EP2476772A1 - Acier avec haute résistance à l'usure et haute diffusion thermique - Google Patents

Acier avec haute résistance à l'usure et haute diffusion thermique Download PDF

Info

Publication number
EP2476772A1
EP2476772A1 EP11382004A EP11382004A EP2476772A1 EP 2476772 A1 EP2476772 A1 EP 2476772A1 EP 11382004 A EP11382004 A EP 11382004A EP 11382004 A EP11382004 A EP 11382004A EP 2476772 A1 EP2476772 A1 EP 2476772A1
Authority
EP
European Patent Office
Prior art keywords
thermal
wear resistance
hardness
steels
carbides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP11382004A
Other languages
German (de)
English (en)
Inventor
Isaac Valls Anglés
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rovalma SA
Original Assignee
Rovalma SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rovalma SA filed Critical Rovalma SA
Priority to EP11382004A priority Critical patent/EP2476772A1/fr
Priority to PCT/EP2012/050531 priority patent/WO2012095532A1/fr
Priority to CA2824238A priority patent/CA2824238A1/fr
Priority to EP17166724.9A priority patent/EP3330401A1/fr
Priority to JP2013548855A priority patent/JP2014508218A/ja
Priority to KR1020137021412A priority patent/KR20140004718A/ko
Priority to EP12700396.0A priority patent/EP2663664A1/fr
Priority to MX2013008138A priority patent/MX2013008138A/es
Priority to US13/978,782 priority patent/US20140000770A1/en
Publication of EP2476772A1 publication Critical patent/EP2476772A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • C21D1/22Martempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/25Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/001Heat treatment of ferrous alloys containing Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/18Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for knives, scythes, scissors, or like hand cutting tools
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/22Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for drills; for milling cutters; for machine cutting tools

