EP1887096A1 - Acier pour travail à chaud - Google Patents

Acier pour travail à chaud Download PDF

Info

Publication number
EP1887096A1
EP1887096A1 EP06118672A EP06118672A EP1887096A1 EP 1887096 A1 EP1887096 A1 EP 1887096A1 EP 06118672 A EP06118672 A EP 06118672A EP 06118672 A EP06118672 A EP 06118672A EP 1887096 A1 EP1887096 A1 EP 1887096A1
Authority
EP
European Patent Office
Prior art keywords
hot
steel
work
weight
gew
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06118672A
Other languages
German (de)
English (en)
Inventor
Isaac Valls Angles
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rovalma SA
Original Assignee
Rovalma SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=37036827&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1887096(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Rovalma SA filed Critical Rovalma SA
Priority to EP06118672A priority Critical patent/EP1887096A1/fr
Priority to KR1020157016617A priority patent/KR101659704B1/ko
Priority to RU2009108335/02A priority patent/RU2469120C2/ru
Priority to CA2981388A priority patent/CA2981388C/fr
Priority to KR1020167009181A priority patent/KR20160047582A/ko
Priority to CN201210317360.5A priority patent/CN102888563B/zh
Priority to AU2007283164A priority patent/AU2007283164B2/en
Priority to KR1020097004460A priority patent/KR20090038030A/ko
Priority to JP2009523159A priority patent/JP5518475B2/ja
Priority to ES17151574T priority patent/ES2929658T3/es
Priority to CNA2007800326771A priority patent/CN101512034A/zh
Priority to PT171515745T priority patent/PT3228724T/pt
Priority to CA2659849A priority patent/CA2659849C/fr
Priority to US12/376,866 priority patent/US8557056B2/en
Priority to PL17151574.5T priority patent/PL3228724T3/pl
Priority to BRPI0716490-4A2A priority patent/BRPI0716490A2/pt
Priority to EP17151574.5A priority patent/EP3228724B1/fr
Priority to MX2009001483A priority patent/MX2009001483A/es
Priority to PCT/EP2007/005091 priority patent/WO2008017341A1/fr
Priority to EP07764595A priority patent/EP2052095A1/fr
Publication of EP1887096A1 publication Critical patent/EP1887096A1/fr
Priority to ZA200900495A priority patent/ZA200900495B/xx
Priority to US14/037,538 priority patent/US9689061B2/en
Priority to JP2013268301A priority patent/JP2014111835A/ja
Priority to JP2015124483A priority patent/JP2015221941A/ja
Priority to JP2016002101A priority patent/JP2016128609A/ja
Priority to JP2016002102A priority patent/JP2016156088A/ja
Priority to US15/614,142 priority patent/US20170268084A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/006Making ferrous alloys compositions used for making ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/30Ferrous alloys, e.g. steel alloys containing chromium with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt

