EP2052095A1 - Procédé d'ajustement de la conductivité thermique d'un acier, acier à outils, notamment acier à outils pour travail à chaud et article en acier - Google Patents

Procédé d'ajustement de la conductivité thermique d'un acier, acier à outils, notamment acier à outils pour travail à chaud et article en acier

Info

Publication number
EP2052095A1
EP2052095A1 EP07764595A EP07764595A EP2052095A1 EP 2052095 A1 EP2052095 A1 EP 2052095A1 EP 07764595 A EP07764595 A EP 07764595A EP 07764595 A EP07764595 A EP 07764595A EP 2052095 A1 EP2052095 A1 EP 2052095A1
Authority
EP
European Patent Office
Prior art keywords
steel
weight
tool
hot
thermal conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP07764595A
Other languages
German (de)
English (en)
Inventor
Angles Isaac Valls
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rovalma SA
Original Assignee
Rovalma SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=37036827&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2052095(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Rovalma SA filed Critical Rovalma SA
Priority to EP17151574.5A priority Critical patent/EP3228724B1/fr
Priority to EP07764595A priority patent/EP2052095A1/fr
Publication of EP2052095A1 publication Critical patent/EP2052095A1/fr
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/006Making ferrous alloys compositions used for making ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/30Ferrous alloys, e.g. steel alloys containing chromium with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt

