EP1445305B1 - Verwendung von Übergangsmetallkomplexen als Bleichkatalysatoren - Google Patents

Verwendung von Übergangsmetallkomplexen als Bleichkatalysatoren Download PDF

Info

Publication number
EP1445305B1
EP1445305B1 EP04001912A EP04001912A EP1445305B1 EP 1445305 B1 EP1445305 B1 EP 1445305B1 EP 04001912 A EP04001912 A EP 04001912A EP 04001912 A EP04001912 A EP 04001912A EP 1445305 B1 EP1445305 B1 EP 1445305B1
Authority
EP
European Patent Office
Prior art keywords
bis
weight
pyridine
bleaching
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP04001912A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP1445305A1 (de
Inventor
Gerd Dr. Reinhardt
Ekaterina Dr. Jonas
Daniel Kewitz
Aylin Karadag
Hans Prehler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Clariant Produkte Deutschland GmbH
Original Assignee
Clariant Produkte Deutschland GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Clariant Produkte Deutschland GmbH filed Critical Clariant Produkte Deutschland GmbH
Publication of EP1445305A1 publication Critical patent/EP1445305A1/de
Application granted granted Critical
Publication of EP1445305B1 publication Critical patent/EP1445305B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/39Organic or inorganic per-compounds
    • C11D3/3902Organic or inorganic per-compounds combined with specific additives
    • C11D3/3905Bleach activators or bleach catalysts
    • C11D3/3932Inorganic compounds or complexes

Definitions

  • the present invention relates to the use of certain transition metal complex compounds for enhancing the bleaching effect of peroxygen compounds in bleaching colored stains on textiles as well as on hard surfaces, as well as detergents and cleaners containing such complex compounds.
  • Inorganic peroxygen compounds particularly hydrogen peroxide and solid peroxygen compounds which dissolve in water to release hydrogen peroxide, such as sodium perborate and sodium carbonate perhydrate, have long been used as oxidizing agents for disinfecting and bleaching purposes.
  • the oxidation effect of these substances in dilute solutions depends strongly on the temperature; Thus, for example, with H 2 O 2 or perborate in alkaline bleaching liquors only at temperatures above about 80 ° C, a sufficiently fast bleaching of soiled textiles.
  • the oxidation effect of the inorganic peroxygen compounds can be improved by adding so-called bleach activators.
  • bleach activators For this purpose, numerous compounds have been proposed, especially from the classes of N- or O-acyl compounds, for example, polyacylated alkylenediamines, in particular tetraacetylglycoluril, N-acylated hydantoins, hydrazides, triazoles, hydrotriazines, urazoles.
  • NOBS sodium nonanoyloxybenzenesulfonate
  • ISONOBS sodium isononanoyloxybenzenesulfonate
  • acylated sugar derivatives such as pentaacetylglucose.
  • WO 96/23859, WO 96/23860 and WO 96/23861 describe the use of corresponding Co (III) complexes in automatic dishwashing compositions.
  • certain manganese complexes are known from EP 0 630 964 which, although they have no pronounced effect on bleach reinforcement of peroxygen compounds, do not discolor dyed textile fibers, they can cause the bleaching of soil or dye removed from the fiber in wash liquors.
  • copper and cobalt complexes are known which can carry ligands from a variety of groups of substances and are to be used as bleaching and oxidation catalysts.
  • WO 97/07191 proposes complexes of manganese, iron, cobalt, ruthenium and malenbdenum with salen-type ligands as activators for peroxygen compounds in hard surface cleaning solutions.
  • EP 1 225 215 describes the use of transition metal complexes containing oxime ligands as a catalyst for peroxygen compounds.
  • the present invention has the object of improving the oxidation and bleaching action of peroxygen compounds, especially inorganic peroxygen compounds, at low temperatures below 80 ° C. especially in the temperature range of about 10 ° C to 45 ° C, the goal.
  • the required metal complexes should be easily accessible and easy to prepare.
  • transition metal complexes with nitrogen-containing ligands contribute significantly to the cleaning performance against colored stains that are on textiles or on hard surfaces.
  • transition metal complexes are used in detergents, bleaches, and cleaners containing peroxygen compounds, particularly in laundry and hard surface cleaners, particularly for utensils, and in solutions for bleaching colored stains.
  • ligand L examples include pyridine, imidazole, picoline, imidazoline, pyrrole, pyrazole, triazole, hexamethyleneimine, piperidine, lutidines or similar nitrogen-containing heterocycles, which are unsubstituted or substituted by one or two C 1 -C 4 alkyl groups
  • the halides such as chloride, bromide and iodide are used, but also nitrate, sulfate, perchlorate, ammonia and complex anions such as tetrafluoroborate and hexafluorophosphate or anions of organic C 1 -C 22 carboxylic acids such as citrates, acetates, propionates , Butyrates, hexanoates, octanoates, nonanoate and laurate.