Definitions

  • Hot-work tool steels are alloyed tool steels, which in addition to iron as alloying elements contain in particular carbon, chromium, tungsten, silicon, nickel, molybdenum, manganese, vanadium and cobalt with different proportions.
  • Hot work tool steels may be used to make hot work steel objects, such as tools, which are suitable for machining materials, in particular die casting, extrusion or die forging.
  • tools such as extrusion dies, forging tools, die casting dies, press dies, or the like, which must have special mechanical strength properties at high working temperatures.
  • Another field of application for hot working steels are tools for the injection molding of plastics.
  • Hot work tools which are made of a hot-work steel, must have a high thermal conductivity and a high heat wear resistance in addition to a high mechanical stability at higher working temperatures.
  • Other important properties of hot-work steels are not only a sufficient hardness and strength but also a high hot hardness and high wear resistance at high working temperatures.
  • a high thermal conductivity of the hot-work tool steel used for the production of tools is of particular importance for some applications, as this is a considerable Cycle time reduction can cause. Since the operation of hot forming devices for hot working of workpieces is relatively expensive, a significant cost saving can be achieved by reducing the cycle times.
  • the tool steels commonly used to make tools typically have a thermal conductivity on the order of about 18 to 24 W / mK at room temperature.
  • the thermal conductivities of the hot working steels known from the prior art are about 16 to 37 W / mK.
  • Chromium is a comparatively inexpensive carbide former and also provides the hot work tool steel with good oxidation resistance. Furthermore, chromium forms very thin secondary carbides, so that the Ratio of mechanical strength to toughness is very good in the conventional hot working tool steels.
  • the particular advantage of the hot-work tool according to the invention consists primarily in the drastically increased thermal conductivity.
  • An essential aspect of the solution described here is This is to keep out carbon and preferably also chromium in the solid solution state largely from the hot work steel matrix and to replace the Fe 3 C carbides by carbides with higher thermal conductivity. Chromium can only be kept out of the matrix by not being present at all. Carbon can be bound in particular with carbide formers, where Mo and W are the most cost-effective elements and have a comparatively high thermal conductivity both as elements and as carbides.
  • Quantum mechanical simulation models for tool steels and in particular for hot working steels can show that solid state carbon and chromium lead to matrix distortion, resulting in a shortening of the mean free path of phonons. A larger elastic modulus and a higher thermal expansion coefficient are the result.
  • the influence of carbon on electron and phonon scattering has also been investigated using suitable simulation models.
  • the advantages of a carbon-chromium-depleted matrix could be verified by increasing the thermal conductivity. While the thermal conductivity of the matrix is dominated by electron flow, the conductivity of the carbides is determined by the phonons. In solid solution state, chromium has a very negative effect on the thermal conductivity achieved by electron flow.
  • the hot-work steel according to the invention can achieve a thermal conductivity at room temperature in the order of about 55 to 60 W / mK and above.
  • the thermal conductivity of the hot-work steel according to the invention is thus almost twice as great as in the known from the prior art Hot work steels.
  • the hot work tool described here is particularly suitable for applications in which a high thermal conductivity is required. In the drastically improved thermal conductivity is thus the particular advantage of the hot work tool according to the invention.
  • the inventive use of hot work steel described here as a material for the production of hot work tools provides numerous and sometimes extremely remarkable advantages compared to the known from the prior art hot-work steels, which were previously used as materials for corresponding tools.
  • the higher thermal conductivity of the tools produced from the hot-work tool steel according to the invention allows, for example, a reduction in the cycle times during machining / production of workpieces.
  • Another advantage is a significant reduction of the surface temperature of the tool as well as the reduction of the surface temperature gradient, which has a considerable effect on the longevity of the tool. This is particularly the case when tool damage is primarily due to thermal fatigue, thermal shock or welding. This is the case in particular with regard to tools for aluminum die-casting applications.
  • the other mechanical and / or thermal properties of the hot-work steel according to the invention could either be improved or at least remain unchanged in comparison to the known hot-work steels.
  • the modulus of elasticity could be reduced, for example, the density of the hot-work tool according to the invention could be compared to conventional hot working steels increased and the thermal expansion coefficient could be reduced.
  • further improvements can be achieved, such as increased mechanical strength at high temperatures or increased wear resistance.
  • the hot-working steel has carbide-forming elements Ti, Zr, Hf, Nb, Ta in an amount of up to 3% by weight in total.
  • the elements Ti, Zr, Hf, Nb, Ta are known in metallurgy as strong carbide formers. Strong carbide formers have a positive effect in terms of increasing the thermal conductivity of the tool steel, as they have a better ability to remove carbon in the solid solution state from the matrix. High thermal conductivity carbides may also increase the conductivity of the hot work tool steel. It is known from metallurgy that the following elements are carbide formers, the carbon affinity of which is listed below in ascending order: Cr, W, Mo, V, Ti, Nb, Ta, Zr, Hf.
  • relatively large carbides and therefore extended carbides are particularly advantageous since the entire thermal conductivity of the hot-work steel follows the law of mixtures with negative boundary effects.
  • the stronger the affinity of an element for carbon the greater the tendency to form relatively large primary carbides.
  • the large carbides adversely affect, to a certain extent, some mechanical properties of the hot work tool, in particular its toughness, so that for each intended use of the hot work tool, a suitable compromise between the desired mechanical and thermal properties must be found.
  • the hot work tool steel has less than 1.5% by weight Cr, preferably less than 1% by weight Cr.
  • the hot-work steel less than 0.5 wt .-% Cr, preferably less than 0.2, in particular less than 0.1 wt .-% Cr.
  • the presence of chromium in the solid solution state in the matrix of the hot work tool has a negative effect on its thermal conductivity.
  • the intensity of this negative effect on thermal conductivity by increasing the chromium content in the tool steel is greatest for the interval of less than 0.4 wt% Cr.
  • An interval graduation in the decrease in the intensity of the adverse effect on the thermal conductivity of the hot work tool steel is more than 0.4% by weight but less than 1% by weight and more than 1% by weight at both intervals less than 2% by weight makes sense.
  • the molybdenum content is 0.5 to 7% by weight, in particular 1 to 7% by weight.
  • Molybdenum has a comparatively high carbon affinity.
  • molybdenum carbides have a higher thermal conductivity than iron and chromium carbides.
  • the adverse effect of molybdenum in the solid solution state on the thermal conductivity of the tool steel compared to chromium in the solid solution state is considerably lower.
  • molybdenum is one of those carbide formers that are suitable for a large number of applications.
  • other carbide formers with smaller secondary carbides, such as vanadium (about 1-15 nm colonies versus up to 200 nm large colonies on molybdenum) are the better choice.
