can be a (C 3-14 )cycloalkyl, a
  • cycloalkyl either alone or represented along with another radical, can be a (Cs)cyc loalkyl, a (Ce)cycloalkyl, a (Cy)cycloalkyl, a (C 8 )cycloalkyl., a (C 9 )cycloalkyl or a (C 10 )cycloalkyl.
  • Cycloalkylene means a divalent, saturated or partially unsaturated, monocyclic, bicyclic or polycyclic ring assembly. (C ⁇ )cycloalkylene and (C ⁇ _ ⁇ )cycloalkylene are typically used where X and Y indicate the number of carbon atoms in the ring assembly.
  • "cycloalkylene,” either alone or represented along with another radical can be a (C 3-14 )cycloalkylene, a (C 3-10 )cycloalkylene, a (C 3 _ 7 )cycloalkylene, a (C8- 10 )cycloalkylene or a (C 5 _ 7 )cycloalkylene.
  • cycloalkylene either alone or represented along with another radical, can be a (C 5 )cycloalkylene, a (Ce)cycloalkylene, a (C 7 )cycloalkylene, a (Cs ⁇ ycloalkylene., a (C ⁇ cycloalkylene or a (C 10 )cycloalkylene.
  • Disease specifically includes any unhealthy condition of an animal or part thereof and includes an unhealthy condition that may be caused by, or incident to, medical or veterinary therapy applied to that animal, i.e., the "side effects" of such therapy.
  • fused ring refers to a ring that is bonded to another ring to form a compound having a bicyclic structure where the ring atoms that are common to both rings are directly bound to each other.
  • Non-exclusive examples of common fused rings include decalin, naphthalene, anthracene, phenanthrene, indole, furan, benzofuran, quinoline, and the like.
  • Compounds having fused ring systems may be saturated, partially saturated, carbocyclics, heterocyclics, aromatics, heteroaromatics, and the like.
  • "Halo" means fluoro, chloro, bromo or iodo.
  • Heteroalkyl means alkyl, as defined in this Application, provided that one or more of the atoms within the alkyl chain is a heteroatom.
  • “heteroalkyl,” either alone or represented along with another radical can be a hetero(C 1-2 o)alkyl, a hetero(C 1- i 5 )alkyl, a hetero(C 1-10 )alkyl, a hetero(C 1-5 )alkyl, a hetero(C 1-3 )alkyl or a hetero(C 1-2 )alkyl.
  • “heteroalkyl,” either alone or represented along with another radical can be a hetero(Ci)alkyl, a hetero(C 2 )alkyl or a hetero(C 3 )alkyl.
  • Heteroaryl means a monocyclic, bicyclic or polycyclic aromatic group wherein at least one ring atom is a heteroatom and the remaining ring atoms are carbon.
  • Monocyclic heteroaryl groups include, but are not limited to, cyclic aromatic groups having five or six ring atoms, wherein at least one ring atom is a heteroatom and the remaining ring atoms are carbon.
  • the nitrogen atoms can be optionally quaternerized and the sulfur atoms can be optionally oxidized.
  • Heteroaryl groups of this invention include, but are not limited to, those derived from furan, imidazole, isothiazole, isoxazole, oxadiazole, oxazole, 1,2,3-oxadiazole, pyrazine, pyrazole, pyridazine, pyridine, pyrimidine, pyrroline, thiazole, 1,3,4-thiadiazole, triazole and tetrazole.
  • Heteroaryl also includes, but is not limited to, bicyclic or tricyclic rings, wherein the heteroaryl ring is fused to one or two rings independently selected from the group consisting of an aryl ring, a cycloalkyl ring, a cycloalkenyl ring, and another monocyclic heteroaryl or heterocycloalkyl ring.
  • bicyclic or tricyclic heteroaryls include, but are not limited to, those derived from benzo[b] furan, benzo[b]thiophene, benzimidazole, imidazo[4,5- c]pyridine, quinazoline, thieno[2,3-c]pyridine, thieno[3,2-b]pyridine, thieno[2,3- b]pyridine, indolizine, imidazo[l,2a]pyridine, quinoline, isoquinoline, phthalazine, quinoxaline, naphthyridine, quinolizine, indole, isoindole, indazole, indoline, benzoxazole, benzopyrazole, benzothiazole, imidazo[l,5-a]pyridine, pyrazolo[l,5-a]pyridine, imidazo[ 1 ,2-a]pyrimidine, imidazo[ 1 ,2-c]pyrimidine, imidazo[
  • the bicyclic or tricyclic heteroaryl rings can be attached to the parent molecule through either the heteroaryl group itself or the aryl, cycloalkyl, cycloalkenyl or heterocycloalkyl group to which it is fused.
  • the heteroaryl groups of this invention can be substituted or unsubstituted.
  • "heteroaryl,” either alone or represented along with another radical can be a hetero(C 1- i 3 )aryl, a hetero(C 2-13 )aryl, a hetero(C 2 - 6 )aryl, a hetero(C 3 _ 9 )aryl or a hetero(Cs_ 9 )aryl.
  • heteroaryl either alone or represented along with another radical, can be a hetero(C 3 )aryl, a hetero(C 4 )aryl, a hetero(Cs)aryl, a hetero(Ce)aryl., a hetero(Cy)aryl, a hetero(Cg)aryl or a hetero(Cc))aryl.
  • Heteroatom refers to an atom that is not a carbon atom. Particular examples of heteroatoms include, but are not limited to, nitrogen, oxygen, and sulfur.
  • Heteroatom moiety includes a moiety where the atom by which the moiety is attached is not a carbon.
  • Heterobicycloalkyl means bicycloalkyl, as defined in this Application, provided that one or more of the atoms within the ring is a heteroatom.
  • hetero(C 9-12 )bicycloalkyl as used in this application includes, but is not limited to, 3-aza- bicyclo[4.1.0]hept-3-yl, 2-aza-bicyclo[3.1.0]hex-2-yl, 3-aza-bicyclo[3.1.0]hex-3-yl, and the like.
  • heterocycloalkyl either alone or represented along with another radical, can be a hetero(C 1- i 4 )bicycloalkyl, a hetero(C 4-14 )bicycloalkyl, a hetero(C 4 _ 9 )bicycloalkyl or a hetero(C 5 _ 9 )bicycloalkyl.
  • heterocycloalkyl either alone or represented along with another radical, can be a hetero(Cs)bicycloalkyl, hetero(Ce)bicycloalkyl, hetero(Cy)bicycloalkyl, hetero(Cg)bicycloalkyl or a hetero(Cc))bicycloalkyl.
  • Heterobicycloaryl means bicycloaryl, as defined in this Application, provided that one or more of the atoms within the ring is a heteroatom.
  • hetero(C 4-12 )bicycloaryl as used in this Application includes, but is not limited to, 2-amino-4-oxo-3,4-dihydropteridin-6-yl, tetrahydroisoquinolinyl, and the like.
  • heterocycloaryl either alone or represented along with another radical, can be a hetero(C 1- i 4 )bicycloaryl, a hetero(C 4-14 )bicycloaryl, a hetero(C 4 _ 9 )bicycloarylor a hetero(C 5 _ 9 )bicycloaryl.
  • heterocycloaryl either alone or represented along with another radical, can be a hetero(Cs)bicycloaryl, hetero(Ce)bicycloaryl, hetero(Cy)bicycloaryl, hetero(Cg)bicycloaryl or a hetero(C 9 )bicycloaryl.
  • Heterocycloalkyl means cycloalkyl, as defined in this Application, provided that one or more of the atoms forming the ring is a heteroatom selected, independently from N, O, or S.
  • Non-exclusive examples of heterocycloalkyl include piperidyl, 4-morpholyl, A- piperazinyl, pyrrolidinyl, perhydropyrrolizinyl, 1 ,4-diazaperhydroepinyl, 1,3-dioxanyl, 1,4-dioxanyl and the like.
  • heterocycloalkyl either alone or represented along with another radical, can be a hetero(C 1- i 3 )cycloalkyl, a hetero(C 1-9 )cycloalkyl, a hetero(C 1-6 )cycloalkyl, a hetero(Cs_ 9 )cycloalkyl or a hetero(C 2 _ 6 )cycloalkyl.
  • heterocycloalkyl can be a hetero(C 2 )cycloalkyl, a hetero(C 3 )cycloalkyl, a hetero(C 4 )cycloalkyl, a hetero(Cs)cycloalkyl, a hetero(Ce)cycloalkyl, hetero(Cy)cycloalkyl, hetero(Cg)cycloalkyl or a hetero(C 9 )cycloalkyl.
  • Heterocycloalkylene means cycloalkylene, as defined in this Application, provided that one or more of the ring member carbon atoms is replaced by a heteroatom.
  • heterocycloalkylene either alone or represented along with another radical, can be a hetero(C 1- i3)cycloalkylene, a hetero(C 1- 9)cycloalkylene, a hetero(C 1-6 )cycloalkylene, a hetero(Cs_ 9 )cycloalkylene or a hetero(C 2 _ 6 )cycloalkylene.
  • heterocycloalkylene can be a hetero(C2)cycloalkylene, a hetero(C3)cycloalkylene, a hetero(C 4 )cycloalkylene, a hetero(C 5 )cycloalkylene, a hetero(Ce)cycloalkylene, hetero(C 7 )cycloalkylene, hetero(C 8 )cycloalkylene or a hetero(C 9 )cycloalkylene.
  • “Hydroxy” means the radical -OH.
  • IC 5 0 means the molar concentration of an inhibitor that produces 50% inhibition of the target enzyme.
  • “Isomers” means compounds having identical molecular formulae but differing in the nature or sequence of bonding of their atoms or in the arrangement of their atoms in space. Isomers that differ in the arrangement of their atoms in space are termed “stereoisomers.” Stereoisomers that are not mirror images of one another are termed “diastereomers” and stereoisomers that are nonsuperimposable mirror images are termed “enantiomers” or sometimes "optical isomers.” A carbon atom bonded to four nonidentical substituents is termed a "chiral center.” A compound with one chiral center has two enantiomeric forms of opposite chirality.
  • a mixture of the two enantiomeric forms is termed a "racemic mixture.”
  • a compound that has more than one chiral center has 2 n ⁇ enantiomeric pairs, where n is the number of chiral centers.
  • Compounds with more than one chiral center may exist as ether an individual diastereomer or as a mixture of diastereomers, termed a "diastereomeric mixture.”
  • a stereoisomer may be characterized by the absolute configuration of that chiral center. Absolute configuration refers to the arrangement in space of the substituents attached to the chiral center.
  • Enantiomers are characterized by the absolute configuration of their chiral centers and described by the R- and ⁇ -sequencing rules of Cahn, Ingold and Prelog. Conventions for stereochemical nomenclature, methods for the determination of stereochemistry and the separation of stereoisomers are well known in the art (e.g. , see “Advanced Organic Chemistry", 4th edition, March, Jerry, John Wiley & Sons, New York, 1992). [0072] "Leaving group” means the group with the meaning conventionally associated with it in synthetic organic chemistry, i.e., an atom or group displaceable under reaction (e.g., alkylating) conditions.
  • leaving groups include, but are not limited to, halo (e.g., F, Cl, Br and I), alkyl (e.g., methyl and ethyl) and sulfonyloxy (e.g., mesyloxy, ethanesulfonyloxy, benzenesulfonyloxy and tosyloxy), thiomethyl, thienyloxy, dihalophosphinoyloxy, tetrahalophosphoxy, benzyloxy, isopropyloxy, acyloxy, and the like.
  • halo e.g., F, Cl, Br and I
  • alkyl e.g., methyl and ethyl
  • sulfonyloxy e.g., mesyloxy, ethanesulfonyloxy, benzenesulfonyloxy and tosyloxy
  • thiomethyl thienyloxy
  • “Moiety providing X atom separation” and “linker providing X atom separation” between two other moieties mean that the chain of atoms directly linking the two other moieties is X atoms in length.
  • X is given as a range (e.g., Xi-X 2 )
  • the chain of atoms is at least Xi and not more than X 2 atoms in length.
  • the chain of atoms can be formed from a combination of atoms including, for example, carbon, nitrogen, sulfur and oxygen atoms.
  • each atom can optionally be bound to one or more substituents, as valencies allow.
  • the chain of atoms can form part of a ring.
  • a moiety providing X atom separation between two other moieties can be represented by R-(L) x -R where each L is independently selected from the group consisting of CR 11 R'", NR"", O, S, CO, CS,
  • Oxaalkyl means an alkyl, as defined above, except where one or more of the carbon atoms forming the alkyl chain are replaced with oxygen atoms (-0- or -OR, wherein R is hydrogen or a further substituent).
  • an oxa(C 1-10 )alkyl refers to a chain comprising between 1 and 10 carbons and one or more oxygen atoms.
  • the carbonyl group may be an aldehyde, ketone, ester, amide, acid or acid halide.
  • an oxo(C 1-10 )alkyl refers to a chain comprising between 1 and 10 carbon atoms and one or more carbonyl groups.
  • "Oxy” means the radical -O- or -OR, wherein R is hydrogen or a further substituent. Accordingly, it is noted that the oxy radical may be further substituted with a variety of substituents to form different oxy groups including hydroxy, alkoxy, aryloxy, heteroaryloxy or carbonyloxy.
  • “Pharmaceutically acceptable” means that which is useful in preparing a pharmaceutical composition that is generally safe, non-toxic and neither biologically nor otherwise undesirable and includes that which is acceptable for veterinary use as well as human pharmaceutical use.
  • “Pharmaceutically acceptable salts” means salts of compounds of the present invention which are pharmaceutically acceptable, as defined above, and which possess the desired pharmacological activity. Such salts include acid addition salts formed with inorganic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid, and the like; or with organic acids such as acetic acid, propionic acid, hexanoic acid, heptanoic acid, cyclopentanepropionic acid, glycolic acid, pyruvic acid, lactic acid, malonic acid, succinic acid, malic acid, maleic acid, fumaric acid, tartaric acid, citric acid, benzoic acid, o-(4-hydroxybenzoyl)benzoic acid, cinnamic acid, mandelic acid, methanesulfonic acid, ethanesulfonic acid, 1 ,2-ethanedisulfonic acid, 2-hydroxyethanesulfonic
  • Pharmaceutically acceptable salts also include base addition salts which may be formed when acidic protons present are capable of reacting with inorganic or organic bases.
  • Acceptable inorganic bases include sodium hydroxide, sodium carbonate, potassium hydroxide, aluminum hydroxide and calcium hydroxide.
  • Acceptable organic bases include ethanolamine, diethanolamine, triethanolamine, tromethamine, JV-methylglucamine and the like.
  • Polycyclic ring includes bicyclic and multi-cyclic rings.
  • the individual rings comprising the polycyclic ring can be fused, spiro or bridging rings.
  • Prodrug means a compound that is convertible in vivo metabolically into an active species according to the present invention.
  • the prodrug itself may or may not also have activity with respect to a given target protein.
  • a compound comprising a hydroxy group may be administered as an ester that is converted by hydrolysis in vivo to the hydroxy compound.
  • esters that may be converted in vivo into hydroxy compounds include acetates, citrates, lactates, phosphates, tartrates, malonates, oxalates, salicylates, propionates, succinates, fumarates, maleates, methylene- bis-b-hydroxynaphthoates, gentisates, isethionates, di-/?-toluoyltartrates, methanesulfonates, ethanesulfonates, benzenesulfonates, p-toluenesulfonates, cyclohexylsulfamates, quinates, esters of amino acids, and the like.
  • a compound comprising an amine group may be administered as an amide that is converted by hydrolysis in vivo to the amine compound.
  • Protected derivatives means derivatives of compounds in which a reactive site or sites are blocked with protecting groups. Protected derivatives are useful in the preparation of pharmaceutical agents or in themselves may be active as pharmaceutical agents. A comprehensive list of suitable protecting groups can be found in T. W. Greene, Protecting Groups in Organic Synthesis, 3rd edition, John Wiley & Sons, Inc. 1999.
  • Ring assembly means a carbocyclic or a heterocyclic system and includes aromatic and non-aromatic systems. The system can be monocyclic, bicyclic or polycyclic. In addition, for bicyclic and polycyclic systems, the individual rings comprising the polycyclic ring can be fused, spiro or bridging rings.
  • Subject and “patient” includes humans, non-human mammals ⁇ e.g., dogs, cats, rabbits, cattle, horses, sheep, goats, swine, deer, and the like) and non-mammals ⁇ e.g., birds, and the like).
  • Substituent convertible to hydrogen in vivo means any group that is convertible to a hydrogen atom by enzymological or chemical means including, but not limited to, hydrolysis and hydrogenolysis.
  • hydrolyzable groups such as acyl groups, groups having an oxycarbonyl group, amino acid residues, peptide residues, o- nitrophenylsulfenyl, trimethylsilyl, tetrahydro-pyranyl, diphenylphosphinyl, and the like.
  • acyl groups include formyl, acetyl, trifluoroacetyl, and the like.
  • Examples of groups having an oxycarbonyl group include ethoxycarbonyl, t-butoxycarbonyl [(CHs) 3 C- OCO-], benzyloxycarbonyl, p-methoxybenzyloxycarbonyl, vinyloxycarbonyl, ⁇ -(p- toluenesulfonyl)ethoxycarbonyl, and the like.
  • Examples of suitable amino acid residues include amino acid residues per se and amino acid residues that are protected with a protecting group.
  • Suitable amino acid residues include, but are not limited to, residues of GIy (glycine), Ala (alanine; CH 3 CH(NH 2 )CO-), Arg (arginine), Asn (asparagine), Asp (aspartic acid), Cys (cysteine), GIu (glutamic acid), His (histidine), He (isoleucine), Leu (leucine; (CH 3 ) 2 CHCH 2 CH(NH 2 )CO-), Lys (lysine), Met (methionine), Phe
  • Suitable protecting groups include those typically employed in peptide synthesis, including acyl groups (such as formyl and acetyl), arylmethyloxycarbonyl groups (such as benzyloxycarbonyl and p- nitrobenzyloxycarbonyl), t-butoxycarbonyl groups [(CH 3 ) 3 C-OCO-], and the like.
  • Suitable peptide residues include peptide residues comprising two to five, and optionally two to three, of the aforesaid amino acid residues.
  • Such peptide residues include, but are not limited to, residues of such peptides as Ala- Ala [CH 3 CH(NH 2 )CO- NHCH(CH 3 )CO-], Gly-Phe, Nva-Nva, Ala-Phe, Gly-Gly, Gly-Gly-Gly, Ala-Met, Met- Met, Leu-Met and Ala-Leu.
  • residues of these amino acids or peptides can be present in stereochemical configurations of the D-form, the L-form or mixtures thereof.
  • the amino acid or peptide residue may have an asymmetric carbon atom.
  • suitable amino acid residues having an asymmetric carbon atom include residues of Ala, Leu, Phe, Trp, Nva, VaI, Met, Ser, Lys, Thr and Tyr.
  • Peptide residues having an asymmetric carbon atom include peptide residues having one or more constituent amino acid residues having an asymmetric carbon atom.
  • suitable amino acid protecting groups include those typically employed in peptide synthesis, including acyl groups (such as formyl and acetyl), arylmethyloxycarbonyl groups (such as benzyloxycarbonyl and p-nitrobenzyloxycarbonyl), t-butoxycarbonyl groups [(CH 3 ) 3 C- OCO-], and the like.
  • substituents "convertible to hydrogen in vivo" include reductively eliminable hydrogenolyzable groups.
  • suitable reductively eliminable hydrogenolyzable groups include, but are not limited to, arylsulfonyl groups (such as o-toluenesulfonyl); methyl groups substituted with phenyl or benzyloxy (such as benzyl, trityl and benzyloxymethyl); arylmethoxycarbonyl groups (such as benzyloxycarbonyl and o-methoxy-benzyloxycarbonyl); and halogenoethoxycarbonyl groups (such as ⁇ , ⁇ , ⁇ -trichloroethoxycarbonyl and ⁇ - iodoethoxycarbonyl) .
  • Substituted or unsubstituted means that a given moiety may consist of only hydrogen substituents through available valencies (unsubstituted) or may further comprise one or more non-hydrogen substituents through available valencies (substituted) that are not otherwise specified by the name of the given moiety.
  • isopropyl is an example of an ethylene moiety that is substituted by -CH 3 .
  • a non-hydrogen substituent may be any substituent that may be bound to an atom of the given moiety that is specified to be substituted.
  • substituents include, but are not limited to, aldehyde, alicyclic, aliphatic, (C 1-10 )alkyl, alkylene, alkylidene, amide, amino, aminoalkyl, aromatic, aryl, bicycloalkyl, bicycloaryl, carbamoyl, carbocyclyl, carboxyl, carbonyl group, cycloalkyl, cycloalkylene, ester, halo, heterobicycloalkyl, heterocycloalkylene, heteroaryl, heterobicycloaryl, heterocycloalkyl, oxo, hydroxy, iminoketone, ketone, nitro, oxaalkyl, and oxoalkyl moieties, each of which may optionally also be substituted or unsubstituted.
  • substituents include, but are not limited to, hydrogen, halo, nitro, cyano, thio, oxy, hydroxy, carbonyloxy, (C 1-10 )alkoxy, (C 4-1 2)aryloxy, hetero(C 1-10 )aryloxy, carbonyl, oxycarbonyl, aminocarbonyl, amino, (C 1-10 )alkylamino, sulfonamido, imino, sulfonyl, sulfinyl, (C 1-10 )alkyl, halo(C 1-10 )alkyl, hydroxy(C 1-10 )alkyl, carbonyl(C 1-10 )alkyl, thiocarbonyl(C 1-10 )alkyl, sulfonyl(C 1-10 )alkyl, sulfinyl(C 1-10 )alkyl, (C 1-10 )azaalkyl, imino(C 1-10 )alkyl
  • substituent is itself optionally substituted by a further substituent.
  • further substituent include, but are not limited to, hydrogen, halo, nitro, cyano, thio, oxy, hydroxy, carbonyloxy, (C 1-10 )alkoxy, (C 4-1 2)aryloxy, hetero(C 1-10 )aryloxy, carbonyl, oxycarbonyl, aminocarbonyl, amino, (C 1-10 )alkylamino, sulfonamido, imino, sulfonyl, sulfinyl, (C 1-10 )alkyl, halo(C 1-10 )alkyl, hydroxy(C 1-10 )alkyl, carbonyl(C 1-10 )alkyl, thiocarbonyl(C 1-10 )alkyl, sulfonyl(C 1-10 )alkyl, sulfinyl(C 1-10 )alkyl, (C 1
  • Sulfinyl means the radical -SO- and/or -SO-R, wherein R is hydrogen or a further substituent. It is noted that the sulfinyl radical may be further substituted with a variety of substituents to form different sulfinyl groups including sulfinic acids, sulfinamides, sulfinyl esters, and sulfoxides. [0089] “Sulfonyl” means the radical -SO 2 - and/or -SO 2 -R, wherein R is hydrogen or a further substituent.
  • sulfonyl radical may be further substituted with a variety of substituents to form different sulfonyl groups including sulfonic acids, sulfonamides, sulfonate esters, and sulfones.
  • “Therapeutically effective amount” means that amount which, when administered to an animal for treating a disease, is sufficient to effect such treatment for the disease.