Definitions

  • the present invention relates to a method for adjusting the thermal conductivity of a steel, to a tool steel, in particular hot-work tool steel, and to a use of a tool steel. Moreover, the present invention relates to a steel article.
  • Hot working steels are alloyed tool steels, which in addition to iron as alloying elements in particular contain carbon, chromium, tungsten, silicon, nickel, molybdenum, manganese, vanadium and cobalt with different proportions.
  • Hot work tool steels may be used to make hot work steel objects, such as tools, which are suitable for machining materials, in particular die casting, extrusion or die forging.
  • tools such as extrusion dies, forging tools, die casting dies, press dies, or the like, which must have special mechanical strength properties at high working temperatures.
  • Another field of application for hot working steels are tools for the injection molding of plastics.
  • Hot work tools which are made of a hot-work steel, must in addition to a high mechanical stability at higher
  • Working temperatures have good thermal conductivity and a high heat wear resistance.
  • Other important properties of hot-work steels are not only a sufficient hardness and strength but also a high hot hardness and high wear resistance at high working temperatures.
  • a high thermal conductivity of the used for the production of tools hot-work steel is for some applications of particular importance, as this can cause a significant cycle time reduction. Since the operation of hot forming devices for the
  • Hot forming of workpieces is relatively expensive, can be achieved by reducing the cycle times a significant cost savings.
  • a high thermal conductivity of hot-work steel is also advantageous in high-pressure casting, since the casting molds used there due to a greatly increased thermal
  • the tool steels commonly used to make tools typically have a thermal conductivity on the order of about 18 to 24 W / mK at room temperature.
  • the thermal conductivities of the hot working steels known from the prior art are about 16 to 37 W / mK.
  • a hot-work tool steel which has a comparatively high thermal conductivity of more than 35 W / mK at temperatures up to about 1 .100 0 C.
  • the one from this one Document known hot-work tool steel contains in addition to iron and unavoidable impurities:
  • Chromium is a comparatively inexpensive carbide former and also provides the hot work tool steel with good oxidation resistance. Further, chromium forms very thin secondary carbides, so that the mechanical strength to toughness ratio is very good in the conventional hot working tool steels.
  • German patent DE 1014577 B1 discloses a method for the production of hot working tools using a hardening steel alloy. This patent relates in particular to a process for the production of thermosetting hot working tools, in particular dies for the operation
  • Hot forging, with high crack and break strength and high yield strength under static compressive stress in the heat are also distinguished by a simple, relatively inexpensive chemical composition (0.15-0.30% C, 3.25%).
  • CH 481222 refers to a chromium-molybdenum-vanadium alloyed hot work tool steel with good cold insensitivity for making tools such as dies and dies. It should be noted that the tuning of the alloying elements - especially chromium (1.00 to 3.50% Cr),
  • Molybdenum (0.50 to 2.00% Mo) and vanadium (0, 10 to 0.30% V) - a decisive influence on the desired properties, such as a low heat resistance (55 kp / mm 2 ), good flow properties , good thermal conductivity and so on.
  • Japanese Patent JP 4147706 is concerned with improving the wear resistance of mandrels for the production of seamless steel tubes by the geometry of the mandrel and by the chemical composition of the alloy (0, 1 to 0.4% C, 0.2 to 2.0% Mn, 0 to 0.95% Cr, 0.5 to 5.0% Mo, 0.5 to 5.0% W).
  • Japanese publication JP 2004183008 describes a low-cost ferritic-pearlitic steel alloy of tools
  • the steel described in JP 2003253383 includes a precured tool steel for plastic casting with ferrite-pearlitic basic structure (0, 1 to 0, 3% C, 0.5 to 2.0% Mn, 0.2 to 2.5% Cr, 0 to 0, 15% Mo, 0.01 to 0.25% V), in which the excellent workability and weldability are in the foreground.
  • JP 9049067 a specification of the chemical composition (0.05 to 0.55% C, 0, 10 to 2.50% Mn, 0 to 3, 00% Cr, 0 to 1, 50% Mo, 0 to 0.50% V) and in particular the increase in the silicon content (0, 50 to 2 , 50% Si).
  • the document CH 165893 relates to an iron alloy, which is particularly suitable for hot working tools (dies, dies or the like) and a low-chromium (up to chromium-free) and tungsten-cobalt-nickel-containing (preferably with additions of molybdenum and vanadium) chemical composition having.
  • the reduced chromium content or the complete abandonment of chromium as an alloying element becomes essential
  • EP 0787813 B 1 is a heat-resistant, ferritic steel with a low Cr and Mn content and with an excellent strength at high Temperatures known.
  • the purpose of the invention disclosed in the aforementioned document was to provide a heat-resistant, low chromium ferritic steel having improved creep rupture strength under the conditions of long time periods at high temperatures as well as improved toughness, machinability and weldability even with thick products having.
  • the description of the alloying influences with respect to carbide formation (coarsening), precipitation and solid solution strengthening emphasizes the necessity of stabilizing the structure of the ferritic steel.
  • the reduction of the Cr content to less than 3.5% is attributed to the suppressed lowering of the creep rupture strength due to the coarsening of Cr carbides at temperatures above 550 ° C, and to the improvement of toughness, workability and thermal conductivity. At least
  • DE 19508947 A1 discloses a wear-resistant, temper-resistant and heat-resistant alloy.
  • this alloy is intended for use in hot work tools in hot forming and hot forming and is characterized by very high molybdenum contents (10 to 35%) and tungsten contents (20 to 50%).
  • very high molybdenum contents (10 to 35%)
  • tungsten contents (20 to 50%).
  • German patent DE 4321433 C1 relates to a steel for hot working tools, as used for the ur forming, forming and machining of materials (especially in die casting, extrusion, drop forging or as
  • the very good thermal conductivity is attributed, on the one hand, to the increased molybdenum content (3.5 to 7.0% Mo) and, on the other hand, to a maximum chromium content of 4.0%.
  • JP 61030654 relates to the use of a high-steel steel
  • Hot cracking and hot break strength as well as high thermal conductivity as a material for the production of coatings for rolls in aluminum continuous casting plants. Again, the opposite tendencies in influencing the hot crack or hot break strength and the thermal conductivity by the ie
  • EP 1300482 B 1 relates to a hot work tool steel, in particular for tools for forming at elevated temperatures, with the simultaneous occurrence of the properties: increased hardness, strength and toughness and good thermal conductivity, improved wear resistance at elevated temperatures and
  • the object of the present invention is to provide a tool steel, in particular a hot-work tool steel, and to provide a steel article having a higher thermal conductivity than the tool steels known from the prior art (in particular hot-work tool steels) or steel articles.
  • the object of the present invention is based on a tool steel (in particular hot-work tool steel) with the
  • an inventive method for adjusting the thermal conductivity of a steel, in particular a hot-work steel characterized in that an inner structure of the structure defined steel is generated metallurgically, the carbide components have a defined electron and phonon density and / or their crystal structure by a specifically generated lattice defects have certain mean free path for the phonon and electron flow.
  • An advantage of the solution according to the invention is that the thermal conductivity of a steel can be tailored to the desired size by defining the internal structure of the steel in the manner defined above metallurgically is produced .
  • the method according to the invention is suitable, for example, for tool and hot-work tool steels.
  • a method according to the invention for adjusting, in particular for increasing the thermal conductivity of a steel, in particular a hot-work tool characterized in that a defined internal structure of the steel is generated metallu rgisch having an increased electron and phonon density in their carbide components and / or having a reduced defect content in the crystal structure of the carbides and the surrounding metallic matrix has an increased mean free path for the phonon and electron flow.
  • the heat conductivity of the steel at room temperature can be set to more than 42 W / mK, preferably to more than 48 W / mK, in particular to more than 55 W / mK.
  • a tool steel according to the invention in particular hot-work steel, is characterized by the following
  • a tool steel according to the invention in particular hot-work steel, is characterized by the following composition:
  • a further tool steel according to the invention is characterized by the following composition:
  • Wt .-% is; Carbide-forming elements Ti, Zr, Hf, Nb, Ta with a
  • the particular advantage of the tool steels according to the invention consists primarily in the drastically increased thermal conductivity in comparison to the tool and hot working steels known from the prior art. It is clear that the tool steel according to the invention in addition to iron as the main component the elements C (or C and N according to claim 5 and C, N and B according to claim 6), Cr, Mo and W in the above-mentioned ranges and unavoidable impurities.
  • the other alloying elements are thus optional components of the tool steel, since their content may possibly also be 0% by weight.
  • An essential aspect of the solution described here is to keep carbon and preferably also chromium in the solid solution state largely out of the steel matrix and to prevent the F ⁇ 3C-
  • Carbides replaced by carbides with higher thermal conductivity Chromium can only be kept out of the matrix by not being present at all. Carbon can be bound in particular with carbide formers, where Mo and W are the most cost-effective elements and have a comparatively high thermal conductivity both as elements and as carbides.
  • Quantum mechanical simulation models for tool steels and in particular for hot working steels can show that solid state carbon and chromium lead to matrix distortion, resulting in a shortening of the mean free path of phonons. A larger elastic modulus and a higher thermal expansion coefficient are the result.
  • the influence of carbon on electron and phonon scattering has also been investigated using suitable simulation models.
  • the advantages of a carbon-chromium-depleted matrix could be verified by increasing the thermal conductivity. While the thermal conductivity of the matrix is dominated by electron flow, the conductivity of the carbides is determined by the phonons. In the solid solution state, chromium has a very negative effect on the thermal conductivity achieved by electron flow.
  • the tool steels according to the invention (in particular hot working steels) according to claims 4, 5 and 6 can have a thermal conductivity at room temperature of more than 42 W / mK, preferably a thermal conductivity of more than 48 W / mK, in particular a thermal conductivity of more than 55 W / mK , Surprisingly, it has been found that thermal conductivities in the order of more than 50, in particular about 55 to 60 W / mK and even beyond can be achieved.
  • the thermal conductivity of the hot work steel according to the invention can thus be almost twice as large as in the known from the prior art hot working steels.
  • the steel described here is particularly suitable for applications in which a high thermal conductivity is required. In the drastically improved thermal conductivity thus there is the particular advantage of the tool steel according to the invention over the solutions known from the prior art.
  • the thermal conductivity of the tool steel is adjustable by a method according to one of claims 1 to 3.
  • the thermal conductivity of the tool steel can be specifically adapted and adjusted to the specific application.
  • the tool steel may comprise the carbide-forming elements Ti, Zr,
  • Hf, Nb, Ta in a proportion of up to 3 wt .-% individually or in total.
  • the elements Ti, Zr, Hf, Nb, Ta are known in metallurgy as strong carbide formers. It has been found that strong carbide images have a positive effect in terms of increasing the thermal conductivity of the tool steel, as they have a better ability to remove carbon in the solid solution state from the matrix. Carbides with a high Thermal conductivity can further increase the conductivity of the tool steel. It is known from metallurgy that the following elements are carbide formers, the carbon affinity of which is listed below in ascending order: Cr, W, Mo, V, Ti, Nb, Ta, Zr, Hf.
  • the tool steel may contain the alloying element vanadium at a level of up to 4% by weight.
  • vanadium accounts for fine carbide networks.
  • numerous mechanical properties of the tool steel can be improved for some applications. Vanadium is not only distinguished by its higher carbon affinity compared to molybdenum, but also has the advantage that its
  • vanadium is a relatively inexpensive element.
  • a disadvantage of vanadium over molybdenum is that the vanadium remaining in the solid solution state has a comparatively much greater negative effect on the thermal conductivity of the
  • the tool steel exercises. For this reason, it is not advantageous to alloy the tool steel with vanadium alone.
  • the tool steel may contain one or more elements for solid solution hardening, in particular Co, Ni, Si and / or Mn.
  • the tool steel Mn has a content of up to 2% by weight.
  • the tool steel may have Co with a content of up to 3% by weight, preferably with a content of up to 2% by weight.
  • the hot working steel has Si content of up to 1.6% by weight.
  • the tool steel may optionally contain sulfur S at a level of up to 1% by weight.
  • the area proportions of the carbides A c and the matrix material A m to be quantified are referred to as primary carbides 1 and the small-area carbides as secondary carbides 2.
  • the matrix material shown in the background is denoted by reference numeral 3 in FIG.
  • the surface area of the entire surface A tot of the tool steel can be determined to a good approximation according to the following equation:
  • Atot A m + A c
  • ⁇ m is the thermal conductivity of the matrix material 3 and ⁇ c is the thermal conductivity of the carbides 1, 2.
  • This formulation undoubtedly represents a simplified system vision, but quite suitable for the phenomenological understanding of the present invention.
  • ⁇ ⁇ nt ⁇ m + f c * ⁇ .nt * (3 * ( ⁇ c - ⁇ m ) / (2 * ⁇ int + ⁇ c )
  • f c describes the volume fraction of Karbidel, 2.
  • the volume fraction of the carbides f c ultimately decides which of the two heat conductivities ⁇ c and ⁇ m is more relevant.
  • the amount of carbides is ultimately defined by the application-specific mechanical resistance requirements and in particular the wear resistance of the tool steel.
  • hot sheet forming which also includes the conceptual variants of press hardening and mold hardening, the tools are subject to high stress due to contact-bound
  • the ultimate goal is to maximize the thermal conductivity of all system components.
  • the application-specific design specifications for the carbide development result in a weighting of the influence of the thermal conductivities of the system components on the integral thermal conductivity of the overall system. Even this approach differs drastically from the prior art, in which the thermal conductivity is always regarded as an integral physical material property.
  • Molybdenum and tungsten are and that as a result of already low levels of chromium dissolved in these carbides due to the extension of the mean free path of the phonons by the resulting disturbances in the crystal structure of the pure carbides, the heat transfer properties are adversely affected.
  • Alloy element - inevitably leads to a reduction in thermal conductivity.
  • pure iron has a thermal conductivity of 80 W / mK
  • slightly contaminated iron already has a thermal conductivity of less than 70 W / mK.
  • carbon 0.25% by volume
  • Alloy elements such as manganese (0.08 volume percent), lead to a thermal conductivity of just 60 W / mK in steel.