Definitions

  • the present invention relates to a tool steel with very high thermal diffusivity and high wear resistance, mainly abrasive. This tool steel also shows good hardenability.
  • Tool steels often require a combination of different properties which are considered opposed.
  • a typical example can be the yield strength and toughness.
  • thermal diffusivity is of extreme importance.
  • this property has been considered opposed to hardness and wear resistance.
  • hot stamping, even forging, metal injection, composite curing and other metal shaping processes, wear resistance and high or very high thermal diffusivity are often simultaneously required.
  • big cross-section tools are required, for which hardenability of the material is also of extreme importance.
  • Wear in material shaping processes is, primarily, abrasive and adhesive, although sometimes other wear mechanisms, like erosive and cavitative, are also present.
  • hard particles are generally required in tool steels, these are normally ceramic particles like carbides, nitrides, borides or some combination of them.
  • the volumetric fraction, hardness and morphology of the named hard particles will determine the material wear resistance for a given application.
  • the use hardness of the tool material is of great importance to determine the material durability under abrasive wear conditions.
  • the hard particles morphology determines their adherence to the matrix and the size of the abrasive exogenous particle that can be counteracted without detaching itself from the tool material matrix.
  • FGM materials functionally graded materials
  • the tool material must be hard and have hard particles.
  • Thermal gradients are the cause of thermal shock and thermal fatigue. In many applications steady transmission states are not achieve due to low exposure times or limited amounts of energy from the source that causes a temperature gradient.
  • the magnitude of thermal gradient for tool materials is also a function of their thermal conductivity (inverse proportionality applies to all cases with a sufficiently small Biot number).
  • a material with a superior thermal conductivity is subject to a lower surface loading, since the resultant thermal gradient is lower.
  • the thermal expansion coefficient is lower and the Young's modulus is lower.
  • thermo-mechanical treatments Some of the selection rules of the alloy within the range and thermo-mechanical treatments required to obtain the desired high thermal diffusivity to a high hardness level and wear resistance, are presented in the detailed description of the invention section. Obviously, a detailed description of all possible combinations is out of reach.
  • the thermal diffusivity is regulated by the mobility of the heat energy carriers, which unfortunately can not be correlated to a singular compositional range and a thermo-mechanical treatment.
  • Tool steels of the present invention have a thermal diffusivity above 8 mm 2 /s and, often, above 12 mm 2 /s for hardness over 52 HRc, and even more than 16 mm 2 /s for hardness over 42 HRc, furthermore presenting a very good wear resistance and good hardenability.
  • Thermal diffusivity is considered the most relevant thermal property since it is easier to measure accurately and because most of the tools are used in cyclic processes, so that the thermal diffusivity is much more important for evaluating performance of the tool than can be thermal conductivity.
  • Tool steels of the present invention have a wear resistance and hardness higher than steels described in EP2236639A1 .
  • the latter show a higher hardenability in the perlitic region and higher CVN compared to the tool steels with high thermal conductivity of the present invention.
  • tool steels of this invention have great advantage.
  • the steels of the present invention exhibit higher thermal diffusivity for the same level of hardness.
  • %Cr has the tendency to dissolve in the W and/or Mo carbides causing the dispersion of the heat energy carriers and thus their presence is also undesirable. This is the only point of coincidence that also, in the case of JP04147706 , does not lead to high thermal diffusivity in any of the examples described. At an even lower extent is the case of JP11222650 , where the inventors look for the presence of large amounts of primary carbides to resist massive wear as is the case for high speed steel but with an exceptionally low content of %C to allow cold coining.
  • Tool steels of the present invention excel mainly because of their high thermal diffusivity and wear resistance. Wear resistance and toughness tend to be inversely proportional, although different microstructures reach different relationships, i.e., as a function of microstructure different levels of toughness for the same elastic limit and hardness at a given temperature can be reached and, for a specific type of material, hardness tends to correlate with wear resistance unless the volume fracture or the morphology of wear resistant particles is significantly changed. In this vein, it is well known that for most tool steels with medium carbon content, pure microstructure of tempered martensite is the only one that offers the best compromise of mechanical properties.
  • a strategy to obtain wear resistance and higher elastic limit at high temperatures and, at the same time, obtain high thermal conductivity is the use of carbides with high electron density, as secondary carbides of the M 3 Fe 3 C type and sometimes even primary carbides (M- should only be Mo or W for a greater thermal conductivity).
  • carbides with high electron density As secondary carbides of the M 3 Fe 3 C type and sometimes even primary carbides (M- should only be Mo or W for a greater thermal conductivity).
  • M- should only be Mo or W for a greater thermal conductivity There are other carbide types (Mo, W, Fe) with high electron densities and with tendency to solidify with a good crystalline perfection.
  • these high carbide forming elements tend to form separate MC type carbides, due to its high affinity for
  • this combination is highly desirable as the percentage of V as the percentage of Zr, Hf and Ta tend to significantly improve the wear resistance compared to a steel that has only carbides (Fe, Mo, W), the same applied for %Nb.
  • carbide is referring to the primary carbides as well as the secondary, unless otherwise specified.
  • %Cr or %Si in solid solution (oxidation resistance to high temperature).
  • the negative effect on thermal diffusivity can be moderated through carbon fixing with stronger carbide formers elements.
  • %Cr should not exceed 2% and, preferable, 1.5%.
  • levels of 3% of Cr can be achieved maintaining a good thermal diffusivity, and even 1.4% for the case of Si.