  • Thioalkyl means an alkyl, as defined above, except where one or more of the carbon atoms forming the alkyl chain are replaced with sulfur atoms (-S- or -S-R, wherein
  • R is hydrogen or a further substituent).
  • a thio(C 1-10 )alkyl refers to a chain comprising between 1 and 10 carbons and one or more sulfur atoms.
  • Treatment or “treating” means any administration of a compound of the present invention and includes:
  • a Ci alkyl indicates that there is one carbon atom but does not indicate what are the substituents on the carbon atom.
  • a (Ci)alkyl comprises methyl (i.e., -CH 3 ) as well as -CRRR" where R, R', and R" may each independently be hydrogen or a further substituent where the atom attached to the carbon is a heteroatom or cyano.
  • CF 3 , CH 2 OH and CH 2 CN for example, are all (Ci)alkyls.
  • terms such as alkylamino and the like comprise dialkylamino and the like.
  • a compound having a formula that is represented with a dashed bond is intended to include the formulae optionally having zero, one or more double bonds, as exemplified and shown below:
  • the present invention relates to compounds that may be used to activate hexokinases and, in particular glucokinase (referred to herein as GK).
  • GK glucokinase
  • the present invention also relates to pharmaceutical compositions, kits and articles of manufacture comprising such compounds.
  • the present invention relates to methods and intermediates useful for making the compounds. Further, the present invention relates to methods of using said compounds. It is noted that the compounds of the present invention may also possess activity for other hexokinase family members and thus may be used to address disease states associated with these other family members.
  • the present invention relates to compounds that are useful as glucokinase activators.
  • glucokinase activators of the present invention have the formula:
  • n is selected from the group consisting of 3, 4 and 5; Vi is selected from the group consisting of CR 4 and N; V 2 is selected from the group consisting of CR 6 and N; each X is independently selected from the group consisting of CR 8 Rg, CO, CS, NR 10 , O, S, SO and SO 2 ; R 1 is selected from the group consisting of hydrogen and a substituent convertible to hydrogen in vivo;
  • R 2 and R3 are each independently selected from the group consisting of hydrogen, carbonyl, sulfonyl, sulfinyl, (C 1-10 )alkyl, halo(C 1-10 )alkyl, carbonyl(C 1-3 )alkyl, thiocarbonyl(C 1-3 )alkyl, sulfonyl(C 1-3 )alkyl, sulf ⁇ nyl(C 1-3 )alkyl, amino (C 1-10 )alkyl, imino(C 1-3 )alkyl, (C 3-12 )cycloalkyl(C 1-5 )alkyl, hetero(C 3-12 )cycloalkyl(C 1-5 )alkyl, aryl(C 1-10 )alkyl, heteroaryl(C 1-5 )alkyl, (C 9-12 )bicycloaryl(C 1-5 )alkyl, hetero(C 8-12 )bicycloaryl(C 1-5
  • R 4 , R 5 , Re and R 7 are each independently selected from the group consisting of hydrogen, halo, nitro, cyano, thio, hydroxy, alkoxy, aryloxy, heteroaryloxy, carbonyl, amino, (C 1-10 )alkylamino, sulfonamido, imino, sulfonyl, sulfinyl, (C 1-10 )alkyl, halo(C 1-10 )alkyl, carbonyl(C 1-3 )alkyl, thiocarbonyl(C 1-3 )alkyl, sulfonyl(C 1-3 )alkyl, sulf ⁇ nyl(C 1-3 )alkyl, amino (C 1-10 )alkyl, imino(C 1-3 )alkyl, (C 3-12 )cycloalkyl(C 1-5 )alkyl, hetero(C 3-12 )cycloalkyl(C 1-5 )al
  • R 10 is selected from the group consisting of hydrogen, hydroxy, alkoxy, aryloxy, heteroaryloxy, carbonyl, amino, (C 1-10 )alkylamino, sulfonamido, imino, sulfonyl, sulfinyl, (C 1-10 )alkyl, halo(C 1-10 )alkyl, carbonyl(C 1-3 )alkyl, thiocarbonyl(C 1-3 )alkyl, sulfonyl(C 1-3 )alkyl, sulfinyl(C 1-3 )alkyl, amino (C 1-10 )alkyl, imino(C 1-3 )alkyl, (C 3-12 )cycloalkyl(C 1-5 )alkyl, hetero(C 3-12 )cycloalkyl(C 1-5 )alkyl, aryl(C 1-10 )alkyl, heteroaryl(C 1-5 )alkyl
  • glucokinase activators of the present invention have the formula:
  • glucokinase activators of the present invention have the formula:
  • each Rn is independently selected from the group consisting of hydrogen, halo, nitro, cyano, thio, hydroxy, alkoxy, aryloxy, heteroaryloxy, carbonyl, amino, (C 1-10 )alkylamino, sulfonamido, imino, sulfonyl, sulf ⁇ nyl, (C 1-10 )alkyl, halo(C 1-10 )alkyl, carbonyl(C 1-3 )alkyl, thiocarbonyl(d_ 3 )alkyl, sulfonyl(C 1-3 )alkyl, sulf ⁇ nyl(C 1-3 )alkyl, amino (C 1-10 )alkyl, imino(C 1-3 )
  • glucokinase activators of the present invention have the formula:
  • each Rn is independently selected from the group consisting of hydrogen, halo, nitro, cyano, thio, hydroxy, alkoxy, aryloxy, heteroaryloxy, carbonyl, amino, (C 1-10 )alkylamino, sulfonamido, imino, sulfonyl, sulf ⁇ nyl, (C 1-10 )alkyl, halo(C 1-10 )alkyl, carbonyl(C 1-3 )alkyl, thiocarbonyl(d_ 3 )alkyl, sulfonyl(C 1-3 )alkyl, sulf ⁇ nyl(C 1-3 )alkyl, amino (C 1-10 )alkyl, imino(C 1-3 )
  • glucokinase activators of the present invention have the formula:
  • glucokinase activators of the present invention have the formula: or a polymorph, solvate, ester, tautomer, enantiomer, pharmaceutically acceptable salt or prodrug thereof, wherein p is selected from the group consisting of 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 and i i;
  • L is a linker providing 0, 1, 2, 3, 4, 5 or 6 atom separation between the C and the ring to which L is attached, wherein the atoms of the linker providing the separation are selected from the group consisting of carbon, oxygen, nitrogen, and sulfur; and each R 12 is independently selected from the group consisting of hydrogen, halo, nitro, cyano, thio, hydroxy, alkoxy, aryloxy, heteroaryloxy, carbonyl, amino, (C 1-10 )alkylamino, sulfonamido, imino, sulfonyl, sulfinyl, (C 1-10 )alkyl, halo(C 1-10 )alkyl, carbonyl(C 1-3 )alkyl, thiocarbonyl(C 1-3 )alkyl, sulfonyl(C 1-3 )alkyl, sulfinyl(C 1-3 )alkyl, amino (C 1-10 )alkyl, imin
  • glucokinase activators of the present invention have the formula: or a polymorph, solvate, ester, tautomer, enantiomer, pharmaceutically acceptable salt or prodrug thereof, wherein p is selected from the group consisting of 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 and i i; m is selected from the group consisting of 0, 1, 2, 3 and 4; each Rn is independently selected from the group consisting of hydrogen, halo, nitro, cyano, thio, hydroxy, alkoxy, aryloxy, heteroaryloxy, carbonyl, amino, (C 1-10 )alkylamino, sulfonamido, imino, sulfonyl, sulf ⁇ nyl, (C 1-10 )alkyl, halo(C 1-10 )alkyl, carbonyl(C 1-3 )alkyl, thiocarbonyl(d_ 3 )alkyl,
  • glucokinase activators of the present invention have the formula:
  • q is selected from the group consisting of 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9;
  • L is a linker providing 0, 1, 2, 3, 4, 5 or 6 atom separation between the C and the ring to which L is attached, wherein the atoms of the linker providing the separation are selected from the group consisting of carbon, oxygen, nitrogen, and sulfur; and each R 12 is independently selected from the group consisting of hydrogen, halo, nitro, cyano, thio, hydroxy, alkoxy, aryloxy, heteroaryloxy, carbonyl, amino, (C 1-10 )alkylamino, sulfonamido, imino, sulfonyl, sulf ⁇ nyl, (C 1-10 )alkyl, halo(C 1-10 )alkyl, carbonyl(C 1-3 )alkyl, thiocarbonyl(d_ 3 )alkyl, sulfonyl(C 1-3 )alkyl, sulf ⁇ nyl(C 1-3 )alkyl, amino (C 1-10 )alkyl,
  • each Rn is independently selected from the group consisting of hydrogen, halo, nitro, cyano, thio, hydroxy, alkoxy, aryloxy, heteroaryloxy, carbonyl, amino, (C 1-10 )alkylamino, sulfonamido, imino, sulfonyl, sulf ⁇ nyl, (C 1-10 )alkyl, halo(C 1-10 )alkyl, carbonyl(C 1-3 )alkyl, thiocarbonyl(C 1-3 )alkyl, sulfonyl(C 1-3 )alkyl, sulf ⁇ nyl(C 1-3 )alkyl
  • glucokinase activators of the present invention have the formula:
  • Y 1 , Y 2 , Y3 and Y 4 are each independently selected from the group consisting of CR13 and N; and each R B is independently selected from the group consisting of hydrogen, halo, nitro, cyano, thio, hydroxy, alkoxy, aryloxy, heteroaryloxy, carbonyl, amino, (C 1-10 )alkylamino, sulfonamido, imino, sulfonyl, sulf ⁇ nyl, (C 1-10 )alkyl, halo(C 1-10 )alkyl, carbonyl(C 1-3 )alkyl, thiocarbonyl(C 1-3 )alkyl, sulfonyl(C 1-3 )alkyl, sulf ⁇ nyl(C 1-3 )alkyl, amino (C 1-10 )alkyl, imino(C 1-3 )alkyl, (C 3-12 )cycloalkyl(C 1-5
  • glucokinase activators of the present invention have the formula: or a polymorph, solvate, ester, tautomer, enantiomer, pharmaceutically acceptable salt or prodrug thereof, wherein
  • Yi and Y 2 are each independently selected from the group consisting of
  • Z is selected from the group consisting of CR13R1 4 , NR 15 , O and S; each R B and R 14 is independently selected from the group consisting of hydrogen, halo, nitro, cyano, thio, hydroxy, alkoxy, aryloxy, heteroaryloxy, carbonyl, amino, (C 1-10 )alkylamino, sulfonamido, imino, sulfonyl, sulfinyl, (C 1-10 )alkyl, halo(C 1-10 )alkyl, carbonyl(C 1-3 )alkyl, thiocarbonyl(C 1-3 )alkyl, sulfonyl(C 1-3 )alkyl, sulf ⁇ nyl(C 1-3 )alkyl, amino (C 1-10 )alkyl, imino(C 1-3 )alkyl, (C 3-12 )cycloalkyl(C 1-5 )alkyl,
  • glucokinase activators of the present invention have the formula:
  • t is selected from the group consisting of 0, 1 and 2;
  • Q is selected from the group consisting of O, S, CS, CO, SO, SO 2 , CR 17 R 1 S
  • R 4 , R 6 and R 7 are each independently selected from the group consisting of hydrogen, halo, nitro, cyano, thio, hydroxy, alkoxy, aryloxy, heteroaryloxy, carbonyl, amino, (C 1-10 )alkylamino, sulfonamido, imino, sulfonyl, sulfinyl, (C 1-10 )alkyl, halo(C 1-10 )alkyl, carbonyl(C 1-3 )alkyl, thiocarbonyl(C 1-3 )alkyl, sulfonyl(C 1-3 )alkyl, sulf ⁇ nyl(C 1-3 )alkyl, amino (C 1-10 )alkyl, imino(C 1-3 )alkyl, (C 3-12 )cycloalkyl(C 1-5 )alkyl, hetero(C 3-12 )cycloalkyl(C 1-5 )alkyl,
  • Rn and R 1 s are each independently selected from the group consisting of hydrogen, halo, nitro, cyano, thio, hydroxy, alkoxy, aryloxy, heteroaryloxy, carbonyl, amino, (C 1-10 )alkylamino, sulfonamido, imino, sulfonyl, sulfinyl, (C 1-10 )alkyl, halo(C 1-10 )alkyl, carbonyl(C 1-3 )alkyl, thiocarbonyl(C 1-3 )alkyl, sulfonyl(C 1-3 )alkyl, sulf ⁇ nyl(C 1- 3)alkyl, amino (C 1-10 )alkyl, imino(C 1-3 )alkyl, (C 3-12 )cycloalkyl(C 1-5 )alkyl, hetero(C 3-12 )cycloalkyl(C 1-5 )alkyl, aryl
  • glucokinase activators of the present invention have the formula:
  • s is selected from the group consisting of 0, 1, 2, 3 and 4;
  • Q is selected from the group consisting of O, S, CS, CO, SO, SO 2 , CR 17 R 1 S
  • R 4 , R 6 and R 7 are each independently selected from the group consisting of hydrogen, halo, nitro, cyano, thio, hydroxy, alkoxy, aryloxy, heteroaryloxy, carbonyl, amino, (C 1-10 )alkylamino, sulfonamido, imino, sulfonyl, sulfinyl, (C 1-10 )alkyl, halo(C 1-10 )alkyl, carbonyl(C 1-3 )alkyl, thiocarbonyl(C 1-3 )alkyl, sulfonyl(C 1-3 )alkyl, sulf ⁇ nyl(C 1-3 )alkyl, amino (C 1-10 )alkyl, imino(C 1-3 )alkyl, (C 3-12 )cycloalkyl(C 1-5 )alkyl, hetero(C 3-12 )cycloalkyl(C 1-5 )alkyl,
  • R 17 and R 18 are each independently selected from the group consisting of hydrogen, halo, nitro, cyano, thio, hydroxy, alkoxy, aryloxy, heteroaryloxy, carbonyl, amino, (C 1-10 )alkylamino, sulfonamido, imino, sulfonyl, sulf ⁇ nyl, (C 1-10 )alkyl, halo(C 1-10 )alkyl, carbonyl(d_ 3 )alkyl, thiocarbonyl(d_ 3 )alkyl, sulfonyl(C 1-3 )alkyl, sulf ⁇ nyl(C 1-3 )alkyl, amino (C 1-10 )alkyl, imino(C 1-3 )alkyl, (C 3-12 )cycloalkyl(C 1-5 )alkyl, hetero(C 3-12 )cycloalkyl(C 1-5 )alkyl, aryl
  • R 2 0 is selected from the group consisting of hydrogen, halo, nitro, cyano, thio, hydroxy, alkoxy, aryloxy, heteroaryloxy, carbonyl, amino, (C 1-10 )alkylamino, sulfonamido, imino, sulfonyl, sulfinyl, (C 1-10 )alkyl, halo(C 1-10 )alkyl, carbonyl(C 1-3 )alkyl, thiocarbonyl(C 1-3 )alkyl, sulfonyl(C 1-3 )alkyl, sulfinyl(C 1-3 )alkyl, amino (C 1-10 )alkyl, imino(C 1-3 )alkyl, (C 3-12 )cycloalkyl(C 1-5 )alkyl, hetero(C 3-12 )cycloalkyl(C 1-5 )alkyl, aryl(C 1-10
  • glucokinase activators of the present invention have the formula:
  • s is selected from the group consisting of 0, 1, 2, 3 and 4;
  • Q is selected from the group consisting of O, S, CS, CO, SO, SO2, CR17R18
  • R 4 , R 6 and R 7 are each independently selected from the group consisting of hydrogen, halo, nitro, cyano, thio, hydroxy, alkoxy, aryloxy, heteroaryloxy, carbonyl, amino, (C 1-10 )alkylamino, sulfonamido, imino, sulfonyl, sulf ⁇ nyl, (C 1-10 )alkyl, halo(C 1-10 )alkyl, carbonyl(C 1-3 )alkyl, thiocarbonyl(C 1-3 )alkyl, sulfonyl(C 1-3 )alkyl, sulfmyl(C 1-3 )alkyl, amino (C 1-10 )alkyl, imino(C 1-3 )alkyl, (C 3-12 )cycloalkyl(C 1-5 )alkyl, hetero(C 3-12 )cycloalkyl(C 1-5 )alkyl,
  • Rn and R 1 g are each independently selected from the group consisting of hydrogen, halo, nitro, cyano, thio, hydroxy, alkoxy, aryloxy, heteroaryloxy, carbonyl, amino, (C 1-10 )alkylamino, sulfonamido, imino, sulfonyl, sulf ⁇ nyl, (C 1-10 )alkyl, halo(C 1-10 )alkyl, carbonyl(C 1-3 )alkyl, thiocarbonyl(C 1-3 )alkyl, sulfonyl(C 1-3 )alkyl, sulf ⁇ nyl(C 1-3 )alkyl, amino (C 1-10 )alkyl, imino(C 1-3 )alkyl, (C 3-12 )cycloalkyl(C 1-5 )alkyl, hetero(C 3-12 )cycloalkyl(C 1-5 )alkyl,
  • R 2 o is selected from the group consisting of hydrogen, halo, nitro, cyano, thio, hydroxy, alkoxy, aryloxy, heteroaryloxy, carbonyl, amino, (C 1-10 )alkylamino, sulfonamido, imino, sulfonyl, sulfinyl, (C 1-10 )alkyl, halo(C 1-10 )alkyl, carbonyl(C 1-3 )alkyl, thiocarbonyl(C 1-3 )alkyl, sulfonyl(C 1-3 )alkyl, sulfinyl(C 1-3 )alkyl, amino (C 1-10 )alkyl, imino(C 1-3 )alkyl, (C 3-12 )cycloalkyl(C 1-5 )alkyl, hetero(C 3-12 )cycloalkyl(C 1-5 )alkyl, aryl(C 1-10
  • glucokinase activators of the present invention have the formula:
  • t is selected from the group consisting of 0, 1 and 2;
  • Q is selected from the group consisting of O, S, CS, CO, SO, SO 2 , CR 17 R 1 S
  • R 4 , R 6 and R 7 are each independently selected from the group consisting of hydrogen, halo, nitro, cyano, thio, hydroxy, alkoxy, aryloxy, heteroaryloxy, carbonyl, amino, (C 1-10 )alkylamino, sulfonamido, imino, sulfonyl, sulfinyl, (C 1-10 )alkyl, halo(C 1-10 )alkyl, carbonyl(C 1-3 )alkyl, thiocarbonyl(C 1-3 )alkyl, sulfonyl(C 1-3 )alkyl, sulf ⁇ nyl(C 1-3 )alkyl, amino (C 1-10 )alkyl, imino(C 1-3 )alkyl, (C 3-12 )cycloalkyl(C 1-5 )alkyl, hetero(C 3-12 )cycloalkyl(C 1-5 )alkyl,
  • Rn and R 18 are each independently selected from the group consisting of hydrogen, halo, nitro, cyano, thio, hydroxy, alkoxy, aryloxy, heteroaryloxy, carbonyl, amino, (C 1-10 )alkylamino, sulfonamido, imino, sulfonyl, sulfinyl, (C 1-10 )alkyl, halo(C 1-10 )alkyl, carbonyl(C 1-3 )alkyl, thiocarbonyl(C 1-3 )alkyl, sulfonyl(C 1-3 )alkyl, sulf ⁇ nyl(C 1-3 )alkyl, amino (C 1-10 )alkyl, imino(C 1-3 )alkyl, (C 3-12 )cycloalkyl(C 1-5 )alkyl, hetero(C 3-12 )cycloalkyl(C 1-5 )alkyl, aryl(
  • glucokinase activators of the present invention have the formula:
  • t is selected from the group consisting of 0, 1 and 2;
  • Q is selected from the group consisting of O, S, CS, CO, SO, SO 2 , CR 17 R 1 S
  • R 4 , R 6 and R 7 are each independently selected from the group consisting of hydrogen, halo, nitro, cyano, thio, hydroxy, alkoxy, aryloxy, heteroaryloxy, carbonyl, amino, (C 1-10 )alkylamino, sulfonamido, imino, sulfonyl, sulfinyl, (C 1-10 )alkyl, halo(C 1-10 )alkyl, carbonyl(C 1-3 )alkyl, thiocarbonyl(C 1-3 )alkyl, sulfonyl(C 1-3 )alkyl, sulf ⁇ nyl(C 1-3 )alkyl, amino (C 1-10 )alkyl, imino(C 1-3 )alkyl, (C 3-12 )cycloalkyl(C 1-5 )alkyl, hetero(C 3-12 )cycloalkyl(C 1-5 )alkyl,
  • Rn and R 1 s are each independently selected from the group consisting of hydrogen, halo, nitro, cyano, thio, hydroxy, alkoxy, aryloxy, heteroaryloxy, carbonyl, amino, (C 1-10 )alkylamino, sulfonamido, imino, sulfonyl, sulfinyl, (C 1-10 )alkyl, halo(C 1-10 )alkyl, carbonyl(C 1-3 )alkyl, thiocarbonyl(C 1-3 )alkyl, sulfonyl(C 1-3 )alkyl, sulf ⁇ nyl(C 1- 3)alkyl, amino (C 1-10 )alkyl, imino(C 1-3 )alkyl, (C 3-12 )cycloalkyl(C 1-5 )alkyl, hetero(C 3-12 )cycloalkyl(C 1-5 )alkyl, aryl
  • glucokinase activators of the present invention have the formula:
  • t is selected from the group consisting of 0, 1 and 2;
  • Q is selected from the group consisting of O, S, CS, CO, SO, SO 2 , CR 17 R 1 S
  • R 4 , R 6 and R 7 are each independently selected from the group consisting of hydrogen, halo, nitro, cyano, thio, hydroxy, alkoxy, aryloxy, heteroaryloxy, carbonyl, amino, (C 1-10 )alkylamino, sulfonamido, imino, sulfonyl, sulfinyl, (C 1-10 )alkyl, halo(C 1-10 )alkyl, carbonyl(C 1-3 )alkyl, thiocarbonyl(C 1-3 )alkyl, sulfonyl(C 1-3 )alkyl, sulf ⁇ nyl(C 1-3 )alkyl, amino (C 1-10 )alkyl, imino(C 1-3 )alkyl, (C 3-12 )cycloalkyl(C 1-5 )alkyl, hetero(C 3-12 )cycloalkyl(C 1-5 )alkyl,
  • Rn and R 1 s are each independently selected from the group consisting of hydrogen, halo, nitro, cyano, thio, hydroxy, alkoxy, aryloxy, heteroaryloxy, carbonyl, amino, (C 1-10 )alkylamino, sulfonamido, imino, sulfonyl, sulfinyl, (C 1-10 )alkyl, halo(C 1-10 )alkyl, carbonyl(C 1-3 )alkyl, thiocarbonyl(C 1-3 )alkyl, sulfonyl(C 1-3 )alkyl, sulf ⁇ nyl(C 1- 3)alkyl, amino (C 1-10 )alkyl, imino(C 1-3 )alkyl, (C 3-12 )cycloalkyl(C 1-5 )alkyl, hetero(C 3-12 )cycloalkyl(C 1-5 )alkyl, aryl
  • glucokinase activators of the present invention have the formula:
  • t is selected from the group consisting of 0, 1 and 2;
  • Q is selected from the group consisting of O, S, CS, CO, SO, SO 2 , CR 17 R 18
  • R 4 , Re and R 7 are each independently selected from the group consisting of hydrogen, halo, nitro, cyano, thio, hydroxy, alkoxy, aryloxy, heteroaryloxy, carbonyl, amino, (C 1-10 )alkylamino, sulfonamido, imino, sulfonyl, sulf ⁇ nyl, (C 1-10 )alkyl, halo(C 1-10 )alkyl, carbonyl(C 1-3 )alkyl, thiocarbonyl(C 1-3 )alkyl, sulfonyl(C 1-3 )alkyl, sulf ⁇ nyl(C 1-3 )alkyl, amino (C 1-10 )alkyl, imino(C 1-3 )alkyl, (C 3-12 )cycloalkyl(C 1-5 )alkyl, hetero(C 3-12 )cycloalkyl(C 1-5 )alkyl,
  • Rn and R 18 are each independently selected from the group consisting of hydrogen, halo, nitro, cyano, thio, hydroxy, alkoxy, aryloxy, heteroaryloxy, carbonyl, amino, (C 1-10 )alkylamino, sulfonamido, imino, sulfonyl, sulfinyl, (C 1-10 )alkyl, halo(C 1-10 )alkyl, carbonyl(C 1-3 )alkyl, thiocarbonyl(C 1-3 )alkyl, sulfonyl(C 1-3 )alkyl, sulf ⁇ nyl(C 1-3 )alkyl, amino (C 1-10 )alkyl, imino(C 1-3 )alkyl, (C 3-12 )cycloalkyl(C 1-5 )alkyl, hetero(C 3-12 )cycloalkyl(C 1-5 )alkyl, aryl(
  • the present invention relates to methods of making compounds that are useful as glucokinase activators.
  • the methods comprise the steps of: reacting a compound having the formula
  • n is selected from the group consisting of 3, 4 and 5; Vi is selected from the group consisting of CR 4 and N; V2 is selected from the group consisting of CR6 and N; each X is independently selected from the group consisting of CR S R ⁇ , CO, CS, NR 10 , O, S, SO and SO 2 ; R 1 is selected from the group consisting of hydrogen and a substituent convertible to hydrogen in vivo;
  • R 2 and R3 are each independently selected from the group consisting of hydrogen, carbonyl, sulfonyl, sulf ⁇ nyl, (C 1-10 )alkyl, halo(C 1-10 )alkyl, carbonyl(C 1-3 )alkyl, thiocarbonyl(d_ 3 )alkyl, sulfonyl(C 1-3 )alkyl, sulfmyl(C 1-3 )alkyl, amino (C 1-10 )alkyl, imino(C 1-3 )alkyl, (C 3-12 )cycloalkyl(C 1-5 )alkyl, hetero(C 3-12 )cycloalkyl(C 1-5 )alkyl, aryl(C 1-10 )alkyl, heteroaryl(C 1-5 )alkyl, (C 9-12 )bicycloaryl(C 1-5 )alkyl, hetero(C 8-12 )bicycloaryl(C 1-5
  • R 4 , R 5 , R 6 and R 7 are each independently selected from the group consisting of hydrogen, halo, nitro, cyano, thio, hydroxy, alkoxy, aryloxy, heteroaryloxy, carbonyl, amino, (C 1-10 )alkylamino, sulfonamido, imino, sulfonyl, sulf ⁇ nyl, (C 1-10 )alkyl, halo(C 1-10 )alkyl, carbonyl(C 1-3 )alkyl, thiocarbonyl(C 1-3 )alkyl, sulfonyl(C 1-3 )alkyl, sulfinyl(C 1-3 )alkyl, amino (C 1-10 )alkyl, imino(C 1-3 )alkyl, (C 3-12 )cycloalkyl(C 1-5 )alkyl, hetero(C 3-12 )cycloalkyl(C 1-5 )
  • Rs and R9 are each independently selected from the group consisting of hydrogen, halo, nitro, cyano, thio, hydroxy, alkoxy, aryloxy, heteroaryloxy, carbonyl, amino, (C 1-10 )alkylamino, sulfonamido, imino, sulfonyl, sulf ⁇ nyl, (C 1-10 )alkyl, halo(C 1-10 )alkyl, carbonyl(C 1-3 )alkyl, thiocarbonyl(C 1-3 )alkyl, sulfonyl(C 1-3 )alkyl, sulf ⁇ nyl(C 1-3 )alkyl, amino (C 1-10 )alkyl, imino(C 1-3 )alkyl, (C 3-12 )cycloalkyl(C 1-5 )alkyl, hetero(C 3-12 )cycloalkyl(C 1-5 )alkyl, aryl(
  • R 10 is selected from the group consisting of hydrogen, hydroxy, alkoxy, aryloxy, heteroaryloxy, carbonyl, amino, (C 1-10 )alkylamino, sulfonamido, imino, sulfonyl, sulfinyl, (C 1-10 )alkyl, halo(C 1-10 )alkyl, carbonyl(C 1-3 )alkyl, thiocarbonyl(C 1-3 )alkyl, sulfonyl(C 1-3 )alkyl, sulfinyl(C 1-3 )alkyl, amino (C 1-10 )alkyl, imino(C 1-3 )alkyl, (C 3-12 )cycloalkyl(C 1-5 )alkyl, hetero(C 3-12 )cycloalkyl(C 1-5 )alkyl, aryl(C 1-10 )alkyl, heteroaryl(C 1-5 )alkyl
  • the methods comprise the steps of: treating a compound having the formula
  • n is selected from the group consisting of 3, 4 and 5; each X is independently selected from the group consisting of CR 8 Rg, CO, CS, NR 10 , O, S, SO and SO 2 ;
  • R a is a metal
  • R 1 is selected from the group consisting of hydrogen and a substituent convertible to hydrogen in vivo;
  • R 2 and R 3 are each independently selected from the group consisting of hydrogen, carbonyl, sulfonyl, sulfinyl, (C 1-10 )alkyl, halo(C 1-10 )alkyl, carbonyl(C 1-3 )alkyl, thiocarbonyl(C 1-3 )alkyl, sulfonyl(C 1-3 )alkyl, sulfinyl(C 1-3 )alkyl, amino (C 1-10 )alkyl, imino(C 1-3 )alkyl, (C 3-12 )cycloalkyl(C 1-5 )alkyl, hetero(C 3-12 )cycloalkyl(C 1-5 )alkyl, aryl(C 1-10 )alkyl, heteroaryl(C 1-5 )alkyl, (C 9-12 )bicycloaryl(C 1-5 )alkyl, hetero(C 8-12 )bicycloaryl(C 1-5