  • the hot-work steel additionally comprises vanadium with a content of up to 4 wt .-%.
  • vanadium accounts for fine carbide networks. This can improve many mechanical properties of the hot work tool steel. Vanadium is characterized not only by its higher carbon affinity compared to molybdenum, but also has the advantage that its carbides have a higher thermal conductivity. In addition, vanadium is a relatively inexpensive element. However, a disadvantage of vanadium over molybdenum is that the vanadium remaining in the solid solution state has a comparatively much greater negative effect on the thermal conductivity of the hot work tool steel. For this reason, it is not advantageous to alloy the tool steel with vanadium alone.
  • Molybdenum can be replaced by tungsten in many applications.
  • the carbon affinity of tungsten is slightly lower and the thermal conductivity of tungsten carbide is considerably larger.
  • the content of Mo, W and V in the sum is 2 to 10% by weight.
  • the content of these three elements in the sum is in particular dependent on the desired number of carbides, that is, on the respective application requirements.
  • the hot-work tooling have elements for solid solution strengthening, in particular Co, Ni, Si, Cu and Mn.
  • a level of up to 6 weight percent Co may be beneficial to improve the high temperature strength of the hot work tool steel.
  • the hot-work steel may in a further preferred embodiment Co having a content of up to 3 wt .-%, preferably having a content of up to 2 wt .-%.
  • the hot-working steel Mn has a content of up to 2% by weight.
  • the hot working steel has Si content of up to 1.6% by weight.
  • the alloying accompanying elements comprise at least one of the elements Ni, S, P, Bi, Ca, As, Sn or Pb.
  • the hot-work steel has correspondingly suitable additional elements.
  • additional elements may, for example, comprise mainly sulfur S (containing up to 1% by weight).
  • the elements Ca, Bi or As may also be present to facilitate the workability of the hot work tool steel.
  • carbon is at least partially replaced by nitrogen, wherein the content of C and N in the sum 0.25 - 1 wt .-% is.
  • mechanical stability of the hot work tool steel at high temperatures of the alloying carbides is more advantageous than chromium and iron carbides in terms of mechanical stability and strength properties. Depletion of chromium, along with the reduction in carbon content in the matrix, results in improved thermal conductivity, especially when it is due to tungsten and / or molybdenum carbides.
  • the processes used to make the hot work steel also play an important role in its thermal and mechanical properties.
  • the mechanical and / or thermal properties of the hot-work steel can thus be selectively varied and thereby adapted to the respective application.
  • the hot work tool described herein can be made, for example, by powder metallurgy (hot isostatic pressing).
  • powder metallurgy hot isostatic pressing
  • the manufacturing process chosen in each case influences the resulting carbide size, which in turn, as already explained above, has effects on the thermal conductivity and the mechanical properties of the hot-work steel.
  • VAR Vacuum Arc Remelting
  • AOD argon Oxygen Decarburation
  • ESR electro slag remelting
  • the hot-work steel according to the invention can be produced for example by sand or investment casting. It can be made by hot pressing or another powder metallurgy process (sintering, cold pressing, isostatic pressing), and in this manufacturing process with or without the use of thermomechanical processes (forging, rolling, extrusion). Less conventional manufacturing methods such as tixo casting, plasma or laser deposition, and local sintering can also be used.
  • a use of a hot work tool according to any one of claims 1 to 15 is proposed as a material for producing a hot-worked steel article, in particular a hot working tool.
  • the hot-work tool steel contains iron, alloying elements and inevitable impurities.
  • the hot working steel may have strong carbide formers, such as the above-mentioned elements Ti, Zr, Hf, Nb, Ta, in an amount of up to 3% by weight in total.
  • the abrasion resistance of the tool made of hot-work steel plays a particularly important role.
  • the volume of the primary carbides formed should therefore be as large as possible.
  • the hot-work tool steel contains iron, alloying elements and inevitable impurities.
  • the hot work steel may have strong carbide formers such as Ti, Zr, Hf, Nb, Ta at a level of up to 3% by weight in total.
  • Fe 3 C should not be present if possible.
  • Cr and V with additions of Mo and W are the preferred elements to replace Fe 3 C.
  • Cr is also replaced by Mo and / or W.
  • W and / or Mo can also be used.
  • Carbide formers such as Ti, Zr, Hf, Nb, or Ta are used. The choice of carbide formers and their proportions depend in turn on the specific application and on the requirements with regard to the thermal and / or mechanical properties of the tool.
  • the hot-work tool steel contains iron, alloying elements and inevitable impurities.
  • the hot work tool steel may have strong carbide formers, such as Ti, Zr, Hf, Nb, Ta, at a level of up to 3% by weight in total. A greater toughness of the hot work steel is required in this application, so that primary carbides should be suppressed as completely as possible and stable carbide formers are more advantageous.
  • the hot-work tool steel contains iron, alloying elements and inevitable impurities.
  • the hot working steel may have strong carbide formers such as Ti, Zr, Hf, Nb, Ta in a proportion of up to 3% by weight in total.
  • the proportion of vanadium should be kept as low as possible.
  • the vanadium content of the hot work tool steel may be less than 1% by weight and more preferably less than 0.5% by weight, and in a most preferred embodiment less than 0.25% by weight.
  • the requirements with regard to the mechanical properties of the tools are relatively low in injection molding. A mechanical strength of about 1500 MPa is usually sufficient. Higher thermal conductivity, however, makes it possible to shorten the cycle times in the production of injection-molded parts, so that the costs for producing the injection-molded parts can be reduced.
  • the hot-work tool steel contains iron, alloying elements and inevitable impurities.
  • the hot working steel may have strong carbide formers such as Ti, Zr, Hf, Nb, Ta in a proportion of up to 3% by weight in total.
  • the hot-work tool steel may contain elements for solid solution strengthening, in particular Co, but also Ni, Si, Cu and Mn. In particular, a content of up to 6% by weight of Co is advantageous in order to improve the high-temperature strength of the tool.
  • Table 1 shows some thermoelastic characteristics of five exemplary samples (Sample F1 through Sample F5) of a hot work tool according to the present invention as compared to conventional tool steels.
  • Sample F1 through Sample F5 the hot working steels have a higher density than the known tool steels.
  • the results show that the thermal conductivity of the samples of the hot work tool steel according to the invention is drastically increased compared to the conventional tool steels.
  • FIG. 1 shows the abrasion resistance of two samples (F1 and F5) compared to conventional tool steels.
  • the abrasion resistance was determined using a pin made of the corresponding steel and a washer made of a USIBOR 1500P sheet.
  • the sample "1.2344" is the reference sample (abrasion resistance: 100%).
  • a 200% abrasion resistance material thus has twice as high abrasion resistance as the reference sample and thus experiences only half the weight loss during the abrasion test procedure. It can be seen that the samples of hot-work steel according to the invention have a very high abrasion resistance compared to most known steels.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Heat Treatment Of Steel (AREA)
  • Powder Metallurgy (AREA)
  • Mounting, Exchange, And Manufacturing Of Dies (AREA)
  • Forging (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
EP06118672A 2006-08-09 2006-08-09 Acier pour travail à chaud Withdrawn EP1887096A1 (fr)