  • This balance provides an extraordinary thermal conductivity if the reinforcing ceramic particles formers, including the non metallic part (%C, %B and %N), are taken into the carbides (as an alternative nitrides, borides and intermediate substances). Then, the appropriated thermal treatment must be applied. This thermal treatment will have a phase in which most of the elements will be dissolved (austenitization to sufficiently high temperature, usually around 1080°C for moderated Mo eq levels, 1120°C for medium levels of Mo eq and 1240°C for high levels of Mo eq , exceptionaly, if distortion of the heat treatment is of great importance for the application, lower austenitization temperatures can be used).
  • the highest possible temperature is desirable for the last tempering if thermal diffusivity is to be maximized, and this approach is used to set the intermediate tempering strategy. That is, the same final hardness level can be achieved with different sequences of tempering and the one using a higher final tempering temperature is chosen, if the only objective is to maximize the thermal diffusivity at a certain level of hardness. So, usually, unusually high final tempering temperatures end up being used, often above 600°C, even when hardness over 50 HRc are chosen.
  • steels of the present invention it is usual to achieve hardness of 47 HRc, even more than 52 HRc, wih the last tempering cycle above 590°C giving a diffusivity greater than 8 mm 2 /s and, generally, more than 9 mm 2 /s.
  • hardness greater than 42 HRc with the last tempering cycle above 600°C, often above 640°C, showing a diffusivity higher than 10 mm 2 /s, or even than 12 mm 2 /s.
  • This alloying rule can be reformulated to better adapting to different levels of %C alloying, and thus, to different applications, since the given formulation is interesting for values of %C eq >0.33.
  • Te, Bi or even Pb, Ca, Cu, Se, Sb or others can be used, with a maximum content of 1%, with the exception of Cu, than can even be of 2%.
  • the most common substance, sulfur has, in comparison, a light negative effect on the matrix thermal conductivity in the normally used levels to increase machinability.
  • its presence must be balanced with Mn, in an attempt to have everything in the form of spherical manganese bisulphide, less detrimental for toughness, as well as the least possible amount of the remaining two elements in solid solution in case that thermal conductivity needs to be maximized.
  • Another hardening mechanism can be used in order to search for some specific combination of mechanical properties or environmental degradation resistance. It is always the intention to maximize the desired property, but trying to have minimal possible adverse impact on thermal conductivity.
  • Solid solution with Cu, Mn, Ni, Co, Si, etc... including some carbide formers with less affinity to carbon, like Cr) and interstitial solid solution (mainly with C, N and B).
  • precipitation can also be used, with an intermetallic formation like Ni 3 Mo, NiAl, Ni 3 Ti... (also of Ni and Mo, small quantities of Al and Ti can be added, but special care must be taken for Ti, since it dissolves in M 3 Fe 3 C carbides and a 2% should be used as a maximum).
  • atomic mass and the formed type of carbide determine if the quantity of a used element should be big or small. So, for instance, 2%V is much more than 4%W. V tends to form MC carbides, unless it dissolves in other existing carbides. Thus, to form a carbide unit only a unit of V is needed, and the atomic mass is 50.9415. W tends to form M 3 Fe 3 C carbides in hot work steels. So three units of W are needed to form a carbide unit, and the atomic mass is 183.85. Therefore, 5.4 more times carbide units can be formed with 2%V than with 4%W.
  • Tool steel of the present invention can be manufactured with any metallurgical process, among which the most common are sand casting, lost wax casting, continuous casting, melting in electric furnace, vacuum induction melting. Powder metallurgy processes can also be used along with any type of atomization and subsequent compacting as the HIP, CIP, cold or hot pressing, sintering (with or without a liquid phase), thermal spray or heat coating, to name a few of them.
  • the alloy can be directly obtained with the desired shape or can be improved by other metallurgical processes. Any refining metallurgical process can be applied, like ESR, AOD, VAR... Forging or rolling are frequently used to increase toughness, even three-dimensional forging of blocks.
  • Tool steel of the present invention can be obtained in the form of bar, wire or powder for use as solder alloy. Even, a low-cost alloy steel matrix can be manufactured and applying steel of the present invention in critical parts of the matrix by welding rod or wire made from steel of the present invention. Also laser, plasma or electron beam welding can be conducted using powder or wire made of steel of the present invention.
  • the steel of the present invention could also be used with a thermal spraying technique to apply in parts of the surface of another material.
  • the steel of the present invention can be used as part of a composite material, for example when embedded as a separate phase, or obtained as one of the phases in a multiphase material. Also when used as a matrix in which other phases or particles are embedded whatever the method of conducting the mixture (for instance, mechanical mixing, attrition, projection with two or more hoppers of different materials).
  • Tool steel of the present invention can also be used for the manufacturing of parts under high thermo-mechanical loads and wear resistance or, basically, of any part susceptible to failure due to wear and thermal fatigue, or with requirements for high wear resistance and which takes advantage of its high thermal conductivity.
  • the advantage is a faster heat transport or a reduced working temperature.
  • components for combustion engines such as rings of the engine block
  • reactors also in the chemical industry
  • heat exchange devices generators or, in general, any power processing machine.
  • Dies for plastic forming of thermoplastics and thermosets in all of its forms In general, any matrix, tool or part can benefit from increased wear resistance and thermal fatigue.
  • dies, tools or parts that benefit from better thermal management as is the case of material forming or cutting dies with release of large amounts of energy (such as stainless steel or TRIP steels) or working at high temperatures (hot cutting, hot forming of sheet).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)
EP11382004A 2011-01-13 2011-01-13 Acier avec haute résistance à l'usure et haute diffusion thermique Withdrawn EP2476772A1 (fr)