  • the anion ligands provide charge balance between the transition metal central atom and the ligand system.
  • Particularly preferred complexes are compounds of the structure Fe (L) 2 X 2 or Mn (L) 2 X 2 such as bis (pyridine) dichloro-iron (II), bis (pyridine) dichloro-manganese (II), such as bis (morpholine) dichloro-iron (II), bis (morpholine) dichloro-manganese (II), bis (methylimidazole) dichloro-iron (II), bis (methylimidazole) dichloro-manganese (II), bis (ethylimidazole) dichloro-iron (II) , Bis (ethylimidazole) dichloro-manganese (II), bis (pyrazole) dichloro-manganese (II), bis (pyrazole) dichloro-manganese (II), bis (pyrazole) dichloro-iron (II), bis (pyridine) dibromoiron (II), bis (pyridine
  • the peroxygen compound used are primarily alkali metal perborate mono- or tetrahydrate and / or alkali metal percarbonate, with sodium being the preferred alkali metal.
  • alkali metal or ammonium peroxosulfates such as, for example, potassium peroxomonosulfate (technical name: Caroat® or Oxone®).
  • concentration of these peroxygen compounds on the total formulation of detergents, bleaches and cleaners is 5 - 90%, preferably 10 - 70%.
  • the amounts of peroxygen compounds are generally chosen so that between 10 ppm and 10% active oxygen, preferably between 50 ppm and 5000 ppm active oxygen, are present in the solutions of the detergents and cleaners.
  • bleach-enhancing Complex connection depends on the purpose of use. Depending on the desired degree of activation, it is used in amounts such that 0.01 mmol to 25 mmol, preferably 0.1 mmol to 2 mmol complex per mole of peroxygen compound are used, but in special cases, these limits can also be exceeded or fallen below.
  • bleaching and cleaning agents are preferably 0.0025 to 0.25 wt .-%, in particular 0.01 to 0.5 wt .-% of the above-defined bleach-enhancing complex compound.
  • washing, bleaching and cleaning agents may also contain hydrogen peroxide or organic-based oxidizing agents in the concentration range of 1 to 20%.
  • hydrogen peroxide or organic-based oxidizing agents include all known peroxycarboxylic acids, e.g. Monoperoxyphthalic acid, dodecanediperoxyacid or phthalimidoperoxycarboxylic acids such as PAP and related systems or the amido peracids mentioned in EP-A-170386.
  • bleaching here encompasses both the bleaching of dirt located on the textile surface and the bleaching of dirt located in the wash liquor and detached from the textile surface. The same applies analogously to the bleaching of soiling on hard surfaces. Other potential applications are in personal care, e.g. in the bleaching of hair and to improve the effectiveness of denture cleaners. Furthermore, the described metal complexes find use in commercial laundries, in wood and paper bleaching, bleaching of cotton and in disinfectants.
  • the invention relates to a process for the purification of textiles as well as hard surfaces, in particular crockery, using said complex compounds together with peroxygen compounds in aqueous, optionally further detergent or detergent ingredients containing solution, and detergents and cleaners for hard surfaces, in particular detergents for dishes, those preferred for use in machine processes containing such complex compounds.
  • the use according to the invention essentially consists in providing conditions for hard surfaces contaminated with colored soiling or, in the case of soiled textiles, conditions under which a peroxidic oxidizing agent and the complex compound of the formula (1) can react with one another, with the aim of obtaining more strongly oxidizing secondary products , Such conditions are especially present when the reactants meet in aqueous solution.
  • This can be done by separately adding the peroxygen compound and the complex of formula (1) to the aqueous solution of the detergent and cleaner.
  • the process according to the invention is particularly advantageously carried out using a detergent or hard surface cleaning agent which contains the complex compound of the formula (1) and, if appropriate, a peroxygen-containing oxidizing agent.
  • the peroxygen compound may also be added to the solution separately, in bulk or as a preferably aqueous solution or suspension, when a non-oxygen detergent or cleaner is used.
  • the washing and cleaning agents which may be in the form of granules, powdery or tablet-like solids, other shaped bodies, homogeneous solutions or suspensions, may contain, in principle, all known ingredients customary in such agents, as well as the said bleach-enhancing metal complex.