  • R 5 is selected from the group consisting of hydrogen, halo, nitro, cyano, thio, hydroxy, alkoxy, aryloxy, heteroaryloxy, carbonyl, amino, (C 1-10 )alkylamino, sulfonamido, imino, sulfonyl, sulfinyl, (C 1-10 )alkyl, halo(C 1-10 )alkyl, carbonyl(C 1-3 )alkyl, thiocarbonyl(d_ 3 )alkyl, sulfonyl(C 1-3 )alkyl, sulfmyl(C 1-3 )alkyl, amino (C 1-10 )alkyl, imino(C 1-3 )alkyl, (C 3-12 )cycloalkyl(C 1-5 )alkyl, hetero(C 3-12 )cycloalkyl(C 1-5 )alkyl, aryl(C 1-10 )alky
  • Rs and R9 are each independently selected from the group consisting of hydrogen, halo, nitro, cyano, thio, hydroxy, alkoxy, aryloxy, heteroaryloxy, carbonyl, amino, (C 1-10 )alkylamino, sulfonamido, imino, sulfonyl, sulfinyl, (C 1-10 )alkyl, halo(C 1-10 )alkyl, carbonyl(C 1-3 )alkyl, thiocarbonyl(C 1-3 )alkyl, sulfonyl(C 1-3 )alkyl, sulf ⁇ nyl(C 1- 3)alkyl, amino (C 1-10 )alkyl, imino(C 1-3 )alkyl, (C 3-12 )cycloalkyl(C 1-5 )alkyl, hetero(C 3-12 )cycloalkyl(C 1-5 )alkyl, aryl(C 1
  • the methods comprise the steps of: treating a compound having the formula
  • n is selected from the group consisting of 3, 4 and 5; Vi is selected from the group consisting of CR 4 and N; each X is independently selected from the group consisting of CRsRg, CO, CS, NR 10 , O, S, SO and SO 2 ;
  • Rb is a (C 1-3 )alkyl
  • R 1 is selected from the group consisting of hydrogen and a substituent convertible to hydrogen in vivo
  • R 4 and R 5 are each independently selected from the group consisting of hydrogen, halo, nitro, cyano, thio, hydroxy, alkoxy, aryloxy, heteroaryloxy, carbonyl, amino, (C 1-10 )alkylamino, sulfonamido, imino, sulfonyl, sulfinyl, (C 1-10 )alkyl, halo(C 1-10 )alkyl, carbonyl(C 1-3 )alkyl, thiocarbonyl(C 1-3 )alkyl, sulfonyl(C 1-3 )alkyl, sulf ⁇ nyl(C 1-3 )alkyl, amino (C 1-10 )alkyl, imino(C 1-3 )alkyl, (C 3-12 )cycloalkyl(C 1-5 )alkyl, hetero(C 3-12 )cycloalkyl(C 1-5 )alkyl, aryl(
  • R 8 and R 9 are each independently selected from the group consisting of hydrogen, halo, nitro, cyano, thio, hydroxy, alkoxy, aryloxy, heteroaryloxy, carbonyl, amino, (C 1-10 )alkylamino, sulfonamido, imino, sulfonyl, sulfinyl, (C 1-10 )alkyl, halo(C 1-10 )alkyl, carbonyl(C 1-3 )alkyl, thiocarbonyl(C 1-3 )alkyl, sulfonyl(C 1-3 )alkyl, sulf ⁇ nyl(C 1-3 )alkyl, amino (C 1-10 )alkyl, imino(C 1-3 )alkyl, (C 3-12 )cycloalkyl(C 1-5 )alkyl, hetero(C 3-12 )cycloalkyl(C 1-5 )alkyl, aryl(
  • R 10 is selected from the group consisting of hydrogen, hydroxy, alkoxy, aryloxy, heteroaryloxy, carbonyl, amino, (C 1-10 )alkylamino, sulfonamido, imino, sulfonyl, sulf ⁇ nyl, (C 1-10 )alkyl, halo(C 1-10 )alkyl, carbonyl(C 1-3 )alkyl, thiocarbonyl(C 1-3 )alkyl, sulfonyl(C 1-3 )alkyl, sulfinyl(C 1-3 )alkyl, amino (C 1-10 )alkyl, imino(C 1-3 )alkyl, (C 3-12 )cycloalkyl(C 1-5 )alkyl, hetero(C 3-12 )cycloalkyl(C 1-5 )alkyl, aryl(C 1-10 )alkyl, heteroaryl(C 1-5 )alky
  • R 21 is selected from the group consisting of hydrogen, halo, nitro, cyano, thio, oxy, hydroxy, carbonyloxy, (C 1-10 )alkoxy, (C 4-12 )aryloxy, hetero(C 1-10 )aryloxy, carbonyl, oxycarbonyl, aminocarbonyl, amino, (C 1-10 )alkylamino, sulfonamido, imino, sulfonyl, sulf ⁇ nyl, (C 1-10 )alkyl, halo(C 1-10 )alkyl, hydroxy(C 1-10 )alkyl, carbonyl(C 1-10 )alkyl, thiocarbonyl(C 1-10 )alkyl, sulfonyl(C 1-10 )alkyl, sulf ⁇ nyl(C 1-10 )alkyl, aza(C 1-10 )alkyl, (C 1-10 )oxaalkyl, (C
  • n is selected from the group consisting of 3, 4 and 5; Vi is selected from the group consisting of CR 4 and N; V 2 is selected from the group consisting of CR ⁇ and N; each X is independently selected from the group consisting of CR 8 Rg, CO, CS, NR 10 , O, S, SO and SO 2 ; R b is a (C 1-3 )alkyl;
  • R c and R d are each independently a leaving group;
  • R 1 is selected from the group consisting of hydrogen and a substituent convertible to hydrogen in vivo;
  • R 2 is selected from the group consisting of hydrogen, carbonyl, sulfonyl, sulfinyl, (C 1-10 )alkyl, halo(C 1-10 )alkyl, carbonyl(C 1-3 )alkyl, thiocarbonyl(C 1-3 )alkyl, sulfonyl(C 1-3 )alkyl, sulf ⁇ nyl(C 1-3 )alkyl, amino (C 1-10 )alkyl, imino(C 1-3 )alkyl, (C 3-12 )cycloalkyl(C 1-5 )alkyl, hetero(C 3-12 )cycloalkyl(C 1-5 )alkyl, aryl(C 1-10 )alkyl, heteroaryl(C 1-5 )alkyl, (C 9-12 )bicycloaryl(C 1-5 )alkyl, hetero(C 8-12 )bicycloaryl(C 1-5 )alkyl
  • R 4 , R 5 , R 6 and R 7 are each independently selected from the group consisting of hydrogen, halo, nitro, cyano, thio, hydroxy, alkoxy, aryloxy, heteroaryloxy, carbonyl, amino, (C 1-10 )alkylamino, sulfonamido, imino, sulfonyl, sulfinyl, (C 1-10 )alkyl, halo(C 1-10 )alkyl, carbonyl(d_ 3 )alkyl, thiocarbonyl(d_ 3 )alkyl, sulfonyl(C 1-3 )alkyl, sulf ⁇ nyl(C 1-3 )alkyl, amino (C 1-10 )alkyl, imino(C 1-3 )alkyl, (C 3-12 )cycloalkyl(C 1-5 )alkyl, hetero(C 3-12 )cycloalkyl(C 1-5 )
  • R 8 and R 9 are each independently selected from the group consisting of hydrogen, halo, nitro, cyano, thio, hydroxy, alkoxy, aryloxy, heteroaryloxy, carbonyl, amino, (C 1-10 )alkylamino, sulfonamido, imino, sulfonyl, sulfinyl, (C 1-10 )alkyl, halo(C 1-10 )alkyl, carbonyl(C 1-3 )alkyl, thiocarbonyl(C 1-3 )alkyl, sulfonyl(C 1-3 )alkyl, sulf ⁇ nyl(C 1-3 )alkyl, amino (C 1-10 )alkyl, imino(C 1-3 )alkyl, (C 3-12 )cycloalkyl(C 1-5 )alkyl, hetero(C 3-12 )cycloalkyl(C 1-5 )alkyl, aryl(
  • R 10 is selected from the group consisting of hydrogen, hydroxy, alkoxy, aryloxy, heteroaryloxy, carbonyl, amino, (C 1-10 )alkylamino, sulfonamido, imino, sulfonyl, sulfinyl, (C 1-10 )alkyl, halo(C 1-10 )alkyl, carbonyl(C 1-3 )alkyl, thiocarbonyl(C 1-3 )alkyl, sulfonyl(C 1-3 )alkyl, sulfinyl(C 1-3 )alkyl, amino (C 1-10 )alkyl, imino(C 1-3 )alkyl, (C 3-12 )cycloalkyl(C 1-5 )alkyl, hetero(C 3-12 )cycloalkyl(C 1-5 )alkyl, aryl(C 1-10 )alkyl, heteroaryl(C 1-5 )alkyl
  • the methods comprise the steps of: reacting a compound having the formula
  • n is selected from the group consisting of 3, 4 and 5; Vi is selected from the group consisting of CR 4 and N; V 2 is selected from the group consisting of CR ⁇ and N; each X is independently selected from the group consisting of CR 8 R ⁇ , CO, CS, NR 10 , O, S, SO and SO 2 ;
  • Rb is a (C 1-3 )alkyl
  • R c and R d are each independently a leaving group;
  • R 1 is selected from the group consisting of hydrogen and a substituent convertible to hydrogen in vivo;
  • R 4 , R 5 , Re and R 7 are each independently selected from the group consisting of hydrogen, halo, nitro, cyano, thio, hydroxy, alkoxy, aryloxy, heteroaryloxy, carbonyl, amino, (C 1-10 )alkylamino, sulfonamido, imino, sulfonyl, sulfinyl, (C 1-10 )alkyl, halo(C 1-10 )alkyl, carbonyl(C 1-3 )alkyl, thiocarbonyl(C 1-3 )alkyl, sulfonyl(C 1-3 )alkyl, sulfinyl(C 1-3 )alkyl, amino (C 1-10 )alkyl, imino(C 1-3 )alkyl, (C 3-12 )cycloalkyl(C 1-5 )alkyl, hetero(C 3-12 )cycloalkyl(C 1-5 )alky
  • R 8 and R 9 are each independently selected from the group consisting of hydrogen, halo, nitro, cyano, thio, hydroxy, alkoxy, aryloxy, heteroaryloxy, carbonyl, amino, (C 1-10 )alkylamino, sulfonamido, imino, sulfonyl, sulf ⁇ nyl, (C 1-10 )alkyl, halo(C 1-10 )alkyl, carbonyl(C 1-3 )alkyl, thiocarbonyl(C 1-3 )alkyl, sulfonyl(C 1-3 )alkyl, sulf ⁇ nyl(C 1-3 )alkyl, amino (C 1-10 )alkyl, imino(C 1-3 )alkyl, (C 3-12 )cycloalkyl(C 1-5 )alkyl, hetero(C 3-12 )cycloalkyl(C 1-5 )alkyl, aryl
  • R 10 is selected from the group consisting of hydrogen, hydroxy, alkoxy, aryloxy, heteroaryloxy, carbonyl, amino, (C 1-10 )alkylamino, sulfonamido, imino, sulfonyl, sulfinyl, (C 1-10 )alkyl, halo(C 1-10 )alkyl, carbonyl(C 1-3 )alkyl, thiocarbonyl(C 1-3 )alkyl, sulfonyl(C 1-3 )alkyl, sulf ⁇ nyl(C 1-3 )alkyl, amino (C 1-10 )alkyl, imino(C 1-3 )alkyl, (C 3-12 )cycloalkyl(C 1-5 )alkyl, hetero(C 3-12 )cycloalkyl(C 1-5 )alkyl, aryl(C 1-10 )alkyl, heteroaryl(C 1-5 )alky
  • R 2I is selected from the group consisting of hydrogen, halo, nitro, cyano, thio, oxy, hydroxy, carbonyloxy, (C 1-10 )alkoxy, (C 4-12 )aryloxy, hetero(C 1-10 )aryloxy, carbonyl, oxycarbonyl, aminocarbonyl, amino, (C 1-10 )alkylamino, sulfonamido, imino, sulfonyl, sulfinyl, (C 1-10 )alkyl, halo(C 1-10 )alkyl, hydroxy(C 1-10 )alkyl, carbonyl(C 1-10 )alkyl, thiocarbonyl(C 1-10 )alkyl, sulfonyl(C 1-10 )alkyl, sulfinyl(C 1-10 )alkyl, aza(C 1-10 )alkyl, (C 1-10 )oxaalkyl, (C 1
  • the methods comprise the steps of: reacting a compound having the formula
  • n is selected from the group consisting of 3, 4 and 5; Vi is selected from the group consisting of CR 4 and N; V 2 is selected from the group consisting of CR ⁇ and N; each X is independently selected from the group consisting of CRsRg, CO, CS, NR 10 , O, S, SO and SO 2 ;
  • Rb is a (C 1-3 )alkyl
  • R c , R d and R e are each independently a leaving group;
  • R 1 is selected from the group consisting of hydrogen and a substituent convertible to hydrogen in vivo;
  • R 4 , R 5 , R O and R 7 are each independently selected from the group consisting of hydrogen, halo, nitro, cyano, thio, hydroxy, alkoxy, aryloxy, heteroaryloxy, carbonyl, amino, (C 1-10 )alkylamino, sulfonamido, imino, sulfonyl, sulfinyl, (C 1-10 )alkyl, halo(C 1-10 )alkyl, carbonyl(C 1-3 )alkyl, thiocarbonyl(C 1-3 )alkyl, sulfonyl(C 1-3 )alkyl, sulf ⁇ nyl(C 1-3 )alkyl, amino (C 1-10 )alkyl, imino(C 1-3 )alkyl, (C 3-12 )cycloalkyl(C 1-5 )alkyl, hetero(C 3-12 )cycloalkyl(C 1-5 )
  • R 10 is selected from the group consisting of hydrogen, hydroxy, alkoxy, aryloxy, heteroaryloxy, carbonyl, amino, (C 1-10 )alkylamino, sulfonamido, imino, sulfonyl, sulfinyl, (C 1-10 )alkyl, halo(C 1-10 )alkyl, carbonyl(C 1-3 )alkyl, thiocarbonyl(C 1-3 )alkyl, sulfonyl(C 1-3 )alkyl, sulfinyl(C 1-3 )alkyl, amino (C 1-10 )alkyl, imino(C 1-3 )alkyl, (C 3-12 )cycloalkyl(C 1-5 )alkyl, hetero(C 3-12 )cycloalkyl(C 1-5 )alkyl, aryl(C 1-10 )alkyl, heteroaryl(C 1-5 )alkyl
  • R21 is selected from the group consisting of hydrogen, halo, nitro, cyano, thio, oxy, hydroxy, carbonyloxy, (C 1-10 )alkoxy, (C 4-1 2)aryloxy, hetero(C 1-10 )aryloxy, carbonyl, oxycarbonyl, aminocarbonyl, amino, (C 1-10 )alkylamino, sulfonamido, imino, sulfonyl, sulfinyl, (C 1-10 )alkyl, halo(C 1-10 )alkyl, hydroxy(C 1-10 )alkyl, carbonyl(C 1-10 )alkyl, thiocarbonyl(C 1-10 )alkyl, sulfonyl(C 1-10 )alkyl, sulfinyl(C 1-10 )alkyl, aza(C 1-10 )alkyl, (C 1-10 )oxaalkyl, (C 1-10
  • the present invention relates to intermediates that are useful in making glucokinase activators.
  • the intermediates have the formula
  • Vi is selected from the group consisting of CR 4 and N;
  • V 2 is selected from the group consisting of CR 6 and N;
  • R 2 and R3 are each independently selected from the group consisting of hydrogen, carbonyl, sulfonyl, sulfinyl, (C 1-10 )alkyl, halo(C 1-10 )alkyl, carbonyl(C 1-3 )alkyl, thiocarbonyl(C 1-3 )alkyl, sulfonyl(C 1-3 )alkyl, sulf ⁇ nyl(C 1-3 )alkyl, amino (C 1-10 )alkyl, imino(C 1-3 )alkyl, (C 3-12 )cycloalkyl(C 1-5 )alkyl, hetero(C 3-12 )cycloalkyl(C 1-5 )alkyl, aryl(C 1-10 )alkyl, heteroaryl(C 1-5 )alkyl, (C 9-12 )bicycloaryl(C 1-5 )alkyl, hetero(C 8-12 )bicycloaryl(C 1-5
  • R 4 , R 5 , R 6 and R 7 are each independently selected from the group consisting of hydrogen, halo, nitro, cyano, thio, hydroxy, alkoxy, aryloxy, heteroaryloxy, carbonyl, amino, (C 1-10 )alkylamino, sulfonamido, imino, sulfonyl, sulfinyl, (C 1-10 )alkyl, halo(C 1-10 )alkyl, carbonyl(C 1-3 )alkyl, thiocarbonyl(C 1-3 )alkyl, sulfonyl(C 1-3 )alkyl, sulf ⁇ nyl(C 1-3 )alkyl, amino (C 1-10 )alkyl, imino(C 1-3 )alkyl, (C 3-12 )cycloalkyl(C 1-5 )alkyl, hetero(C 3-12 )cycloalkyl(C 1-5 )
  • Vi is selected from the group consisting of CR 4 and N;
  • V 2 is selected from the group consisting of CR 6 and N;
  • R b is a (C 1-3 )alkyl;
  • R 2 and R3 are each independently selected from the group consisting of hydrogen, carbonyl, sulfonyl, sulfinyl, (C 1-10 )alkyl, halo(C 1-10 )alkyl, carbonyl(C 1-3 )alkyl, thiocarbonyl(C 1-3 )alkyl, sulfonyl(C 1-3 )alkyl, sulfinyl(C 1-3 )alkyl, amino (C 1-10 )alkyl, imino(C 1-3 )alkyl, (C 3-12 )cycloalkyl(C 1-5 )alkyl, hetero(C 3-12 )cycloalkyl(C 1-5 )alkyl, aryl(C 1-10 )alkyl, heteroaryl(C 1-5 )alkyl, (C 9-12 )bicycloaryl(C 1-5 )alkyl, hetero(C 8-12 )bicycloaryl(C 1-5
  • R 4 , R 5 , R 6 and R 7 are each independently selected from the group consisting of hydrogen, halo, nitro, cyano, thio, hydroxy, alkoxy, aryloxy, heteroaryloxy, carbonyl, amino, (C 1-10 )alkylamino, sulfonamido, imino, sulfonyl, sulfinyl, (C 1-10 )alkyl, halo(C 1-10 )alkyl, carbonyl(C 1-3 )alkyl, thiocarbonyl(C 1-3 )alkyl, sulfonyl(C 1-3 )alkyl, sulf ⁇ nyl(C 1-3 )alkyl, amino (C 1-10 )alkyl, imino(C 1-3 )alkyl, (C 3-12 )cycloalkyl(C 1-5 )alkyl, hetero(C 3-12 )cycloalkyl(C 1-5 )
  • ring A is a substituted or unsubstituted heteroaryl. In another variation of each of the above embodiments, ring A is selected from the group consisting of thiazolyl and pyridyl; each substituted or unsubstituted.
  • ring A is selected from the group consisting of thiazol-2-yl; 2-pyridyl; 5-methyl-thiazol-2-yl; 6- methyl-pyrid-2-yl; 4-methyl-pyrid-2-yl; 5-bromo-6-methyl-pyrid-2-yl; 5-phenyl-pyrid-2- yl; benzothiazol-2-yl; a nicotinic acid methyl ester; and 5-bromo-pyrid-2-yl. [0125] In yet another variation of each of the above embodiments, ring A comprises:
  • 1 is selected from the group consisting of 1 and 2; r is selected from the group consisting of 0, 1, 2, 3, 4, 5, 6, 7 and 8;
  • W is selected from the group consisting of CR 12 or N; each Rn is independently selected from the group consisting of hydrogen, halo, nitro, cyano, thio, hydroxy, alkoxy, aryloxy, heteroaryloxy, carbonyl, amino, (C 1-10 )alkylamino, sulfonamido, imino, sulfonyl, sulf ⁇ nyl, (C 1-10 )alkyl, halo(C 1-10 )alkyl, carbonyl(C 1-3 )alkyl, thiocarbonyl(d_ 3 )alkyl, sulfonyl(C 1-3 )alkyl, sulf ⁇ nyl(C 1-3 )alkyl, amino (C 1-10 )alkyl, imino(C 1-3 )alkyl, (C 3-12 )cycloalkyl(C 1-5 )alkyl, hetero(C 3-12 )cycloalkyl(
  • ring A comprises:
  • Yi and Y 2 are each independently selected from the group consisting of each R B is independently selected from the group consisting of hydrogen, halo, nitro, cyano, thio, hydroxy, alkoxy, aryloxy, heteroaryloxy, carbonyl, amino, (C 1-10 )alkylamino, sulfonamido, imino, sulfonyl, sulf ⁇ nyl, (C 1-10 )alkyl, halo(C 1-10 )alkyl, carbonyl(C 1-3 )alkyl, thiocarbonyl(d_ 3 )alkyl, sulfonyl(C 1-3 )alkyl, sulfmyl(C 1-3 )alkyl, amino (C 1-10 )alkyl, imino(C 1-3 )alkyl, (C 3-12 )cycloalkyl(C 1-5 )alkyl, hetero(C 3-12 )cycloalkyl(C 1
  • ring A comprises:
  • each R B is independently selected from the group consisting of hydrogen, halo, nitro, cyano, thio, hydroxy, alkoxy, aryloxy, heteroaryloxy, carbonyl, amino, (C 1-10 )alkylamino, sulfonamido, imino, sulfonyl, sulfinyl, (C 1-10 )alkyl, halo(C 1-10 )alkyl, carbonyl(C 1-3 )alkyl, thiocarbonyl(C 1-3 )alkyl, sulfonyl(C 1-3 )alkyl, sulfmyl(C 1-3 )alkyl, amino (C 1-10 )alkyl, imino(C 1-3 )alkyl, (C 3-12 )cycloalkyl(C 1-5 )alkyl, hetero(C 3-12 )cycloalkyl(C
  • ring A comprises: wherein R 1 3 is selected from the group consisting of hydrogen, halo, nitro, cyano, thio, hydroxy, alkoxy, aryloxy, heteroaryloxy, carbonyl, amino, (C 1-10 )alkylamino, sulfonamido, imino, sulfonyl, sulf ⁇ nyl, (C 1-10 )alkyl, halo(C 1-10 )alkyl, carbonyl(C 1-3 )alkyl, thiocarbonyl(d_ 3 )alkyl, sulfonyl(C 1-3 )alkyl, sulfinyl(C 1-3 )alkyl, amino (C 1-10 )alkyl, imino(C 1-3 )alkyl, (C 3-12 )cycloalkyl(C 1-5 )alkyl, hetero(C 3-12
  • R 13a , R 13 b, R 1 3c and R 13 d are each independently selected from the group consisting of hydrogen, halo, nitro, cyano, thio, hydroxy, alkoxy, aryloxy, heteroaryloxy, carbonyl, amino, (C 1-10 )alkylamino, sulfonamido, imino, sulfonyl, sulfinyl, (C 1-10 )alkyl, halo(C 1-10 )alkyl, carbonyl(C 1-3 )alkyl, thiocarbonyl(C 1-3 )alkyl, sulfonyl(C 1-3 )alkyl, sulf ⁇ nyl(C 1-3 )alkyl, amino (C 1-10 )alkyl, imino(C 1-3 )alkyl, (C 3-12 )cycloalkyl(C 1-5 )alkyl, hetero(C 3-12 )cycloalkyl
  • Y 2 is CR13.
  • Y 3 is CR 43 .
  • Y 4 is CR13.
  • Z is S.
  • n 3 or
  • R 1 is hydrogen
  • R 2 is hydrogen.
  • R 2 comprises -CH 2 R 2i and R 2 i is selected from the group consisting of hydrogen, halo, nitro, cyano, thio, oxy, hydroxy, carbonyloxy, (C 1-10 )alkoxy, (C 4-12 )aryloxy, hetero(C 1-10 )aryloxy, carbonyl, oxycarbonyl, aminocarbonyl, amino, (C 1-10 )alkylamino, sulfonamido, imino, sulfonyl, sulfmyl, (C 1-10 )alkyl, halo(C 1-10 )alkyl, hydroxy(C 1-10 )alkyl, carbonyl(C 1-10 )alkyl, thiocarbonyl(C 1-10 )alkyl, sulfonyl(C 1-10
  • R 2 comprises
  • Q is selected from the group consisting of O, S, CS, CO, SO, SO 2 , CR ⁇ R 1 s and NR 19 ;
  • Rn and R 1 g are each independently selected from the group consisting of hydrogen, halo, nitro, cyano, thio, hydroxy, alkoxy, aryloxy, heteroaryloxy, carbonyl, amino, (C 1-10 )alkylamino, sulfonamido, imino, sulfonyl, sulf ⁇ nyl, (C 1-10 )alkyl, halo(C 1-10 )alkyl, carbonyl(d_ 3 )alkyl, thiocarbonyl(d_ 3 )alkyl, sulfonyl(C 1-3 )alkyl, sulf ⁇ nyl(C 1-3 )alkyl, amino (C 1-10 )alkyl, imino(C 1-3 )alkyl, (C 3-12 )cycloalkyl(C 1-5 )alkyl, hetero(C 3-12 )cycloalkyl(C 1-5 )alkyl,
  • R2 comprises
  • Q is selected from the group consisting of O, S, CS, CO, SO, SO 2 , CR 17 R 1 S and NR 1 9;
  • Rn and R 1 g are each independently selected from the group consisting of hydrogen, halo, nitro, cyano, thio, hydroxy, alkoxy, aryloxy, heteroaryloxy, carbonyl, amino, (C 1-10 )alkylamino, sulfonamido, imino, sulfonyl, sulfinyl, (C 1-10 )alkyl, halo(C 1-10 )alkyl, carbonyl(C 1-3 )alkyl, thiocarbonyl(C 1-3 )alkyl, sulfonyl(C 1-3 )alkyl, sulf ⁇ nyl(C 1-3 )alkyl, amino (C 1-10 )alkyl, imino(C 1-3 )alkyl, (C 3-12 )cycloalkyl(C 1-5 )alkyl, hetero(C 3-12 )cycloalkyl(C 1-5 )alkyl, ary
  • R 3 is selected from the group consisting of carbonyl, (C 1-10 )alkyl, halo(C 1-10 )alkyl, carbonyl(C 1-3 )alkyl, thiocarbonyl(C 1-3 )alkyl, sulfonyl(C 1-3 )alkyl, sulfinyl(C 1-3 )alkyl, amino (Ci.
  • R 3 is selected from the group consisting of hydrogen, (C 1-10 )alkyl, (C 3-12 )cycloalkyl(C 1-5 )alkyl, hetero(C 3-12 )cycloalkyl(C 1-5 )alkyl, aryl(C 1-10 )alkyl, and heteroaryl(C 1-5 )alkyl, each substituted or unsubstituted.
  • R 3 is selected from the group consisting of (C 1-10 )alkyl, (C 3-12 )cycloalkyl(C 1-5 )alkyl, hetero(C 3-12 )cycloalkyl(C 1-5 )alkyl, aryl(C 1-10 )alkyl, and heteroaryl(C 1-5 )alkyl, each substituted or unsubstituted.
  • R3 is selected from the group consisting of hydrogen; butyl; cyclohexylmethyl; benzyl; imidazol-4-ylmethyl and phenyl.
  • R3 is selected from the group consisting of butyl; cyclohexylmethyl; benzyl; imidazol-4-ylmethyl and phenyl.
  • R 4 is selected from the group consisting of halo, (C 1-10 )alkyl,
  • R 16 is selected from the group consisting of hydrogen, halo, nitro, cyano, thio, oxy, hydroxy, carbonyloxy, (C 1-10 )alkoxy, (C 4-12 )aryloxy, hetero(C 1-10 )aryloxy, carbonyl, oxycarbonyl, aminocarbonyl, amino, (C 1-10 )alkylamino, sulfonamido, imino, sulfonyl, sulfinyl, (C 1-10 )alkyl, halo(C 1-10 )alkyl, hydroxy(C 1-10 )alkyl, carbonyl(C 1-10 )alkyl, thiocarbonyl(C 1-10 )alkyl
  • R 4 is a substituted or unsubstituted (C 1-5 )alkyl. In a further variation of each of the above embodiments and variations, R 4 is methyl. In still a further variation of each of the above embodiments and variations, R 4 is halo and, in particular, chloro.
  • R 7 are taken together to form a ring.
  • R 5 is selected from the group consisting of halo, (C 1-10 )alkyl,
  • R 16 is selected from the group consisting of hydrogen, halo, nitro, cyano, thio, oxy, hydroxy, carbonyloxy, (C 1-10 )alkoxy, (C 4-12 )aryloxy, hetero(C 1-10 )aryloxy, carbonyl, oxycarbonyl, aminocarbonyl, amino, (C 1-10 )alkylamino, sulfonamido, imino, sulfonyl, sulfinyl, (C 1-10 )alkyl, halo(C 1-10 )alkyl, hydroxy(C 1-10 )alkyl, carbonyl(C 1-10 )alkyl, thiocarbonyl(C
  • R 5 is a substituted or unsubstituted (C 1-5 )alkyl.
  • R 5 is -SO 2 -R 16 ; and R 16 is selected from the group consisting of hydrogen, halo, nitro, cyano, thio, oxy, hydroxy, carbonyloxy, (C 1-10 )alkoxy, (C 4-12 )aryloxy, hetero(C 1-10 )aryloxy, carbonyl, oxycarbonyl, aminocarbonyl, amino, (C 1-10 )alkylamino, sulfonamido, imino, sulfonyl, sulfinyl, (C 1-10 )alkyl, halo(C 1-10 )alkyl, hydroxy(C 1-10 )alkyl, carbonyl(C 1-10 )alkyl, thiocarbonyl(C 1-10 )
  • R 5 is -CO-R 16 ; and R 16 is selected from the group consisting of hydrogen, halo, nitro, cyano, thio, oxy, hydroxy, carbonyloxy, (C 1-10 )alkoxy, (C 4-12 )aryloxy, hetero(C 1-10 )aryloxy, carbonyl, oxycarbonyl, aminocarbonyl, amino, (C 1-10 )alkylamino, sulfonamido, imino, sulfonyl, sulfinyl, (C 1-10 )alkyl, halo(C 1-10 )alkyl, hydroxy(C 1-10 )alkyl, carbonyl(C 1-10 )alkyl, thiocarbonyl(C 1-10 )alkyl, sulfonyl(C 1-10 )alkyl, sulf ⁇ nyl(C 1- i O )al
  • R 5 is -NH-SO 2 -R 16 ; and R 16 is selected from the group consisting of hydrogen, halo, nitro, cyano, thio, oxy, hydroxy, carbonyloxy, (C 1-10 )alkoxy, (C 4-12 )aryloxy, hetero(C 1-10 )aryloxy, carbonyl, oxycarbonyl, aminocarbonyl, amino, (C 1-10 )alkylamino, sulfonamido, imino, sulfonyl, sulf ⁇ nyl, (C 1-10 )alkyl, halo(C 1-10 )alkyl, hydroxy(C 1-10 )alkyl, carbonyl(C 1-10 )alkyl, thiocarbonyl(C 1-10 )alkyl, sulfonyl(C 1-10 )alkyl, sulf ⁇ nyl(C 1
  • R 5 is -NH-CO-R16; and R 16 is selected from the group consisting of hydrogen, halo, nitro, cyano, thio, oxy, hydroxy, carbonyloxy, (C 1-10 )alkoxy, (C 4-1 2)aryloxy, hetero(C 1-10 )aryloxy, carbonyl, oxycarbonyl, aminocarbonyl, amino, (C 1-10 )alkylamino, sulfonamido, imino, sulfonyl, sulf ⁇ nyl, (C 1-10 )alkyl, halo(C 1-10 )alkyl, hydroxy(C 1-10 )alkyl, carbonyl(C 1-10 )alkyl, thiocarbonyl(C 1-10 )alkyl, sulfonyl(C 1-10 )alkyl, sulf ⁇ nyl(C 1-10 )
  • R 5 is halo and, in particular, chloro.
  • R 5 is (C 1-3 )alkyl and, in particular, methyl.