  • Example W6C or Mo3C I n Recent research has found that even very small additions of chromium to even Such carbides lead to significant disturbances of the crystal lattice structure and thus lead to a d rastischen extension of the mean free path for the phonon flux. The result is a reduction in thermal conductivity. This leads to the clear conclusion that the greatest possible reduction in the
  • Chromium content leads to an improvement in the thermal conductivity of the tool steel.
  • molybdenum and tungsten should be considered as preferred carbide formers. Molybdenum is in this
  • Carbide former is as tungsten. The effect of depletion of
  • Molybdenum in the matrix causes an improved
  • Electron conductivity in the matrix contributes to a further improvement of the integral thermal conductivity of the entire system.
  • liquid aluminum itself provides adequate corrosion protection.
  • the surface edge layers of the tools that are nitrided for wear protection In the area of hot sheet metal forming, it is the surface edge layers of the tools that are nitrided for wear protection.
  • Corrosion-protecting lubricants as well as coolants and release agents also play their part in corrosion protection. additionally For example, very thin protective layers can be applied by electroplating or by vacuum coating.
  • the higher thermal conductivity of the tools produced from the tool steels according to the invention allows, for example, a reduction in the cycle times during the machining / production of workpieces.
  • Another advantage is a significant reduction of the surface temperature of the tool as well as the reduction of the
  • the remaining mechanical and / or thermal properties of the tool steels according to the invention could either be improved or at least remain unchanged in comparison with the tool steels known from the prior art.
  • the modulus of elasticity could be reduced; the density of the tool steels according to the invention (in particular hot-work steels) could be increased in comparison to conventional ones Hot working steels increased and the thermal expansion coefficient could be reduced.
  • further improvements can be achieved, such as increased mechanical strength at high temperatures or increased wear resistance.
  • the tool steel has less than 1.5% by weight of Cr, preferably less than 1% by weight of Cr. It is in a particularly preferred embodiment, the possibility that the tool steel less than
  • Tool steel is preferred at the two intervals of greater than 0.4 weight percent but less than 1 weight percent, as well as greater than 1 weight percent and less than 2 weight percent.
  • oxidation resistance of the tool steel hot working steel
  • a balance of the oxidation resistance of the tool steel plays a major role, for example, a balance of the
  • the molybdenum content of the tool steel is from 0.5 to 7% by weight, in particular from 1 to 7% by weight.
  • molybdenum has a comparatively high carbon affinity.
  • molybdenum carbides have a higher thermal conductivity than iron and chromium carbides.
  • the adverse effect of molybdenum in the solid solution state on the thermal conductivity of the tool steel compared to chromium in the solid solution state is considerably lower.
  • molybdenum is one of those carbide formers suitable for a large number of applications.
  • other carbide formers are smaller ones
  • Molybdenum can be replaced by tungsten in many applications.
  • the carbon affinity of tungsten is slightly lower and the thermal conductivity of tungsten carbide is considerably larger.
  • one or more of the elements Cu, P, Bi, Ca, As, Sn or Pb may contain up to 1% by weight individually or in total.
  • Cu in particular is another suitable element for solid solution hardening, so that at least a small proportion of Cu in the alloy may optionally be advantageous.
  • S which may optionally be present with a content of at most 1 wt .-%, also the elements Ca, Bi or As can simplify the workability of the tool steel.
  • the methods by which the tool steels presented here (in particular hot-work steels) are also produced play an important role in its thermal and mechanical properties.
  • the mechanical and / or thermal properties of the tool steel can thus be selectively varied and thereby adapted to the respective intended use.
  • the tool steels described in the context of the present invention can be produced, for example, by powder metallurgy (hot isostatic pressing). There is also the possibility, for example, of a tool steel according to the invention
  • VAR Vacuum Are Remelting
  • AOD argon Oxygen Decarburation
  • ESR engl.
  • a tool steel according to the invention can be produced, for example, by sand or Feingu ß. It can be by hot pressing or another powder metallurgical process
  • the steel developed in the context of the present invention can also be used as a filler metal (for example in powder form for laser welding, as rod or profile for metal inert gas welding (MIG welding), metal active gas welding (MAG welding), tungsten inert gas welding (TIG welding) or for welding with coated electrodes).
  • MIG welding metal inert gas welding
  • MAG welding metal active gas welding
  • TOG welding tungsten inert gas welding
  • Characteristics of claim 25 and consists at least partially of a tool steel, in particular of a hot-work tool steel, according to one of claims 4 to 23.
  • the steel article in this embodiment can be made entirely of a tool steel, in particular a hot-work tool, according to one of claims 4 to 23.
  • the steel article has an at least partially changing thermal conductivity.
  • the steel article at room temperature at least partially a thermal conductivity of more than 42 W / mK, preferably a
  • the steel article may at room temperature over its entire volume, a thermal conductivity of more than 42 W / mK, preferably a thermal conductivity of more than 48 W / mK, in particular have a thermal conductivity of more than 55 W / mK.
  • the steel article may, in advantageous embodiments, be, for example, a forming tool in processes of pressure forming, shear forming, or bend forming metals, preferably in forging processes, drop forging processes, thixo forging processes, extrusion processes, extrusion processes, die bending processes, roll forming processes, or in flat, profile, and cast roll processes ,
  • the steel article may, in further advantageous embodiments, be a forming tool in processes of draw-forming and tensile-forming of metals, preferably in press-hardening processes, form-hardening processes, deep-drawing processes, stretch-drawing processes and neck-pulling processes.
  • the steel article may be a forming tool in processes of forming metallic starting materials, preferably in die casting processes, vacuum die casting processes,
  • the steel article may become a shaping tool in processes of primary molding of polymeric material
  • the steel article may be a component for machines and plants for power generation and energy conversion, preferably for internal combustion engines, reactors, heat exchangers and generators.
  • the steel object is a component for machines and plants of chemical engineering, preferably for chemical reactors.
  • FIG. 1 shows a schematically greatly simplified contour representation of a carbide structure in the microstructural cross section of a typical tool steel
  • Fig. 2 shows the abrasion resistance of two samples (F 1 and F5) of a
  • Hot work steel according to the present invention in comparison with conventional tool steels
  • Fig. 5 is an illustration of the heat dissipation achieved in a two-sided contact with two tool steel plates heat dissipation in a preheated workpiece.
  • the hot-work steel contains unavoidable impurities and iron as its main component.
  • the hot-work steel contains unavoidable impurities and iron as its main component.
  • Hot work steel strong carbide formers such as Ti, Zr, Hf, Nb, Ta, containing up to 3 wt .-% individually or in total.
  • the abrasion resistance of the tool made of hot-work steel plays a particularly important role.
  • the volume of the primary carbides formed should therefore be as large as possible.
  • Aluminum die casting is a very important market today, in which the properties of the hot working tool used to make the tools play an important role in competitiveness.
  • the mechanical properties at high temperatures of the hot working steel used to produce a die casting tool are of particular importance here.
  • the advantage of increased thermal conductivity is particularly important, since not only is it possible to reduce the cycle time, but also the surface temperature of the cycle
  • wt .-% 0 to 6 wt .-%, in particular 1 to 2.5 wt .-% W; wherein the content of Mo and W in the sum is 3.2 to 5.5% by weight; 0 to 1, 5 wt .-%, in particular 0 to 1 wt .-% V.
  • the hot working steel contains iron (as a main component) and inevitable impurities.
  • the hot work tool steel may contain strong carbide formers, such as Ti, Zr, Hf, Nb, Ta, at a level of up to 3 weight percent, singly or in total.
  • carbide formers such as Ti, Zr, Hf, Nb, Ta
  • Cr and V with additions of Mo and W are the preferred elements to replace Fe 3 C.
  • Cr is also replaced by Mo and / or W.
  • W and / or Mo can also be used.
  • stronger carbide formers such as Ti, Zr, Hf, Nb or Ta can also be used.
  • the choice of carbide formers and their proportions in turn depend on the specific application and requirements with respect to the thermal and / or mechanical properties of the tool made from the hot work tool steel.
  • 0.25 to 0.4% by weight C less than 2% by weight, especially less than 1% by weight Cr; 0 to 5 wt .-%, in particular 2.5 to 4.5 wt .-% Mo; 0 to 5 wt .-%, in particular 0 to 3 wt .-% W; wherein the content of Mo and W in the sum of 3 to 5.2 wt .-% is; 0 to 1 wt .-%, in particular 0 to 0.6 wt .-% V.
  • the hot-work steel contains unavoidable impurities and iron as its main component.
  • the hot work tool steel may include strong carbide formers, such as Ti, Zr, Hf, Nb, Ta, individually or in the amount up to 3% by weight Sum. A greater toughness of the hot work steel is required in this application, so that primary carbides should be suppressed as completely as possible and thus stable carbide formers are more advantageous.
  • the hot-work tool steel contains iron as the main ingredient and inevitable impurities.
  • the hot work tool steel may have strong carbide formers, such as Ti, Zr, Hf, Nb, Ta, at a level of up to 3% by weight singly or in total.
  • the proportion of vanadium should be kept as low as possible.
  • the vanadium content of the hot work tool steel may be less than 1% by weight and more preferably less than 0.5% by weight, and in a most preferred embodiment less than 0.25% by weight.
  • hot work tool steel having the following composition for producing a corresponding tool:
  • the hot working steel contains iron as the main component and inevitable impurities.
  • the hot work tool steel may have strong carbide formers, such as Ti, Zr, Hf, Nb, Ta, at a level of up to 3 percent by weight, singly or in total.
  • the hot-work steel in this example can contain elements for solid solution strengthening, in particular Co, but also Ni, Si, Cu and Mn.
  • elements for solid solution strengthening in particular Co, but also Ni, Si, Cu and Mn.
  • a content of up to 6% by weight of Co has proven to be advantageous in order to improve the high-temperature strength of the tool.
  • thermoelastic characteristics of five exemplary samples are one
  • Hot work steel according to the present invention compared to conventional tool steels shown.
  • the hot working steels have a higher density than the known tool steels.
  • the results show that the thermal conductivity of the samples of the hot-work steel according to the invention is increased elastically in comparison to the conventional tool steels d.
  • Table 2 shows the mechanical properties of two hot work steel samples (samples F 1 and F5) according to the present invention
  • FIG. 2 shows the abrasion resistance of two samples (F1 and F5) of a hot work tool compared to conventional tool steels.
  • the abrasion resistance was determined by means of a pin, which was made of the corresponding steel, and a disk of a USIBOR-1 500P sheet.
  • the sample “1 .2344” is the reference sample (abrasion resistance: 100%), so a material with an abrasion resistance of 200% is twice as high
  • LFA Laser Flash Technique
  • the thermal conductivity ⁇ can then be determined on the basis of
  • FIG. 3 shows the dependence of the thermal conductivity on the percentage by weight of chromium determined by this method for a selection of tool steels of the chemical composition identified in FIG. 3 with FC or FC + xCr.
  • the composition differs above all in the percentage by weight of the alloying element chromium.
  • These steels additionally have a high resistance to abrasive and adhesive wear due to a comparatively large volume fraction of primary carbides over the possible adjustment of desired thermal conduction properties according to the present invention and are therefore suitable for high mechanical stresses, as typically occur in hot forming processes.
  • Alloy element chrome are particularly suitable for use in die-casting processes, since they are characterized by a comparatively small proportion of primary carbides.
  • Table 5 summarizes the chemical composition of a tool steel F according to the invention for the comparative investigation of the process behavior.
  • Preheat stored heat can be detected via a pyrometric temperature measurement.
  • the results of Pyrometric temperature measurements are summarized in FIG.
  • Composition the present invention also includes the aspect of fine adjustment by a defined heat treatment.
  • Table 6 shows by way of example the influence of different heat treatment conditions for the alloy variants F with the chemical composition summarized in Table 5 and FC with the chemical composition summarized in Table 3 on the resulting thermal conductivity.
  • the reason for the varying thermal conductivity depending on the heat treatment is the resulting volume fraction of carbides and their changed distribution and morphology.
  • the weight fraction of carbon including the carbon equivalent components N and B should be adjusted so that as little carbon in the matrix remains in solution.
  • xCeq weight percent carbon equivalent (as defined above); xMo - weight percent molybdenum; xW - weight percent tungsten; xV - weight percent vanadium;
  • AMo - atomic mass of molybdenum (95.94 u); AW - atomic mass tungsten (183.84 u);
  • the amount of HC should be advantageously between 0.03 and 0.165.
  • the amount of HC may also be between 0.05 and 0.158, in particular between 0.09 and 0.1.5.
  • Thermal conductivity or a defined adjusted profile of varying thermal conductivities has a positive effect on the application behavior of the tool used and on the properties of the products produced therewith.
  • a steel having a well-defined thermal conductivity can be obtained.
  • a steel object which consists at least partly of one of the tool steels (hot working steels) presented here, with a volume-changing thermal conductivity.
  • It can be any procedure that has a Variation of the chemical composition within the steel article, such as sintering of powder mixtures, local sintering or local melting or so-called “rapid-tooling” method or “rapid-prototyping” method or a combination of "rapid-tooling”
  • hot sheet metal forming press hardening, tempering
  • light metal die casting there are generally tool and forming metal casting processes, plastic injection molding and massive forming processes, in particular hot massive forming (for example forging, extrusion, extrusion, rolling), the preferred application areas represent for the hot working steels according to the invention.
  • the steels presented here represent ideal conditions for their use in the production of cylinder liners in internal combustion engines, for cutting tools or brake discs.
  • Table 7 lists, in addition to the alloy variants already listed in Tables 3 and 4, further exemplary embodiments of tool steels according to the invention (hot working steels).
  • FZ forming of copper and copper alloys (including brass); FW: die casting of copper and copper alloys; (including brass) and higher melting metal alloys; FV: transformation of copper and copper alloys (including brass); FAW: die casting of copper and copper alloys; (including
  • FA Mod i Die casting of large volume components made of copper and copper alloys (including brass) and aluminum; FA Mod2: forming of aluminum; FC Mod i: hot sheet metal forming (press hardening, form hardening) with high wear resistance;
  • FC Mod2 hot sheet metal forming (press hardening, tempering) with high wear resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Heat Treatment Of Steel (AREA)
  • Mounting, Exchange, And Manufacturing Of Dies (AREA)
  • Forging (AREA)
  • Powder Metallurgy (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Abstract

