EP1836655A1 - Redresseur organique - Google Patents

Redresseur organique

Info

Publication number
EP1836655A1
EP1836655A1 EP05850184A EP05850184A EP1836655A1 EP 1836655 A1 EP1836655 A1 EP 1836655A1 EP 05850184 A EP05850184 A EP 05850184A EP 05850184 A EP05850184 A EP 05850184A EP 1836655 A1 EP1836655 A1 EP 1836655A1
Authority
EP
European Patent Office
Prior art keywords
rectifier
organic
stage
organic diode
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05850184A
Other languages
German (de)
English (en)
Inventor
Markus BÖHM
Dietmar Zipperer
Andreas Ullmann
Markus Lorenz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PolyIC GmbH and Co KG
Original Assignee
PolyIC GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PolyIC GmbH and Co KG filed Critical PolyIC GmbH and Co KG
Publication of EP1836655A1 publication Critical patent/EP1836655A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • H02M7/10Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode arranged for operation in series, e.g. for multiplication of voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/06Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider
    • H02M3/07Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode

Definitions

  • RFID Radio Frequency Identification
  • RFID transponders are increasingly being used to provide goods, articles or security products with electronically readable information. They are thus used, for example, as an electronic barcode for consumer goods, as a luggage tag for the identification of luggage, or as a security element incorporated in the cover of a travel passport, which stores authentication information.
  • RFID transponders usually consist of two components, an antenna and a silicon chip.
  • the RF carrier signal transmitted by a base station is coupled into the antenna resonant circuit of the RFID transponder. Additional information is modulated by the silicon chip in the signal fed back to the base station.
  • the RFID transponder usually does not have its own power source.
  • the power supply of the silicon chip via a rectifier, which converts the coupled into the antenna resonant circuit RF carrier signal into a DC voltage and thus additionally used as an energy source for the silicon chip.
  • WO 99/30432 proposes an integrated transponder in the RFID transponder essential circuit constructed of organic material that performs the function of an ID code generator.
  • the I D-code generator is supplied with a supply voltage via two rectifier diodes coupled to the antenna resonant circuit. These rectifier diodes, which are followed by a smoothing capacitor, consist of two specially wired field-effect transistors.
  • Typical frequency ranges used for RFID transponders are e.g. 125 to 135 kHz, 13 to 14 MHz, 6 to 8 MHz, 20 to 40 MHz, 860 to 950 MHz or 1.7 to 2.5 GHz.
  • organic circuits are much slower than all silicon-based circuits because organic semiconductors typically have lower charge carrier mobility than silicon and organic field effect transistors are based on the principle of carrier accumulation, not the principle of carrier inversion. This results in a lower switching speed and different switching behavior (e.g., AC-deficiency) compared to silicon transistors. If so organic field-effect transistors as described in WO 99/30342 connected to a rectifier, so the realized rectifier switches much slower (less than 100 kHz) as the transmission frequency of the radiated from the base station carrier signal.
  • WO 02/21612 proposes constructing an organic rectifier in which at least one of the pn-doped conductive layers is supplemented or replaced by a conventional pn-semiconductor diode by an organically conductive material. It is further proposed, in a conventional metal Semiconductor diode (Schottky diode) to replace at least one layer with an organic layer. By selecting the dimensions of the capacitive surfaces of this rectifier, the switching frequency of the switching rectifier can be adjusted. It is further described to connect downstream of a rectifier constructed from such organic components, a smoothing capacitor which smoothes the DC voltage arriving in a pulsating manner behind the rectifier and is connected in parallel with the load resistor.
  • a smoothing capacitor which smoothes the DC voltage arriving in a pulsating manner behind the rectifier and is connected in parallel with the load resistor.
  • the invention is based on the object to improve the supply of subsequent consumers by an organic rectifier.
  • a rectifier for converting an AC voltage applied between two input terminals of the rectifier into a DC voltage comprising at least two organic diodes and / or organic field-effect transistors each having at least one electrical functional layer of a semiconducting organic material and two or more Charging or recharging capacitors, which are connected to the two or more organic diodes or organic field effect transistors such that the charging or recharging capacitors are loadable via different current paths.
  • an electronic component in the form of a flexible multilayer film body which has a voltage source and a rectifier fed by the voltage source and configured as described above.
  • the invention is based on the idea of compensating for the low charge carrier mobility of organic semiconductors by the interconnection with two or more charging or recharging capacitors, which are charged via different current paths of the rectifier.
  • the invention provides a remedy and makes it possible to provide an organic rectifier through the above-mentioned interconnection of organic components with charging or recharging capacitors, which can supply the following consumers with the necessary DC voltage even at high frequencies.
  • a consumer come both organic logic circuits, display elements and conventional electronics in question.
  • the rectifier according to the invention in this case consists of a multi-layer structure of two, three or more layers, of which at least one layer is an active layer of organic semiconductor material.
  • An organic diode realized in this multilayer structure in this case has a metal-semiconductor junction or a pn junction with organic semiconductors, wherein the metal can also be replaced by an organic conductor.
  • the sequence of the individual functional layers can be vertical as well as also be arranged laterally. For the improvement of the electrical properties - eg injection of charge carriers - the introduction of additional intermediate layers is conceivable, which complement the actual functional layers.
  • organic field-effect transistors whose gate electrode is connected to the source or drain electrode to be used as organic diodes in the rectifier.
  • a first charging capacitor and a first organic diode are arranged in a first line branch and a second charging capacitor and a second organic diode are arranged in a second line branch.
  • the first and the second line branch are coupled in parallel arrangement with the input of the rectifier, wherein the first and the second organic diode are connected in opposite directions of the respective anode and cathode in the first and the second line branch.
  • a first organic diode and a second organic diode are connected in opposite directions of the respective anode and cathode via a recharging capacitor to the first input terminal of the rectifier.
  • the first organic diode is connected to the second input terminal of the rectifier.
  • the second organic diode is connected via a charging capacitor to the second input terminal of the rectifier.
  • the cathode of the first organic diode and the anode of the second organic diode can thus be connected to the first input terminal via the charge-reversal capacitor, such that the anode of the first organic diode and the cathode of the second organic diode are connected across the charge Capacitor connected to each other and the anode of the first organic diode with the second input terminal is connected.
  • the anode of the first organic diode and the cathode of the second organic diode to be connected via the charge-reversal capacitor to the first input terminal, so that the cathode of the first organic diode and the anode of the second organic diode are connected across the charging diode.
  • Encoders are connected together and the anode of the first organic diode is connected to the second input terminal.
  • the organic rectifier can thus be manufactured particularly inexpensively, for example by means of a roll-to-roll process.
  • Supply voltage can be achieved by constructing the rectifier from two or more interconnected stages.
  • Each stage of the rectifier consists of two charging or recharging capacitors and two organic diodes or organic field-effect transistors, which are connected so that the charging or recharging capacitors are loadable via different current paths and they each have two input and two coupling - Have connections for coupling input terminals of another stage.
  • the rectifier can be constructed of two or more cascading, similar stages.
  • the cathode of the first organic diode and the anode of the second organic diode with the first coupling terminal of the first stage and the Umlade capacitor to the first input terminal connected to the first stage.
  • the anode of the first organic diode and the cathode of the second organic diode are across the charging capacitor connected with each other.