  • R 6 is selected from the group consisting of hydrogen, halo, (C 1-10 )alkyl,
  • R 16 is selected from the group consisting of hydrogen, halo, nitro, cyano, thio, oxy, hydroxy, carbonyloxy, (C 1-10 )alkoxy, (C 4-12 )aryloxy, hetero(C 1-10 )aryloxy, carbonyl, oxycarbonyl, aminocarbonyl, amino, (C 1-10 )alkylamino, sulfonamido, imino, sulfonyl, sulfinyl, (C 1-10 )alkyl, halo(C 1-10 )alkyl, hydroxy(C 1-10 )alkyl, carbonyl(C 1-10 )alkyl, thiocarbonyl(C 1-10 )alkyl
  • R 6 is hydrogen. In still another variation of each of the above embodiments and variations, R 6 is a substituted or unsubstituted (C 1-5 )alkyl. In yet another variation of each of the above embodiments and variations, R 6 is methyl.
  • R 7 is selected from the group consisting of hydrogen, halo, (C 1-10 )alkyl,
  • R 16 is selected from the group consisting of hydrogen, halo, nitro, cyano, thio, oxy, hydroxy, carbonyloxy, (C 1-10 )alkoxy, (C 4-12 )aryloxy, hetero(C 1-10 )aryloxy, carbonyl, oxycarbonyl, aminocarbonyl, amino, (C 1-10 )alkylamino, sulfonamido, imino, sulfonyl, sulfinyl, (C 1-10 )alkyl, halo(C 1-10 )alkyl, hydroxy(C 1-10 )alkyl, carbonyl(C 1-10 )alkyl, thiocarbonyl(C 1-10 )alkyl
  • R 7 is methyl. In another variation of each of the above embodiments and variations, R 7 is selected from the group consisting of hydrogen and a substituted or unsubstituted (C 1-10 )alkyl.
  • R 7 is halo and, in particular, chloro. In yet a further variation of each of the above embodiments and variations, R 7 is (C 1-3 )alkyl and, in particular, methyl. [0155] In yet a further variation of each of the above embodiments and variations, Rs is selected from the group consisting of hydrogen, halo, (C 1-5 )alkyl and carboxamido, each substituted or unsubstituted.
  • R9 is selected from the group consisting of hydrogen, halo and a substituted or unsubstituted
  • R 10 is
  • Rn is selected from the group consisting of hydrogen, halo, cyano, -OR 16 , -SO 2 -R 16 , -NH-SO 2 -R 16 and -SO 2 -NH-R 16 ; and R i6 is selected from the group consisting of hydrogen, halo, nitro, cyano, thio, oxy, hydroxy, carbonyloxy,
  • m is 1 or 2.
  • R 12 is selected from the group consisting of halo, (C 1-5 )alkyl, oxa(C 1-5 )alkyl and oxo(C 1-5 )alkyl, each substituted or unsubstituted.
  • q is 1 or 2.
  • each R 1 3 is independently selected from the group consisting of halo, (C 1-5 )alkyl and carboxamido, each substituted or unsubstituted.
  • each R13 is independently selected from the group consisting of halo, (C 1-5 )alkyl and carboxamido, each substituted or unsubstituted.
  • R13 is hydrogen.
  • R 13a is selected from the group consisting of halo, (C 1-5 )alkyl and carboxamido, each substituted or unsubstituted.
  • R 1 3 a is hydrogen.
  • R ⁇ b is selected from the group consisting of halo, (C 1-5 )alkyl and carboxamido, each substituted or unsubstituted.
  • R 1 3b is hydrogen.
  • R 13C is selected from the group consisting of halo, (C 1-5 )alkyl and carboxamido, each substituted or unsubstituted.
  • R 1 3 C is hydrogen.
  • R ⁇ d is selected from the group consisting of halo, (C 1-5 )alkyl and carboxamido, each substituted or unsubstituted.
  • Rm is hydrogen.
  • R1 4 is selected from the group consisting of halo and a substituted or unsubstituted (C 1-5 )alkyl.
  • R1 5 is a substituted or unsubstituted (C 1-5 )alkyl.
  • L is selected from the group consisting of
  • Q is -CR17R18-.
  • Q is -CH 2 -.
  • Q is -NR 1 C)-.
  • Q is -NH-.
  • the compounds of the present invention may be in the form of a pharmaceutically acceptable salt, biohydrolyzable ester, biohydrolyzable amide, biohydrolyzable carbamate, solvate, hydrate or prodrug thereof.
  • the compound optionally comprises a substituent that is convertible in vivo to a different substituent, such as hydrogen.
  • the compound may be present as a mixture of stereoisomers, or the compound may be present as a single stereoisomer.
  • a pharmaceutical composition comprising as an active ingredient a compound according to any one of the above embodiments and variations.
  • the composition is a solid formulation adapted for oral administration.
  • the composition is a liquid formulation adapted for oral administration.
  • the composition is a tablet.
  • the composition is a liquid formulation adapted for parenteral administration.
  • compositions comprising a compound according to any one of the above embodiments and variations, wherein the composition is adapted for administration by a route selected from the group consisting of orally, parenterally, intraperitoneally, intravenously, intraarterially, transdermally, sublingually, intramuscularly, rectally, transbuccally, intranasally, liposomally, via inhalation, vaginally, intraoccularly, via local delivery (for example by catheter or stent), subcutaneously, intraadiposally, intraarticularly, and intrathecally.
  • kits comprising a compound of any one of the above embodiments and variations; and instructions which comprise one or more forms of information selected from the group consisting of indicating a disease state for which the composition is to be administered, storage information for the composition, dosing information and instructions regarding how to administer the composition.
  • the kit comprises the compound in a multiple dose form.
  • an article of manufacture comprising a compound of any one of the above embodiments and variations; and packaging materials.
  • the packaging material comprises a container for housing the compound.
  • the container comprises a label indicating one or more members of the group consisting of a disease state for which the compound is to be administered, storage information, dosing information and/or instructions regarding how to administer the compound.
  • the article of manufacture comprises the compound in a multiple dose form.
  • a therapeutic method comprising administering a compound of any one of the above embodiments and variations to a subject.
  • a method of activating glucokinase comprising contacting glucokinase with a compound of any one of the above embodiments and variations.
  • a method of activating glucokinase comprising causing a compound of any one of the above embodiments and variations to be present in a subject in order to activate glucokinase in vivo.
  • a method of activating glucokinase comprising administering a first compound to a subject that is converted in vivo to a second compound wherein the second compound activates glucokinase in vivo, the second compound being a compound according to any one of the above embodiments and variations.
  • a method of treating a disease state for which increasing glucokinase activity ameliorates the pathology and/or symptomology of the disease state comprising causing a compound of any one of the above embodiments and variations to be present in a subject in a therapeutically effective amount for the disease state.
  • a method of treating a disease state for which increasing glucokinase activity ameliorates the pathology and/or symptomology of the disease state comprising administering a compound of any one of the above embodiments and variations to a subject, wherein the compound is present in the subject in a therapeutically effective amount for the disease state.
  • a method of treating a disease state for which increasing glucokinase activity ameliorates the pathology and/or symptomology of the disease state comprising administering a first compound to a subject that is converted in vivo to a second compound wherein the second compound activates glucokinase in vivo, the second compound being a compound according to any one of the above embodiments and variations.
  • the disease state is selected from the group consisting of hyperglycemia, diabetes, dyslipidaemia, obesity, insulin resistance, metabolic syndrome X, impaired glucose tolerance, polycystic ovary syndrome, and cardiovascular disease.
  • the compounds of the present invention may be present and optionally administered in the form of salts, hydrates and prodrugs that are converted in vivo into the compounds of the present invention.
  • the compounds of the present invention possess a free base form
  • the compounds can be prepared as a pharmaceutically acceptable acid addition salt by reacting the free base form of the compound with a pharmaceutically acceptable inorganic or organic acid, e.g., hydrohalides such as hydrochloride, hydrobromide, hydroiodide; other mineral acids and their corresponding salts such as sulfate, nitrate, phosphate, etc.; and alkyl and monoarylsulfonates such as ethanesulfonate, toluenesulfonate and benzenesulfonate; and other organic acids and their corresponding salts such as acetate, tartrate, maleate, succinate, citrate, benzoate, salicylate and ascorbate.
  • a pharmaceutically acceptable inorganic or organic acid e.g., hydrohalides such as hydrochloride, hydrobromide, hydroiodide
  • other mineral acids and their corresponding salts such as sulfate, n
  • Further acid addition salts of the present invention include, but are not limited to: adipate, alginate, arginate, aspartate, bisulfate, bisulfite, bromide, butyrate, camphorate, camphorsulfonate, caprylate, chloride, chlorobenzoate, cyclopentanepropionate, digluconate, dihydrogenphosphate, dinitrobenzoate, dodecylsulfate, fumarate, galacterate (from mucic acid), galacturonate, glucoheptonate, gluconate, glutamate, glycerophosphate, hemisuccinate, hemisulfate, heptanoate, hexanoate, hippurate, hydrochloride, hydrobromide, hydroiodide, 2-hydroxyethanesulfonate, iodide, isethionate, iso-butyrate, lactate, lactobionate, malate, malonate, mandelate
  • a pharmaceutically acceptable base addition salt can be prepared by reacting the free acid form of the compound with a pharmaceutically acceptable inorganic or organic base.
  • bases include alkali metal hydroxides including potassium, sodium and lithium hydroxides; alkaline earth metal hydroxides such as barium and calcium hydroxides; alkali metal alkoxides, e.g., potassium ethanolate and sodium propanolate; and various organic bases such as ammonium hydroxide, piperidine, diethanolamine and N-methylglutamine.
  • aluminum salts of the compounds of the present invention are alkali metal hydroxides including potassium, sodium and lithium hydroxides; alkaline earth metal hydroxides such as barium and calcium hydroxides; alkali metal alkoxides, e.g., potassium ethanolate and sodium propanolate; and various organic bases such as ammonium hydroxide, piperidine, diethanolamine and N-methylglutamine.
  • aluminum salts of the compounds of the present invention are also included.
  • Organic base salts of the present invention include, but are not limited to: copper, ferric, ferrous, lithium, magnesium, manganic, manganous, potassium, sodium and zinc salts.
  • Organic base salts include, but are not limited to, salts of primary, secondary and tertiary amines, substituted amines including naturally occurring substituted amines, cyclic amines and basic ion exchange resins, e.g., arginine, betaine, caffeine, chloroprocaine, choline, N,N'-dibenzylethylenediamine (benzathine), dicyclohexylamine, diethanolamine, 2-diethylaminoethanol, 2-dimethylaminoethanol, ethanolamine, ethylenediamine, N-ethylmorpholine, N-ethylpiperidine, glucamine, glucosamine, histidine, hydrabamine, iso-propylamine, lidocaine, lysine, meglumine, N-methyl
  • N-oxides of compounds according to the present invention can be prepared by methods known to those of ordinary skill in the art.
  • N-oxides can be prepared by treating an unoxidized form of the compound with an oxidizing agent (e.g., trifluoroperacetic acid, permaleic acid, perbenzoic acid, peracetic acid, meto-chloroperoxybenzoic acid, or the like) in a suitable inert organic solvent (e.g., a halogenated hydrocarbon such as dichloromethane) at approximately 0 0 C.
  • an oxidizing agent e.g., trifluoroperacetic acid, permaleic acid, perbenzoic acid, peracetic acid, meto-chloroperoxybenzoic acid, or the like
  • a suitable inert organic solvent e.g., a halogenated hydrocarbon such as dichloromethane
  • Prodrug derivatives of compounds according to the present invention can be prepared by modifying substituents of compounds of the present invention that are then converted in vivo to a different substituent. It is noted that in many instances, the prodrugs themselves also fall within the scope of the range of compounds according to the present invention.
  • prodrugs can be prepared by reacting a compound with a carbamylating agent (e.g., lj-acyloxyalkylcarbonochloridate ⁇ r ⁇ -nitrophenyl carbonate, or the like) or an acylating agent. Further examples of methods of making prodrugs are described in Saulnier et ⁇ /.(1994), Bioorganic and Medicinal Chemistry Letters, Vol. 4, p. 1985.
  • Protected derivatives of compounds of the present invention can also be made. Examples of techniques applicable to the creation of protecting groups and their removal can be found in T. W. Greene, Protecting Groups in Organic Synthesis, 3 rd edition, John Wiley & Sons, Inc. 1999.
  • Compounds of the present invention may also be conveniently prepared, or formed during the process of the invention, as solvates (e.g., hydrates). Hydrates of compounds of the present invention may be conveniently prepared by recrystallization from an aqueous/organic solvent mixture, using organic solvents such as dioxin, tetrahydrofuran or methanol.
  • a "pharmaceutically acceptable salt”, as used herein, is intended to encompass any compound according to the present invention that is utilized in the form of a salt thereof, especially where the salt confers on the compound improved pharmacokinetic properties as compared to the free form of compound or a different salt form of the compound.
  • the pharmaceutically acceptable salt form may also initially confer desirable pharmacokinetic properties on the compound that it did not previously possess, and may even positively affect the pharmacodynamics of the compound with respect to its therapeutic activity in the body.
  • An example of a pharmacokinetic property that may be favorably affected is the manner in which the compound is transported across cell membranes, which in turn may directly and positively affect the absorption, distribution, biotransformation and excretion of the compound.
  • the solubility of the compound is usually dependent upon the character of the particular salt form thereof, which it utilized.
  • an aqueous solution of the compound will provide the most rapid absorption of the compound into the body of a subject being treated, while lipid solutions and suspensions, as well as solid dosage forms, will result in less rapid absorption of the compound.
  • compositions comprising Glucokinase Activators
  • compositions and administration methods may be used in conjunction with the compounds of the present invention.
  • Such compositions may include, in addition to the compounds of the present invention, conventional pharmaceutical excipients, and other conventional, pharmaceutically inactive agents.
  • the compositions may include active agents in addition to the compounds of the present invention. These additional active agents may include additional compounds according to the invention, and/or one or more other pharmaceutically active agents.
  • the compositions may be in gaseous, liquid, semi-liquid or solid form, formulated in a manner suitable for the route of administration to be used. For oral administration, capsules and tablets are typically used. For parenteral administration, reconstitution of a lyophilized powder, prepared as described herein, is typically used.
  • compositions comprising compounds of the present invention may be administered or coadministered orally, parenterally, intraperitoneally, intravenously, intraarterially, transdermally, sublingually, intramuscularly, rectally, transbuccally, intranasally, liposomally, via inhalation, vaginally, intraoccularly, via local delivery (for example by catheter or stent), subcutaneously, intraadiposally, intraarticularly, or intrathecally.
  • the compounds and/or compositions according to the invention may also be administered or coadministered in slow release dosage forms.
  • the glucokinase activators and compositions comprising them may be administered or coadministered in any conventional dosage form.
  • Co-administration in the context of this invention is intended to mean the administration of more than one therapeutic agent, one of which includes a glucokinase activator, in the course of a coordinated treatment to achieve an improved clinical outcome.
  • Such co-administration may also be coextensive, that is, occurring during overlapping periods of time.
  • Solutions or suspensions used for parenteral, intradermal, subcutaneous, or topical application may optionally include one or more of the following components: a sterile diluent, such as water for injection, saline solution, fixed oil, polyethylene glycol, glycerine, propylene glycol or other synthetic solvent; antimicrobial agents, such as benzyl alcohol and methyl parabens; antioxidants, such as ascorbic acid and sodium bisulfite; chelating agents, such as ethylenediaminetetraacetic acid (EDTA); buffers, such as acetates, citrates and phosphates; agents for the adjustment of tonicity such as sodium chloride or dextrose, and agents for adjusting the acidity or alkalinity of the composition, such as alkaline or acidifying agents or buffers like carbonates, bicarbonates, phosphates, hydrochloric acid, and organic acids like acetic and citric acid.
  • Parenteral preparations may optionally be enclosed in ampules
  • compositions according to the present invention are optionally provided for administration to humans and animals in unit dosage forms, such as tablets, capsules, pills, powders, dry powders for inhalers, granules, sterile parenteral solutions or suspensions, and oral solutions or suspensions, and oil-water emulsions containing suitable quantities of the compounds, particularly the pharmaceutically acceptable salts, preferably the sodium salts, thereof.
  • the pharmaceutically therapeutically active compounds and derivatives thereof are typically formulated and administered in unit-dosage forms or multiple-dosage forms.
  • Unit-dose forms refers to physically discrete units suitable for human and animal subjects and packaged individually as is known in the art.
  • Each unit- dose contains a predetermined quantity of the therapeutically active compound sufficient to produce the desired therapeutic effect, in association with the required pharmaceutical carrier, vehicle or diluent.
  • unit-dose forms include ampoules and syringes individually packaged tablet or capsule.
  • Unit-dose forms may be administered in fractions or multiples thereof.
  • a multiple-dose form is a plurality of identical unit-dosage forms packaged in a single container to be administered in segregated unit-dose form.
  • Examples of multiple-dose forms include vials, bottles of tablets or capsules or bottles of pint or gallons.
  • multiple dose form is a multiple of unit-doses that are not segregated in packaging.
  • the composition may comprise: a diluent such as lactose, sucrose, dicalcium phosphate, or carboxymethylcellulose; a lubricant, such as magnesium stearate, calcium stearate and talc; and a binder such as starch, natural gums, such as gum acaciagelatin, glucose, molasses, polyvinylpyrrolidine, celluloses and derivatives thereof, povidone, crospovidones and other such binders known to those of skill in the art.
  • a diluent such as lactose, sucrose, dicalcium phosphate, or carboxymethylcellulose
  • a lubricant such as magnesium stearate, calcium stearate and talc
  • a binder such as starch, natural gums, such as gum acaciagelatin, glucose, molasses, polyvinylpyrrolidine, celluloses and derivatives thereof, povidone, crospovidones and other such binders known to
  • Liquid pharmaceutically administrable compositions can, for example, be prepared by dissolving, dispersing, or otherwise mixing an active compound as defined above and optional pharmaceutical adjuvants in a carrier, such as, for example, water, saline, aqueous dextrose, glycerol, glycols, ethanol, and the like, to form a solution or suspension.
  • a carrier such as, for example, water, saline, aqueous dextrose, glycerol, glycols, ethanol, and the like
  • the pharmaceutical composition to be administered may also contain minor amounts of auxiliary substances such as wetting agents, emulsifying agents, or solubilizing agents, pH buffering agents and the like, for example, acetate, sodium citrate, cyclodextrine derivatives, sorbitan monolaurate, triethanolamine sodium acetate, triethanolamine oleate, and other such agents.
  • compositions or formulations to be administered will, in any event, contain a sufficient quantity of an activator of the present invention to increase glucokinase activity in vivo, thereby treating the disease state of the subject.
  • Dosage forms or compositions may optionally comprise one or more compounds according to the present invention in the range of 0.005% to 100% (weight/weight) with the balance comprising additional substances such as those described herein.
  • a pharmaceutically acceptable composition may optionally comprise any one or more commonly employed excipients, such as, for example pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, talcum, cellulose derivatives, sodium crosscarmellose, glucose, sucrose, magnesium carbonate, sodium saccharin, talcum.