Priority Applications (27)

Application Number Priority Date Filing Date Title
EP06118672A EP1887096A1 (fr) 2006-08-09 2006-08-09 Acier pour travail à chaud
EP07764595A EP2052095A1 (fr) 2006-08-09 2007-06-08 Procédé d'ajustement de la conductivité thermique d'un acier, acier à outils, notamment acier à outils pour travail à chaud et article en acier
CA2659849A CA2659849C (fr) 2006-08-09 2007-06-08 Procede d'ajustement de la conductivite thermique d'un acier, acier a outils, notamment acier a outils pour travail a chaud et article en acier
PL17151574.5T PL3228724T3 (pl) 2006-08-09 2007-06-08 Stal narzędziowa, w szczególności stal do pracy na gorąco, oraz przedmiot stalowy
CA2981388A CA2981388C (fr) 2006-08-09 2007-06-08 Procede d'ajustement de la conductivite thermique d'un acier, acier a outils, notamment acier a outils pour travail a chaud et article en acier
KR1020167009181A KR20160047582A (ko) 2006-08-09 2007-06-08 강의 열 전도율을 세팅하는 방법 및 공구강의 용도
CN201210317360.5A CN102888563B (zh) 2006-08-09 2007-06-08 调节钢的导热能力的方法,工具钢、特别是热作钢,和钢制品
AU2007283164A AU2007283164B2 (en) 2006-08-09 2007-06-08 Process for setting the thermal conductivity of a steel, tool steel, in particular hot-work steel, and steel object
KR1020097004460A KR20090038030A (ko) 2006-08-09 2007-06-08 강의 열 전도율을 세팅하는 방법, 공구강, 특히 열간 가공 공구강, 및 강 대상물
JP2009523159A JP5518475B2 (ja) 2006-08-09 2007-06-08 工具鋼
ES17151574T ES2929658T3 (es) 2006-08-09 2007-06-08 Acero para herramientas, en particular acero para trabajo en caliente, y objeto de acero
CNA2007800326771A CN101512034A (zh) 2006-08-09 2007-06-08 调节钢的导热能力的方法,工具钢、特别是热作钢,和钢制品
PT171515745T PT3228724T (pt) 2006-08-09 2007-06-08 Aço para ferramentas, em particular aço para trabalho a quente, e aço para objectos
KR1020157016617A KR101659704B1 (ko) 2006-08-09 2007-06-08 강의 열 전도율을 세팅하는 방법 및 공구강의 용도
US12/376,866 US8557056B2 (en) 2006-08-09 2007-06-08 Process for setting the thermal conductivity of a steel, tool steel, in particular hot-work steel, and steel object
RU2009108335/02A RU2469120C2 (ru) 2006-08-09 2007-06-08 Способ регулирования теплопроводности стали, инструментальная сталь, в частности инструментальная сталь для горячих видов обработки, применение инструментальной стали и изделие из стали
BRPI0716490-4A2A BRPI0716490A2 (pt) 2006-08-09 2007-06-08 Processo para ajuste da condutibilidade térmica de um aço, aço para ferramentas, particularmente, aço trabalho a quente, e objeto de aço
EP17151574.5A EP3228724B1 (fr) 2006-08-09 2007-06-08 Acier à outil, en particulier pour travail à chaud et objet en acier
MX2009001483A MX2009001483A (es) 2006-08-09 2007-06-08 Proceso para ajustar la conductividad termica de un acero, acero de herramientas, en particular acero para trabajos en caliente, y objeto de acero.
PCT/EP2007/005091 WO2008017341A1 (fr) 2006-08-09 2007-06-08 Procédé d'ajustement de la conductivité thermique d'un acier, acier à outils, notamment acier à outils pour travail à chaud et article en acier
ZA200900495A ZA200900495B (en) 2006-08-09 2009-01-22 Process for setting the thermal conductivity of a steel, tool steel, in particular hot-work steel, and steel object
US14/037,538 US9689061B2 (en) 2006-08-09 2013-09-26 Tool steel alloy with high thermal conductivity
JP2013268301A JP2014111835A (ja) 2006-08-09 2013-12-26 鋼、工具鋼、特に熱間加工鋼の熱伝導度の調整方法、並びに鋼製品
JP2015124483A JP2015221941A (ja) 2006-08-09 2015-06-22 鋼、工具鋼、特に熱間加工鋼の熱伝導度の調整方法、並びに鋼製品
JP2016002101A JP2016128609A (ja) 2006-08-09 2016-01-07 鋼、工具鋼、特に熱間加工鋼の熱伝導度の調整方法、並びに鋼製品
JP2016002102A JP2016156088A (ja) 2006-08-09 2016-01-07 鋼、工具鋼、特に熱間加工鋼の熱伝導度の調整方法、並びに鋼製品
US15/614,142 US20170268084A1 (en) 2006-08-09 2017-06-05 Tool steel alloy with high thermal conductivity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP06118672A EP1887096A1 (fr) 2006-08-09 2006-08-09 Acier pour travail à chaud

Publications (1)

Publication Number Publication Date
EP1887096A1 true EP1887096A1 (fr) 2008-02-13

Family

ID=37036827

Family Applications (3)

Application Number Title Priority Date Filing Date
EP06118672A Withdrawn EP1887096A1 (fr) 2006-08-09 2006-08-09 Acier pour travail à chaud
EP17151574.5A Active EP3228724B1 (fr) 2006-08-09 2007-06-08 Acier à outil, en particulier pour travail à chaud et objet en acier
EP07764595A Ceased EP2052095A1 (fr) 2006-08-09 2007-06-08 Procédé d'ajustement de la conductivité thermique d'un acier, acier à outils, notamment acier à outils pour travail à chaud et article en acier

Family Applications After (2)

Application Number Title Priority Date Filing Date
EP17151574.5A Active EP3228724B1 (fr) 2006-08-09 2007-06-08 Acier à outil, en particulier pour travail à chaud et objet en acier
EP07764595A Ceased EP2052095A1 (fr) 2006-08-09 2007-06-08 Procédé d'ajustement de la conductivité thermique d'un acier, acier à outils, notamment acier à outils pour travail à chaud et article en acier

Country Status (15)