  • the anode of the first organic diode is connected to the second input terminal of the stage and the cathode of the second organic diode is connected to the second coupling terminal of the stage.
  • a stage constructed in this way is referred to below as the "first stage".
  • the anode of the first organic diode and the cathode of the second organic diode is connected to the first coupling terminal of the stage and via the recharging capacitor to the first input terminal of the stage.
  • the cathode of the first organic diode and the anode of the second organic diode are connected to each other via the charging capacitor.
  • the cathode of the first organic diode is connected to the second input terminal of the stage and the anode of the second organic diode is connected to the second coupling terminal of the stage.
  • a stage constructed in this way will hereinafter be referred to as "second stage".
  • the first and second front-end input terminals form the first and second input terminals of the rectifier, respectively.
  • the coupling terminals of the respective stage are connected to the input terminals of the subsequent stage, unless the respective stage forms the last stage of the rectifier.
  • the output of the rectifier is formed by the second input terminal of the foremost stage and the second coupling terminal of the last stage.
  • first and second stages in a rectifier.
  • the first and second input terminals of a first stage and a second stage are connected to each other and form the input terminals of the rectifier.
  • Any number of first and second stages is subsequently connected to the coupling terminals of the preceding first and second stage as described above, respectively.
  • the output of the rectifier is formed by the second coupling terminal of the last first stage and by the second coupling terminal of the last second stage.
  • the rectification factor can be further increased by using organic components as organic diodes, which have an intermediate layer for thinning out the parasitic capacitance of the organic diode.
  • the first and / or the second input terminal of the rectifier is connected via one or more first organic field-effect transistors with a recharging capacitor.
  • the recharging capacitor is connected via one or more second field effect transistors with a charging capacitor.
  • the one or more first and second field-effect transistors are driven by a logic circuit.
  • the logic circuit controls the first field-effect transistors in this case such that an alternating voltage is applied to the recharging capacitor.
  • a rectifier according to the invention in an electronic component which has a resonant circuit consisting of an antenna and a capacitor as a voltage source.
  • a DC voltage supply of subsequent electronic assemblies can be provided, which can be manufactured particularly inexpensively, provides an adequate supply voltage and can be realized in the form of a flexible body.
  • an organically integrated circuit is used as a subsequent electronic assembly. Due to the special characteristics of organically integrated circuits (eg very low power consumption) such a circuit is particularly well suited to the characteristics of the invention Rectifier adapted. Further, such an electronic component using a uniform manufacturing technology is inexpensive manufacturable for mass applications and disposable products.
  • a resonant circuit as a voltage source
  • an oscillator such as a ring oscillator or by appropriate control of two or more field effect transistors, the charging and / or recharging capacitors with an alternating voltage apply.
  • Fig. 1 shows a block diagram of an organic rectifier according to a first embodiment.
  • Fig. 2 shows a block diagram of an organic rectifier for another embodiment.
  • Fig. 3 shows a block diagram of an organic rectifier for another embodiment.
  • Fig. 4 shows a block diagram of a cascaded organic rectifier for another embodiment.
  • Fig. 5 shows a block diagram of a cascaded organic rectifier for another embodiment.
  • Fig. 6 shows a block diagram of an electronic component with a rectifier.
  • Fig. 7 shows a block diagram of an electronic component for a further embodiment.
  • Fig. 8 shows a block diagram of an electronic component for a further embodiment.
  • the rectifiers illustrated in FIGS. 1 to 5 each consist of a flexible, multilayer film body with one or more electrical functional layers.
  • the electrical functional layers of the film body consist of (organic) conductive layers, organic semiconductive layers and / or organic insulation layers, which are arranged one above the other, at least partially in structured form.
  • the multilayer film body optionally also comprises one or more carrier layers, protective layers, decorative layers, adhesion-promoting layers or adhesive layers.
  • the electrically conductive functional layers preferably consist of a conductive, structured metallization, preferably of gold or silver.
  • these functional layers can also be provided to form these functional layers from an inorganic electrically conductive material, for example, indium-tin oxide or from a conductive polymer, for example of polyaniline or polypyrrole, form.
  • the organic semiconducting functional layers consist, for example, of conjugated polymers, such as polythiophenes, polythlenylenevinylenenes or polyfluorene derivatives, which are applied as a solution by spin coating, knife coating or printing.
  • an organic semiconductor layer is so-called "small molecules", ie oligomers such as sexithiophene or pentacene, which are vapor-deposited by a vacuum technique.
  • These organic layers are preferably applied in a patterned or structured pattern by a printing process (intaglio, screen printing, pad printing).
  • the organic materials provided for the layers are in the form of detachable polymers, the term of the polymer also including oligomers and "small molecules" as already described above.
  • the electrical functional layers of the respective foil body are in this case designed such that they realize the electrical circuit illustrated in FIGS. 1 to 5.
  • the electrical circuits described below with reference to FIGS. 1 to 5 each consist of two or more charging or recharging capacitors and two or more organic diodes.
  • Organic diodes are realized in the multilayer film body by a metal-semiconductor junction or a pn junction between an n- and a p-type semiconductor.
  • the sequence of the individual functional layers can be arranged both vertically and laterally. Furthermore, it is possible here to improve the electrical properties - e.g. Injection of food carriers - to introduce additional intermediate layers that complement the electrically functional layers described above.
  • An organic diode can thus be realized, for example, by means of three successive layers, wherein the first layer is an electrically conductive electrode layer which forms the cathode, the second layer is a layer of an organic semiconductor material and the third layer is an electrically conductive electrode layer comprising the Anode forms.
  • the organic semiconductor layer has, for example, a layer thickness of 60 to 2,000 nm.
  • the conductive layer can consist of one of the materials described above, that is to say both of a metal and of an organically conductive material, which can be applied by a printing process.
  • organic diodes can be realized by means of a four-layer structure consisting of two electrode layers and two organic semiconductor layers lying between them, one of which has an n-conducting and the other p-conducting properties.
  • the organic diodes are formed by an organic field-effect transistor whose gate electrode is connected to the drain electrode.
  • the charging or recharging capacitors realized in the multi-layered film body are formed by two electrically conductive layers and an insulating layer located therebetween.
  • the electrically conductive layers can consist of one of the materials described above, and can thus consist, for example, of metallic layers or organic, electrically conductive layers which have been applied by means of a printing process.
  • the charging or recharging capacitors have a capacity in the range of 1 pF to 2 nF.
  • Fig. 1 shows a rectifier 1, which consists of two organic diodes OD1 and OD 2 and two charging capacitors C1 and C2.
  • the rectifier 1 has an input E1 with input terminals E11 and E12 and an output A1.
  • the input terminal E11 is connected to the cathode of the organic diode OD1 and to the anode of the organic diode OD2.
  • the anode of the organic diode OD1 is connected to the input terminal E12 via the charging capacitor C1 and the cathode of the organic diode OD2 via the charging capacitor C2.
  • the output voltage is tapped between the cathode of the organic diode OD2 and the anode of the organic diode OD1.
  • the input AC voltage applied to the input E1 is rectified via the organic diode OD1 in a negative voltage across the charging capacitor C1 and rectified via the organic diode OD2 to a positive voltage.
  • the output DC voltage applied to the output A1 corresponds to the sum of the amounts of the voltages across C1 and C2.
  • Fig. 2 shows a rectifier 2 with a recharging capacitor C1, a charging capacitor C2 and two organic diodes OD1 and OD2.