  • excipients such as, for example pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, talcum, cellulose derivatives, sodium crosscarmellose, glucose, sucrose, magnesium carbonate, sodium saccharin, talcum.
  • Such compositions include solutions, suspensions, tablets, capsules, powders, dry powders for inhalers and sustained release formulations, such as, but not limited to, implants and microencapsulated delivery systems, and biodegradable, biocompatible polymers, such as collagen, ethylene vinyl acetate, polyanhydrides, polyglycolic acid, polyorthoesters, polylactic acid and others. Methods for preparing these formulations are
  • Salts, preferably sodium salts, of the activators may be prepared with carriers that protect the compound against rapid elimination from the body, such as time release formulations or coatings.
  • the formulations may further include other active compounds to obtain desired combinations of properties.
  • Oral pharmaceutical dosage forms may be as a solid, gel or liquid.
  • solid dosage forms include, but are not limited to tablets, capsules, granules, and bulk powders. More specific examples of oral tablets include compressed, chewable lozenges and tablets that may be enteric-coated, sugar-coated or film-coated.
  • capsules include hard or soft gelatin capsules. Granules and powders may be provided in non- effervescent or effervescent forms. Each may be combined with other ingredients known to those skilled in the art.
  • compounds according to the present invention are provided as solid dosage forms, preferably capsules or tablets.
  • the tablets, pills, capsules, troches and the like may optionally contain one or more of the following ingredients, or compounds of a similar nature: a binder; a diluent; a disintegrating agent; a lubricant; a glidant; a sweetening agent; and a flavoring agent.
  • binders examples include, but are not limited to, microcrystalline cellulose, gum tragacanth, glucose solution, acacia mucilage, gelatin solution, sucrose, and starch paste.
  • Examples of lubricants that may be used include, but are not limited to, talc, starch, magnesium or calcium stearate, lycopodium and stearic acid.
  • Examples of diluents that may be used include, but are not limited to, lactose, sucrose, starch, kaolin, salt, mannitol, and dicalcium phosphate.
  • glidants examples include, but are not limited to, colloidal silicon dioxide.
  • disintegrating agents examples include, but are not limited to, crosscarmellose sodium, sodium starch glycolate, alginic acid, corn starch, potato starch, bentonite, methylcellulose, agar and carboxymethylcellulose.
  • coloring agents examples include, but are not limited to, any of the approved certified water-soluble FD and C dyes, mixtures thereof; and water insoluble FD and C dyes suspended on alumina hydrate.
  • sweetening agents examples include, but are not limited to, sucrose, lactose, mannitol and artificial sweetening agents such as sodium cyclamate and saccharin, and any number of spray-dried flavors.
  • sweetening agents examples include, but are not limited to, sucrose, lactose, mannitol and artificial sweetening agents such as sodium cyclamate and saccharin, and any number of spray-dried flavors.
  • flavoring agents include, but are not limited to, natural flavors extracted from plants such as fruits and synthetic blends of compounds that produce a pleasant sensation, such as, but not limited to peppermint and methyl salicylate.
  • wetting agents examples include, but are not limited to, propylene glycol monostearate, sorbitan monooleate, diethylene glycol monolaurate, and polyoxyethylene lauryl ether.
  • anti-emetic coatings examples include, but are not limited to, fatty acids, fats, waxes, shellac, ammoniated shellac and cellulose acetate phthalates.
  • film coatings examples include, but are not limited to, hydroxyethylcellulose, sodium carboxymethylcellulose, polyethylene glycol 4000 and cellulose acetate phthalate.
  • the salt of the compound may optionally be provided in a composition that protects it from the acidic environment of the stomach.
  • the composition can be formulated in an enteric coating that maintains its integrity in the stomach and releases the active compound in the intestine.
  • the composition may also be formulated in combination with an antacid or other such ingredient.
  • dosage unit form When the dosage unit form is a capsule, it may optionally additionally comprise a liquid carrier such as a fatty oil.
  • dosage unit forms may optionally additionally comprise various other materials that modify the physical form of the dosage unit, for example, coatings of sugar and other enteric agents.
  • Compounds according to the present invention may also be administered as a component of an elixir, suspension, syrup, wafer, sprinkle, chewing gum or the like.
  • a syrup may optionally comprise, in addition to the active compounds, sucrose as a sweetening agent and certain preservatives, dyes and colorings and flavors.
  • the compounds of the present invention may also be mixed with other active materials that do not impair the desired action, or with materials that supplement the desired action, such as antacids, H2 blockers, and diuretics.
  • active materials such as antacids, H2 blockers, and diuretics.
  • materials that supplement the desired action such as antacids, H2 blockers, and diuretics.
  • a compound may be used for treating asthma or hypertension, it may be used with other bronchodilators and antihypertensive agents, respectively.
  • Examples of pharmaceutically acceptable carriers that may be included in tablets comprising compounds of the present invention include, but are not limited to binders, lubricants, diluents, disintegrating agents, coloring agents, flavoring agents, and wetting agents.
  • Enteric-coated tablets because of the enteric-coating, resist the action of stomach acid and dissolve or disintegrate in the neutral or alkaline intestines.
  • Sugar- coated tablets may be compressed tablets to which different layers of pharmaceutically acceptable substances are applied.
  • Film-coated tablets may be compressed tablets that have been coated with polymers or other suitable coating. Multiple compressed tablets may be compressed tablets made by more than one compression cycle utilizing the pharmaceutically acceptable substances previously mentioned. Coloring agents may also be used in tablets.
  • Flavoring and sweetening agents may be used in tablets, and are especially useful in the formation of chewable tablets and lozenges.
  • liquid oral dosage forms that may be used include, but are not limited to, aqueous solutions, emulsions, suspensions, solutions and/or suspensions reconstituted from non-effervescent granules and effervescent preparations reconstituted from effervescent granules.
  • aqueous solutions examples include, but are not limited to, elixirs and syrups.
  • elixirs refer to clear, sweetened, hydroalcoholic preparations.
  • pharmaceutically acceptable carriers examples include, but are not limited to solvents.
  • solvents Particular examples include glycerin, sorbitol, ethyl alcohol and syrup.
  • syrups refer to concentrated aqueous solutions of a sugar, for example, sucrose. Syrups may optionally further comprise a preservative.
  • Emulsions refer to two-phase systems in which one liquid is dispersed in the form of small globules throughout another liquid. Emulsions may optionally be oil-in- water or water-in-oil emulsions. Examples of pharmaceutically acceptable carriers that may be used in emulsions include, but are not limited to non-aqueous liquids, emulsifying agents and preservatives.
  • Examples of pharmaceutically acceptable substances that may be used in non- effervescent granules, to be reconstituted into a liquid oral dosage form, include diluents, sweeteners and wetting agents.
  • Examples of pharmaceutically acceptable substances that may be used in effervescent granules, to be reconstituted into a liquid oral dosage form, include organic acids and a source of carbon dioxide.
  • Coloring and flavoring agents may optionally be used in all of the above dosage forms.
  • Particular examples of preservatives that may be used include glycerin, methyl and propylparaben, benzoic add, sodium benzoate and alcohol.
  • emulsifying agents include gelatin, acacia, tragacanth, bentonite, and surfactants such as polyoxyethylene sorbitan monooleate.
  • suspending agents include sodium carboxymethylcellulose, pectin, tragacanth, Veegum and acacia.
  • Diluents include lactose and sucrose.
  • Sweetening agents include sucrose, syrups, glycerin and artificial sweetening agents such as sodium cyclamate and saccharin.
  • wetting agents include propylene glycol monostearate, sorbitan monooleate, diethylene glycol monolaurate, and polyoxyethylene lauryl ether.
  • organic acids that may be used include citric and tartaric acid.
  • Sources of carbon dioxide that may be used in effervescent compositions include sodium bicarbonate and sodium carbonate.
  • Coloring agents include any of the approved certified water soluble FD and C dyes, and mixtures thereof.
  • flavoring agents include natural flavors extracted from plants such fruits, and synthetic blends of compounds that produce a pleasant taste sensation.
  • the solution or suspension in for example propylene carbonate, vegetable oils or triglycerides, is preferably encapsulated in a gelatin capsule.
  • the solution e.g., for example, in a polyethylene glycol
  • a pharmaceutically acceptable liquid carrier e.g., water
  • liquid or semi-solid oral formulations may be prepared by dissolving or dispersing the active compound or salt in vegetable oils, glycols, triglycerides, propylene glycol esters (e.g., propylene carbonate) and other such carriers, and encapsulating these solutions or suspensions in hard or soft gelatin capsule shells.
  • Other useful formulations include those set forth in U.S. Pat. Nos. Re 28,819 and 4,358,603.
  • compositions designed to administer the compounds of the present invention by parenteral administration generally characterized by subcutaneous, intramuscular or intravenous injection.
  • injectables may be prepared in any conventional form, for example as liquid solutions or suspensions, solid forms suitable for solution or suspension in liquid prior to injection, or as emulsions.
  • excipients that may be used in conjunction with injectables according to the present invention include, but are not limited to water, saline, dextrose, glycerol or ethanol.
  • the injectable compositions may also optionally comprise minor amounts of non-toxic auxiliary substances such as wetting or emulsifying agents, pH buffering agents, stabilizers, solubility enhancers, and other such agents, such as for example, sodium acetate, sorbitan monolaurate, triethanolamine oleate and cyclodextrins. Implantation of a slow-release or sustained-release system, such that a constant level of dosage is maintained (see, e.g., U.S. Pat. No. 3,710,795) is also contemplated herein.
  • the percentage of active compound contained in such parenteral compositions is highly dependent on the specific nature thereof, as well as the activity of the compound and the needs of the subject.
  • Parenteral administration of the formulations includes intravenous, subcutaneous and intramuscular administrations.
  • Preparations for parenteral administration include sterile solutions ready for injection, sterile dry soluble products, such as the lyophilized powders described herein, ready to be combined with a solvent just prior to use, including hypodermic tablets, sterile suspensions ready for injection, sterile dry insoluble products ready to be combined with a vehicle just prior to use and sterile emulsions.
  • the solutions may be either aqueous or nonaqueous.
  • suitable carriers include, but are not limited to physiological saline or phosphate buffered saline (PBS), and solutions containing thickening and solubilizing agents, such as glucose, polyethylene glycol, and polypropylene glycol and mixtures thereof.
  • suitable carriers include, but are not limited to physiological saline or phosphate buffered saline (PBS), and solutions containing thickening and solubilizing agents, such as glucose, polyethylene glycol, and polypropylene glycol and mixtures thereof.
  • pharmaceutically acceptable carriers that may optionally be used in parenteral preparations include, but are not limited to aqueous vehicles, nonaqueous vehicles, antimicrobial agents, isotonic agents, buffers, antioxidants, local anesthetics, suspending and dispersing agents, emulsifying agents, sequestering or chelating agents and other pharmaceutically acceptable substances.
  • aqueous vehicles examples include Sodium
  • nonaqueous parenteral vehicles examples include fixed oils of vegetable origin, cottonseed oil, corn oil, sesame oil and peanut oil.
  • Antimicrobial agents in bacteriostatic or fungistatic concentrations may be added to parenteral preparations, particularly when the preparations are packaged in multiple-dose containers and thus designed to be stored and multiple aliquots to be removed.
  • antimicrobial agents include phenols or cresols, mercurials, benzyl alcohol, chlorobutanol, methyl and propyl p-hydroxybenzoic acid esters, thimerosal, benzalkonium chloride and benzethonium chloride.
  • Examples of isotonic agents that may be used include sodium chloride and dextrose.
  • Examples of buffers that may be used include phosphate and citrate.
  • antioxidants that may be used include sodium bisulfate.
  • Examples of local anesthetics that may be used include procaine hydrochloride.
  • Examples of suspending and dispersing agents that may be used include sodium carboxymethylcellulose, hydroxypropyl methylcellulose and polyvinylpyrrolidone.
  • Examples of emulsifying agents that may be used include Polysorbate 80 (TWEEN 80).
  • a sequestering or chelating agent of metal ions includes EDTA.
  • Pharmaceutical carriers may also optionally include ethyl alcohol, polyethylene glycol and propylene glycol for water miscible vehicles and sodium hydroxide, hydrochloric acid, citric acid or lactic acid for pH adjustment.
  • concentration of an activator in the parenteral formulation may be adjusted so that an injection administers a pharmaceutically effective amount sufficient to produce the desired pharmacological effect.
  • concentration of an activator and/or dosage to be used will ultimately depend on the age, weight and condition of the patient or animal as is known in the art.
  • Unit-dose parenteral preparations may be packaged in an ampoule, a vial or a syringe with a needle. All preparations for parenteral administration should be sterile, as is known and practiced in the art.
  • Injectables may be designed for local and systemic administration. Typically a therapeutically effective dosage is formulated to contain a concentration of at least about 0.1% w/w up to about 90% w/w or more, preferably more than 1% w/w of the glucokinase activator to the treated tissue(s). The activator may be administered at once, or may be divided into a number of smaller doses to be administered at intervals of time.
  • the precise dosage and duration of treatment will be a function of the location of where the composition is parenterally administered, the carrier and other variables that may be determined empirically using known testing protocols or by extrapolation from in vivo or in vitro test data. It is to be noted that concentrations and dosage values may also vary with the age of the individual treated. It is to be further understood that for any particular subject, specific dosage regimens may need to be adjusted over time according to the individual need and the professional judgment of the person administering or supervising the administration of the formulations. Hence, the concentration ranges set forth herein are intended to be exemplary and are not intended to limit the scope or practice of the claimed formulations.
  • the glucokinase activator may optionally be suspended in micronized or other suitable form or may be derivatized to produce a more soluble active product or to produce a prodrug.
  • the form of the resulting mixture depends upon a number of factors, including the intended mode of administration and the solubility of the compound in the selected carrier or vehicle.
  • the effective concentration is sufficient for ameliorating the symptoms of the disease state and may be empirically determined.
  • the compounds of the present invention may also be prepared as lyophilized powders, which can be reconstituted for administration as solutions, emulsions and other mixtures.
  • the lyophilized powders may also be formulated as solids or gels.
  • Sterile, lyophilized powder may be prepared by dissolving the compound in a sodium phosphate buffer solution containing dextrose or other suitable excipient. Subsequent sterile filtration of the solution followed by lyophilization under standard conditions known to those of skill in the art provides the desired formulation.
  • the lyophilized powder may optionally be prepared by dissolving dextrose, sorbitol, fructose, corn syrup, xylitol, glycerin, glucose, sucrose or other suitable agent, about 1-20%, preferably about 5 to 15%, in a suitable buffer, such as citrate, sodium or potassium phosphate or other such buffer known to those of skill in the art at, typically, about neutral pH.
  • a suitable buffer such as citrate, sodium or potassium phosphate or other such buffer known to those of skill in the art at, typically, about neutral pH.
  • a glucokinase activator is added to the resulting mixture, preferably above room temperature, more preferably at about 30-35 0 C, and stirred until it dissolves.
  • the resulting mixture is diluted by adding more buffer to a desired concentration.
  • the resulting mixture is sterile filtered or treated to remove particulates and to insure sterility, and apportioned into vials for lyophilization.
  • Topical mixtures may be used for local and systemic administration.
  • the resulting mixture may be a solution, suspension, emulsions or the like and are formulated as creams, gels, ointments, emulsions, solutions, elixirs, lotions, suspensions, tinctures, pastes, foams, aerosols, irrigations, sprays, suppositories, bandages, dermal patches or any other formulations suitable for topical administration.
  • the glucokinase activators may be formulated as aerosols for topical application, such as by inhalation (see, U.S. Pat. Nos. 4,044,126, 4,414,209, and 4,364,923, which describe aerosols for delivery of a steroid useful for treatment of inflammatory diseases, particularly asthma).
  • These formulations for administration to the respiratory tract can be in the form of an aerosol or solution for a nebulizer, or as a microfme powder for insufflation, alone or in combination with an inert carrier such as lactose.
  • the particles of the formulation will typically have diameters of less than 50 microns, preferably less than 10 microns.
  • the activators may also be formulated for local or topical application, such as for topical application to the skin and mucous membranes, such as in the eye, in the form of gels, creams, and lotions and for application to the eye or for intracisternal or intraspinal application.
  • Topical administration is contemplated for transdermal delivery and also for administration to the eyes or mucosa, or for inhalation therapies.
  • Nasal solutions of the glucokinase activator alone or in combination with other pharmaceutically acceptable excipients can also be administered.
  • rectal administration Depending upon the disease state being treated, other routes of administration, such as topical application, transdermal patches, and rectal administration, may also be used.
  • pharmaceutical dosage forms for rectal administration are rectal suppositories, capsules and tablets for systemic effect.
  • Rectal suppositories are used herein mean solid bodies for insertion into the rectum that melt or soften at body temperature releasing one or more pharmacologically or therapeutically active ingredients.
  • Pharmaceutically acceptable substances utilized in rectal suppositories are bases or vehicles and agents to raise the melting point.
  • bases examples include cocoa butter (theobroma oil), glycerin-gelatin, carbowax, (polyoxyethylene glycol) and appropriate mixtures of mono-, di- and triglycerides of fatty acids. Combinations of the various bases may be used.
  • Agents to raise the melting point of suppositories include spermaceti and wax. Rectal suppositories may be prepared either by the compressed method or by molding. The typical weight of a rectal suppository is about 2 to 3 gm. Tablets and capsules for rectal administration may be manufactured using the same pharmaceutically acceptable substance and by the same methods as for formulations for oral administration.
  • oral, intravenous and tablet formulations that may optionally be used with compounds of the present invention. It is noted that these formulations may be varied depending on the particular compound being used and the indication for which the formulation is going to be used.