La présente invention concerne un acier à outils, notamment un acier pour travail à chaud, de composition suivante : 0,26 à 0,55 % en poids de C ; < 2 % en poids de Cr ; 0 à 10 % en poids de Mo ; 0 à 15 % en poids de W ; la somme des teneurs en W et Mo étant comprise entre 1,8 et 15 % en poids ; éléments formant des carbures Ti, Zr, Hf, Nb, Ta en une teneur de 0 à 3 % en poids seuls ou en combinaison ; 0 à 4 % en poids de V ; 0 à 6 % en poids de Co ; 0 à 1,6 % en poids de Si ; 0 à 2 % en poids de Mn ; 0 à 2,99 % en poids de Ni ; 0 à 1 % en poids de S ; le reste étant du fer et d'inévitables impuretés. L'acier pour travail à chaud présente une conductivité thermique considérablement plus élevée que les aciers à outils connus.
EP07764595A 2006-08-09 2007-06-08 Procédé d'ajustement de la conductivité thermique d'un acier, acier à outils, notamment acier à outils pour travail à chaud et article en acier Ceased EP2052095A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17151574.5A EP3228724B1 (fr) 2006-08-09 2007-06-08 Acier à outil, en particulier pour travail à chaud et objet en acier
EP07764595A EP2052095A1 (fr) 2006-08-09 2007-06-08 Procédé d'ajustement de la conductivité thermique d'un acier, acier à outils, notamment acier à outils pour travail à chaud et article en acier