  • the compositions may contain, in particular, builder substances, surface-active surfactants, peroxygen compounds, additional peroxygen activators or organic peracids, water-miscible organic solvents, sequestering agents, enzymes, and special additives with color- or fiber-sparing action.
  • Other auxiliaries such as electrolytes, pH regulators, silver corrosion inhibitors, foam regulators, as well as dyes and fragrances are possible.
  • a hard surface cleaning agent according to the invention may contain abrasive constituents, in particular quartz flours, wood flours, plastic flours, chalks and glass microspheres, and mixtures thereof.
  • Abrasives are preferably not more than 20 wt .-%, in particular from 5 to 15 wt .-%, contained in the cleaning agents.
  • the washing, bleaching and cleaning agents may contain one or more surfactants, in particular anionic surfactants, nonionic surfactants and mixtures thereof, but also cationic, zwitterionic and amphoteric surfactants in question.
  • surfactants are present in detergent compositions according to the invention in proportions of preferably from 1 to 50% by weight, in particular from 3 to 30% by weight, whereas in hard-surface cleaners normally lower proportions, that is to say amounts of up to 20% by weight. , in particular up to 10 wt .-% and preferably in the range of 0.5 to 5 wt .-% are included.
  • Dishwashing detergents typically use low-foam compounds.
  • Suitable anionic surfactants are in particular soaps and those which contain sulfate or sulfonate groups.
  • surfactants of the sulfonate type are preferably C 9 -C 13 alkylbenzenesulfonates, olefinsulfonates, that is mixtures of alkene and hydroxyalkanesulfonates and disulfonates, such as those of monoolefins with terminal or internal double bond by sulfonating with gaseous sulfur trioxide and subsequent alkaline or acid hydrolysis of the sulfonation obtained.
  • alkanesulfonates which are obtained from C 12 -C 18 -alkanes, for example by sulfochlorination or sulfoxidation with subsequent hydrolysis or neutralization.
  • esters of alpha-sulfo fatty acids for example the alpha-sulfonated methyl esters of hydrogenated coconut, palm kernel or tallow fatty acids obtained by sulfonating the methyl esters of fatty acids of vegetable and / or animal origin having 8 to 20 carbon atoms be prepared in the fatty acid molecule and subsequent neutralization to water-soluble mono-salts.
  • Suitable anionic surfactants are sulfated fatty acid glycerol esters, which are mono-, di- and triesters and mixtures thereof.
  • Alk (en) ylsulfates are the alkali metal salts and in particular the sodium salts of the sulfuric monoesters of C 12 -C 18 fatty alcohols, for example, coconut fatty alcohol, tallow fatty alcohol, lauryl, myristyl, cetyl or stearyl alcohol or the C 8 -C 20 oxo alcohols and those half-esters of secondary alcohols of this chain length are preferred.
  • alk (en) ylsulfates of said chain length which contain a synthetic, straight-chain alkyl radical produced on a petrochemical basis.
  • 2,3-Alkyl sulfates prepared, for example, according to US Pat. Nos. 3,234,158 and 5,075,041 are suitable anionic surfactants.
  • EO ethylene oxide
  • the preferred anionic surfactants also include the salts of alkylsulfosuccinic acid, which are also referred to as sulfosuccinates or as sulfosuccinic acid esters, and the monoesters and / or diesters of sulfosuccinic acid with alcohols, preferably fatty alcohols and in particular ethoxylated fatty alcohols.
  • alcohols preferably fatty alcohols and in particular ethoxylated fatty alcohols.
  • Preferred sulfosuccinates contain C 8 -C 18 fatty alcohol residues or mixtures of these.
  • Suitable further anionic surfactants are fatty acid derivatives of amino acids, for example N-methyltaurine (Tauride) and / or N-methylglycine (sarcosinate).
  • anionic surfactants are in particular soaps, for example in amounts of 0.2 to 5 wt .-%, into consideration.
  • Particularly suitable are saturated fatty acid soaps, such as the salts of lauric acid, myristic acid, palmitic acid, stearic acid, hydrogenated erucic acid and behenic acid and, in particular, soap mixtures derived from natural fatty acids, for example coconut, palm kernel or tallow fatty acids.
  • the anionic surfactants may be in the form of their sodium, potassium or ammonium salts and as soluble salts of organic bases, such as mono-, di- or triethanolamine.
  • the anionic surfactants are preferably present in the form of their sodium or potassium salts, in particular in the form of the sodium salts.
  • Anionic surfactants are preferably present in detergents according to the invention in amounts of from 0.5 to 10% by weight and in particular in amounts of from 5 to 25% by weight.