  • Citric Acid Monohydrate 1.05 mg
  • Kits Comprising Glucokinase Activators
  • kits and other articles of manufacture for treating diseases associated with glucokinase. It is noted that diseases are intended to cover all conditions for which increasing glucokinase activity (e.g. , upregulation of glucokinase) ameliorates the pathology and/or symptomology of the condition.
  • a kit is provided that comprises a composition comprising at least one activator of the present invention in combination with instructions.
  • the instructions may indicate the disease state for which the composition is to be administered, storage information, dosing information and/or instructions regarding how to administer the composition.
  • the kit may also comprise packaging materials.
  • the packaging material may comprise a container for housing the composition.
  • the kit may also optionally comprise additional components, such as syringes for administration of the composition.
  • the kit may comprise the composition in single or multiple dose forms.
  • an article of manufacture comprises a composition comprising at least one activator of the present invention in combination with packaging materials.
  • the packaging material may comprise a container for housing the composition.
  • the container may optionally comprise a label indicating the disease state for which the composition is to be administered, storage information, dosing information and/or instructions regarding how to administer the composition.
  • the kit may also optionally comprise additional components, such as syringes for administration of the composition.
  • the kit may comprise the composition in single or multiple dose forms.
  • the packaging material used in kits and articles of manufacture according to the present invention may form a plurality of divided containers such as a divided bottle or a divided foil packet.
  • the container can be in any conventional shape or form as known in the art which is made of a pharmaceutically acceptable material, for example a paper or cardboard box, a glass or plastic bottle or jar, a re-sealable bag (for example, to hold a "refill" of tablets for placement into a different container), or a blister pack with individual doses for pressing out of the pack according to a therapeutic schedule.
  • the container that is employed will depend on the exact dosage form involved, for example a conventional cardboard box would not generally be used to hold a liquid suspension.
  • kits can be used together in a single package to market a single dosage form.
  • tablets may be contained in a bottle that is in turn contained within a box.
  • the kit includes directions for the administration of the separate components.
  • the kit form is particularly advantageous when the separate components are preferably administered in different dosage forms (e.g., oral, topical, transdermal and parenteral), are administered at different dosage intervals, or when titration of the individual components of the combination is desired by the prescribing physician.
  • Blister packs are well known in the packaging industry and are being widely used for the packaging of pharmaceutical unit dosage forms (tablets, capsules, and the like). Blister packs generally consist of a sheet of relatively stiff material covered with a foil of a preferably transparent plastic material. During the packaging process recesses are formed in the plastic foil. The recesses have the size and shape of individual tablets or capsules to be packed or may have the size and shape to accommodate multiple tablets and/or capsules to be packed. Next, the tablets or capsules are placed in the recesses accordingly and the sheet of relatively stiff material is sealed against the plastic foil at the face of the foil which is opposite from the direction in which the recesses were formed.
  • kits are a dispenser designed to dispense the daily doses one at a time in the order of their intended use.
  • the dispenser is equipped with a memory-aid, so as to further facilitate compliance with the regimen.
  • a memory-aid is a mechanical counter that indicates the number of daily doses that has been dispensed.
  • a memory-aid is a battery- powered micro-chip memory coupled with a liquid crystal readout, or audible reminder signal which, for example, reads out the date that the last daily dose has been taken and/or reminds one when the next dose is to be taken.
  • the compounds of the present invention are stable and can be used safely.
  • the compounds of the present invention are useful as GK activators for a variety of subjects (e.g., humans, non-human mammals and non-mammals).
  • the optimal dose may vary depending upon such conditions as, for example, the type of subject, the body weight of the subject, the route of administration, and specific properties of the particular compound being used.
  • the daily dose for oral administration to an adult is about 1 to 1000 mg, about 3 to 300 mg, or about 10 to 200 mg. It will be appreciated that the daily dose can be given in a single administration or in multiple (e.g., 2 or 3) portions a day.
  • a wide variety of therapeutic agents may have a therapeutic additive or synergistic effect with GK activators according to the present invention.
  • the present invention also relates to the use of the GK activators of the present invention in combination with one or more other antidiabetic compounds.
  • Examples of such other antidiabetic compounds include, but are not limited to S9 proteases, like dipeptidyl peptidase IV (DPP-IV) inhibitors; insulin signaling pathway modulators, like protein tyrosine phosphatase (PTPase) inhibitors, and glutamine-fructose-6-phosphate amidotransferase (GFAT) inhibitors; compounds influencing a dysregulated hepatic glucose production, like glucose-6-phosphatase (G ⁇ Pase) inhibitors, fructose-1,6- bisphosphatase (F-l,6-BPase) inhibitors, glycogen phosphorylase (GP) inhibitors, glucagon receptor antagonists and phosphoenolpyruvate carboxykinase (PEPCK) inhibitors; pyruvate dehydrogenase kinase (PDHK) inhibitors; insulin sensitivity enhancers (insulin sensitizers); insulin secretion enhancers (insulin secretagogues
  • the compound of the present invention may be administered with such at least one other antidiabetic compound either simultaneously as a single dose, at the same time as separate doses, or sequentially (i.e., where one is administered before or after the other is administered).
  • the other antidiabetic compound may be administered (e.g., route and dosage form) in a manner known per se for such compound.
  • Compounds of the present invention and the other antidiabetic compound may be administered sequentially (i.e., at separate times) or at the same time, either one after the other separately in two separate dose forms or in one combined, single dose form.
  • the other antidiabetic compound is administered with compounds of the present invention as a single, combined dosage form.
  • the dose of the antidiabetic compound may be selected from the range known to be clinically employed for such compound. Any of the therapeutic compounds of diabetic complications, antihyperlipemic compounds or antiobestic compounds can be used in combination with compounds of the present invention in the same manner as the above antidiabetic compounds.
  • a racemic mixture of a compound may be reacted with an optically active resolving agent to form a pair of diastereoisomeric compounds.
  • the diastereomers may then be separated in order to recover the optically pure enantiomers.
  • Dissociable complexes may also be used to resolve enantiomers (e.g. , crystalline diastereoisomeric salts).
  • Diastereomers typically have sufficiently distinct physical properties (e.g., melting points, boiling points, solubilities, reactivity, etc.) and can be readily separated by taking advantage of these dissimilarities.
  • diastereomers can typically be separated by chromatography or by separation/resolution techniques based upon differences in solubility.
  • separation/resolution techniques A more detailed description of techniques that can be used to resolve stereoisomers of compounds from their racemic mixture can be found in Jean Jacques Andre Collet, Samuel H. Wilen, Enantiomers, Racemates and Resolutions, John Wiley & Sons, Inc. (1981).
  • Compounds according to the present invention can also be prepared as a pharmaceutically acceptable acid addition salt by reacting the free base form of the compound with a pharmaceutically acceptable inorganic or organic acid.
  • a pharmaceutically acceptable base addition salt of a compound can be prepared by reacting the free acid form of the compound with a pharmaceutically acceptable inorganic or organic base.
  • Inorganic and organic acids and bases suitable for the preparation of the pharmaceutically acceptable salts of compounds are set forth in the definitions section of this Application.
  • the salt forms of the compounds can be prepared using salts of the starting materials or intermediates.
  • the free acid or free base forms of the compounds can be prepared from the corresponding base addition salt or acid addition salt form.
  • a compound in an acid addition salt form can be converted to the corresponding free base by treating with a suitable base (e.g., ammonium hydroxide solution, sodium hydroxide, and the like).
  • a compound in a base addition salt form can be converted to the corresponding free acid by treating with a suitable acid (e.g., hydrochloric acid, etc).
  • iV-oxides of compounds according to the present invention can be prepared by methods known to those of ordinary skill in the art.
  • iV-oxides can be prepared by treating an unoxidized form of the compound with an oxidizing agent (e.g., trifluoroperacetic acid, permaleic acid, perbenzoic acid, peracetic acid, meto-chloroperoxybenzoic acid, or the like) in a suitable inert organic solvent (e.g., a halogenated hydrocarbon such as dichloromethane) at approximately 0 0 C.
  • an oxidizing agent e.g., trifluoroperacetic acid, permaleic acid, perbenzoic acid, peracetic acid, meto-chloroperoxybenzoic acid, or the like
  • a suitable inert organic solvent e.g., a halogenated hydrocarbon such as dichloromethane
  • the iV-oxides of the compounds can be prepared from the iV-oxide of an appropriate
  • Compounds in an unoxidized form can be prepared from JV-oxides of compounds by treating with a reducing agent (e.g., sulfur, sulfur dioxide, triphenyl phosphine, lithium borohydride, sodium borohydride, phosphorus trichloride, tribromide, or the like) in an suitable inert organic solvent (e.g., acetonitrile, ethanol, aqueous dioxane, or the like) at 0 to 80 0 C.
  • a reducing agent e.g., sulfur, sulfur dioxide, triphenyl phosphine, lithium borohydride, sodium borohydride, phosphorus trichloride, tribromide, or the like
  • an inert organic solvent e.g., acetonitrile, ethanol, aqueous dioxane, or the like
  • Prodrug derivatives of the compounds can be prepared by methods known to those of ordinary skill in the art (e.g., for further details see Saulnier et al. (1994), Bioorganic and Medicinal Chemistry Letters, Vol. 4, p. 1985).
  • appropriate prodrugs can be prepared by reacting a non-derivatized compound with a suitable carbamylating agent (e.g., lj-acyloxyalkylcarbonochloridate ⁇ r ⁇ -nitrophenyl carbonate, or the like).
  • Protected derivatives of the compounds can be made by methods known to those of ordinary skill in the art. A detailed description of the techniques applicable to the creation of protecting groups and their removal can be found in T.W. Greene, Protecting Groups in Organic Synthesis, 3 rd edition, John Wiley & Sons, Inc. 1999.
  • Compounds according to the present invention can also be prepared as their individual stereoisomers by reacting a racemic mixture of the compound with an optically active resolving agent to form a pair of diastereoisomeric compounds, separating the diastereomers and recovering the optically pure enantiomer. While resolution of enantiomers can be carried out using covalent diastereomeric derivatives of compounds, dissociable complexes are preferred (e.g., crystalline diastereoisomeric salts). Diastereomers have distinct physical properties (e.g., melting points, boiling points, solubilities, reactivity, etc.) and can be readily separated by taking advantage of these dissimilarities.
  • the diastereomers can be separated by chromatography or, preferably, by separation/resolution techniques based upon differences in solubility.
  • the optically pure enantiomer is then recovered, along with the resolving agent, by any practical means that would not result in racemization.
  • a more detailed description of the techniques applicable to the resolution of stereoisomers of compounds from their racemic mixture can be found in Jean Jacques Andre Collet, Samuel H. Wilen, Enantiomers, Racemates and Resolutions, John Wiley & Sons, Inc. (1981). [0283]
  • the symbols and conventions used in these processes, schemes and examples are consistent with those used in the contemporary scientific literature, for example, the Journal of the American Chemical Society or the Journal of Biological Chemistry.
  • the starting materials and reagents used in preparing these compounds are either available from commercial suppliers such as the Aldrich Chemical Company (Milwaukee, WI), Bachem (Torrance, CA), Sigma (St. Louis, MO), or may be prepared by methods well known to a person of ordinary skill in the art, following procedures described in such standard references as Fieser and Fieser's Reagents for Organic Synthesis, vols. 1-17, John Wiley and Sons, New York, NY, 1991; Rodd's Chemistry of Carbon Compounds, vols. 1-5 and supps., Elsevier Science Publishers, 1989; Organic Reactions, vols.
  • butenoate ester N where Rb is a (C 1- 3)alkyl, is converted to aminopentadienoate O, which is then cyclized with an amino ester to obtain compound P.
  • Compound P is treated with base (e.g., LiOH) to form acid Q.
  • Acid Q is coupled with amino hetero cycle D to obtain compound R.
  • 2-hydroxy-, 2-alkoxy- or 2-halo-pyridine derivative S is alkylated with ester X, Rb is a (C 1- 3)alkyl and Rj is a leaving group (e.g., halo), to provide compound Y.
  • Rb is a (C 1- 3)alkyl
  • Rj is a leaving group (e.g., halo)
  • An aldol condensation followed by reduction yields compound Z.
  • Compound Z is treated with base (e.g. , LiOH) to form acid AA.
  • Acid AA is coupled with amino hetero cycle D to obtain compound BB.
  • Chiral components can be separated and purified using any of a variety of techniques known to those skilled in the art.
  • chiral components can be purified using supercritical fluid chromatography (SFC).
  • SFC supercritical fluid chromatography
  • chiral analytical SFC/MS analyses are conducted using a Berger analytical SFC system (AutoChem, Newark, DE) which consists of a Berger SFC dual pump fluid control module with a Berger FCM 1100/1200 supercritical fluid pump and FCM 1200 modifier fluid pump, a Berger TCM 2000 oven, and an Alcott 718 autosampler.
  • the integrated system can be controlled by BI-SFC Chemstation software version 3.4.
  • Detection can be accomplished with a Watrers ZQ 2000 detector operated in positive mode with an ESI interface and a scan range from 200-800 Da with 0.5 second per scan.
  • Chromatographic separations can be performed on a ChiralPak AD-H, ChiralPak AS-H, ChiralCel OD-H, or ChiralCel OJ-H column (5 ⁇ , 4.6 x 250 mm; Chiral Technologies, Inc. West Chester, PA) with 10 to 40% methanol as the modifier and with or without ammonium acetate (10 mM).
  • Any of a variety of flow rates can be utilized including, for example, 1.5 or 3.5 mL/min with an inlet pressure set at 100 bar.
  • sample injection conditions can be used including, for example, sample injections of either 5 or lO ⁇ L in methanol at 0.1 mg/mL in concentration.
  • preparative chiral separations are performed using a Berger MultiGram II SFC purification system.
  • samples can be loaded onto a ChiralPak AD column (21 x 250 mm, 10 ⁇ ).
  • the flow rate for separation can be 70 mL/min, the injection volume up to 2 mL, and the inlet pressure set at 130 bar. Stacked injections can be applied to increase the efficiency.
  • the various substituents may be selected from among the various substituents otherwise taught herein.
  • Descriptions of the syntheses of particular compounds according to the present invention based on the above reaction scheme are set forth herein. Examples of Glucokinase Activators
  • Example 77 2-(3-chloro-4-(cyclopropylsulfonyl)-6-methyl-2-oxopyridin-l(2H)-yl)-N-(5- chlorothiazol-2-yl)-3-cyclohexylpropanamide
  • Compound 137A was synthesized using the procedure described in connection with Example 1 (Method A).
  • Compound 137A (0.51 g, 1.75 mmol) was dissolved in methylene chloride (5 ml) and to this was added triethyl amine (0.365 ml, 2.625 mmol).
  • the reaction mixture was cooled to 0 0 C.
  • Tf 2 O (0.353 ml, 2.10 mmol) was added slowly dropwise and the reaction mixture stirred for Ih. Solvent removed in vacuo. The residue was dissolved in DMF (2 ml) and transferred to a microwave vail.
  • Example 151 2-(4-(cyclopentylsulfonyl)-3,5,6-trimethyl-2-oxopyridin-l(2H)-yl)-N-(5- fluorothiazol-2-yl)-3-(tetrahydro-2H-pyran-4-yl)propanamide
  • Compound 151A was synthesized as reported in Tetrahedron 62, 2006, 6945-6954.
  • Compound 151B was synthesized using the procedure described in connection with Example 77 (Method G).
  • Compound 151C was synthesized using the procedure described in connection with Example 3 (Method C) and the title compound (151) was synthesized using the procedure described in connection with Example 9 (Method E).
  • Example 172 N-(5-chlorothiazol-2-yl)-2-(4-(cyclopropylsulfonyl)-6-methyl-2- oxopyridin- 1 (2H)-yl)-3 -(tetrahydro-2H-pyran-4-yl)propanamide
  • Compound 174 A was synthesized using the procedure described in connection with compound 3. To a solution of compound 174A (1.315 g, 3.85 mmol) in DMF (14 ml) was added a solution of sodium sulfhydrate (323.0 mg, 5.77 mmol) in H 2 O (3 ml). The reaction mixture was subjected to microwave heating at 100 0 C for 30 minutes. The reaction solution was diluted with water and extracted with ethylacetate, dried over magnesium sulfate, concentrated under high vacuum to yield compound 174B 1.043 g.
  • glucokinase activators may be assayed in vitro, in vivo or in a cell line. Provided below is an enzymatic glucokinase activity assay.
  • Purified glucokinase may be obtained as follows. DNA encoding residues 12- 465 of the full-length sequence of the human enzyme may be amplified by PCR and cloned into the HindIII and EcoRI sites of pFL AG-CTC (Sigma). SEQ. LD. No. 1 corresponds to residues 12-465 of glucokinase.
  • recombinant glucokinase protein may be carried out by transformation and growth of DHlOb-TIr E.coli cells incorporating the (pFL AG-CTC) plasmid in LB media. Protein expression can be induced in this system by the addition of IPTG to the culture medium.
  • Recombinant protein may be isolated from cellular extracts by passage over Sepharose Q Fast Flow resin (Pharmacia). This partially purified GK extract may then be further purified by a second passage over Poros HQlO (Applied Biosystems). The purity of GK may be determined on denaturing SDS-PAGE gel. Purified GK may then be concentrated to a final concentration of 20.0 mg/ml. After flash freezing in liquid nitrogen, the proteins can be stored at -78°C in a buffer containing 25mM TRIS-HCl pH 7.6, 5OmM NaCl, and 0.5 mM TCEP.
  • the activation properties of compounds for GK may be determined using a black 384-well-plate format under the following reaction conditions: 25 mM Hepes pH 7.2, 25 mM NaCl, 10 mM MgCl 2 , 0.01% Brij35, 1 mM DTT, 5 ⁇ M ATP, 5 mM Glucose 2% DMSO.
  • the amount of ATP consumed may be determined quantitatively by addition of equal volume of luciferase reagent (luciferase + beetle luciferin — KinaseGlo Luminescent Kinase Assay kit from Promega).
  • the luminescence intensity may be measured by using the Analyst HT from LJL Biosystems.
  • the assay reaction may be initiated as follows: 4 ⁇ l of substrate mixture (12.5 ⁇ M ATP and 12.5 mM Glucose) was added to each well of the plate, followed by the addition of 2 ⁇ l of activator (2 fold serial dilutions for 11 data points for each activator) containing 10% DMSO. 4 ⁇ L of 1.25 nM GK solution may be added to initiate the reaction. The reaction mixture may then be incubated at room temperature for 60 min, and quenched and developed by addition of 10 ⁇ L of luciferase reagent. Luminescence intensities of the resulting reaction mixtures may be measured after a 10 min incubation at room temperature. The luminescence intensity may be measured by using the Analyst HT from LJL Biosystems.
  • pKact values may be calculated by non-linear curve fitting of the compound concentrations and luminescence intensities to a standard inhibition/activation equation.
  • K act is the concentration that displays 50% of the maximal increase in GK activity observed using a saturating activator concentration.
  • pKact values for select compounds of the present invention are given in Table 2. TABLE 2: pK aCt and %ACT max of Exemplified Compounds against GK