Priority Applications (9)

Application Number Priority Date Filing Date Title
EP11382004A EP2476772A1 (fr) 2011-01-13 2011-01-13 Acier avec haute résistance à l'usure et haute diffusion thermique
PCT/EP2012/050531 WO2012095532A1 (fr) 2011-01-13 2012-01-13 Acier à outils présentant une diffusivité thermique élevée et une résistance à l'usure élevée
CA2824238A CA2824238A1 (fr) 2011-01-13 2012-01-13 Acier a outils presentant une diffusivite thermique elevee et une resistance a l'usure elevee
EP17166724.9A EP3330401A1 (fr) 2011-01-13 2012-01-13 Acier pour outil à diffusivité thermique élevée et présentant une résistance élevée à l'usure
JP2013548855A JP2014508218A (ja) 2011-01-13 2012-01-13 高い熱拡散率および高い耐摩耗性の工具鋼
KR1020137021412A KR20140004718A (ko) 2011-01-13 2012-01-13 열 확산도와 내마모성이 높은 공구강
EP12700396.0A EP2663664A1 (fr) 2011-01-13 2012-01-13 Acier à outils présentant une diffusivité thermique élevée et une résistance à l'usure élevée
MX2013008138A MX2013008138A (es) 2011-01-13 2012-01-13 Acero de herramientas con una resistencia al desgaste y difusividad termica extraordinarias.
US13/978,782 US20140000770A1 (en) 2011-01-13 2012-01-13 High thermal diffusivity and high wear resistance tool steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP11382004A EP2476772A1 (fr) 2011-01-13 2011-01-13 Acier avec haute résistance à l'usure et haute diffusion thermique

Publications (1)

Publication Number Publication Date
EP2476772A1 true EP2476772A1 (fr) 2012-07-18

Family

ID=43984609

Family Applications (3)

Application Number Title Priority Date Filing Date
EP11382004A Withdrawn EP2476772A1 (fr) 2011-01-13 2011-01-13 Acier avec haute résistance à l'usure et haute diffusion thermique
EP17166724.9A Withdrawn EP3330401A1 (fr) 2011-01-13 2012-01-13 Acier pour outil à diffusivité thermique élevée et présentant une résistance élevée à l'usure
EP12700396.0A Withdrawn EP2663664A1 (fr) 2011-01-13 2012-01-13 Acier à outils présentant une diffusivité thermique élevée et une résistance à l'usure élevée

Family Applications After (2)

Application Number Title Priority Date Filing Date
EP17166724.9A Withdrawn EP3330401A1 (fr) 2011-01-13 2012-01-13 Acier pour outil à diffusivité thermique élevée et présentant une résistance élevée à l'usure
EP12700396.0A Withdrawn EP2663664A1 (fr) 2011-01-13 2012-01-13 Acier à outils présentant une diffusivité thermique élevée et une résistance à l'usure élevée

Country Status (7)