  • the nonionic surfactants used are preferably alkoxylated, advantageously ethoxylated, in particular primary, alcohols having preferably 8 to 18 carbon atoms and on average 1 to 12 moles of ethylene oxide (EO) per mole of alcohol, in which the alcohol radical can be linear or preferably methyl-branched in the 2-position . or may contain linear and methyl-branched radicals in the mixture, as they are usually present in Oxoalkoholresten.
  • alcohol ethoxylates with linear radicals of alcohols of natural origin having 12 to 18 carbon atoms, for example from coconut, palm, tallow or oleyl alcohol, and on average 2 to 8 EO per mole of alcohol are preferred.
  • the preferred ethoxylated alcohols include, for example, C 12 -C 14 -alcohols with 3 EO or 4 EO, C 9 -C 11 -alcohols with 7 EO, C 13 -C 15 -alcohols with 3 EO, 5 EO, 7 EO or 8 EO, C 12 -C 18 -alcohols with 3 EO, 5 EO or 7 EO and mixtures of these, such as mixtures of C 12 -C 14 -alcohol with 3 EO and C 12 -C 18 -alcohol with 7 EO.
  • the degrees of ethoxylation given represent statistical means which, for a particular product, may be an integer or a fractional number.
  • Preferred alcohol ethoxylates have a narrow homolog distribution (narrow range ethoxylates, NRE).
  • fatty alcohols with more than 12 EO can also be used. Examples include (tallow) fatty alcohols with 14 EO, 16 EO, 20 EO, 25 EO, 30 EO or 40 EO.
  • the nonionic surfactants also include alkyl glycosides of the general formula RO (G) x in which R is a primary straight-chain or methyl-branched, in particular 2-methyl-branched aliphatic radical having 8 to 22, preferably 12 to 18 carbon atoms and G represents a glycose unit having 5 or 6 C atoms, preferably glucose.
  • the degree of oligomerization x which indicates the distribution of monoglycosides and oligoglycosides, is an arbitrary number - which, as a variable to be determined analytically, may also assume fractional values - between 1 and 10; preferably x is 1.2 to 1.4.
  • polyhydroxy fatty acid amides of the formula (I) in the radical R 1 -CO for an aliphatic acyl radical having 6 to 22 carbon atoms
  • R 2 for hydrogen, an alkyl or hydroxyalkyl radical having 1 to 4 carbon atoms
  • [Z] for a linear or branched polyhydroxyalkyl radical having 3 to 10 carbon atoms and 3 to 10 hydroxyl groups.
  • the group of polyhydroxy fatty acid amides also includes compounds of the formula (II) in R 3 is a linear or branched alkyl or alkenyl radical having 7 to 21 carbon atoms, R 4 is a linear, branched or cyclic alkylene radical or an arylene radical having 6 to 8 carbon atoms and R 5 is a linear, branched or cyclic alkyl radical or an aryl radical or a Oxy-alkyl radical having 1 to 8 carbon atoms, wherein C 1 -C 4 alkyl or phenyl radicals are preferred, and [Z] is a linear polyhydroxyalkyl radical whose alkyl chain is substituted with at least two hydroxyl groups, or alkoxylated, preferably ethoxylated or propoxylated derivatives this rest stands.
  • [Z] is also obtained here preferably by reductive amination of a sugar such as glucose, fructose, maltose, lactose, galactose, mannose or xylose.
  • a sugar such as glucose, fructose, maltose, lactose, galactose, mannose or xylose.
  • the N-alkoxy- or N-aryloxy-substituted compounds can then be converted into the desired polyhydroxy fatty acid amides according to WO 95/07331, for example, by reaction with fatty acid methyl esters in the presence of an alkoxide as catalyst.
  • nonionic surfactants used either as the sole nonionic surfactant or in combination with other nonionic surfactants, in particular together with alkoxylated fatty alcohols and / or alkyl glycosides, are alkoxylated, preferably ethoxylated or ethoxylated and propoxylated fatty acid alkyl esters, preferably from 1 to 4 carbon atoms in the alkyl chain, especially fatty acid methyl ester.
  • Nonionic surfactants of the amine oxide type for example N-cocoalkyl-N, N-dimethylamine oxide and N-tallowalkyl-N, N-dihydroxyethylamine oxide and the fatty acid alkanolamides may also be suitable.
  • hydroxyalkyl quats of the general structures (III) and (IV) are preferred.
  • surfactants are so-called gemini surfactants. These are generally understood as meaning those compounds which have two hydrophilic groups per molecule. These groups are usually separated by a so-called “spacer". This spacer is typically a carbon chain that should be long enough for the hydrophilic groups to be spaced sufficiently apart for them to act independently of each other. Such surfactants are generally characterized by an unusually low critical micelle concentration and the ability to greatly reduce the surface tension of the water. However, it is also possible to use gemini-polyhydroxy fatty acid amides or poly-polyhydroxy fatty acid amides, as described in WO 95/19953, WO 95/19954 and WO 95/19955. Other surfactant types may have dendrimeric structures.