Country Link
US (3) US8557056B2 (fr)
EP (3) EP1887096A1 (fr)
JP (5) JP5518475B2 (fr)
KR (3) KR101659704B1 (fr)
CN (2) CN101512034A (fr)
AU (1) AU2007283164B2 (fr)
BR (1) BRPI0716490A2 (fr)
CA (2) CA2981388C (fr)
ES (1) ES2929658T3 (fr)
MX (1) MX2009001483A (fr)
PL (1) PL3228724T3 (fr)
PT (1) PT3228724T (fr)
RU (1) RU2469120C2 (fr)
WO (1) WO2008017341A1 (fr)
ZA (1) ZA200900495B (fr)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2052095A1 (fr) 2006-08-09 2009-04-29 Rovalma, S.A. Procédé d'ajustement de la conductivité thermique d'un acier, acier à outils, notamment acier à outils pour travail à chaud et article en acier
EP2236639A1 (fr) * 2009-04-01 2010-10-06 Rovalma, S.A. Acier pour outil de travail à chaud doté d'une résistance et d'une conductivité thermique exceptionnelles
EP2476772A1 (fr) 2011-01-13 2012-07-18 Rovalma, S.A. Acier avec haute résistance à l'usure et haute diffusion thermique
EP2535430A2 (fr) 2011-06-15 2012-12-19 Buderus Edelstahl Gmbh Acier à outil pour outils de formage à chaud plus sollicités et son procédé de fabrication
EP2578909A1 (fr) * 2010-05-25 2013-04-10 Kabushiki Kaisha Riken Segment de pression et procédé pour sa production
WO2014009571A1 (fr) 2012-07-13 2014-01-16 Rovalma, S.A. Procédé pour processus de formage de matériau à l'état préchauffé ou fondu permettant de réduire fortement le coût de production des pièces produites
DE102015113058A1 (de) * 2015-08-07 2017-02-09 Böhler Edelstahl GmbH & Co. KG Verfahren zum Herstellen eines Werkzeugstahles
WO2020161359A1 (fr) 2019-02-08 2020-08-13 Rovalma, S.A. Aciers d'outillage hautement performants à faible coût
CN114807774A (zh) * 2022-06-21 2022-07-29 育材堂(苏州)材料科技有限公司 热作模具钢、其热处理方法及热作模具
EP4219783A1 (fr) 2014-03-18 2023-08-02 Innomaq 21, Sociedad Limitada Acier à faible coût à conductivité extrêmement élevée

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140178243A1 (en) * 2009-04-01 2014-06-26 Rovalma, S.A. Hot work tool steel with outstanding toughness and thermal conductivity
JP4970620B2 (ja) * 2009-12-04 2012-07-11 新日本製鐵株式会社 高エネルギー密度ビームを用いた突合せ溶接継手
US9314880B2 (en) * 2010-10-21 2016-04-19 Stoody Company Chromium free hardfacing welding consumable
CH704427A1 (de) * 2011-01-20 2012-07-31 Alstom Technology Ltd Schweisszusatzwerkstoff.
DE102013106010B4 (de) * 2013-06-10 2016-03-03 Wefa Singen Gmbh Verfahren zum Herstellen eines Strangpresswerkzeugs
CN103627961B (zh) * 2013-11-27 2015-07-15 江苏科技大学 一种进气门的制备方法
CN104694826A (zh) * 2013-12-06 2015-06-10 徐恒易 一种新型5CrW2SiBAlN耐冲击工具钢
AU2015208035A1 (en) * 2014-01-27 2016-09-01 Rovalma, S.A. Centrifugal atomization of iron-based alloys
JP6459539B2 (ja) * 2015-01-19 2019-01-30 大同特殊鋼株式会社 金型用鋼及び金型
CN104962831B (zh) * 2015-07-14 2017-06-30 上海胜桀精密机械科技有限公司 一种热作钢粉末合金材料
JP6859623B2 (ja) 2015-09-11 2021-04-14 大同特殊鋼株式会社 金型用鋼及び成形具
JP6714334B2 (ja) * 2015-09-24 2020-06-24 山陽特殊製鋼株式会社 優れた熱伝導率および靱性を有する熱間工具鋼
GB2546809B (en) * 2016-02-01 2018-05-09 Rolls Royce Plc Low cobalt hard facing alloy
GB2546808B (en) * 2016-02-01 2018-09-12 Rolls Royce Plc Low cobalt hard facing alloy
DE102016103283A1 (de) 2016-02-24 2017-08-24 Buderus Edelstahl Gmbh Verfahren zur Herstellung eines Warmformwerkzeuges und Warmformwerkzeug hieraus
CN106048436A (zh) * 2016-07-01 2016-10-26 宜兴市凯诚模具有限公司 一种铸钢成型模具及其制备方法
CN105950986A (zh) * 2016-07-11 2016-09-21 曾冰冰 一种钼钒基合金钢材料及其在钻进钻杆中的应用
DE102016219350A1 (de) * 2016-10-06 2018-04-12 Kjellberg-Stiftung Düsenschutzkappe, Lichtbogenplasmabrenner mit dieser Düsenschutzkappe sowie eine Verwendung des Lichtbogenplasmabrenners
EA031666B1 (ru) * 2016-10-25 2019-02-28 Белорусский Национальный Технический Университет Инструментальная сталь
JP6800532B2 (ja) * 2017-01-24 2020-12-16 山陽特殊製鋼株式会社 熱伝導率に優れる熱間工具鋼
RU2661304C1 (ru) * 2017-05-12 2018-07-13 Хермит Эдванст Технолоджиз ГмбХ Способ оценки энергоемкости титанового сплава
CN107354399A (zh) * 2017-07-11 2017-11-17 合肥众磊信息科技有限公司 一种合金耐磨钢
JP7100320B2 (ja) 2018-08-07 2022-07-13 国立大学法人広島大学 Fe基焼結体、Fe基焼結体の製造方法、および熱間プレス用金型
CN111636037B (zh) 2019-03-01 2022-06-28 育材堂(苏州)材料科技有限公司 热作模具钢、其热处理方法及热作模具
WO2020185641A1 (fr) * 2019-03-14 2020-09-17 Hoeganaes Corporation Compositions métallurgiques pour la fabrication par compression frittage et la fabrication additive
CN110216268B (zh) * 2019-06-21 2021-05-18 北京科技大学 一种高碳高合金钢半固态成形控温冷却热处理工艺
JP7243505B2 (ja) * 2019-07-18 2023-03-22 日本製鉄株式会社 Ni含有ブレーキディスク材のデスケーリング方法
KR102221969B1 (ko) * 2020-03-24 2021-03-02 현대로템 주식회사 고속 용접성이 우수한 자동용접용 솔리드와이어
WO2024068780A1 (fr) 2022-09-27 2024-04-04 Innomaq 21, S.L. Procédé d'impression volumétrique par l'intermédiaire d'hologrammes à l'aide d'un rayonnement à haute longueur d'onde