Country Link
US (1) US20140000770A1 (fr)
EP (3) EP2476772A1 (fr)
JP (1) JP2014508218A (fr)
KR (1) KR20140004718A (fr)
CA (1) CA2824238A1 (fr)
MX (1) MX2013008138A (fr)
WO (1) WO2012095532A1 (fr)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102899585A (zh) * 2012-11-09 2013-01-30 宁波市鄞州商业精密铸造有限公司 一种高硬度高耐磨性铁合金材料
CN102899586A (zh) * 2012-11-09 2013-01-30 宁波市鄞州商业精密铸造有限公司 一种铁合金材料及制备方法
CN103060683A (zh) * 2011-10-20 2013-04-24 上海田岛工具有限公司 高耐磨性刀片材料
CN103741046A (zh) * 2013-12-23 2014-04-23 马鞍山市盈天钢业有限公司 一种高耐磨无缝钢管材料及其制备方法
WO2014131907A1 (fr) * 2013-03-01 2014-09-04 Rovalma, S.A. Acier pour outil à diffusivité thermique élevée, résistance élevée et faible risque de fissuration durant un traitement thermique
CN104313502A (zh) * 2014-09-25 2015-01-28 昆山伯建精密模具有限公司 一种绝缘子模具及其制备方法
CN104745955A (zh) * 2015-03-20 2015-07-01 苏州科胜仓储物流设备有限公司 一种耐冲击高强度承重仓储隔断用合金材料及其处理工艺
WO2015140235A1 (fr) * 2014-03-18 2015-09-24 Innomaq 21, Sociedad Limitada Acier a faible coût a conductivite tres elevee
EA022421B1 (ru) * 2012-08-24 2015-12-30 Общество С Ограниченной Ответственностью "Интерсталь" Штамповая сталь
CN105886933A (zh) * 2016-05-12 2016-08-24 天津钢研海德科技有限公司 一种高抗回火软化性和高韧性的热作模具钢及其制造方法
CN105908102A (zh) * 2016-05-31 2016-08-31 安徽潜山轴承制造有限公司 一种高强耐磨轴承的制备方法
CN106148651A (zh) * 2016-07-24 2016-11-23 钢铁研究总院 含Al节Co型高比强度二次硬化超高强度钢及制备方法
CN106191689A (zh) * 2016-07-11 2016-12-07 吴舒晨 一种耐腐蚀钼铷合金钢及其在钻进钻杆中的应用
WO2017025397A1 (fr) * 2015-08-07 2017-02-16 Böhler Edelstahl GmbH & Co KG Procédé de fabrication d'un acier à outils
EA026543B1 (ru) * 2015-02-20 2017-04-28 Белорусский Национальный Технический Университет Инструментальная сталь
CN110541108A (zh) * 2019-07-26 2019-12-06 马鞍山钢铁股份有限公司 一种Nb、V复合700MPa级高强抗震钢筋用钢及其生产方法
CN111647798A (zh) * 2020-04-29 2020-09-11 樟树市兴隆高新材料有限公司 一种木工用高速工具钢材料及其制备方法
CN111647796A (zh) * 2020-04-29 2020-09-11 樟树市兴隆高新材料有限公司 一种高速工具钢及其制备方法
CN113528937A (zh) * 2021-06-09 2021-10-22 南京钢铁股份有限公司 一种经济型五金工具用钢及其制造方法