  • a detergent according to the invention preferably contains at least one water-soluble and / or water-insoluble, organic and / or inorganic builder.
  • Suitable water-soluble inorganic builder materials are, in particular, alkali metal silicates and polymeric alkali metal phosphates which may be present in the form of their alkaline, neutral or acidic sodium or potassium salts. Examples of these are trisodium phosphate, tetrasodium diphosphate, disodium dihydrogen diphosphate, pentasodium triphosphate, so-called Natriumhexametaphosphat and the corresponding potassium salts or mixtures of sodium and potassium salts.
  • the water-insoluble, water-dispersible inorganic builder materials used are, in particular, crystalline or amorphous alkali aluminosilicates, in amounts of up to 50% by weight.
  • the detergent grade crystalline sodium aluminosilicates particularly zeolite A, P and optionally X, alone or in mixtures, for example in the form of a cocrystal of zeolites A and X.
  • Their calcium binding capacity is generally in the range of 100 to 200 mg CaO per gram.
  • Suitable builder substances are also crystalline alkali metal silicates, which may be present alone or in a mixture with amorphous silicates.
  • the alkali metal silicates useful as builders preferably have a molar ratio of alkali metal oxide to SiO 2 below 0.95, in particular from 1: 1.1 to 1:12, and may be present in amorphous or crystalline form.
  • Preferred alkali metal silicates are the sodium silicates, in particular the amorphous sodium silicates with a molar ratio of Na 2 O: SiO 2 , of 1: 2 to 1: 2.8.
  • Crystalline silicates which may be present alone or in a mixture with amorphous silicates are preferably crystalline phyllosilicates of the general formula Na 2 Si x O 2 ⁇ + 1 .
  • YH 2 O is used, in which x, the so-called modulus, is a number from 1.9 to 4 and y is a number from 0 to 20 and are preferred values for x 2, 3 or 4.
  • Preferred crystalline phyllosilicates are those in which x in the abovementioned general formula assumes the values 2 or 3.
  • both ⁇ - and ⁇ -sodium is preferably ⁇ -sodium silicates with a modulus from 1.9 to 3.2, according to Japanese Patent Application JP 04/238 809 or JP 04/260 610 are produced.
  • amorphous silicates practically anhydrous crystalline alkali metal silicates of the abovementioned general formula in which x is a number from 1.9 to 2.1, can be used.
  • a crystalline sodium layer silicate with a modulus of 2 to 3 is used. Crystalline sodium silicates with a modulus in the range from 1.9 to 3.5 are used in a further preferred embodiment of compositions according to the invention.
  • a granular compound of alkali silicate and alkali carbonate is used, as is commercially available, for example, under the name Nabion®.
  • alkali metal aluminosilicate in particular zeolite, is present as an additional builder substance, this is Weight ratio aluminosilicate to silicate, in each case based on anhydrous active substances, preferably 1:10 to 10: 1.
  • the weight ratio of amorphous alkali metal silicate to crystalline alkali metal silicate is preferably 1: 2 to 2: 1 and especially 1: 1 to 2: 1.
  • Such builder substances are preferably contained in agents according to the invention in amounts of up to 60% by weight, in particular from 5 to 40% by weight.
  • the water-soluble organic builder substances include polycarboxylic acids, in particular citric acid and sugar acids, aminopolycarboxylic acids, in particular methylglycinediacetic acid, nitrilotriacetic acid and ethylenediaminetetraacetic acid and polyaspartic acid.
  • Polyphosphonic acids especially aminotris (methylenephosphonic acid), ethylenediaminetetrakis (methylenephosphonic acid) and 1-hydroxyethane-1,1-diphosphonic acid can also be used.
  • polymeric (poly) carboxylic acids in particular the polycarboxylates obtainable by oxidation of polysaccharides or dextrins, polymeric acrylic acids, methacrylic acids, maleic acids and copolymers thereof, which may also contain polymerized small amounts of polymerizable substances without carboxylic acid functionality.
  • the molecular weight of the homopolymers of unsaturated carboxylic acids is generally between 5000 and 200,000, that of the copolymers between 2000 and 200,000, preferably 50,000 to 120,000, in each case based on the free acid.
  • a particularly preferred acrylic acid-maleic acid copolymer has a molecular weight of 50,000 to 100,000.