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04147706A (ja) * 1990-10-12 1992-05-21 Kawasaki Steel Corp 継目無鋼管製造用プラグ
DE4321433C1 (de) * 1993-06-28 1994-12-08 Thyssen Stahl Ag Verwendung eines Warmarbeitsstahls
JPH07179988A (ja) * 1993-12-24 1995-07-18 Aichi Steel Works Ltd 高温強度の優れた熱間工具鋼
EP0733719A1 (fr) * 1995-03-23 1996-09-25 BÖHLER Edelstahl GmbH Alliage à base de fer pour applications aux températures élevées
JPH08260093A (ja) * 1995-03-24 1996-10-08 Hitachi Metals Ltd 溶接部の疲労強度に優れたメタルバンドソー胴材およびメタルバンドソー
JPH11222650A (ja) * 1998-02-04 1999-08-17 Nippon Koshuha Steel Co Ltd 冷間鍛造性に優れた耐摩耗合金鋼及びその製造方法
EP1275745A1 (fr) * 1999-10-04 2003-01-15 Mitsubishi Heavy Industries, Ltd. Acier faiblement allié et résistant aux températures élevées, procédé de traitement thermique et rotor de turbine

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB250560A (en) 1925-04-11 1926-10-14 Gelsenkirchener Gussstahl U Ei Improvements relating to steel alloys
CH165893A (de) 1930-12-22 1933-12-15 Oesterreichische Schmidtstahlw Eisenlegierung, insbesondere für warmarbeitende Werkzeuge.
US2565264A (en) 1950-02-17 1951-08-21 Crucible Steel Co America Hardenable alloy steels resistant to softening at elevated temperatures
DE1014577B (de) 1952-08-29 1957-08-29 Heppenstall Co Verfahren zur Herstellung von Warmarbeitswerkzeugen unter Verwendung einer aushaertenden Stahllegierung
AT265345B (de) 1966-04-06 1968-10-10 Schoeller Bleckmann Stahlwerke Chrom-Mlybdän-Vanadin-legierter Warmarbeitsstahl mit guter Kalteinsenkbarkeit zur Herstellung von Werkzeugen
US3600160A (en) 1968-05-14 1971-08-17 Wallace Murray Corp Heat and temper resistant alloy steel
US3736129A (en) 1971-05-13 1973-05-29 Us Army Alloy steel
SE364998B (fr) 1972-07-17 1974-03-11 Bofors Ab
SE364999B (fr) 1972-07-17 1974-03-11 Bofors Ab
JPS5944382B2 (ja) * 1976-10-08 1984-10-29 日立金属株式会社 耐摩耗性のすぐれた鋳造熱間工具鋼
JPS53123860A (en) * 1977-04-04 1978-10-28 Nissan Motor Detecting device for fuse disconnection
JPS58123859A (ja) * 1982-01-18 1983-07-23 Daido Steel Co Ltd 熱間工具鋼
JPS58123860A (ja) * 1982-01-18 1983-07-23 Daido Steel Co Ltd 熱間工具鋼
JPS599154A (ja) * 1982-07-05 1984-01-18 Kawasaki Steel Corp 継目無鋼管製造用工具材料
JPS6059052A (ja) * 1983-09-09 1985-04-05 Daido Steel Co Ltd 熱間工具鋼
JPS6130654A (ja) 1984-07-21 1986-02-12 Kanto Tokushu Seikou Kk アルミニウム連続鋳造用ロ−ルシエル鋼
JPS63282241A (ja) 1987-05-12 1988-11-18 Kawasaki Steel Corp 高Cr継目無鋼管穿孔用工具材料
US5108699A (en) 1988-10-19 1992-04-28 Electric Power Research Institute Modified 1% CrMoV rotor steel
JPH03131574A (ja) * 1989-10-18 1991-06-05 Hitachi Metals Ltd 快削性窒化アルミニウム焼結体
JP2940188B2 (ja) * 1991-02-23 1999-08-25 住友金属工業株式会社 熱間製管工具及びその製造方法
JP2683861B2 (ja) * 1993-08-24 1997-12-03 住友金属工業株式会社 熱間製管用工具及びその製造方法
JPH0890015A (ja) * 1994-09-26 1996-04-09 Kawasaki Steel Corp 継目無鋼管圧延用プラグの冷却方法
DE19508947A1 (de) 1995-03-13 1996-09-19 Patentstelle Fuer Die Deutsche Verschleißfeste, anlaßbeständige und warmfeste Legierung
JP3141735B2 (ja) 1995-08-07 2001-03-05 住友金属工業株式会社 プラスチック成形金型用鋼
JP3096959B2 (ja) 1996-02-10 2000-10-10 住友金属工業株式会社 高温強度に優れた低Mn低Crフェライト耐熱鋼
JP4147706B2 (ja) 1998-12-18 2008-09-10 トヨタ自動車株式会社 電気角検出装置および検出方法並びにモータ制御装置
JP4071924B2 (ja) * 1999-10-04 2008-04-02 三菱重工業株式会社 低合金耐熱鋼及びその製造方法並びにタービンロータ
AT410447B (de) * 2001-10-03 2003-04-25 Boehler Edelstahl Warmarbeitsstahlgegenstand
JP3760850B2 (ja) * 2001-12-03 2006-03-29 住友金属工業株式会社 継目無鋼管製造用プラグ
JP2003253383A (ja) 2002-02-27 2003-09-10 Daido Steel Co Ltd プラスチック成形金型用鋼
JP3599714B2 (ja) * 2002-02-28 2004-12-08 虹技株式会社 熱間圧延用ロール材及びそれを用いた熱間圧延用ロール
JP4192579B2 (ja) 2002-11-29 2008-12-10 住友金属工業株式会社 プラスチック成形金型用鋼
JP4481704B2 (ja) * 2004-03-31 2010-06-16 株式会社東芝 熱電変換材料およびそれを用いた熱電変換素子
EP1887096A1 (fr) * 2006-08-09 2008-02-13 Rovalma, S.A. Acier pour travail à chaud
JP2010515824A (ja) 2007-01-12 2010-05-13 ロバルマ,ソシエダッド アノニマ 優れた溶接性を有する冷間工具鋼
DK2236639T3 (da) 2009-04-01 2012-07-23 Rovalma Sa Varmarbejdsværktøjsstål med enestående hårdhed og varmeledningsevne
EP2662460A1 (fr) 2012-05-07 2013-11-13 Valls Besitz GmbH Traitements thermiques bainitiques résistants sur des aciers pour outillage
CA2942442C (fr) 2014-03-18 2022-12-13 Innomaq 21, Sociedad Limitada Acier a faible cout a conductivite tres elevee
JP7087930B2 (ja) 2018-11-07 2022-06-21 信越化学工業株式会社 化粧料