  • the rectifier 2 has an input E2 with two input terminals E21 and E22, an output A2 and two coupling terminals B21 and B22.
  • the charging capacitor C1 is connected on one side to the input terminal E21 and on the other side to the coupling terminal B21, the cathode of the organic diode OD1 and the anode of the organic diode OD2.
  • the charging capacitor C2 is connected on one side to the anode of the organic diode OD1 and the input terminal E22 and on the other side to the cathode of the organic diode OD2 and the coupling terminal B22.
  • the output voltage is tapped via the charging capacitor C2.
  • the input AC voltage applied to the input E2 is rectified via the organic diode OD1 to a voltage across the charge-reversal capacitor C1.
  • the positive charges on the charge-reversal capacitor C1 can be transferred to the charge capacitor C2 via the organic diode OD2. It builds on the charging-capacitor C2 an increased positive voltage, which can be tapped via the output A2.
  • Fig. 3 shows a rectifier 3 with a recharging capacitor C1, two organic diodes OD1 and OD2 and a charging capacitor C2.
  • Rectifier 3 has an input E3 with two input terminals E31 and E32, an output A3 and two coupling terminals B31 and 32.
  • the charging capacitor C1 is connected on one side to the input terminal E31 and on the other side to the anode of the organic diode OD1, the cathode or organic diode OD2 and the coupling terminal B31.
  • the charging capacitor C2 is connected on one side to the cathode of the organic diode OD1 and to the input terminal E32, and on the other side to the anode of the organic diode OD2 and the coupling terminal B32.
  • the output voltage is tapped via the charging capacitor C2.
  • the negative charge on the charge-reversal capacitor C1 is applied to the charge capacitor C2 via the organic diode OD2 transported. It builds up on the charging capacitor C2 an increased negative voltage, which is tapped via the output A3.
  • the rectifiers shown in FIG. 2 and FIG. 3 can each be cascaded in a cascaded arrangement to form a multi-stage organic or printable rectifier.
  • Fig. 4 shows an example of such a rectifier.
  • Fig. 4 shows a rectifier 4, which is constructed of two or more stages, of which in Fig. 4, two stages S41 and S42 are shown.
  • the steps S41 and S42 are each constructed like the rectifier 2 of FIG.
  • Stage S41 thus has an input with two input terminals in E41 and E42, one output A41 and two coupling terminals B41 and B42.
  • Stage S42 has two input terminals E43 and E44, one output A42 and two coupling terminals B43 and B44.
  • the input terminals and coupling terminals of stages S41 and S42 are connected to a recharging capacitor, a charging capacitor and two organic diodes as shown in FIG.
  • the input terminals E41 and E42 of the first stage of the rectifier 4 form an input of the rectifier 4, which is designated in Fig. 4 with E4.
  • the input terminals of the subsequent stage are respectively connected.
  • the output-side DC voltage thus results from the sum of the output voltages at the outputs of the individual stages, so that the voltage applied to the output A4 of the rectifier 4 voltage is further increased.
  • the rectifier 4 by a cascaded arrangement of individual stages, each of which is constructed like the rectifier 3 according to FIG.
  • Fig. 5 shows a rectifier 6, which is composed of differently constructed individual stages.
  • the rectifier 6 has, on the one hand, two or more stages which are each constructed like the rectifier 2 according to FIG. From 5, two stages S61 and S62 with input terminals E61 and E62 or E63 and E64, coupling terminals B61 and B62 or B63 and B64 and outputs A61 and A62 are shown in FIG. 5. These stages are, as already explained with reference to FIG. 4, connected in cascaded arrangement with each other such that the input terminals of the subsequent stage are connected to the coupling terminals of the previous stage.
  • the rectifier 6 further has two or more stages, which are configured like the rectifier 3 according to FIG. 3.
  • Fig. 5 shows two stages S63 and S64 with input terminals E61 and E62 and E65 and E66, coupling terminals B65 and B66 and B67 and B68, and outputs A63 and A64, respectively.
  • These stages are also cascaded, as explained in Fig. 4, interconnected such that the input terminals of the subsequent stage are connected to the coupling terminals of the previous stage.
  • the input terminals of the stages S61 and S63 are respectively connected to the input E6 of the rectifier 6, so that the positive output voltages applied to the outputs of the stages S61 and S62 add to the negative voltages applied to the outputs of the stages S63 and S64, and so that at the output A6 of the rectifier 6 is applied an increased output voltage.
  • FIG. 6 shows an electronic component 5 which has a power source 51, a rectifier 52 and an electronic circuit 53 fed by the rectifier 52.
  • the electronic component 5 is an RFID transponder.
  • the electronic component 5 is, as already explained with reference to FIGS. 1 to 5, constructed from a multilayer flexible film body with two or more electrical functional layers.
  • the energy source 51 is in this case formed by an antenna resonant circuit consisting of an antenna and a tuning capacitor.
  • the rectifier 52 is formed by a rectifier, which is constructed like one of the rectifiers 1, 2, 3, 4 or 6 according to FIGS. 1 to 5.
  • the electronic circuit 53 is an ID code generator which is constructed from one or more active or passive organic components, preferably organic field-effect transistors.
  • the electronic circuit 53 performs another function or is replaced by an output unit, for example, formed by an organic light emitting diode or a liquid crystal display.
  • Fig. 7 shows an electronic component 7 which serves to supply an organic or printable logic circuit.
  • the electronic component 7 has a
  • Voltage source 71 a logic circuit 72, a plurality of organic field effect transistors OF1, OF2, OF3, OF4, two recharging capacitors CS1 and CS2 and a charging capacitor CO on.
  • the two charge-on capacitors CS1 and CS2 each have the capacity of the charge capacitor CO and can also be replaced by a double-capacity capacitor or a larger capacity.
  • the logic circuit is in this case fed by the voltage applied to an output A7 of the electronic component output voltage.
  • the voltage source 71 supplies any alternating voltage with or without DC voltage component.
  • the voltage source 71 may thus be formed, for example, by an antenna resonant circuit according to FIG. 6 and / or by a battery, for example a printed battery or storage battery.
  • the logic circuit 72 consists of one or more interconnected organic field-effect transistors. It controls a switching matrix consisting of the organic field-effect transistors OF1 to OF4. By suitable design and control of the switching matrix is formed by the charging and recharging processes at the output of the switching matrix, a DC voltage.
  • the logic circuit 72 controls the organic field effect transistors OF 1 to OF 4 in such a way that the field effect transistors OF 1 and OF 2 are turned on during the positive half cycle and the field effect transistors OF 3 and OF 4 are not switched through. In a further positive half wave then the organic field effect transistors OF3 and OF4 are turned on and the organic field effect transistors OF1 and OF2 not turned on. Furthermore, it is also possible to provide further organic field-effect transistors in the switching matrix in order, for example, to utilize the negative half-wave of the voltage source 71. Furthermore, it is also possible in this way to increase a DC voltage applied to the switching matrix on the input side.
  • the rectifier 8 shows an electronic component with a voltage source 81, an oscillator 82 and a rectifier 83.
  • the rectifier 83 has an input with two input terminals A81 and A82 and an output 8.
  • the rectifier 83 is like one of the rectifiers 1, 2 , 3, 4 and 6 of Fig. 1 to Fig. 5 constructed.
  • the voltage source 81 is a DC voltage source, for example a battery. Furthermore, it is also possible for the voltage source 81 to be a rectifier which is constructed in accordance with the FIGS. 1 to 5 and which is fed by an AC voltage source, for example an antenna resonant circuit.
  • the oscillator 82 is a printable ring oscillator which converts the input voltage to an AC voltage, preferably having a frequency of less than 1 MHz.
  • the rectifier 83 is a rectifier which is like one of the rectifiers is constructed according to the figures Fig. 1 to Fig. 5. By this construction, the voltage is effectively rectified in a voltage applied to the output 8 DC voltage.
  • a rectifier according to FIGS. 1 to 5 it is also possible for a rectifier according to FIGS. 1 to 5 to be combined with a rectifier according to FIG. 7 in this way, ie a rectifier according to FIGS. 1 to 5 together with an AC voltage source, the voltage source 71 of FIG. 7 forms.
  • a rectifier according to FIGS. 1 to 5 it is possible to achieve, for example, an impedance matching to the supplied from the rectifier electronic circuit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Rectifiers (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Near-Field Transmission Systems (AREA)