  • Commercially available products are, for example, Sokalan® CP 5, CP 10 and PA 30 from BASF.
  • Also suitable are copolymers of acrylic acid or methacrylic acid with vinyl ethers, such as vinylmethyl ethers, vinyl esters, ethylene, propylene and styrene, in which the proportion of acid is at least 50% by weight.
  • the first acidic monomer or its salt is derived from a monoethylenically unsaturated C 3 -C 8 carboxylic acid and preferably from a C 3 -C 4 monocarboxylic acid, in particular from (meth) acrylic acid.
  • the second acidic monomer or its salt may be a derivative of a C 4 -C 8 -dicarboxylic acid, with maleic acid being particularly preferred, and / or a derivative of an allylsulfonic acid which is substituted in the 2-position by an alkyl or aryl radical.
  • Such polymers generally have a molecular weight between 1000 and 200,000.
  • Further preferred copolymers are those which preferably have as monomers acrolein and acrylic acid / acrylic acid salts or vinyl acetate.
  • the organic builder substances can, in particular for the preparation of liquid agents, in the form of aqueous solutions, preferably in the form of 30 to 50 wt .-% aqueous solutions are used. All of the acids mentioned are generally used in the form of their water-soluble salts, in particular their alkali metal salts.
  • organic builder substances may be present in amounts of up to 40% by weight, in particular up to 25% by weight and preferably from 1 to 8% by weight. Quantities close to the stated upper limit are preferably used in pasty or liquid, in particular water-containing agents.
  • Suitable water-soluble builder components in hard surface cleaners according to the invention are in principle all builders customarily used in detergents for dishwashing, for example the abovementioned alkali metal phosphates. Their amounts may be in the range of up to about 60 wt .-%, in particular 5 to 20 wt .-%, based on the total mean.
  • water-soluble builder components in addition to polyphosphonates and phosphonate alkyl carboxylates, are, for example, organic polymers of the above-mentioned type of polycarboxylates, which act as co-builders in hard water regions, and naturally occurring hydroxycarboxylic acids, such as mono-, dihydroxysuccinic acid, alpha- Hydroxypropionic acid and gluconic acid.
  • Preferred organic builder components include the salts of Citric acid, especially sodium citrate.
  • sodium citrate anhydrous tri-sodium citrate and preferably trisodium citrate dihydrate are suitable. Trisodium citrate dihydrate can be used as a fine or coarse crystalline powder.
  • the acids corresponding to the said co-builder salts may also be present.
  • bleach activators that is to say compounds which release peroxocarboxylic acids under perhydrolysis conditions.
  • Suitable are the usual bleach activators containing O- and / or N-acyl groups.
  • polyacylated alkylenediamines in particular tetraacetylethylenediamine (TAED), acylated glycolurils, in particular tetraacetylglycoluril (TAGU), acylated triazine derivatives, in particular 1,5-diacetyl-2,4-dioxohexahydro-1,3,5-triazine (DADHT), acylated phenylsulfonates , in particular nonanoyl or Isononanoyloxybenzolsulfonat (NOBS or ISONOBS) or their amido derivatives, such as in EP 170 386, acylated polyhydric alcohols, in particular triacetin, ethylene glycol diacetate and 2,5-diacetoxy-2,5-dihydrofuran and also acetylated sorbitol and mannitol, and acylated sugar derivatives, in particular pentaacety
  • the enzymes optionally contained in the agents according to the invention include proteases, amylases, pullulanases, cellulases, cutinases and / or lipases, for example proteases such as BLAP®, Optimase®, Opticlean®, Maxacal®, Maxapem®, Durazym®, Purafect® OxP, Esperase® and / or Savinase®, amylases such as Termamyl®, Amylase-LT, Maxamyl®, Duramyl®, Purafectel OxAm, cellulases such as Celluzyme®, Carezyme®, K-AC® and / or those disclosed in International Patent Applications WO 96/34108 and WO 96/34092 known cellulases and / or lipases such as Lipolase®, Lipomax®, Lumafast® and / or Lipozym®.
  • proteases such as BLAP®, Optimase®, Opticlean®, Max
  • the enzymes used may be adsorbed to carriers and / or embedded in encapsulants, as described for example in International Patent Applications WO 92/131347 or WO 94/23005, in order to protect them against premature inactivation. They are preferably present in detergents and cleaners according to the invention in amounts of up to 10% by weight, in particular from 0.05 to 5% by weight, enzymes which are particularly preferably stabilized against oxidative degradation being used.
  • Machine dishwashing detergents according to the invention preferably comprise the customary alkali carriers, for example alkali metal silicates, alkali metal carbonates and / or alkali hydrogen carbonates.