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04147706A (ja) * 1990-10-12 1992-05-21 Kawasaki Steel Corp 継目無鋼管製造用プラグ
DE4321433C1 (de) * 1993-06-28 1994-12-08 Thyssen Stahl Ag Verwendung eines Warmarbeitsstahls
JPH07179988A (ja) * 1993-12-24 1995-07-18 Aichi Steel Works Ltd 高温強度の優れた熱間工具鋼
EP0733719A1 (fr) * 1995-03-23 1996-09-25 BÖHLER Edelstahl GmbH Alliage à base de fer pour applications aux températures élevées
JPH08260093A (ja) * 1995-03-24 1996-10-08 Hitachi Metals Ltd 溶接部の疲労強度に優れたメタルバンドソー胴材およびメタルバンドソー
JPH11222650A (ja) * 1998-02-04 1999-08-17 Nippon Koshuha Steel Co Ltd 冷間鍛造性に優れた耐摩耗合金鋼及びその製造方法
EP1275745A1 (fr) * 1999-10-04 2003-01-15 Mitsubishi Heavy Industries, Ltd. Acier faiblement allié et résistant aux températures élevées, procédé de traitement thermique et rotor de turbine

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 016, no. 428 (M - 1307) 8 September 1992 (1992-09-08) *
PATENT ABSTRACTS OF JAPAN vol. 1995, no. 10 30 November 1995 (1995-11-30) *
PATENT ABSTRACTS OF JAPAN vol. 1997, no. 02 28 February 1997 (1997-02-28) *
PATENT ABSTRACTS OF JAPAN vol. 1999, no. 13 30 November 1999 (1999-11-30) *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2052095A1 (fr) 2006-08-09 2009-04-29 Rovalma, S.A. Procédé d'ajustement de la conductivité thermique d'un acier, acier à outils, notamment acier à outils pour travail à chaud et article en acier
EP2236639A1 (fr) * 2009-04-01 2010-10-06 Rovalma, S.A. Acier pour outil de travail à chaud doté d'une résistance et d'une conductivité thermique exceptionnelles
WO2010112319A1 (fr) * 2009-04-01 2010-10-07 Rovalma, S.A. Acier a outils chauds de travail a tenacite et conductivite thermique excellentes
EP2492366A1 (fr) * 2009-04-01 2012-08-29 Rovalma, S.A. Acier pour outil de travail chaud doté d'une résistance et d'une conductivité thermique exceptionnelles
US8663550B2 (en) 2009-04-01 2014-03-04 Rovalma, S.A. Hot work tool steel with outstanding toughness and thermal conductivity
US9617952B2 (en) 2010-05-25 2017-04-11 Kabushiki Kaisha Riken Compression ring and its production method
EP2578909A4 (fr) * 2010-05-25 2015-04-29 Riken Kk Segment de pression et procédé pour sa production
EP2578909A1 (fr) * 2010-05-25 2013-04-10 Kabushiki Kaisha Riken Segment de pression et procédé pour sa production
EP2663664A1 (fr) 2011-01-13 2013-11-20 Rovalma, S.A. Acier à outils présentant une diffusivité thermique élevée et une résistance à l'usure élevée
WO2012095532A1 (fr) 2011-01-13 2012-07-19 Rovalma S.A. Acier à outils présentant une diffusivité thermique élevée et une résistance à l'usure élevée
EP2476772A1 (fr) 2011-01-13 2012-07-18 Rovalma, S.A. Acier avec haute résistance à l'usure et haute diffusion thermique
EP3330401A1 (fr) 2011-01-13 2018-06-06 Rovalma, S.A. Acier pour outil à diffusivité thermique élevée et présentant une résistance élevée à l'usure
EP2535430A2 (fr) 2011-06-15 2012-12-19 Buderus Edelstahl Gmbh Acier à outil pour outils de formage à chaud plus sollicités et son procédé de fabrication
WO2014009571A1 (fr) 2012-07-13 2014-01-16 Rovalma, S.A. Procédé pour processus de formage de matériau à l'état préchauffé ou fondu permettant de réduire fortement le coût de production des pièces produites
EP4219783A1 (fr) 2014-03-18 2023-08-02 Innomaq 21, Sociedad Limitada Acier à faible coût à conductivité extrêmement élevée
DE102015113058A1 (de) * 2015-08-07 2017-02-09 Böhler Edelstahl GmbH & Co. KG Verfahren zum Herstellen eines Werkzeugstahles
WO2020161359A1 (fr) 2019-02-08 2020-08-13 Rovalma, S.A. Aciers d'outillage hautement performants à faible coût
CN114807774A (zh) * 2022-06-21 2022-07-29 育材堂(苏州)材料科技有限公司 热作模具钢、其热处理方法及热作模具