Abstract

La présente invention concerne un composant électronique (5) se présentant sous forme d'un corps en feuille souple à plusieurs couches, en particulier un transpondeur d'identification par radiofréquence (RFID), ainsi qu'un redresseur (52) pour un tel composant électronique. Le composant électronique (5) est composé d'une source d'énergie (51), du redresseur (52) et d'un circuit électronique (53) alimenté par le redresseur (52). Le redresseur (52) présente au moins deux diodes organiques ou transistors à effet de champ organiques comprenant respectivement au moins une couche fonctionnelle électrique en matière semi-conductrice. Le redresseur (52) présente également au moins deux condensateurs de charge ou de transfert qui sont connectés auxdites diodes organiques ou auxdits transistors à effet de champ organiques, de manière que les condensateurs de charge ou de transfert puissent être chargés par différentes voies de courant.
EP05850184A 2004-12-23 2005-12-20 Redresseur organique Withdrawn EP1836655A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004063435A DE102004063435A1 (de) 2004-12-23 2004-12-23 Organischer Gleichrichter
PCT/DE2005/002293 WO2006066559A1 (fr) 2004-12-23 2005-12-20 Redresseur organique

Publications (1)

Publication Number Publication Date
EP1836655A1 true EP1836655A1 (fr) 2007-09-26

Family

ID=36117695

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05850184A Withdrawn EP1836655A1 (fr) 2004-12-23 2005-12-20 Redresseur organique

Country Status (11)

Country Link
US (1) US7724550B2 (fr)
EP (1) EP1836655A1 (fr)
JP (1) JP2008526001A (fr)
KR (1) KR101226340B1 (fr)
CN (1) CN101088101A (fr)
AU (1) AU2005318738A1 (fr)
CA (1) CA2590627A1 (fr)
DE (1) DE102004063435A1 (fr)
MX (1) MX2007007460A (fr)
TW (1) TWI323972B (fr)
WO (1) WO2006066559A1 (fr)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005031448A1 (de) 2005-07-04 2007-01-11 Polyic Gmbh & Co. Kg Aktivierbare optische Schicht
US9130602B2 (en) 2006-01-18 2015-09-08 Qualcomm Incorporated Method and apparatus for delivering energy to an electrical or electronic device via a wireless link
US8447234B2 (en) * 2006-01-18 2013-05-21 Qualcomm Incorporated Method and system for powering an electronic device via a wireless link
JP2008199753A (ja) * 2007-02-09 2008-08-28 Yoshiyasu Mutou 電源回路
US9774086B2 (en) 2007-03-02 2017-09-26 Qualcomm Incorporated Wireless power apparatus and methods
US9124120B2 (en) 2007-06-11 2015-09-01 Qualcomm Incorporated Wireless power system and proximity effects
WO2009023155A2 (fr) 2007-08-09 2009-02-19 Nigelpower, Llc Augmentation du facteur de surtension d'un résonateur
CN101803109A (zh) 2007-09-13 2010-08-11 高通股份有限公司 最大化来自无线功率磁谐振器的功率产量
KR20100067676A (ko) 2007-09-17 2010-06-21 퀄컴 인코포레이티드 무선 에너지 전송을 위한 송신기 및 수신기
JP5362733B2 (ja) 2007-10-11 2013-12-11 クゥアルコム・インコーポレイテッド 磁気機械システムを使用する無線電力転送
US8629576B2 (en) 2008-03-28 2014-01-14 Qualcomm Incorporated Tuning and gain control in electro-magnetic power systems
CN102063638B (zh) * 2011-02-17 2012-10-03 上海龙晶微电子有限公司 用于射频电子标签的整流电路
WO2013044224A2 (fr) 2011-09-22 2013-03-28 Blue Spark Technologies, Inc. Procédé de fixation de cellule
US9502992B2 (en) 2012-06-01 2016-11-22 Coriant Operations, Inc. Diode substitute with low drop and minimal loading
US9601267B2 (en) 2013-07-03 2017-03-21 Qualcomm Incorporated Wireless power transmitter with a plurality of magnetic oscillators
EP3067835B1 (fr) * 2015-03-10 2017-12-27 EM Microelectronic-Marin SA Dispositif d'identification hf-uhf à double fréquence
US9768708B2 (en) * 2015-09-08 2017-09-19 The Regents Of The University Of Michigan Wide dynamic range rectifier circuits