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP06118672A EP1887096A1 (fr) 2006-08-09 2006-08-09 Acier pour travail à chaud
PCT/EP2007/005091 WO2008017341A1 (fr) 2006-08-09 2007-06-08 Procédé d'ajustement de la conductivité thermique d'un acier, acier à outils, notamment acier à outils pour travail à chaud et article en acier
EP07764595A EP2052095A1 (fr) 2006-08-09 2007-06-08 Procédé d'ajustement de la conductivité thermique d'un acier, acier à outils, notamment acier à outils pour travail à chaud et article en acier

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP17151574.5A Division EP3228724B1 (fr) 2006-08-09 2007-06-08 Acier à outil, en particulier pour travail à chaud et objet en acier

Publications (1)

Publication Number Publication Date
EP2052095A1 true EP2052095A1 (fr) 2009-04-29

Family

ID=37036827

Family Applications (3)

Application Number Title Priority Date Filing Date
EP06118672A Withdrawn EP1887096A1 (fr) 2006-08-09 2006-08-09 Acier pour travail à chaud
EP07764595A Ceased EP2052095A1 (fr) 2006-08-09 2007-06-08 Procédé d'ajustement de la conductivité thermique d'un acier, acier à outils, notamment acier à outils pour travail à chaud et article en acier
EP17151574.5A Active EP3228724B1 (fr) 2006-08-09 2007-06-08 Acier à outil, en particulier pour travail à chaud et objet en acier

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP06118672A Withdrawn EP1887096A1 (fr) 2006-08-09 2006-08-09 Acier pour travail à chaud

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP17151574.5A Active EP3228724B1 (fr) 2006-08-09 2007-06-08 Acier à outil, en particulier pour travail à chaud et objet en acier

Country Status (15)

Country Link
US (3) US8557056B2 (fr)
EP (3) EP1887096A1 (fr)
JP (5) JP5518475B2 (fr)
KR (3) KR101659704B1 (fr)
CN (2) CN102888563B (fr)
AU (1) AU2007283164B2 (fr)
BR (1) BRPI0716490A2 (fr)
CA (2) CA2659849C (fr)
ES (1) ES2929658T3 (fr)
MX (1) MX2009001483A (fr)
PL (1) PL3228724T3 (fr)
PT (1) PT3228724T (fr)
RU (1) RU2469120C2 (fr)
WO (1) WO2008017341A1 (fr)
ZA (1) ZA200900495B (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012095532A1 (fr) 2011-01-13 2012-07-19 Rovalma S.A. Acier à outils présentant une diffusivité thermique élevée et une résistance à l'usure élevée