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Diabetes (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Endocrinology (AREA)
  • Obesity (AREA)
  • Hematology (AREA)
  • Reproductive Health (AREA)
  • Emergency Medicine (AREA)
  • Pregnancy & Childbirth (AREA)
  • Child & Adolescent Psychology (AREA)
  • Gynecology & Obstetrics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Cardiology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
  • Enzymes And Modification Thereof (AREA)
EP07869377A 2006-12-20 2007-12-17 Glucokinaseaktivatoren Withdrawn EP2091947A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US87092906P 2006-12-20 2006-12-20
PCT/US2007/087807 WO2008079787A2 (en) 2006-12-20 2007-12-17 Glucokinase activators

Publications (1)

Publication Number Publication Date
EP2091947A2 true EP2091947A2 (de) 2009-08-26

Family

ID=39446103

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07869377A Withdrawn EP2091947A2 (de) 2006-12-20 2007-12-17 Glucokinaseaktivatoren

Country Status (4)

Country Link
US (2) US8163779B2 (de)
EP (1) EP2091947A2 (de)
JP (1) JP5419706B2 (de)
WO (1) WO2008079787A2 (de)

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7842713B2 (en) 2006-04-20 2010-11-30 Pfizer Inc Fused phenyl amido heterocyclic compounds
MX2009008531A (es) * 2007-02-16 2009-08-26 Amgen Inc Cetonas de heterociclilo que contienen nitrogeno y su uso como inhibidores de c-met.
KR20110018366A (ko) 2008-05-16 2011-02-23 다케다 샌디에고, 인코포레이티드 글루코키나아제 활성제
JP5627574B2 (ja) 2008-06-03 2014-11-19 インターミューン, インコーポレイテッド 炎症性および線維性疾患を治療するための化合物および方法
JP2011529483A (ja) * 2008-07-29 2011-12-08 ファイザー・インク フッ素化ヘテロアリール
AU2009290474A1 (en) 2008-09-11 2010-03-18 Pfizer Inc. Heteroaryls amide derivatives and their use as glucokinase activators
EP2389374A1 (de) 2009-01-20 2011-11-30 Pfizer Inc. Substituierte pyrazinonamide
CN102388038B (zh) 2009-03-11 2014-04-23 辉瑞大药厂 用作葡糖激酶活化剂的苯并呋喃基衍生物
US20110021570A1 (en) * 2009-07-23 2011-01-27 Nancy-Ellen Haynes Pyridone glucokinase activators
RU2551847C2 (ru) 2009-12-04 2015-05-27 Тайсо Фармасьютикал Ко., Лтд. Производные 2-пиридона
WO2011107494A1 (de) 2010-03-03 2011-09-09 Sanofi Neue aromatische glykosidderivate, diese verbindungen enthaltende arzneimittel und deren verwendung
AU2011235212B2 (en) 2010-03-31 2014-07-31 The Scripps Research Institute Reprogramming cells
EP2582709B1 (de) 2010-06-18 2018-01-24 Sanofi Azolopyridin-3-on-derivate als inhibitoren von lipasen und phospholipasen
US8530413B2 (en) 2010-06-21 2013-09-10 Sanofi Heterocyclically substituted methoxyphenyl derivatives with an oxo group, processes for preparation thereof and use thereof as medicaments
TW201215387A (en) 2010-07-05 2012-04-16 Sanofi Aventis Spirocyclically substituted 1,3-propane dioxide derivatives, processes for preparation thereof and use thereof as a medicament
TW201215388A (en) 2010-07-05 2012-04-16 Sanofi Sa (2-aryloxyacetylamino)phenylpropionic acid derivatives, processes for preparation thereof and use thereof as medicaments
TW201221505A (en) 2010-07-05 2012-06-01 Sanofi Sa Aryloxyalkylene-substituted hydroxyphenylhexynoic acids, process for preparation thereof and use thereof as a medicament
WO2013037390A1 (en) 2011-09-12 2013-03-21 Sanofi 6-(4-hydroxy-phenyl)-3-styryl-1h-pyrazolo[3,4-b]pyridine-4-carboxylic acid amide derivatives as kinase inhibitors
EP2760862B1 (de) 2011-09-27 2015-10-21 Sanofi 6-(4-hydroxy-phenyl)-3-alkyl-1h-pyrazolo[3,4-b]pyridin-4-carbonsäureamidderivate als kinaseinhibitoren
ES2878001T3 (es) 2012-05-17 2021-11-18 Vtv Therapeutics Llc Composiciones del activador de la glucocinasa para el tratamiento de la diabetes
AR092742A1 (es) 2012-10-02 2015-04-29 Intermune Inc Piridinonas antifibroticas
NO2921489T3 (de) 2012-11-13 2018-02-03
JP6441828B2 (ja) * 2013-03-04 2018-12-19 ブイティーブイ・セラピューティクス・エルエルシー 安定なグルコキナーゼ活性化剤組成物
US9809545B2 (en) 2013-03-27 2017-11-07 Merck Sharp & Dohme Corp. Factor XIa inhibitors
TWI633089B (zh) * 2013-03-28 2018-08-21 拜耳製藥股份有限公司 經取代的酮基吡啶衍生物
EP3024822B1 (de) 2013-07-23 2017-05-03 Bayer Pharma Aktiengesellschaft Substituierte oxopyridin-derivate und ihre verwendung als faktor xia und plasmakallikrein inhibitoren
EP3063150B1 (de) 2013-10-30 2017-11-22 Bayer Pharma Aktiengesellschaft Substituierte oxopyridin-derivate
WO2015120777A1 (zh) 2014-02-14 2015-08-20 四川海思科制药有限公司 一种吡啶酮或嘧啶酮衍生物、及其制备方法和应用
RU2692485C2 (ru) 2014-04-02 2019-06-25 Интермьюн, Инк. Противофиброзные пиридиноны
WO2016011940A1 (zh) * 2014-07-25 2016-01-28 江苏恒瑞医药股份有限公司 氮茚-酰胺类衍生物、其制备方法及其在医药上的应用
ES2694189T3 (es) 2014-09-24 2018-12-18 Bayer Pharma Aktiengesellschaft Derivados de oxopiridina sustituidos
ES2716417T3 (es) 2014-09-24 2019-06-12 Bayer Pharma AG Derivados de oxopiridina sustituidos con acción antiinflamatoria y antitrombótica
EP3197891B1 (de) 2014-09-24 2018-11-21 Bayer Pharma Aktiengesellschaft Faktor xia hemmende pyridobenzazepin- und pyridobenzazocin-derivate
JP6517925B2 (ja) * 2014-09-24 2019-05-22 バイエル ファーマ アクチエンゲゼルシャフト 置換されたオキソピリジン誘導体
US10167280B2 (en) 2014-09-24 2019-01-01 Bayer Pharma Aktiengesellschaft Substituted oxopyridine derivatives
ES2722423T3 (es) * 2014-09-24 2019-08-12 Bayer Pharma AG Derivados de oxopiridina sustituidos
EP3692992A1 (de) 2015-02-27 2020-08-12 Kyushu University National University Corporation Verfahren zum screening von dock1-selektive inhibitoren zur krebsbehandlung
WO2017003723A1 (en) 2015-07-01 2017-01-05 Crinetics Pharmaceuticals, Inc. Somatostatin modulators and uses thereof
JO3703B1 (ar) 2015-07-09 2021-01-31 Bayer Pharma AG مشتقات أوكسوبيريدين مستبدلة
EP3344618A1 (de) 2015-09-04 2018-07-11 Bayer Pharma Aktiengesellschaft Substituierte oxopyridin-derivate
WO2019023278A1 (en) 2017-07-25 2019-01-31 Crinetics Pharmaceuticals, Inc. MODULATORS OF SOMATOSTATIN AND USES THEREOF
GB201714777D0 (en) 2017-09-14 2017-11-01 Univ London Queen Mary Agent
TW201922724A (zh) 2017-09-29 2019-06-16 德商拜耳廠股份有限公司 經取代之3-苯基喹唑啉-4(3h)-酮及其用途
WO2019063708A1 (en) 2017-09-29 2019-04-04 Bayer Aktiengesellschaft SUBSTITUTED 3-PHENYLQUINAZOLIN-4 (3H) -ONES AND USES THEREOF
AU2019251699B2 (en) 2018-04-10 2024-02-29 Bayer Pharma Aktiengesellschaft A substituted oxopyridine derivative
AU2019287437A1 (en) 2018-06-12 2020-09-10 Vtv Therapeutics Llc Therapeutic uses of glucokinase activators in combination with insulin or insulin analogs
US20220144848A1 (en) 2018-12-21 2022-05-12 Bayer Aktiengesellschaft Substituted oxopyridine derivatives
BR112021009435A2 (pt) 2018-12-21 2021-08-17 Bayer Aktiengesellschaft derivados de oxopiridina substituída
JP2023529701A (ja) * 2020-06-09 2023-07-11 デイナ ファーバー キャンサー インスティチュート,インコーポレイテッド アロステリックegfr阻害剤及びその使用方法