  • Alkali silicates may be present in amounts of up to 40% by weight. in particular 3 to 30 wt .-%, based on the total agent, be contained.
  • the alkali carrier system preferably used in cleaning agents according to the invention is a mixture of carbonate and bicarbonate, preferably sodium carbonate and bicarbonate, which may be present in an amount of up to 50% by weight, preferably 5 to 40% by weight.
  • a further subject of the invention is a machine dishwashing composition containing from 15 to 65% by weight, in particular from 20 to 60% by weight of water-soluble builder component, from 5 to 25% by weight, in particular from 8 to 17% by weight.
  • Oxygen-based bleaching agents respectively; based on the total agent, and 0.1 to 5 wt .-% of one or more of the cyclic sugar ketones defined above.
  • Such an agent is preferably low alkaline, that is, its weight percent solution has a pH of 8 to 11.5, especially 9 to 11.
  • inventive means for the automatic cleaning of dishes are 20 to 60 wt .-% of water-soluble organic builder, in particular alkali citrate, 3 to 20 wt .-% alkali carbonate and 3 to 40 wt .-% Alkalidisilikat included.
  • silver corrosion inhibitors can be used in dishwashing detergents according to the invention.
  • Preferred silver corrosion inhibitors are organic sulfides such as cystine and cysteine, di- or trihydric phenols, optionally alkyl- or aryl-substituted triazoles such as benzotriazole, isocyanuric acid, titanium, zirconium, hafnium, molybdenum, vanadium or cerium salts and / or complexes, as well as Salts and / or complexes of the metals present in the complexes suitable according to the invention with other than in formula (I) predetermined ligands.
  • the agents foam too much during use, they may still contain up to 6% by weight, preferably about 0.5 to 4% by weight, of a foam-regulating compound, preferably from the group consisting of silicones, paraffins, paraffin-alcohol combinations , Hydrophobicized silicic acids, Bisfettklareamide and mixtures thereof and other other known commercially available foam inhibitors are added.
  • a foam-regulating compound preferably from the group consisting of silicones, paraffins, paraffin-alcohol combinations , Hydrophobicized silicic acids, Bisfettklareamide and mixtures thereof and other other known commercially available foam inhibitors are added.
  • the foam inhibitors in particular silicone- and / or paraffin-containing foam inhibitors, are preferably bound to a granular, water-soluble or dispersible carrier substance. In particular, mixtures of paraffins and bistearylethylenediamide are preferred.
  • Further optional ingredients in the compositions according to the invention are, for example, perfume oils.
  • organic solvents which can be used in the compositions according to the invention, especially if they are in liquid or pasty form, are alcohols having 1 to 4 C atoms, in particular methanol, ethanol, isopropanol and tert-butanol, diols having 2 to 4 C atoms, in particular ethylene glycol and propylene glycol, and mixtures thereof and the derivable from said classes of compounds ethers.
  • Such water-miscible solvents are preferably present in the detergents according to the invention not more than 20% by weight, in particular from 1 to 15% by weight.
  • the compositions according to the invention can contain system- and environmentally compatible acids, in particular citric acid, acetic acid, tartaric acid, malic acid, lactic acid, glycolic acid, Succinic acid, glutaric acid and / or adipic acid, but also mineral acids, in particular sulfuric acid or alkali hydrogen sulfates, or bases, in particular ammonium or alkali hydroxides.
  • system- and environmentally compatible acids in particular citric acid, acetic acid, tartaric acid, malic acid, lactic acid, glycolic acid, Succinic acid, glutaric acid and / or adipic acid
  • mineral acids in particular sulfuric acid or alkali hydrogen sulfates, or bases, in particular ammonium or alkali hydroxides.
  • pH regulators are preferably not more than 10% by weight, in particular from 0.5 to 6% by weight, in the compositions according to the invention.
  • compositions according to the invention are preferably in the form of pulverulent, granular or tablet-like preparations which are prepared in a manner known per se, for example by mixing, granulating, roller compacting and / or spray-drying the thermally stable components and admixing the more sensitive components, in particular enzymes, bleaches and the bleach catalyst are to be expected, can be prepared.
  • Solutions according to the invention in the form of aqueous or other conventional solvent-containing solutions are particularly advantageously prepared by simply mixing the ingredients, which can be added in bulk or as a solution in an automatic mixer.
  • compositions according to the invention in the form of non-dusting, storage-stable free-flowing powders and / or granules with high bulk densities in the range from 800 to 1000 g / l can also be achieved by using the builder components with at least a proportion of liquid mixture components in a first process stage while increasing the bulk density of this premix and subsequently - if desired after an intermediate drying - the other constituents of the agent, including the bleach catalyst, combined with the thus obtained premix.