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1887096A1 (fr) 2006-08-09 2008-02-13 Rovalma, S.A. Acier pour travail à chaud
US20140178243A1 (en) * 2009-04-01 2014-06-26 Rovalma, S.A. Hot work tool steel with outstanding toughness and thermal conductivity
DK2236639T3 (da) * 2009-04-01 2012-07-23 Rovalma Sa Varmarbejdsværktøjsstål med enestående hårdhed og varmeledningsevne
ES2631979T3 (es) * 2009-12-04 2017-09-07 Nippon Steel & Sumitomo Metal Corporation Junta de soldadura a tope formada usando un haz de electrones
JP5676146B2 (ja) * 2010-05-25 2015-02-25 株式会社リケン 圧力リング及びその製造方法
US9314880B2 (en) * 2010-10-21 2016-04-19 Stoody Company Chromium free hardfacing welding consumable
CH704427A1 (de) * 2011-01-20 2012-07-31 Alstom Technology Ltd Schweisszusatzwerkstoff.
PL2535430T3 (pl) 2011-06-15 2019-06-28 Buderus Edelstahl Gmbh Stal narzędziowa dla wysokosprawnych narzędzi do formowania na gorąco oraz sposób ich wytwarzania
EP2684627A1 (fr) 2012-07-13 2014-01-15 Rovalma, S.A. Procédé de formation de matériau dans un état préchauffé ou fondu afin de réduire fortement le coût de production des pièces produites
DE102013106010B4 (de) * 2013-06-10 2016-03-03 Wefa Singen Gmbh Verfahren zum Herstellen eines Strangpresswerkzeugs
CN103627961B (zh) * 2013-11-27 2015-07-15 江苏科技大学 一种进气门的制备方法
CN104694826A (zh) * 2013-12-06 2015-06-10 徐恒易 一种新型5CrW2SiBAlN耐冲击工具钢
KR102292150B1 (ko) * 2014-01-27 2021-08-24 로발마, 에쎄.아 철계 합금의 원심 미립화
ES2944566T3 (es) * 2014-03-18 2023-06-22 Innomaq 21 Sl Acero de bajo coste con conductividad extremadamente alta
JP6459539B2 (ja) * 2015-01-19 2019-01-30 大同特殊鋼株式会社 金型用鋼及び金型
CN104962831B (zh) * 2015-07-14 2017-06-30 上海胜桀精密机械科技有限公司 一种热作钢粉末合金材料
DE102015113058A1 (de) * 2015-08-07 2017-02-09 Böhler Edelstahl GmbH & Co. KG Verfahren zum Herstellen eines Werkzeugstahles
JP6859623B2 (ja) 2015-09-11 2021-04-14 大同特殊鋼株式会社 金型用鋼及び成形具
JP6714334B2 (ja) * 2015-09-24 2020-06-24 山陽特殊製鋼株式会社 優れた熱伝導率および靱性を有する熱間工具鋼
GB2546808B (en) * 2016-02-01 2018-09-12 Rolls Royce Plc Low cobalt hard facing alloy
GB2546809B (en) * 2016-02-01 2018-05-09 Rolls Royce Plc Low cobalt hard facing alloy
DE102016103283A1 (de) 2016-02-24 2017-08-24 Buderus Edelstahl Gmbh Verfahren zur Herstellung eines Warmformwerkzeuges und Warmformwerkzeug hieraus
CN106048436A (zh) * 2016-07-01 2016-10-26 宜兴市凯诚模具有限公司 一种铸钢成型模具及其制备方法
CN105950986A (zh) * 2016-07-11 2016-09-21 曾冰冰 一种钼钒基合金钢材料及其在钻进钻杆中的应用
DE102016219350A1 (de) * 2016-10-06 2018-04-12 Kjellberg-Stiftung Düsenschutzkappe, Lichtbogenplasmabrenner mit dieser Düsenschutzkappe sowie eine Verwendung des Lichtbogenplasmabrenners
EA031666B1 (ru) * 2016-10-25 2019-02-28 Белорусский Национальный Технический Университет Инструментальная сталь
JP6800532B2 (ja) * 2017-01-24 2020-12-16 山陽特殊製鋼株式会社 熱伝導率に優れる熱間工具鋼
RU2661304C1 (ru) * 2017-05-12 2018-07-13 Хермит Эдванст Технолоджиз ГмбХ Способ оценки энергоемкости титанового сплава
CN107354399A (zh) * 2017-07-11 2017-11-17 合肥众磊信息科技有限公司 一种合金耐磨钢
JP7100320B2 (ja) 2018-08-07 2022-07-13 国立大学法人広島大学 Fe基焼結体、Fe基焼結体の製造方法、および熱間プレス用金型
WO2020161359A1 (fr) 2019-02-08 2020-08-13 Rovalma, S.A. Aciers d'outillage hautement performants à faible coût
CN114908301B (zh) 2019-03-01 2023-06-09 育材堂(苏州)材料科技有限公司 热作模具钢、其热处理方法及热作模具
KR20210136966A (ko) * 2019-03-14 2021-11-17 회가나에스 코오포레이션 프레스-및-소결 및 적층 제조를 위한 야금 조성물
CN110216268B (zh) * 2019-06-21 2021-05-18 北京科技大学 一种高碳高合金钢半固态成形控温冷却热处理工艺
JP7243505B2 (ja) * 2019-07-18 2023-03-22 日本製鉄株式会社 Ni含有ブレーキディスク材のデスケーリング方法
KR102221969B1 (ko) * 2020-03-24 2021-03-02 현대로템 주식회사 고속 용접성이 우수한 자동용접용 솔리드와이어
CN114807774B (zh) * 2022-06-21 2023-05-30 育材堂(苏州)材料科技有限公司 热作模具钢、其热处理方法及热作模具
WO2024068780A1 (fr) 2022-09-27 2024-04-04 Innomaq 21, S.L. Procédé d'impression volumétrique par l'intermédiaire d'hologrammes à l'aide d'un rayonnement à haute longueur d'onde