Family Cites Families (190)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB723598A (en) 1951-09-07 1955-02-09 Philips Nv Improvements in or relating to methods of producing electrically conductive mouldings from plastics
US3512052A (en) 1968-01-11 1970-05-12 Gen Motors Corp Metal-insulator-semiconductor voltage variable capacitor with controlled resistivity dielectric
DE2102735B2 (de) * 1971-01-21 1979-05-10 Transformatoren Union Ag, 7000 Stuttgart Einrichtung zur Regelung des Mengendurchsatzes von Mühlen und Brechern
US3769096A (en) 1971-03-12 1973-10-30 Bell Telephone Labor Inc Pyroelectric devices
JPS543594B2 (fr) 1973-10-12 1979-02-24
DE2407110C3 (de) 1974-02-14 1981-04-23 Siemens AG, 1000 Berlin und 8000 München Sensor zum Nachweis einer in einem Gas oder einer Flüssigkeit einthaltenen Substanz
US4165022A (en) * 1977-03-02 1979-08-21 Ransburg Corporation Hand-held coating-dispensing apparatus
JPS54101176A (en) 1978-01-26 1979-08-09 Shinetsu Polymer Co Contact member for push switch
US4442019A (en) 1978-05-26 1984-04-10 Marks Alvin M Electroordered dipole suspension
US4246298A (en) 1979-03-14 1981-01-20 American Can Company Rapid curing of epoxy resin coating compositions by combination of photoinitiation and controlled heat application
JPS5641938U (fr) 1979-09-10 1981-04-17
US4340057A (en) 1980-12-24 1982-07-20 S. C. Johnson & Son, Inc. Radiation induced graft polymerization
SE426121B (sv) * 1981-04-28 1982-12-06 Ericsson Telefon Ab L M Hogspenningsomvandlare
EP0108650A3 (fr) 1982-11-09 1986-02-12 Zytrex Corporation Transistor MOS programmable
DE3321071A1 (de) 1983-06-10 1984-12-13 Basf Ag Druckschalter
DE3338597A1 (de) 1983-10-24 1985-05-02 GAO Gesellschaft für Automation und Organisation mbH, 8000 München Datentraeger mit integriertem schaltkreis und verfahren zur herstellung desselben
US4554229A (en) 1984-04-06 1985-11-19 At&T Technologies, Inc. Multilayer hybrid integrated circuit
JPS6265472A (ja) 1985-09-18 1987-03-24 Toshiba Corp Mis型半導体素子
US4926052A (en) 1986-03-03 1990-05-15 Kabushiki Kaisha Toshiba Radiation detecting device
EP0268370B1 (fr) 1986-10-13 1995-06-28 Canon Kabushiki Kaisha Commutateur
GB2215307B (en) 1988-03-04 1991-10-09 Unisys Corp Electronic component transportation container
JPH03500033A (ja) 1988-06-21 1991-01-10 ダブリュー アンド ティー エイヴァリー リミテッド ポータブル電子トークンの製造法
US5364735A (en) 1988-07-01 1994-11-15 Sony Corporation Multiple layer optical record medium with protective layers and method for producing same
US4937119A (en) 1988-12-15 1990-06-26 Hoechst Celanese Corp. Textured organic optical data storage media and methods of preparation
US5892244A (en) 1989-01-10 1999-04-06 Mitsubishi Denki Kabushiki Kaisha Field effect transistor including πconjugate polymer and liquid crystal display including the field effect transistor
US6331356B1 (en) 1989-05-26 2001-12-18 International Business Machines Corporation Patterns of electrically conducting polymers and their application as electrodes or electrical contacts
DE69018348T2 (de) 1989-07-25 1995-08-03 Matsushita Electric Ind Co Ltd Speicherbauelement aus organischem Halbleiter mit einer MISFET-Struktur und sein Kontrollverfahren.
FI84862C (fi) 1989-08-11 1992-01-27 Vaisala Oy Kapacitiv fuktighetsgivarkonstruktion och foerfarande foer framstaellning daerav.
US5206525A (en) 1989-12-27 1993-04-27 Nippon Petrochemicals Co., Ltd. Electric element capable of controlling the electric conductivity of π-conjugated macromolecular materials
FI91573C (sv) 1990-01-04 1994-07-11 Neste Oy Sätt att framställa elektroniska och elektro-optiska komponenter och kretsar
JP2969184B2 (ja) 1990-04-09 1999-11-02 カシオ計算機株式会社 薄膜トランジスタメモリ
FR2664430B1 (fr) 1990-07-04 1992-09-18 Centre Nat Rech Scient Transistor a effet de champ en couche mince de structure mis, dont l'isolant et le semiconducteur sont realises en materiaux organiques.
DE4103675C2 (de) * 1991-02-07 1993-10-21 Telefunken Microelectron Schaltung zur Spannungsüberhöhung von Wechselspannungs-Eingangssignalen
FR2673041A1 (fr) 1991-02-19 1992-08-21 Gemplus Card Int Procede de fabrication de micromodules de circuit integre et micromodule correspondant.
EP0501456A3 (fr) 1991-02-26 1992-09-09 Sony Corporation Ordinateur de jeux vidéo muni d'un lecteur de disques optiques
US5408109A (en) 1991-02-27 1995-04-18 The Regents Of The University Of California Visible light emitting diodes fabricated from soluble semiconducting polymers
US5332315A (en) 1991-04-27 1994-07-26 Gec Avery Limited Apparatus and sensor unit for monitoring changes in a physical quantity with time
JP3224829B2 (ja) 1991-08-15 2001-11-05 株式会社東芝 有機電界効果型素子
JPH0580530A (ja) 1991-09-24 1993-04-02 Hitachi Ltd 薄膜パターン製造方法
US5173835A (en) 1991-10-15 1992-12-22 Motorola, Inc. Voltage variable capacitor
WO1993009469A1 (fr) 1991-10-30 1993-05-13 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Dispositif d'exposition lumineuse
JP2709223B2 (ja) 1992-01-30 1998-02-04 三菱電機株式会社 非接触形携帯記憶装置
EP0603939B1 (fr) 1992-12-21 1999-06-16 Koninklijke Philips Electronics N.V. Polymère conducteur de type N et méthode de préparation d'un tel polymère
DE4243832A1 (de) 1992-12-23 1994-06-30 Daimler Benz Ag Tastsensoranordnung
JP3457348B2 (ja) 1993-01-15 2003-10-14 株式会社東芝 半導体装置の製造方法
FR2701117B1 (fr) 1993-02-04 1995-03-10 Asulab Sa Système de mesures électrochimiques à capteur multizones, et son application au dosage du glucose.
EP0615256B1 (fr) 1993-03-09 1998-09-23 Koninklijke Philips Electronics N.V. Méthode de fabrication d'une configuration d'un polymère électroconducteur à la surface d'un substrat et procédé de métallisation de cette configuration
US5567550A (en) 1993-03-25 1996-10-22 Texas Instruments Incorporated Method of making a mask for making integrated circuits
DE4312766C2 (de) 1993-04-20 1997-02-27 Telefunken Microelectron Schaltung zur Spannungsüberhöhung
JPH0722669A (ja) 1993-07-01 1995-01-24 Mitsubishi Electric Corp 可塑性機能素子
AU7563294A (en) 1993-08-24 1995-03-21 Metrika Laboratories, Inc. Novel disposable electronic assay device
JP3460863B2 (ja) 1993-09-17 2003-10-27 三菱電機株式会社 半導体装置の製造方法
FR2710413B1 (fr) 1993-09-21 1995-11-03 Asulab Sa Dispositif de mesure pour capteurs amovibles.
US5556706A (en) 1993-10-06 1996-09-17 Matsushita Electric Industrial Co., Ltd. Conductive layered product and method of manufacturing the same
IL111151A (en) 1994-10-03 1998-09-24 News Datacom Ltd Secure access systems
KR100350817B1 (ko) 1994-05-16 2003-01-24 코닌클리케 필립스 일렉트로닉스 엔.브이. 유기반도체물질로형성된반도체장치
IL110318A (en) 1994-05-23 1998-12-27 Al Coat Ltd Solutions containing polyaniline for making transparent electrodes for liquid crystal devices
US5684884A (en) 1994-05-31 1997-11-04 Hitachi Metals, Ltd. Piezoelectric loudspeaker and a method for manufacturing the same
JP3246189B2 (ja) 1994-06-28 2002-01-15 株式会社日立製作所 半導体表示装置
US5528222A (en) 1994-09-09 1996-06-18 International Business Machines Corporation Radio frequency circuit and memory in thin flexible package
JPH0898508A (ja) * 1994-09-27 1996-04-12 Matsushita Electric Works Ltd 電源装置
US5574291A (en) 1994-12-09 1996-11-12 Lucent Technologies Inc. Article comprising a thin film transistor with low conductivity organic layer
US5630986A (en) 1995-01-13 1997-05-20 Bayer Corporation Dispensing instrument for fluid monitoring sensors
DE19506907A1 (de) * 1995-02-28 1996-09-05 Telefunken Microelectron Schaltungsanordnung zur Variation eines Eingangssignals mit bestimmter Eingangsspannung und bestimmtem Eingangsstrom
JP3068430B2 (ja) 1995-04-25 2000-07-24 富山日本電気株式会社 固体電解コンデンサ及びその製造方法
JPH0933645A (ja) * 1995-07-21 1997-02-07 Oki Electric Ind Co Ltd トランスポンダの電源回路
US5652645A (en) 1995-07-24 1997-07-29 Anvik Corporation High-throughput, high-resolution, projection patterning system for large, flexible, roll-fed, electronic-module substrates