Family Cites Families (174)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB921315A (en) 1958-03-31 1963-03-20 Wellcome Found The manufacture of 8-aminoalkylamino quinoline derivatives
US3956287A (en) 1973-11-07 1976-05-11 Richardson-Merrell Inc. 7-[(2-Oxo-1-pyridinyl)acylamino]cephalosporin derivatives
JPS62232555A (ja) 1986-04-02 1987-10-13 Unitika Ltd 酵素センサ
US4959212A (en) 1988-06-22 1990-09-25 Alexandra Stancesco Oxidizing-energizing composition and method for the treatment of diabetes
US5239080A (en) 1989-02-08 1993-08-24 Takeda Chemical Industries, Ltd. Oxazole compounds and their use as antidiabetic and bone-reduction inhibitory agents
DE4211474A1 (de) * 1992-04-06 1993-10-07 Merck Patent Gmbh Imidazopyridine
US5541060A (en) 1992-04-22 1996-07-30 Arch Development Corporation Detection of glucokinase-linked early-onset non-insulin-dependent diabetes mellitus
US5501965A (en) 1993-03-17 1996-03-26 Unitika Ltd. Process for producing fructose 2,6-bisphosphate and purification process thereof
JP3203108B2 (ja) 1993-08-26 2001-08-27 協和メデックス株式会社 グルコース−6−リン酸デヒドロゲナーゼの安定化方法
DE4341665A1 (de) 1993-12-07 1995-06-08 Basf Ag Bicyclen-Derivate, ihre Herstellung und Verwendung
US6486380B1 (en) 1993-12-17 2002-11-26 University Of North Dakota Medical Education Research Foundation Pancreatic β cell hexokinase transgene
US7041503B2 (en) 1995-05-02 2006-05-09 The United States Of America As Represented By The Department Of Health And Human Services Modified myelin basic protein molecules
US5854067A (en) 1996-01-19 1998-12-29 Board Of Regents, The University Of Texas System Hexokinase inhibitors
GB9618934D0 (en) 1996-09-11 1996-10-23 Univ London Inositol phosphoglycans for therapeutic use in the treatment of diabetes and obesity
US6642360B2 (en) 1997-12-03 2003-11-04 Genentech, Inc. Secreted polypeptides that stimulate release of proteoglycans from cartilage
WO2000053756A2 (en) 1999-03-08 2000-09-14 Genentech, Inc. Secreted and transmembrane polypeptides and nucleic acids encoding the same
US20020032330A1 (en) 1996-12-24 2002-03-14 Yutaka Nomura Propionic acid derivatives
FR2758326B1 (fr) 1997-01-16 1999-02-12 Synthelabo Derives de pyridone, leur prepaparation et leur utilisation comme intermediaires de synthese
US20020137890A1 (en) 1997-03-31 2002-09-26 Genentech, Inc. Secreted and transmembrane polypeptides and nucleic acids encoding the same
ZA988460B (en) 1997-09-17 1999-03-19 Genentech Inc Polypeptides and nucleic acids encoding the same
US7378507B2 (en) 1997-09-18 2008-05-27 Genentech, Inc. PRO217 polypeptides
US6391311B1 (en) 1998-03-17 2002-05-21 Genentech, Inc. Polypeptides having homology to vascular endothelial cell growth factor and bone morphogenetic protein 1
US6894148B2 (en) 1997-11-12 2005-05-17 Genentech, Inc. Secreted and transmembrane polypeptides and nucleic acids encoding the same
US20030129691A1 (en) 1998-02-09 2003-07-10 Genentech, Inc. Secreted and transmembrane polypeptides and nucleic acids encoding the same
US20040048332A1 (en) 1998-04-29 2004-03-11 Genentech, Inc. Secreted and transmembrane polypeptides and nucleic acids encoding the same
US7339033B2 (en) 1998-06-26 2008-03-04 Genentech, Inc. Pro1481
US20030073188A1 (en) 1998-07-07 2003-04-17 Genentech, Inc. Secreted and transmembrane polypeptides and nucleic acids encoding the same
WO2001088088A2 (en) 2000-05-18 2001-11-22 Hyseq, Inc. Novel nucleic acids and polypeptides
US6242666B1 (en) 1998-12-16 2001-06-05 The Scripps Research Institute Animal model for identifying a common stem/progenitor to liver cells and pancreatic cells
JP2002540175A (ja) 1999-02-19 2002-11-26 ドウアリング,マシユー・ジエイ 糖尿病及び肥満症の経口遺伝子治療
US7465785B2 (en) 1999-03-08 2008-12-16 Genentech, Inc. Polypeptide encoded by a nucleic acid over-expressed in melanoma
US6610846B1 (en) 1999-03-29 2003-08-26 Hoffman-La Roche Inc. Heteroaromatic glucokinase activators
CN1151140C (zh) 1999-03-29 2004-05-26 霍夫曼-拉罗奇有限公司 葡糖激酶活化剂
US6320050B1 (en) 1999-03-29 2001-11-20 Hoffmann-La Roche Inc. Heteroaromatic glucokinase activators
RU2242469C2 (ru) 1999-03-29 2004-12-20 Ф.Хоффманн-Ля Рош Аг Активаторы глюкокиназы
US8193330B2 (en) 1999-04-06 2012-06-05 The Regents Of The University Of California Polynucleotides comprising Neurogenin3 promoter and bHLH encoding domains
US6967019B2 (en) 1999-04-06 2005-11-22 The Regents Of The University Of California Production of pancreatic islet cells and delivery of insulin
US6774120B1 (en) 1999-06-01 2004-08-10 Sarah Ferber Methods of inducing regulated pancreatic hormone production in non-pancreatic islet tissues
JP4447705B2 (ja) 1999-10-20 2010-04-07 独立行政法人科学技術振興機構 糖尿病発症モデル哺乳動物
US20040072739A1 (en) 1999-11-10 2004-04-15 Anderson Christen M. Compositions and methods for regulating endogenous inhibitor of ATP synthase, including treatment for diabetes
AR026748A1 (es) * 1999-12-08 2003-02-26 Vertex Pharma Un compuesto inhibidor de caspasas, una composicion farmaceutica que lo comprende, un metodo para la sintesis del mismo y un compuesto intermediario paradicha sintesis
US6353111B1 (en) 1999-12-15 2002-03-05 Hoffmann-La Roche Inc. Trans olefinic glucokinase activators
US20020009779A1 (en) 2000-05-19 2002-01-24 Meyers Rachel A. 50365, a novel hexokinase family member and uses therefor
US6608038B2 (en) 2000-03-15 2003-08-19 Novartis Ag Methods and compositions for treatment of diabetes and related conditions via gene therapy
US6716582B2 (en) 2000-04-14 2004-04-06 E. I. Du Pont De Nemours And Company Cellular arrays for the identification of altered gene expression
WO2001098454A2 (en) 2000-04-25 2001-12-27 German Human Genome Project Human dna sequences
BR0110573A (pt) 2000-05-03 2003-04-01 Hoffmann La Roche Composto, composição farmacêutica que compreende esse composto, processo para a preparação de uma composição farmacêutica, utilização do composto e processo para o tratamento profilático ou terapêutico e para a preparação do composto
WO2001083478A2 (en) * 2000-05-03 2001-11-08 F. Hoffmann-La Roche Ag Hydantoin-containing glucokinase activators
DE60106599T2 (de) 2000-05-08 2006-02-09 F. Hoffmann-La Roche Ag Substituierte phenylacetamide und ihre verwendung als glukokinase aktivatoren
AU6591401A (en) 2000-05-08 2001-11-20 Hoffmann La Roche Para-amine substituted phenylamide glucokinase activators
US6489485B2 (en) 2000-05-08 2002-12-03 Hoffmann-La Roche Inc. Para-amine substituted phenylamide glucokinase activators
WO2001092523A2 (en) 2000-05-30 2001-12-06 Curagen Corporation Human polynucleotides and polypeptides encoded thereby
CA2410823A1 (en) 2000-05-31 2001-12-06 Jolanta Vidugiriene Assay for kinases and phosphatases
CA2412256A1 (en) 2000-06-27 2002-01-03 Curagen Corporation Polynucleotides and polypeptides encoded thereby
WO2002006339A2 (en) 2000-07-03 2002-01-24 Curagen Corporation Proteins and nucleic acids encoding same
EP1303605A2 (de) 2000-07-19 2003-04-23 Eli Lilly And Company Nukleinsäuren, vektoren, wirtszellen, polypeptide und deren verwendung
AU2001273150A1 (en) 2000-07-20 2002-02-05 Genentech Inc. Secreted and transmembrane polypeptides and nucleic acids encoding the same
KR100556323B1 (ko) 2000-07-20 2006-03-03 에프. 호프만-라 로슈 아게 알파-아실 및 알파-헤테로원자-치환된 벤젠 아세트아미드글루코키나제 활성화제
US20040044179A1 (en) 2000-07-25 2004-03-04 Genentech, Inc. Secreted and transmembrane polypeptides and nucleic acids encoding the same
US20030100709A1 (en) 2000-07-25 2003-05-29 Genentech, Inc. Secreted and transmembrane polypeptides and nucleic acids encoding the same
US7371817B2 (en) 2000-07-25 2008-05-13 Genentech, Inc. PRO9783 polypeptides
US20030212255A1 (en) 2000-07-26 2003-11-13 Muralidhara Padigaru Novel proteins and nucleic acids encoding same
WO2002014358A2 (en) 2000-08-11 2002-02-21 Eli Lilly And Company Novel secreted proteins and their uses
US6369232B1 (en) 2000-08-15 2002-04-09 Hoffmann-La Roche Inc. Tetrazolyl-phenyl acetamide glucokinase activators
JP2004512029A (ja) 2000-08-16 2004-04-22 カイロン コーポレイション ヒト遺伝子および遺伝子発現産物
EP1313765A2 (de) 2000-08-24 2003-05-28 Eli Lilly And Company Sekretierte proteine und methoden zur verwendung davon
WO2002016599A2 (en) 2000-08-25 2002-02-28 Curagen Corporation Proteins and nucleic acids encoding same
US6346416B1 (en) 2000-08-29 2002-02-12 Isis Pharmaceuticals, Inc. Antisense inhibition of HPK/GCK-like kinase expression
US6849728B1 (en) 2000-08-31 2005-02-01 Wake Forest University Health Sciences GLUT10: a glucose transporter in the type 2 diabetes linked region of chromosome 20Q12-13.1
WO2002023184A1 (en) 2000-09-13 2002-03-21 Eleanor Roosevelt Institute Method for treatment of insulin resistance in obesity and diabetes
US20030187201A1 (en) 2000-09-15 2003-10-02 Genentech, Inc. Secreted and transmembrane polypeptides and nucleic acids encoding the same
US20050048483A1 (en) 2000-09-28 2005-03-03 Su Eric Wen Novel secreted proteins and their uses
WO2002032939A2 (en) 2000-10-19 2002-04-25 Eli Lilly And Company Secreted proteins and their uses
WO2002057450A2 (en) 2000-11-29 2002-07-25 Curagen Corporation Proteins and nucleic acids encoding same
CA2430558A1 (en) 2000-12-06 2002-06-13 Curagen Corporation Proteins and nucleic acids encoding same
PT1341774E (pt) 2000-12-06 2006-05-31 Hoffmann La Roche Activadores heteroaromaticos, fundidos de glicocinase
US6433188B1 (en) 2000-12-06 2002-08-13 Wendy Lea Corbett Fused heteroaromatic glucokinase activators
JP2005502312A (ja) 2000-12-08 2005-01-27 キュラジェン コーポレイション タンパク質およびそれをコードする核酸
US6482951B2 (en) * 2000-12-13 2002-11-19 Hoffmann-La Roche Inc. Isoindolin-1-one glucokinase activators
WO2002048361A2 (en) 2000-12-15 2002-06-20 Eli Lilly And Company Novel secreted proteins and their uses
WO2002057453A2 (en) 2000-12-19 2002-07-25 Curagen Corporation Polypetides and nucleic acids encoding same
US20030235882A1 (en) 2000-12-19 2003-12-25 Shimkets Richard A. Novel nucleic acids and polypeptides and methods of use thereof
ES2170720B1 (es) 2000-12-20 2003-12-16 Univ Barcelona Autonoma Utilizacion conjunta del gen de la insulina y del gen de la glucoquinasa en el desarrollo de aproximaciones terapeuticas para la diabetes mellitus.
WO2002050277A2 (en) 2000-12-21 2002-06-27 Curagen Corporation Protein and nucleic acids encoding same
US7241579B2 (en) 2000-12-22 2007-07-10 Smithkline Beecham Corporation Method of screening for GPR40 ligands
EP1357186A4 (de) 2000-12-28 2005-01-26 Takeda Pharmaceutical Neue proteine und deren dnas
US7122345B2 (en) 2001-01-09 2006-10-17 Curagen Corporation Nucleic acid encoding a NOVX13 polypeptide
EP1358327A2 (de) 2001-01-11 2003-11-05 Curagen Corporation Proteine und nukleinsäuren, die für diese kodieren
JP4146095B2 (ja) 2001-01-15 2008-09-03 ユニチカ株式会社 耐熱性グルコキナーゼ遺伝子、それを含有する組換えベクター、その組換えベクターを含有する形質転換体及びその形質転換体を用いた耐熱性グルコキナーゼの製造方法
US20040043457A1 (en) 2001-01-18 2004-03-04 Silke Schumacher Bifunctional fusion proteins with glucocerebrosidase activity
WO2002081517A2 (en) 2001-01-19 2002-10-17 Curagen Corporation Novel polypeptides and nucleic acids encoded thereby
GB0101447D0 (en) 2001-01-19 2001-03-07 Univ Edinburgh Regulation of glucocorticoid concentration
WO2002068649A2 (en) 2001-01-31 2002-09-06 Curagen Corporation Proteins and nucleic acids encoding same
US20040081981A1 (en) 2001-01-31 2004-04-29 Toru Egashira Method of detecting risk factor for onset of diabetes
US20040086875A1 (en) 2001-11-05 2004-05-06 Agee Michele L. Novel proteins and nucleic acids encoding same
US20040053245A1 (en) 2001-02-05 2004-03-18 Tang Y. Tom Novel nucleic acids and polypeptides
US7060675B2 (en) 2001-02-15 2006-06-13 Nobex Corporation Methods of treating diabetes mellitus
US6783969B1 (en) 2001-03-05 2004-08-31 Nuvelo, Inc. Cathepsin V-like polypeptides
WO2002072757A2 (en) 2001-03-08 2002-09-19 Curagen Corporation Novel proteins and nucleic acids encoding same
CN1496412B (zh) 2001-03-14 2012-08-08 香港中文大学 用于评估中国血统的人种发展2型糖尿病危险性的方法和组合物
JP4602577B2 (ja) 2001-03-15 2010-12-22 積水メディカル株式会社 前糖尿病状態のスクリーニング方法及びスクリーニング用試薬
US7033790B2 (en) 2001-04-03 2006-04-25 Curagen Corporation Proteins and nucleic acids encoding same
WO2002088164A1 (en) 2001-04-26 2002-11-07 Immunex Corporation Human ox2 receptors
WO2002093127A2 (en) 2001-05-11 2002-11-21 Adipogenix, Inc. Methods and reagents for identifying insulin response modulators and therapeutic uses therefor
CA2447015A1 (en) 2001-05-15 2002-11-21 Rappaport Family Institute For Research In The Medical Sciences Insulin producing cells derived from human embryonic stem cells
EP2161578A1 (de) 2001-05-29 2010-03-10 Pride Proteomics A/S Proteine in der Diabetes-Proteomanalyse
AU2002312211A1 (en) 2001-06-01 2002-12-16 Clingenix, Inc. Methods and reagents for diagnosis and treatment of insulin resistance and related conditions
ATE393574T1 (de) 2001-06-08 2008-05-15 Boehringer Ingelheim Pharma Zur glucoseregulierten produktion von menschlichem insulin in somatischen zelllinien geeignete nukleinsäurekonstrukte
SE0102300D0 (sv) 2001-06-26 2001-06-26 Astrazeneca Ab Compounds
SE0102299D0 (sv) 2001-06-26 2001-06-26 Astrazeneca Ab Compounds
US20030120040A1 (en) 2001-06-29 2003-06-26 Genentech, Inc. Secreted and Transmembrane polypeptides and nucleic acids encoding the same
DK1409544T3 (da) 2001-07-03 2009-10-26 Genentech Inc Humane DR4-antistoffer og anvendelser deraf
SE0102764D0 (sv) 2001-08-17 2001-08-17 Astrazeneca Ab Compounds
AU2002349299A1 (en) 2001-12-03 2003-06-17 Novo Nordisk A/S Use of a glucokinase activator in combination with a glucagon antagonist for treating type 2 diabetes
US20030138416A1 (en) 2001-12-03 2003-07-24 Jesper Lau Use of glucokinase activator in combination with a glucagon antagonist for treating type 2 diabetes
US20030018172A1 (en) 2001-12-06 2003-01-23 Genentech, Inc. Secreted transmembrane polypeptides and nucleic acids encoding the same
US6911545B2 (en) 2001-12-19 2005-06-28 Hoffman-La Roche Inc. Crystals of glucokinase and methods of growing them
DE10162730A1 (de) 2001-12-20 2003-07-03 Degussa Allele des glk-Gens aus coryneformen Bakterien
JP2005518391A (ja) * 2001-12-21 2005-06-23 ノボ ノルディスク アクティーゼルスカブ Gk活性化剤としてのアミド誘導体
WO2003075845A2 (en) 2002-03-07 2003-09-18 The Forsyth Institute Immunogenicity of glucan binding protein
AU2003221140B9 (en) 2002-03-26 2009-07-30 Banyu Pharmaceutical Co., Ltd. Novel aminobenzamide derivative
US20030232370A1 (en) 2002-04-22 2003-12-18 Trifiro Mark A. Glucose sensor and uses thereof
RS93604A (en) 2002-04-26 2007-02-05 F. Hoffmann-La Roche Ag., Substituted phenylacetamides and their use as glucokinase activators
AU2003290507A1 (en) * 2002-05-10 2004-04-08 Cytokinetics, Inc. Compounds, compositions and methods
CA2490023A1 (en) 2002-05-16 2003-11-27 Banyu Pharmaceutical Co., Ltd. Crystal of glucokinase protein, and method for drug design using the crystal
EP1576370A2 (de) 2002-06-04 2005-09-21 Metabolex, Inc. Verfahren zur diagnose und behandlung von diabetes und insulinresistenz
WO2003101284A2 (en) 2002-06-04 2003-12-11 Metabolex, Inc. Methods of diagnosing and treating diabetes and insulin resistance
WO2003102161A2 (en) 2002-06-04 2003-12-11 Metabolex, Inc. Methods of diagnosing & treating diabetes and insulin resistance
US20060234292A1 (en) 2002-06-05 2006-10-19 Bernard Allan Methods of diagnosing and treating diabetes and insulin resistance
US20060292563A1 (en) 2002-06-05 2006-12-28 Metabolex, Inc. Methods of diagnosing & treating diabetes and insulin resistance
JP2005529603A (ja) 2002-06-13 2005-10-06 メタボレックス インコーポレーティッド 糖尿病を予防、治療、および診断するための組成物および方法
KR101116627B1 (ko) 2002-06-27 2012-10-09 노보 노르디스크 에이/에스 치료제로서 아릴 카르보닐 유도체
KR100442832B1 (ko) 2002-07-10 2004-08-02 삼성전자주식회사 다중 중합효소 연쇄반응에 의한 mody2 유전자의증폭을 위한 프라이머 세트
US20040197792A1 (en) 2002-07-15 2004-10-07 Sugen, Inc. Novel Kinases
US7087631B2 (en) 2002-07-18 2006-08-08 Inotek Pharmaceuticals Corporation Aryltetrazole compounds, and compositions thereof
US20040132679A1 (en) 2002-09-03 2004-07-08 Baylor College Of Medicine Induction of pancreatic islet formation
WO2004050645A1 (en) 2002-10-03 2004-06-17 Novartis Ag Substituted (thiazol-2-yl) -amide or sulfonamide as glycokinase activators useful in the treatment of type 2 diabetes
PT1549638E (pt) 2002-10-03 2007-12-11 Hoffmann La Roche Indole-3-cabboxamidas como activantes da glucoquinase
US7132539B2 (en) 2002-10-23 2006-11-07 The Procter & Gamble Company Melanocortin receptor ligands
US20040108226A1 (en) 2002-10-28 2004-06-10 Constantin Polychronakos Continuous glucose quantification device and method
AU2003285069A1 (en) 2002-10-28 2004-05-25 Joslin Diabetes Center, Inc. Type 2 diabetes mellitus genes
GB0226931D0 (en) 2002-11-19 2002-12-24 Astrazeneca Ab Chemical compounds
GB0226930D0 (en) 2002-11-19 2002-12-24 Astrazeneca Ab Chemical compounds
MY141521A (en) 2002-12-12 2010-05-14 Hoffmann La Roche 5-substituted-six-membered heteroaromatic glucokinase activators
DE10258885A1 (de) 2002-12-17 2004-07-15 Aventis Pharma Deutschland Gmbh Verfahren zur Generierung eines gentechnisch veränderten Organismus
ATE506354T1 (de) 2003-01-06 2011-05-15 Lilly Co Eli Substituierte arylcyclopropylacetamide als glucokinaseaktivatoren
WO2004063194A1 (en) 2003-01-06 2004-07-29 Eli Lilly And Company Heteroaryl compounds
US20050031605A1 (en) 2003-02-03 2005-02-10 Bunn Howard F. Compositions and methods of treating diabetes
US7262196B2 (en) 2003-02-11 2007-08-28 Prosidion Limited Tri(cyclo) substituted amide glucokinase activator compounds
PL378117A1 (pl) * 2003-02-11 2006-03-06 Prosidion Limited Tricyklopodstawione związki amidowe
US7629362B2 (en) 2003-02-13 2009-12-08 Banyu Pharmaceutical Co., Ltd. 2-pyridine carboxamide derivatives
AU2004215514B2 (en) 2003-02-26 2010-03-04 Msd K.K. Heteroarylcarbamoylbenzene derivative
US7166692B2 (en) 2003-03-04 2007-01-23 Canbrex Bio Science Walkersville, Inc. Intracellular delivery of small molecules, proteins, and nucleic acids
US20040180845A1 (en) 2003-03-13 2004-09-16 Newgard Christopher B. Methods and compositions for modulating glycogen synthesis and breakdown
US20040185548A1 (en) 2003-03-17 2004-09-23 Qun-Sheng Ji Hybrid receptors for efficient assay of modulators of receptor protein-tyrosine kinases
US20040198969A1 (en) 2003-04-01 2004-10-07 Genentech, Inc. Compositions and methods for the diagnosis and treatment of tumor
JPWO2004096806A1 (ja) * 2003-04-30 2006-07-13 大日本住友製薬株式会社 縮合イミダゾール誘導体
US7179613B2 (en) 2003-05-05 2007-02-20 Vanderbilt University Methods of screening for a candidate modulator of glucokinase
CA2523408A1 (en) 2003-05-09 2004-11-18 Novo Nordisk A\S Peptides for use in treating obesity
WO2004101505A1 (en) 2003-05-14 2004-11-25 Novo Nordisk A/S Novel compounds for treatment of obesity
US20050008691A1 (en) 2003-05-14 2005-01-13 Arturo Siles Ortega Bicalutamide compositions
WO2005009446A1 (en) 2003-07-17 2005-02-03 Cotherix, Inc. Combination therapies for treatment of hypertension and complications in patients with diabetes or metabolic syndrome
EA010655B1 (ru) 2003-08-01 2008-10-30 Янссен Фармацевтика Н.В. Замещенные индазол-о-глюкозиды
WO2005012242A2 (en) 2003-08-01 2005-02-10 Janssen Pharmaceutica Nv Substituted benzimidazole-, benztriazole-, and benzimidazolone-o-glucosides
WO2005014532A1 (en) 2003-08-08 2005-02-17 Transtech Pharma, Inc. Aryl and heteroaryl compounds, compositions and methods of use
US20070203059A1 (en) 2003-09-22 2007-08-30 Hutton John C Targeted Drug-Formaldehyde Conjugates And Methods Of Making And Using The Same
GB0327761D0 (en) 2003-11-29 2003-12-31 Astrazeneca Ab Compounds
GB0327760D0 (en) 2003-11-29 2003-12-31 Astrazeneca Ab Compounds
KR100890695B1 (ko) * 2004-08-12 2009-03-26 프로시디온 리미티드 치환된 페닐아세트아미드 및 글루코키나제 활성화제로서의그의 용도
WO2006035954A1 (en) * 2004-09-28 2006-04-06 Otsuka Pharmaceutical Co., Ltd. Carbostyril compound
US8034822B2 (en) * 2006-03-08 2011-10-11 Takeda San Diego, Inc. Glucokinase activators
WO2007108968A2 (en) * 2006-03-13 2007-09-27 Merck & Co., Inc. Ophthalmic compositions for treating ocular hypertension
US8163760B2 (en) * 2006-06-22 2012-04-24 Prana Biotechnology Limited Use of pyridopyrimidine compounds in the treatment of gliomas
JP2011529483A (ja) * 2008-07-29 2011-12-08 ファイザー・インク フッ素化ヘテロアリール

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2008079787A2 *

Also Published As

Publication number Publication date
WO2008079787A2 (en) 2008-07-03
US20090105255A1 (en) 2009-04-23
JP2010514677A (ja) 2010-05-06
JP5419706B2 (ja) 2014-02-19
US8163779B2 (en) 2012-04-24
US8530499B2 (en) 2013-09-10
WO2008079787A3 (en) 2009-02-19
US20120252814A1 (en) 2012-10-04
WO2008079787A8 (en) 2009-07-16

Similar Documents

Publication Publication Date Title
US8530499B2 (en) Glucokinase activators
US8008332B2 (en) Substituted indazoles as glucokinase activators
EP2294053B1 (de) Glucokinaseaktivatoren
US8034822B2 (en) Glucokinase activators
US8173645B2 (en) Glucokinase activators
US20070244169A1 (en) Glucokinase activators
WO2007112347A1 (en) Dipeptidyl peptidase inhibitors
US8129538B1 (en) Renin inhibitors

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090602

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: GWALTNEY, STEPHEN L.

Inventor name: SABAT, MARK

Inventor name: GUNTUPALLI, PRASUNA

Inventor name: MIURA, JOANNE

Inventor name: TANG, MINGNAM

Inventor name: FENG, JUN

Inventor name: WANG, HAXIA

Inventor name: CHERUVALLATH, ZACHARIA

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20111109

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: TAKEDA CORPORATION, INC.

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: TAKEDA CALIFORNIA, INC.

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20150701