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB250560A (en) 1925-04-11 1926-10-14 Gelsenkirchener Gussstahl U Ei Improvements relating to steel alloys
CH165893A (de) 1930-12-22 1933-12-15 Oesterreichische Schmidtstahlw Eisenlegierung, insbesondere für warmarbeitende Werkzeuge.
US3736129A (en) 1971-05-13 1973-05-29 Us Army Alloy steel
JPS63282241A (ja) 1987-05-12 1988-11-18 Kawasaki Steel Corp 高Cr継目無鋼管穿孔用工具材料
US5108699A (en) 1988-10-19 1992-04-28 Electric Power Research Institute Modified 1% CrMoV rotor steel
JPH04147706A (ja) 1990-10-12 1992-05-21 Kawasaki Steel Corp 継目無鋼管製造用プラグ
JPH11222650A (ja) 1998-02-04 1999-08-17 Nippon Koshuha Steel Co Ltd 冷間鍛造性に優れた耐摩耗合金鋼及びその製造方法
EP1887096A1 (fr) 2006-08-09 2008-02-13 Rovalma, S.A. Acier pour travail à chaud
WO2008084108A1 (fr) 2007-01-12 2008-07-17 Rovalma Sa Acier pour outil d'estampage à froid présentant une remarquable soudabilité

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2565264A (en) 1950-02-17 1951-08-21 Crucible Steel Co America Hardenable alloy steels resistant to softening at elevated temperatures
DE1014577B (de) 1952-08-29 1957-08-29 Heppenstall Co Verfahren zur Herstellung von Warmarbeitswerkzeugen unter Verwendung einer aushaertenden Stahllegierung
AT265345B (de) 1966-04-06 1968-10-10 Schoeller Bleckmann Stahlwerke Chrom-Mlybdän-Vanadin-legierter Warmarbeitsstahl mit guter Kalteinsenkbarkeit zur Herstellung von Werkzeugen
US3600160A (en) 1968-05-14 1971-08-17 Wallace Murray Corp Heat and temper resistant alloy steel
SE364998B (fr) 1972-07-17 1974-03-11 Bofors Ab
SE364999B (fr) 1972-07-17 1974-03-11 Bofors Ab
JPS5944382B2 (ja) * 1976-10-08 1984-10-29 日立金属株式会社 耐摩耗性のすぐれた鋳造熱間工具鋼
JPS53123860A (en) * 1977-04-04 1978-10-28 Nissan Motor Detecting device for fuse disconnection
JPS58123859A (ja) * 1982-01-18 1983-07-23 Daido Steel Co Ltd 熱間工具鋼
JPS58123860A (ja) * 1982-01-18 1983-07-23 Daido Steel Co Ltd 熱間工具鋼
JPS599154A (ja) * 1982-07-05 1984-01-18 Kawasaki Steel Corp 継目無鋼管製造用工具材料
JPS6059052A (ja) * 1983-09-09 1985-04-05 Daido Steel Co Ltd 熱間工具鋼
JPS6130654A (ja) 1984-07-21 1986-02-12 Kanto Tokushu Seikou Kk アルミニウム連続鋳造用ロ−ルシエル鋼
JPH03131574A (ja) * 1989-10-18 1991-06-05 Hitachi Metals Ltd 快削性窒化アルミニウム焼結体
JP2940188B2 (ja) * 1991-02-23 1999-08-25 住友金属工業株式会社 熱間製管工具及びその製造方法
DE4321433C1 (de) 1993-06-28 1994-12-08 Thyssen Stahl Ag Verwendung eines Warmarbeitsstahls
JP2683861B2 (ja) * 1993-08-24 1997-12-03 住友金属工業株式会社 熱間製管用工具及びその製造方法
JPH07179988A (ja) * 1993-12-24 1995-07-18 Aichi Steel Works Ltd 高温強度の優れた熱間工具鋼
JPH0890015A (ja) * 1994-09-26 1996-04-09 Kawasaki Steel Corp 継目無鋼管圧延用プラグの冷却方法
DE19508947A1 (de) 1995-03-13 1996-09-19 Patentstelle Fuer Die Deutsche Verschleißfeste, anlaßbeständige und warmfeste Legierung
AT403058B (de) * 1995-03-23 1997-11-25 Boehler Edelstahl Eisenbasislegierung zur verwendung bei erhöhter temperatur und werkzeug aus dieser legierung
JPH08260093A (ja) * 1995-03-24 1996-10-08 Hitachi Metals Ltd 溶接部の疲労強度に優れたメタルバンドソー胴材およびメタルバンドソー
JP3141735B2 (ja) 1995-08-07 2001-03-05 住友金属工業株式会社 プラスチック成形金型用鋼
JP3096959B2 (ja) 1996-02-10 2000-10-10 住友金属工業株式会社 高温強度に優れた低Mn低Crフェライト耐熱鋼
JP4147706B2 (ja) 1998-12-18 2008-09-10 トヨタ自動車株式会社 電気角検出装置および検出方法並びにモータ制御装置
DE60016286T2 (de) * 1999-10-04 2005-12-08 Mitsubishi Heavy Industries, Ltd. Niedrig legierter und hitzebeständiger Stahl, Verfahren zur Wärmebehandlung und Turbinenrotor
JP4071924B2 (ja) * 1999-10-04 2008-04-02 三菱重工業株式会社 低合金耐熱鋼及びその製造方法並びにタービンロータ
AT410447B (de) 2001-10-03 2003-04-25 Boehler Edelstahl Warmarbeitsstahlgegenstand
JP3760850B2 (ja) * 2001-12-03 2006-03-29 住友金属工業株式会社 継目無鋼管製造用プラグ
JP2003253383A (ja) 2002-02-27 2003-09-10 Daido Steel Co Ltd プラスチック成形金型用鋼
JP3599714B2 (ja) * 2002-02-28 2004-12-08 虹技株式会社 熱間圧延用ロール材及びそれを用いた熱間圧延用ロール
JP4192579B2 (ja) 2002-11-29 2008-12-10 住友金属工業株式会社 プラスチック成形金型用鋼
JP4481704B2 (ja) * 2004-03-31 2010-06-16 株式会社東芝 熱電変換材料およびそれを用いた熱電変換素子
DK2236639T3 (da) 2009-04-01 2012-07-23 Rovalma Sa Varmarbejdsværktøjsstål med enestående hårdhed og varmeledningsevne
EP2662460A1 (fr) 2012-05-07 2013-11-13 Valls Besitz GmbH Traitements thermiques bainitiques résistants sur des aciers pour outillage
ES2944566T3 (es) 2014-03-18 2023-06-22 Innomaq 21 Sl Acero de bajo coste con conductividad extremadamente alta
JP7087930B2 (ja) 2018-11-07 2022-06-21 信越化学工業株式会社 化粧料