US5625199A (en) 1996-01-16 1997-04-29 Lucent Technologies Inc. Article comprising complementary circuit with inorganic n-channel and organic p-channel thin film transistors
US6326640B1 (en) 1996-01-29 2001-12-04 Motorola, Inc. Organic thin film transistor with enhanced carrier mobility
GB2310493B (en) 1996-02-26 2000-08-02 Unilever Plc Determination of the characteristics of fluid
JP3080579B2 (ja) 1996-03-06 2000-08-28 富士機工電子株式会社 エアリア・グリッド・アレイ・パッケージの製造方法
DE19629656A1 (de) 1996-07-23 1998-01-29 Boehringer Mannheim Gmbh Diagnostischer Testträger mit mehrschichtigem Testfeld und Verfahren zur Bestimmung von Analyt mit dessen Hilfe
US5693956A (en) 1996-07-29 1997-12-02 Motorola Inverted oleds on hard plastic substrate
US6344662B1 (en) 1997-03-25 2002-02-05 International Business Machines Corporation Thin-film field-effect transistor with organic-inorganic hybrid semiconductor requiring low operating voltages
US5946551A (en) 1997-03-25 1999-08-31 Dimitrakopoulos; Christos Dimitrios Fabrication of thin film effect transistor comprising an organic semiconductor and chemical solution deposited metal oxide gate dielectric
KR100248392B1 (ko) 1997-05-15 2000-09-01 정선종 유기물전계효과트랜지스터와결합된유기물능동구동전기발광소자및그소자의제작방법
JP4509228B2 (ja) 1997-08-22 2010-07-21 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 有機材料から成る電界効果トランジスタ及びその製造方法
BR9811636A (pt) 1997-09-11 2000-08-08 Precision Dynamics Corp Etiqueta de identificação de rádio freqâência em substrato flexìvel
EP1296280A1 (fr) * 1997-09-11 2003-03-26 Precision Dynamics Corporation Etiquette d'identification RF comportant une puce consistant de matériaux organiques
US6251513B1 (en) 1997-11-08 2001-06-26 Littlefuse, Inc. Polymer composites for overvoltage protection
JPH11142810A (ja) 1997-11-12 1999-05-28 Nintendo Co Ltd 携帯型情報処理装置
EP0958663A1 (fr) 1997-12-05 1999-11-24 Koninklijke Philips Electronics N.V. Repondeur d'identification
US5997817A (en) 1997-12-05 1999-12-07 Roche Diagnostics Corporation Electrochemical biosensor test strip
US5998805A (en) 1997-12-11 1999-12-07 Motorola, Inc. Active matrix OED array with improved OED cathode
US6083104A (en) 1998-01-16 2000-07-04 Silverlit Toys (U.S.A.), Inc. Programmable toy with an independent game cartridge
JP2002515641A (ja) 1998-01-28 2002-05-28 シン フイルム エレクトロニクス エイエスエイ 三次元の導電性または半導電性構造体を生成する方法およびこの構造体を消去する方法
US6087196A (en) 1998-01-30 2000-07-11 The Trustees Of Princeton University Fabrication of organic semiconductor devices using ink jet printing
US6045977A (en) 1998-02-19 2000-04-04 Lucent Technologies Inc. Process for patterning conductive polyaniline films
DE19816860A1 (de) 1998-03-06 1999-11-18 Deutsche Telekom Ag Chipkarte, insbesondere Guthabenkarte
US6033202A (en) 1998-03-27 2000-03-07 Lucent Technologies Inc. Mold for non - photolithographic fabrication of microstructures
EP1105772B1 (fr) 1998-04-10 2004-06-23 E-Ink Corporation Afficheurs electroniques utilisant des transistors a effet de champ a base organique
GB9808061D0 (en) 1998-04-16 1998-06-17 Cambridge Display Tech Ltd Polymer devices
GB9808806D0 (en) 1998-04-24 1998-06-24 Cambridge Display Tech Ltd Selective deposition of polymer films
TW410478B (en) 1998-05-29 2000-11-01 Lucent Technologies Inc Thin-film transistor monolithically integrated with an organic light-emitting diode
US5967048A (en) 1998-06-12 1999-10-19 Howard A. Fromson Method and apparatus for the multiple imaging of a continuous web
KR100282393B1 (ko) 1998-06-17 2001-02-15 구자홍 유기이엘(el)디스플레이소자제조방법
DE19836174C2 (de) 1998-08-10 2000-10-12 Illig Maschinenbau Adolf Heizung zum Erwärmen von thermoplastischen Kunststoffplatten und Verfahren zum Einstellen der Temperatur dieser Heizung
US6215130B1 (en) 1998-08-20 2001-04-10 Lucent Technologies Inc. Thin film transistors
CA2340005C (fr) 1998-08-26 2014-05-06 Sensors For Medicine And Science, Inc. Dispositifs de detection optique
JP4493741B2 (ja) 1998-09-04 2010-06-30 株式会社半導体エネルギー研究所 半導体装置の作製方法
DE19851703A1 (de) 1998-10-30 2000-05-04 Inst Halbleiterphysik Gmbh Verfahren zur Herstellung von elektronischen Strukturen
US6384804B1 (en) 1998-11-25 2002-05-07 Lucent Techonologies Inc. Display comprising organic smart pixels
US6506438B2 (en) 1998-12-15 2003-01-14 E Ink Corporation Method for printing of transistor arrays on plastic substrates
US6321571B1 (en) 1998-12-21 2001-11-27 Corning Incorporated Method of making glass structures for flat panel displays
WO2000041893A1 (fr) 1999-01-15 2000-07-20 3M Innovative Properties Company Element de transfert thermique et procede permettant de former des dispositifs electroluminescents organiques
US6114088A (en) 1999-01-15 2000-09-05 3M Innovative Properties Company Thermal transfer element for forming multilayer devices
GB2347013A (en) 1999-02-16 2000-08-23 Sharp Kk Charge-transport structures
US6517955B1 (en) 1999-02-22 2003-02-11 Nippon Steel Corporation High strength galvanized steel plate excellent in adhesion of plated metal and formability in press working and high strength alloy galvanized steel plate and method for production thereof
US6300141B1 (en) 1999-03-02 2001-10-09 Helix Biopharma Corporation Card-based biosensor device
US6180956B1 (en) 1999-03-03 2001-01-30 International Business Machine Corp. Thin film transistors with organic-inorganic hybrid materials as semiconducting channels
US6207472B1 (en) 1999-03-09 2001-03-27 International Business Machines Corporation Low temperature thin film transistor fabrication
TW508975B (en) 1999-03-29 2002-11-01 Seiko Epson Corp Composition, film manufacturing method, as well as functional device and manufacturing method therefor
KR100412743B1 (ko) 1999-03-30 2003-12-31 세이코 엡슨 가부시키가이샤 박막 트랜지스터의 제조 방법
US6498114B1 (en) 1999-04-09 2002-12-24 E Ink Corporation Method for forming a patterned semiconductor film
US6072716A (en) 1999-04-14 2000-06-06 Massachusetts Institute Of Technology Memory structures and methods of making same
FR2793089B3 (fr) 1999-04-28 2001-06-08 Rene Liger Transpondeur a antenne integree
DE19919448A1 (de) 1999-04-29 2000-11-02 Miele & Cie Kühlgerät und Verfahren zur Verkeimungsindikation
DE19921024C2 (de) 1999-05-06 2001-03-08 Wolfgang Eichelmann Videospielanlage
US6383664B2 (en) 1999-05-11 2002-05-07 The Dow Chemical Company Electroluminescent or photocell device having protective packaging
EP1052594A1 (fr) 1999-05-14 2000-11-15 Sokymat S.A. Transpondeur et moule ainsi que leur procédé de fabrication
DE69913745T2 (de) 1999-05-17 2004-10-07 Goodyear Tire & Rubber Rf transponder und verfahren zur steuerung der rf signalmodulation in einem passiven transponder
TW556357B (en) 1999-06-28 2003-10-01 Semiconductor Energy Lab Method of manufacturing an electro-optical device
JP2001085272A (ja) 1999-07-14 2001-03-30 Matsushita Electric Ind Co Ltd 可変容量コンデンサ
US6366017B1 (en) 1999-07-14 2002-04-02 Agilent Technologies, Inc/ Organic light emitting diodes with distributed bragg reflector
DE19933757A1 (de) 1999-07-19 2001-01-25 Giesecke & Devrient Gmbh Chipkarte mit integrierter Batterie
DE19935527A1 (de) 1999-07-28 2001-02-08 Giesecke & Devrient Gmbh Aktive Folie für Chipkarten mit Display
DE19937262A1 (de) 1999-08-06 2001-03-01 Siemens Ag Anordnung mit Transistor-Funktion
US6593690B1 (en) 1999-09-03 2003-07-15 3M Innovative Properties Company Large area organic electronic devices having conducting polymer buffer layers and methods of making same
EP1085320A1 (fr) 1999-09-13 2001-03-21 Interuniversitair Micro-Elektronica Centrum Vzw Dispositif à base de matériaux organiques pour la détection d'un analyte dans un échantillon
US6517995B1 (en) 1999-09-14 2003-02-11 Massachusetts Institute Of Technology Fabrication of finely featured devices by liquid embossing