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103436809A (zh) * 2013-07-11 2013-12-11 安徽源勋自动化科技有限公司 一种螺栓冷镦钢材料的制备方法
CN103436821A (zh) * 2013-07-11 2013-12-11 安徽源勋自动化科技有限公司 一种12.9级紧固件用冷镦钢材料的制备方法
CN103614622B (zh) * 2013-10-24 2016-06-22 铜陵市经纬流体科技有限公司 一种耐低温泵阀用合金材料及其制备方法
CN103741035B (zh) * 2013-12-19 2016-03-30 安徽伟迈信息技术有限公司 一种线材机轧辊用合金钢材料及其制备方法
CN103741061B (zh) * 2013-12-19 2016-01-27 马鞍山市方圆材料工程有限公司 一种轧辊用高断裂韧性合金钢材料及其制备方法
CN103741043B (zh) * 2013-12-19 2015-12-30 马鞍山市方圆材料工程有限公司 一种含硼轧辊用合金钢材料及其制备方法
BR112017006937B1 (pt) * 2014-10-17 2021-05-04 Nippon Steel Corporation tubo de aço de baixa liga para poço de óleo
JP6311615B2 (ja) * 2015-01-05 2018-04-18 セイコーエプソン株式会社 粉末冶金用金属粉末、コンパウンド、造粒粉末および焼結体
WO2016184926A1 (fr) 2015-05-18 2016-11-24 Rovalma, S.A. Procédé de construction de paliers
DE102016208682A1 (de) * 2015-05-25 2016-12-15 Aktiebolaget Skf Methode zur Verbesserung der Struktur einer Stahlkomponente nach einem Erhitzen und Stahlkomponente, die durch die Methode erlangt wird
JP6528610B2 (ja) * 2015-08-28 2019-06-12 大同特殊鋼株式会社 金型用鋼および金型
JP2019505674A (ja) * 2015-12-24 2019-02-28 ロバルマ, ソシエダッド アノニマRovalma, S.A. 構造、機械、工具応用のための長期耐用性高機能鋼鉄
CN105925910A (zh) * 2016-07-04 2016-09-07 四川行之智汇知识产权运营有限公司 一种用于石油钻头的高强度超耐磨钢
CN106011694A (zh) * 2016-07-11 2016-10-12 曾冰冰 一种钼铑基合金钢材料及其在钻进钻杆中的应用
CN105950986A (zh) * 2016-07-11 2016-09-21 曾冰冰 一种钼钒基合金钢材料及其在钻进钻杆中的应用
CN106048418A (zh) * 2016-07-11 2016-10-26 吴旭丹 一种钼铷基合金钢材料及其在钻进钻杆中的应用
CN106086660A (zh) * 2016-07-13 2016-11-09 芜湖恒固混凝土材料有限公司 一种用于混凝土搅拌罐的金属材料及其制备方法
CN107267872A (zh) * 2017-05-27 2017-10-20 太仓明仕金属制造有限公司 一种高性能耐磨冲压件
CN110408857A (zh) * 2019-07-24 2019-11-05 嘉善日茸精密工业有限公司 一种金属材料及其制备方法
CN111647808B (zh) * 2020-05-20 2021-11-23 樟树市兴隆高新材料有限公司 一种耐热钢及其制备方法
CN114395738B (zh) * 2022-01-18 2022-09-23 河北工业职业技术学院 一种具有高热扩散系数模具钢及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63282241A (ja) 1987-05-12 1988-11-18 Kawasaki Steel Corp 高Cr継目無鋼管穿孔用工具材料
JPH04147706A (ja) * 1990-10-12 1992-05-21 Kawasaki Steel Corp 継目無鋼管製造用プラグ
JPH11222650A (ja) * 1998-02-04 1999-08-17 Nippon Koshuha Steel Co Ltd 冷間鍛造性に優れた耐摩耗合金鋼及びその製造方法
WO2004046407A1 (fr) * 2002-11-20 2004-06-03 Il-Kyu Lee Acier special en tant que materiau composite avec modelage a chaud et a froid et procede de fabrication
EP1887096A1 (fr) 2006-08-09 2008-02-13 Rovalma, S.A. Acier pour travail à chaud
WO2008084108A1 (fr) 2007-01-12 2008-07-17 Rovalma Sa Acier pour outil d'estampage à froid présentant une remarquable soudabilité
JP4147706B2 (ja) 1998-12-18 2008-09-10 トヨタ自動車株式会社 電気角検出装置および検出方法並びにモータ制御装置
EP2236639A1 (fr) 2009-04-01 2010-10-06 Rovalma, S.A. Acier pour outil de travail à chaud doté d'une résistance et d'une conductivité thermique exceptionnelles

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3092491A (en) * 1957-05-02 1963-06-04 Crucible Steel Co America High strength alloy steel for atmospheric and elevated temperature service
US3600160A (en) * 1968-05-14 1971-08-17 Wallace Murray Corp Heat and temper resistant alloy steel
SE364998B (fr) 1972-07-17 1974-03-11 Bofors Ab
JPS512615A (en) * 1974-06-25 1976-01-10 Daido Steel Co Ltd Jikokokaseiomochi nanchitsukashorinitekisuru teigokinkoguko
SE426177B (sv) * 1979-12-03 1982-12-13 Uddeholms Ab Varmarbetsstal
JPS56116860A (en) * 1980-02-19 1981-09-12 Daido Steel Co Ltd Tool steel for hot working
AT388943B (de) * 1985-05-23 1989-09-25 Voest Alpine Stahl Ges Stahl, insbesondere fuer werkzeuge zur warmformgebung
JP2755301B2 (ja) * 1986-12-25 1998-05-20 日立金属株式会社 熱間加工用工具鋼
JPH02125840A (ja) * 1988-11-01 1990-05-14 Hitachi Metals Ltd 熱間加工用工具鋼
JPH0426739A (ja) * 1990-05-19 1992-01-29 Sumitomo Metal Ind Ltd 熱間製管工具用鋼及び熱間製管工具
JPH0474848A (ja) * 1990-07-13 1992-03-10 Sumitomo Metal Ind Ltd 熱間製管工具用鋼及び熱間製管工具
US5454883A (en) * 1993-02-02 1995-10-03 Nippon Steel Corporation High toughness low yield ratio, high fatigue strength steel plate and process of producing same
JPH08225887A (ja) * 1995-02-20 1996-09-03 Sumitomo Metal Ind Ltd 継目無管製造用プラグ
JP4388676B2 (ja) * 2000-07-28 2009-12-24 日本鋳造株式会社 継目無管製造用工具及びその製造方法
WO2004101837A1 (fr) * 2003-05-13 2004-11-25 Sumitomo Metal Industries, Ltd. Acier a outils pour formage a chaud, outil pour formage a chaud et mandrin destine a la production de tuyaux sans soudure
JP2007197784A (ja) * 2006-01-27 2007-08-09 Daido Steel Co Ltd 合金鋼
US20140178243A1 (en) * 2009-04-01 2014-06-26 Rovalma, S.A. Hot work tool steel with outstanding toughness and thermal conductivity
EP2662462A1 (fr) * 2012-05-07 2013-11-13 Valls Besitz GmbH Aciers durcissables à basse température avec une excellente usinabilité
EP2662460A1 (fr) * 2012-05-07 2013-11-13 Valls Besitz GmbH Traitements thermiques bainitiques résistants sur des aciers pour outillage
EP2994547A1 (fr) * 2013-03-01 2016-03-16 Rovalma, S.A. Acier pour outil à diffusivité thermique élevée, résistance élevée et faible risque de fissuration durant un traitement thermique