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB250560A (en) 1925-04-11 1926-10-14 Gelsenkirchener Gussstahl U Ei Improvements relating to steel alloys
CH165893A (de) 1930-12-22 1933-12-15 Oesterreichische Schmidtstahlw Eisenlegierung, insbesondere für warmarbeitende Werkzeuge.
US3736129A (en) 1971-05-13 1973-05-29 Us Army Alloy steel
JPS63282241A (ja) 1987-05-12 1988-11-18 Kawasaki Steel Corp 高Cr継目無鋼管穿孔用工具材料
US5108699A (en) 1988-10-19 1992-04-28 Electric Power Research Institute Modified 1% CrMoV rotor steel
JPH04147706A (ja) 1990-10-12 1992-05-21 Kawasaki Steel Corp 継目無鋼管製造用プラグ
JPH11222650A (ja) 1998-02-04 1999-08-17 Nippon Koshuha Steel Co Ltd 冷間鍛造性に優れた耐摩耗合金鋼及びその製造方法
EP1887096A1 (fr) 2006-08-09 2008-02-13 Rovalma, S.A. Acier pour travail à chaud
WO2008084108A1 (fr) 2007-01-12 2008-07-17 Rovalma Sa Acier pour outil d'estampage à froid présentant une remarquable soudabilité

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MORIOKA N. ET AL: "Development of manufacturing technology for high alloy steel seamless pipe by Mannesmann process", KAWASAKI STEEL TECHNICAL REPORT, vol. 38, April 1998 (1998-04-01), pages 38 - 46, XP003029656
See also references of WO2008017341A1

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012095532A1 (fr) 2011-01-13 2012-07-19 Rovalma S.A. Acier à outils présentant une diffusivité thermique élevée et une résistance à l'usure élevée

Also Published As

Publication number Publication date
MX2009001483A (es) 2009-05-15
EP1887096A1 (fr) 2008-02-13
JP2016128609A (ja) 2016-07-14
KR20090038030A (ko) 2009-04-17
CA2981388C (fr) 2020-02-11
JP5518475B2 (ja) 2014-06-11
BRPI0716490A2 (pt) 2015-03-10
CA2981388A1 (fr) 2008-02-14
US9689061B2 (en) 2017-06-27
CN102888563A (zh) 2013-01-23
US20170268084A1 (en) 2017-09-21
PT3228724T (pt) 2022-11-10
US20140023551A1 (en) 2014-01-23
JP2010500471A (ja) 2010-01-07
JP2016156088A (ja) 2016-09-01
RU2469120C2 (ru) 2012-12-10
CA2659849C (fr) 2017-11-21
KR20160047582A (ko) 2016-05-02
WO2008017341A1 (fr) 2008-02-14
US20100189592A1 (en) 2010-07-29
PL3228724T3 (pl) 2022-12-19
EP3228724A1 (fr) 2017-10-11
ES2929658T3 (es) 2022-11-30
CN102888563B (zh) 2016-03-30
EP3228724B1 (fr) 2022-08-10
JP2014111835A (ja) 2014-06-19
AU2007283164B2 (en) 2012-02-16
KR101659704B1 (ko) 2016-09-26
CN101512034A (zh) 2009-08-19
US8557056B2 (en) 2013-10-15
RU2009108335A (ru) 2010-09-20
ZA200900495B (en) 2009-11-25
JP2015221941A (ja) 2015-12-10
AU2007283164A1 (en) 2008-02-14
KR20150080642A (ko) 2015-07-09
CA2659849A1 (fr) 2008-02-14

Similar Documents

Publication Publication Date Title
EP3228724B1 (fr) Acier à outil, en particulier pour travail à chaud et objet en acier
DE602004011136T2 (de) Schnellarbeitsstahl und Verfahren zu seiner Herstellung
DE69818138T2 (de) Kaltarbeitswerkzeugstahlteilchen mit hoher Schlagfestigkeit aus Metallpulver und Verfahren zu seiner Herstellung
DE102006010782A1 (de) Rostfreier Stahl mit hoher Härte und ausgezeichneten Hochglanzoberflächeneigenschaften sowie Verfahren zu dessen Herstellung
EP3409801B1 (fr) Matière composite contenant des particules dures, fabriquée par métallurgie des poudres, utilisation d&#39;une matière composite et procédé de fabrication d&#39;un composant en matière composite
EP1274872B1 (fr) Procede de production d&#39;un acier allie a l&#39;azote, compacte par pulverisation
EP3412790B1 (fr) Acier durci par précipitation et son utilisation pour des outils de façonnage à chaud
WO2021130301A1 (fr) Procédé de fabrication d&#39;un objet en acier pour travail à chaud
EP3850114A1 (fr) Acier résistant à la corrosion et à durcissement par précipitation, procédé de production d&#39;un composant d&#39;acier, et composant d&#39;acier
EP3323902A1 (fr) Matériau en acier contenant des particules dures, produit de la métallurgie des poudres, procédé de production d&#39;un composant à partir d&#39;un tel matériau d&#39;acier et composant ainsi fabriqué
DE102018113600A1 (de) Verfahren zum Herstellen eines Gegenstandes aus einem Warmarbeitsstahl
EP1647606B1 (fr) Alliage de nickel résistant à l&#39;usure et a dureté élevée, et son utilisation comme un outil à haute température
DE102016103283A1 (de) Verfahren zur Herstellung eines Warmformwerkzeuges und Warmformwerkzeug hieraus
DE69917444T2 (de) Wärmebehandlungsfähiger Werkzeugstahl mit hervorragender Bearbeitbarkeit und Kaltumformbarkeit; Matrizen aus diesem Stahl
EP4018006A1 (fr) Acier à outils pour applications de travail à froid et à grande vitesse
DE102018220222A1 (de) Verfahren zur Herstellung eines Werkstoffverbundes, Werkstoffverbund und seine Verwendung
EP3405593B1 (fr) Plat produit en acier et méthode de fabrication
EP1471160B1 (fr) Objet en acier travaillé à froid
EP3719158B1 (fr) Utilisation d&#39;une poudre d&#39;acier, procédé de fabrication d&#39;un composant d&#39;acier selon un procédé de fabrication additive
EP2354264B1 (fr) Substance active résistant à l&#39;usure et à la chaleur, ainsi que son utilisation
EP2453027B1 (fr) Produit déformé à chaud et son procédé de fabrication
DE102022120827B3 (de) Druckgussform und Verfahren zu ihrer Herstellung
DE102021101105A1 (de) Verfahren zur Herstellung eines Werkzeugstahls als Träger für PVD-Beschichtungen und ein Werkzeugstahl
EP3189172B1 (fr) Corps moulés à haute résistance, absorbant l&#39;énergie mécanique et résistants à la corrosion composés d&#39;alliages de fer et procédé de production desdits corps moulés à haute résistance
DE102018113442A1 (de) Ausscheidungshärtender Stahl und Verwendung eines solchen Stahls für Warmumformwerkzeuge

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090309

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

17Q First examination report despatched

Effective date: 20100115

RAX Requested extension states of the european patent have changed

Extension state: RS

Payment date: 20090309

Extension state: BA

Payment date: 20090309

Extension state: HR

Payment date: 20090309

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20130417

APBK Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNE

APBN Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2E

APBR Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3E

APAF Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNE

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

INTC Intention to grant announced (deleted)
REG Reference to a national code

Ref country code: DE

Ref legal event code: R003

APBT Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9E

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20170117