WO2001023131A1 (fr) 1999-09-28 2001-04-05 Sumitomo Heavy Industries, Ltd. Procede et dispositif de perçage par laser
US6340822B1 (en) 1999-10-05 2002-01-22 Agere Systems Guardian Corp. Article comprising vertically nano-interconnected circuit devices and method for making the same
EP1149420B1 (fr) 1999-10-11 2015-03-04 Creator Technology B.V. Circuit integre
US6335539B1 (en) 1999-11-05 2002-01-01 International Business Machines Corporation Method for improving performance of organic semiconductors in bottom electrode structure
US6284562B1 (en) 1999-11-17 2001-09-04 Agere Systems Guardian Corp. Thin film transistors
EP1103916A1 (fr) 1999-11-24 2001-05-30 Infineon Technologies AG Carte à puce
US6621098B1 (en) 1999-11-29 2003-09-16 The Penn State Research Foundation Thin-film transistor and methods of manufacturing and incorporating a semiconducting organic material
US6136702A (en) 1999-11-29 2000-10-24 Lucent Technologies Inc. Thin film transistors
US6197663B1 (en) 1999-12-07 2001-03-06 Lucent Technologies Inc. Process for fabricating integrated circuit devices having thin film transistors
EP1243032B1 (fr) 1999-12-21 2019-11-20 Flexenable Limited Circuits integres fabriques par jet d'encre
AU779878B2 (en) 1999-12-21 2005-02-17 Flexenable Limited Forming interconnects
US7002451B2 (en) 2000-01-11 2006-02-21 Freeman Jeffrey R Package location system
JP2002162652A (ja) 2000-01-31 2002-06-07 Fujitsu Ltd シート状表示装置、樹脂球状体、及びマイクロカプセル
US6706159B2 (en) 2000-03-02 2004-03-16 Diabetes Diagnostics Combined lancet and electrochemical analyte-testing apparatus
TW497120B (en) 2000-03-06 2002-08-01 Toshiba Corp Transistor, semiconductor device and manufacturing method of semiconductor device
JP3614747B2 (ja) 2000-03-07 2005-01-26 Necエレクトロニクス株式会社 昇圧回路、それを搭載したicカード及びそれを搭載した電子機器
DE10012204A1 (de) 2000-03-13 2001-09-20 Siemens Ag Einrichtung zum Kennzeichnen von Stückgut
EP1134694A1 (fr) 2000-03-16 2001-09-19 Infineon Technologies AG Document avec circuit électronique intégré
KR100767204B1 (ko) 2000-03-28 2007-10-17 다이어베티스 다이어그노스틱스, 인크. 일회용 전기화학적 센서의 연속 제조 방법
US6329226B1 (en) 2000-06-01 2001-12-11 Agere Systems Guardian Corp. Method for fabricating a thin-film transistor
DE10032260B4 (de) * 2000-07-03 2004-04-29 Texas Instruments Deutschland Gmbh Schaltungsanordnung zur Verdoppelung der Spannung einer Batterie
DE10033112C2 (de) 2000-07-07 2002-11-14 Siemens Ag Verfahren zur Herstellung und Strukturierung organischer Feldeffekt-Transistoren (OFET), hiernach gefertigter OFET und seine Verwendung
DE10120687A1 (de) 2001-04-27 2002-10-31 Siemens Ag Verkapseltes organisch-elektronisches Bauteil, Verfahren zu seiner Herstellung und seine Verwendung
US7875975B2 (en) 2000-08-18 2011-01-25 Polyic Gmbh & Co. Kg Organic integrated circuit completely encapsulated by multi-layered barrier and included in RFID tag
JP2002068324A (ja) 2000-08-30 2002-03-08 Nippon Sanso Corp 断熱容器
DE10043204A1 (de) 2000-09-01 2002-04-04 Siemens Ag Organischer Feld-Effekt-Transistor, Verfahren zur Strukturierung eines OFETs und integrierte Schaltung
DE10044842A1 (de) * 2000-09-11 2002-04-04 Siemens Ag Organischer Gleichrichter, Schaltung, RFID-Tag und Verwendung eines organischen Gleichrichters
DE10045192A1 (de) 2000-09-13 2002-04-04 Siemens Ag Organischer Datenspeicher, RFID-Tag mit organischem Datenspeicher, Verwendung eines organischen Datenspeichers
DE10047171A1 (de) 2000-09-22 2002-04-18 Siemens Ag Elektrode und/oder Leiterbahn für organische Bauelemente und Herstellungverfahren dazu
KR20020036916A (ko) 2000-11-11 2002-05-17 주승기 실리콘 박막의 결정화 방법 및 이에 의해 제조된 반도체소자
DE10058559A1 (de) 2000-11-24 2002-05-29 Interactiva Biotechnologie Gmb System zur Abwicklung eines Warentransfers und Warenvorrats-Behälter
KR100390522B1 (ko) 2000-12-01 2003-07-07 피티플러스(주) 결정질 실리콘 활성층을 포함하는 박막트랜지스터 제조 방법
DE10061297C2 (de) 2000-12-08 2003-05-28 Siemens Ag Verfahren zur Sturkturierung eines OFETs
GB2371910A (en) 2001-01-31 2002-08-07 Seiko Epson Corp Display devices
DE10105914C1 (de) 2001-02-09 2002-10-10 Siemens Ag Organischer Feldeffekt-Transistor mit fotostrukturiertem Gate-Dielektrikum und ein Verfahren zu dessen Erzeugung
US6767807B2 (en) 2001-03-02 2004-07-27 Fuji Photo Film Co., Ltd. Method for producing organic thin film device and transfer material used therein
DE10117663B4 (de) 2001-04-09 2004-09-02 Samsung SDI Co., Ltd., Suwon Verfahren zur Herstellung von Matrixanordnungen auf Basis verschiedenartiger organischer leitfähiger Materialien
DE10120686A1 (de) 2001-04-27 2002-11-07 Siemens Ag Verfahren zur Erzeugung dünner homogener Schichten mit Hilfe der Siebdrucktechnik, Vorrichtung zur Durchführung des Verfahren und ihre Verwendung
AU2002340793A1 (en) 2001-05-07 2002-11-18 Coatue Corporation Molecular memory device
US20020170897A1 (en) 2001-05-21 2002-11-21 Hall Frank L. Methods for preparing ball grid array substrates via use of a laser
CN1292496C (zh) 2001-05-23 2006-12-27 造型逻辑有限公司 器件的图案形成
US6870180B2 (en) 2001-06-08 2005-03-22 Lucent Technologies Inc. Organic polarizable gate transistor apparatus and method
DE20111825U1 (de) 2001-07-20 2002-01-17 Lammering, Thomas, Dipl.-Ing., 33335 Gütersloh Printmedium
DE10141440A1 (de) 2001-08-23 2003-03-13 Daimler Chrysler Ag Tripodegelenk
JP2003089259A (ja) 2001-09-18 2003-03-25 Hitachi Ltd パターン形成方法およびパターン形成装置
US7351660B2 (en) 2001-09-28 2008-04-01 Hrl Laboratories, Llc Process for producing high performance interconnects
US6679036B2 (en) 2001-10-15 2004-01-20 Shunchi Crankshaft Co., Ltd. Drive gear shaft structure of a self-moving type mower
DE10151440C1 (de) 2001-10-18 2003-02-06 Siemens Ag Organisches Elektronikbauteil, Verfahren zu seiner Herstellung und seine Verwendung
DE10163267A1 (de) 2001-12-21 2003-07-03 Giesecke & Devrient Gmbh Blattgut mit einem elektrischen Schaltkreis sowie Vorrichtung und Verfahren zur Bearbeitung des Blattguts
DE10209400A1 (de) * 2002-03-04 2003-10-02 Infineon Technologies Ag Transponderschaltung mit einer Gleichrichterschaltung sowie Verfahren zur Herstellung einer Transponderschaltung mit einer Gleichrichterschaltung
US6777829B2 (en) * 2002-03-13 2004-08-17 Celis Semiconductor Corporation Rectifier utilizing a grounded antenna
DE10219905B4 (de) 2002-05-03 2011-06-22 OSRAM Opto Semiconductors GmbH, 93055 Optoelektronisches Bauelement mit organischen funktionellen Schichten und zwei Trägern sowie Verfahren zur Herstellung eines solchen optoelektronischen Bauelements
US6812509B2 (en) 2002-06-28 2004-11-02 Palo Alto Research Center Inc. Organic ferroelectric memory cells
US6914528B2 (en) * 2002-10-02 2005-07-05 Battelle Memorial Institute Wireless communication systems, radio frequency identification devices, methods of enhancing a communications range of a radio frequency identification device, and wireless communication methods
AT502890B1 (de) 2002-10-15 2011-04-15 Atomic Austria Gmbh Elektronisches überwachungssystem zur kontrolle bzw. erfassung einer aus mehreren sportartikeln bestehenden sportartikelkombination
US6870183B2 (en) 2002-11-04 2005-03-22 Advanced Micro Devices, Inc. Stacked organic memory devices and methods of operating and fabricating
US20060118778A1 (en) 2002-11-05 2006-06-08 Wolfgang Clemens Organic electronic component with high-resolution structuring and method for the production thereof
EP1563553B1 (fr) 2002-11-19 2007-02-14 PolyIC GmbH & Co. KG Circuit electronique organique comportant une couche fonctionnelle semiconductrice structuree et procede de fabrication de ce composant
ATE540436T1 (de) 2002-11-19 2012-01-15 Polyic Gmbh & Co Kg Organisches elektronisches bauelement mit gleichem organischem material für zumindest zwei funktionsschichten
US7078937B2 (en) * 2003-12-17 2006-07-18 3M Innovative Properties Company Logic circuitry powered by partially rectified ac waveform