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63282241A (ja) 1987-05-12 1988-11-18 Kawasaki Steel Corp 高Cr継目無鋼管穿孔用工具材料
JPH04147706A (ja) * 1990-10-12 1992-05-21 Kawasaki Steel Corp 継目無鋼管製造用プラグ
JPH11222650A (ja) * 1998-02-04 1999-08-17 Nippon Koshuha Steel Co Ltd 冷間鍛造性に優れた耐摩耗合金鋼及びその製造方法
JP4147706B2 (ja) 1998-12-18 2008-09-10 トヨタ自動車株式会社 電気角検出装置および検出方法並びにモータ制御装置
WO2004046407A1 (fr) * 2002-11-20 2004-06-03 Il-Kyu Lee Acier special en tant que materiau composite avec modelage a chaud et a froid et procede de fabrication
EP1887096A1 (fr) 2006-08-09 2008-02-13 Rovalma, S.A. Acier pour travail à chaud
WO2008017341A1 (fr) 2006-08-09 2008-02-14 Rovalma, S.A. Procédé d'ajustement de la conductivité thermique d'un acier, acier à outils, notamment acier à outils pour travail à chaud et article en acier
WO2008084108A1 (fr) 2007-01-12 2008-07-17 Rovalma Sa Acier pour outil d'estampage à froid présentant une remarquable soudabilité
EP2236639A1 (fr) 2009-04-01 2010-10-06 Rovalma, S.A. Acier pour outil de travail à chaud doté d'une résistance et d'une conductivité thermique exceptionnelles
WO2010112319A1 (fr) 2009-04-01 2010-10-07 Rovalma, S.A. Acier a outils chauds de travail a tenacite et conductivite thermique excellentes