Also Published As

Publication number Publication date
CA2659849C (fr) 2017-11-21
EP3228724B1 (fr) 2022-08-10
CN102888563B (zh) 2016-03-30
US9689061B2 (en) 2017-06-27
PL3228724T3 (pl) 2022-12-19
US20100189592A1 (en) 2010-07-29
JP2015221941A (ja) 2015-12-10
CN102888563A (zh) 2013-01-23
US8557056B2 (en) 2013-10-15
PT3228724T (pt) 2022-11-10
KR101659704B1 (ko) 2016-09-26
BRPI0716490A2 (pt) 2015-03-10
KR20160047582A (ko) 2016-05-02
ES2929658T3 (es) 2022-11-30
JP2010500471A (ja) 2010-01-07
CA2659849A1 (fr) 2008-02-14
EP2052095A1 (fr) 2009-04-29
JP2016156088A (ja) 2016-09-01
RU2469120C2 (ru) 2012-12-10
EP3228724A1 (fr) 2017-10-11
CN101512034A (zh) 2009-08-19
CA2981388C (fr) 2020-02-11
AU2007283164A1 (en) 2008-02-14
US20140023551A1 (en) 2014-01-23
JP2014111835A (ja) 2014-06-19
WO2008017341A1 (fr) 2008-02-14
KR20150080642A (ko) 2015-07-09
RU2009108335A (ru) 2010-09-20
CA2981388A1 (fr) 2008-02-14
US20170268084A1 (en) 2017-09-21
JP5518475B2 (ja) 2014-06-11
MX2009001483A (es) 2009-05-15
JP2016128609A (ja) 2016-07-14
AU2007283164B2 (en) 2012-02-16
ZA200900495B (en) 2009-11-25
KR20090038030A (ko) 2009-04-17

Similar Documents

Publication Publication Date Title
EP1887096A1 (fr) Acier pour travail à chaud
DE69818138T2 (de) Kaltarbeitswerkzeugstahlteilchen mit hoher Schlagfestigkeit aus Metallpulver und Verfahren zu seiner Herstellung
EP1979501B1 (fr) Alliage fer-nickel
DE602004011136T2 (de) Schnellarbeitsstahl und Verfahren zu seiner Herstellung
DE60115232T2 (de) Stahllegierung, werkzeug zum plastiggiessen und zähgehärteter rohling für plastikgiesswerkzeuge
DE3041565C2 (fr)
EP1249511B1 (fr) Acier rapide à haute résistance thermique produit selon des techniques de la metallurgie des poudres
EP3323902B1 (fr) Matériau en acier contenant des particules dures, produit de la métallurgie des poudres, procédé de production d'un composant à partir d'un tel matériau d'acier et composant ainsi fabriqué
EP1300482B1 (fr) Article d'acier à outil pour travail à chaud
EP3850114A1 (fr) Acier résistant à la corrosion et à durcissement par précipitation, procédé de production d'un composant d'acier, et composant d'acier
EP0214679B2 (fr) Alliage dur résistant à la corrosion
EP1647606B1 (fr) Alliage de nickel résistant à l'usure et a dureté élevée, et son utilisation comme un outil à haute température
DE102019135830A1 (de) Verfahren zum Herstellen eines Warmarbeitsstahlgegenstandes
EP0348380A1 (fr) Utilisation d'un alliage à base de fer pour la fabrication de pièces frittées, présentant une haute résistance à la corrosion, une haute résistance à l'usure ainsi qu'une haute tenacité et résistance à la compression et destinées, en particulier, au travail des matières synthétiques
EP3412790A1 (fr) Acier durci par précipitation et son utilisation pour des outils de façonnage à chaud
DE3736350C2 (fr)
DE2630266C3 (de) Verwendung einer Sinterstahllegierung für Werkzeuge und Verschleißteile
EP3323903B1 (fr) Matériau en acier fabriqué par métallurgie des poudres, procédé de production d'un composant à partir d'un tel matériau en acier et composant fabriqué en matériau en acier
DE202009017752U1 (de) Einsatzstahl
EP1471160B1 (fr) Objet en acier travaillé à froid
WO2022090054A1 (fr) Poudre destinée à être utilisée dans un procédé additif ou de métallurgie des poudres, matériau à base d'acier et procédé de production d'un composant
EP3719158B9 (fr) Utilisation d'une poudre d'acier, procédé de fabrication d'un composant d'acier selon un procédé de fabrication additive
EP1445339B1 (fr) Alliage et article à haute résistance thermique et à haute stabilité thermique
EP3885459A1 (fr) Matériau métallique dur à base de carbure de tungstène exempt de cobalt
EP1785500B1 (fr) Acier en poudre hautement allié résistant à l'usure et à la corrosion

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20080724

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20100115

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20100526