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2006066559A1 *

Also Published As

Publication number Publication date
US7724550B2 (en) 2010-05-25
TWI323972B (en) 2010-04-21
KR20070089950A (ko) 2007-09-04
TW200635198A (en) 2006-10-01
JP2008526001A (ja) 2008-07-17
DE102004063435A1 (de) 2006-07-27
AU2005318738A1 (en) 2006-06-29
CA2590627A1 (fr) 2006-06-29
MX2007007460A (es) 2007-08-15
KR101226340B1 (ko) 2013-01-24
US20080225564A1 (en) 2008-09-18
WO2006066559A1 (fr) 2006-06-29
CN101088101A (zh) 2007-12-12

Similar Documents

Publication Publication Date Title
WO2006066559A1 (fr) Redresseur organique
DE102007046679B4 (de) RFID-Transponder
DE10044842A1 (de) Organischer Gleichrichter, Schaltung, RFID-Tag und Verwendung eines organischen Gleichrichters
EP1436839A2 (fr) Unite electronique, concept de circuit pour cette unite et procede de production
EP1825423B1 (fr) Composant electronique comprenant un modulateur
DE102004057368A1 (de) Kreispolarisationsantenne und Rectenna, welche diese Antenne verwendet
EP1656683B1 (fr) Condensateur organique a capacite commandee en tension
DE102005017655B4 (de) Mehrschichtiger Verbundkörper mit elektronischer Funktion
DE10209400A1 (de) Transponderschaltung mit einer Gleichrichterschaltung sowie Verfahren zur Herstellung einer Transponderschaltung mit einer Gleichrichterschaltung
DE102004029439A1 (de) Gleichrichter-Schaltkreis, Schaltkreis-Anordnung und Verfahren zum Herstellen eines Gleichrichter-Schaltkreises
EP2377157A1 (fr) Circuit électronique organique
EP3621178A1 (fr) Dispositif d'alimentation en tension alternative
WO2020249753A1 (fr) Redresseur pour signaux de tension alternative à ondes millimétriques
CN110719040A (zh) 一种有机整流器
DE102013102052B4 (de) Chip-Anordnung
DE102005050324B4 (de) Gleichrichter
EP2068447B1 (fr) Bloc électronique doté d'éléments de commutation organiques
EP3599796A1 (fr) Bande lumineuse à del et système d'éclairage
EP2399292A2 (fr) Circuit électronique organique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070720

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BOEHM, MARKUS

Inventor name: ZIPPERER, DIETMAR

Inventor name: LORENZ, MARKUS

Inventor name: ULLMANN, ANDREAS

DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1108502

Country of ref document: HK

17Q First examination report despatched

Effective date: 20090728

REG Reference to a national code

Ref country code: HK

Ref legal event code: WD

Ref document number: 1108502

Country of ref document: HK

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20150701