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103060683A (zh) * 2011-10-20 2013-04-24 上海田岛工具有限公司 高耐磨性刀片材料
EA022421B1 (ru) * 2012-08-24 2015-12-30 Общество С Ограниченной Ответственностью "Интерсталь" Штамповая сталь
CN102899585A (zh) * 2012-11-09 2013-01-30 宁波市鄞州商业精密铸造有限公司 一种高硬度高耐磨性铁合金材料
CN102899586A (zh) * 2012-11-09 2013-01-30 宁波市鄞州商业精密铸造有限公司 一种铁合金材料及制备方法
WO2014131907A1 (fr) * 2013-03-01 2014-09-04 Rovalma, S.A. Acier pour outil à diffusivité thermique élevée, résistance élevée et faible risque de fissuration durant un traitement thermique
CN103741046A (zh) * 2013-12-23 2014-04-23 马鞍山市盈天钢业有限公司 一种高耐磨无缝钢管材料及其制备方法
CN103741046B (zh) * 2013-12-23 2016-01-13 马鞍山市盈天钢业有限公司 一种高耐磨无缝钢管材料及其制备方法
EP4219783A1 (fr) * 2014-03-18 2023-08-02 Innomaq 21, Sociedad Limitada Acier à faible coût à conductivité extrêmement élevée
WO2015140235A1 (fr) * 2014-03-18 2015-09-24 Innomaq 21, Sociedad Limitada Acier a faible coût a conductivite tres elevee
CN104313502A (zh) * 2014-09-25 2015-01-28 昆山伯建精密模具有限公司 一种绝缘子模具及其制备方法
EA026543B1 (ru) * 2015-02-20 2017-04-28 Белорусский Национальный Технический Университет Инструментальная сталь
CN104745955A (zh) * 2015-03-20 2015-07-01 苏州科胜仓储物流设备有限公司 一种耐冲击高强度承重仓储隔断用合金材料及其处理工艺
WO2017025397A1 (fr) * 2015-08-07 2017-02-16 Böhler Edelstahl GmbH & Co KG Procédé de fabrication d'un acier à outils
CN105886933A (zh) * 2016-05-12 2016-08-24 天津钢研海德科技有限公司 一种高抗回火软化性和高韧性的热作模具钢及其制造方法
CN105886933B (zh) * 2016-05-12 2021-04-30 天津钢研海德科技有限公司 一种高抗回火软化性和高韧性的热作模具钢及其制造方法
CN105908102A (zh) * 2016-05-31 2016-08-31 安徽潜山轴承制造有限公司 一种高强耐磨轴承的制备方法
CN106191689A (zh) * 2016-07-11 2016-12-07 吴舒晨 一种耐腐蚀钼铷合金钢及其在钻进钻杆中的应用
CN106148651A (zh) * 2016-07-24 2016-11-23 钢铁研究总院 含Al节Co型高比强度二次硬化超高强度钢及制备方法
CN110541108A (zh) * 2019-07-26 2019-12-06 马鞍山钢铁股份有限公司 一种Nb、V复合700MPa级高强抗震钢筋用钢及其生产方法
CN111647798A (zh) * 2020-04-29 2020-09-11 樟树市兴隆高新材料有限公司 一种木工用高速工具钢材料及其制备方法
CN111647796A (zh) * 2020-04-29 2020-09-11 樟树市兴隆高新材料有限公司 一种高速工具钢及其制备方法
CN111647798B (zh) * 2020-04-29 2022-03-15 樟树市兴隆高新材料有限公司 一种木工用高速工具钢材料及其制备方法
CN113528937A (zh) * 2021-06-09 2021-10-22 南京钢铁股份有限公司 一种经济型五金工具用钢及其制造方法

Also Published As

Publication number Publication date
WO2012095532A1 (fr) 2012-07-19
US20140000770A1 (en) 2014-01-02
JP2014508218A (ja) 2014-04-03
EP3330401A1 (fr) 2018-06-06
MX2013008138A (es) 2013-10-07
EP2663664A1 (fr) 2013-11-20
CA2824238A1 (fr) 2012-07-19
KR20140004718A (ko) 2014-01-13

Similar Documents

Publication Publication Date Title
EP2476772A1 (fr) Acier avec haute résistance à l'usure et haute diffusion thermique
US20220119927A1 (en) Wear resistant alloy
JP2017095802A (ja) 優れた靭性及び熱伝導率を有する熱間工具鋼
JP5518475B2 (ja) 工具鋼
EP2662460A1 (fr) Traitements thermiques bainitiques résistants sur des aciers pour outillage
EP2940173B1 (fr) Acier à base austénitique à haute résistance ayant une ténacité remarquable d'une zone affectée par la chaleur de soudage et son procédé de préparation
US7513960B2 (en) Stainless steel having a high hardness and excellent mirror-finished surface property, and method of producing the same
CA2872748A1 (fr) Aciers pouvant etre trempes a basse temperature et presentant une excellente usinabilite
US20140178243A1 (en) Hot work tool steel with outstanding toughness and thermal conductivity
EP2546374A1 (fr) Acier pour outils d'extrusion
WO2021251892A1 (fr) Acier pour outil de travail à chaud
JP2001107194A (ja) 析出硬化型ステンレス鋼およびその製品の製造方法
KR101445726B1 (ko) 고장력강 및 그 제조방법

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20130118

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20170801