  • compositions according to the invention in tablet form, the procedure is preferably such that all ingredients are mixed together in a mixer and the mixture by means of conventional tablet presses, for example Eccentric or rotary presses, pressed with pressing pressures in the range of 200 ⁇ 10 5 Pa to 1500 ⁇ 10 5 Pa.
  • a tablet thus produced has a weight of 1 to 5 g to 40 g, in particular from 20 g to 30 g, with a diameter from 3 to 5 mm to 40 mm.
  • the bleaching performance of the compounds of the invention Cat 1 to Cat 5 was tested in comparison to the bleach activator TAED.
  • 10 mg / l of the catalyst were dissolved in a wash liquor prepared by dissolving 2 g / l of a bleach-free basic detergent (WMP, WFK, Krefeld).
  • WMP bleach-free basic detergent
  • 1 g / l of sodium percarbonate (Degussa) the washing experiments were carried out in a Linitest apparatus (Heraeus) at 20 to 40 ° C. The washing time was 30 min, water hardness 18 ° dH.
  • connection Remission difference (ddR%) 20 ° C 40 ° C BC-1 BC-4 BC-1 BC-4 Cat 1 3.6 1.5 5.7 3.0 Cat 2 3.8 2.9 4.5 3.6 Cat 3 3.8 1.4 8.1 3.9 Cat 4 2.8 1.6 7.0 3.7 TAED (V1) 2.5 1.1 4.0 2.4
EP04001912A 2003-02-03 2004-01-29 Verwendung von Übergangsmetallkomplexen als Bleichkatalysatoren Expired - Lifetime EP1445305B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10304131A DE10304131A1 (de) 2003-02-03 2003-02-03 Verwendung von Übergangsmetallkomplexen als Bleichkatalysatoren
DE10304131 2003-02-03

Publications (2)

Publication Number Publication Date
EP1445305A1 EP1445305A1 (de) 2004-08-11
EP1445305B1 true EP1445305B1 (de) 2006-09-27

Family

ID=32603101

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04001912A Expired - Lifetime EP1445305B1 (de) 2003-02-03 2004-01-29 Verwendung von Übergangsmetallkomplexen als Bleichkatalysatoren

Country Status (5)

Country Link
US (1) US6875734B2 (es)
EP (1) EP1445305B1 (es)
JP (1) JP2004238623A (es)
DE (2) DE10304131A1 (es)
ES (1) ES2273103T3 (es)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009124855A1 (en) 2008-04-09 2009-10-15 Basf Se Use of metal hydrazide complex compounds as oxidation catalysts
WO2009141258A1 (de) * 2008-05-23 2009-11-26 Henkel Ag & Co. Kgaa Textilschonendes waschmittel
DE102008038376A1 (de) 2008-08-19 2010-02-25 Clariant International Ltd. Verfahren zur Herstellung von 3,7-Diaza-bicyclo[3.3.1]nonan-Verbindungen
DE102008045215A1 (de) 2008-08-30 2010-03-04 Clariant International Ltd. Verwendung von Mangan-Oxalatenn als Bleichkatalysatoren
DE102008045207A1 (de) * 2008-08-30 2010-03-04 Clariant International Limited Bleichkatalysatormischungen bestehend aus Mangansalzen und Oxalsäure oder deren Salze
DE102008064009A1 (de) 2008-12-19 2010-06-24 Clariant International Ltd. Verfahren zur Herstellung von 3,7-Diaza-bicyclo[3.3.1]nonan-Metall-Komplexen
DE102009017724A1 (de) 2009-04-11 2010-10-14 Clariant International Limited Bleichmittelgranulate
DE102009017722A1 (de) 2009-04-11 2010-10-14 Clariant International Limited Bleichmittelgranulate mit Aktivcoating
WO2010131227A2 (en) * 2009-05-14 2010-11-18 Ecolab Usa Inc. Compositions, systems and method for in situ generation of alkalinity
EP2395147A1 (en) * 2010-05-10 2011-12-14 Unilever Plc, A Company Registered In England And Wales under company no. 41424 of Unilever House Freeness of paper products
US9657435B2 (en) 2010-06-28 2017-05-23 Basf Se Metal free bleaching composition
WO2012142087A1 (en) * 2011-04-12 2012-10-18 The Procter & Gamble Company Metal bleach catalysts
JP2015502414A (ja) 2011-10-25 2015-01-22 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 洗濯プロセスにおける汚れ再付着防止剤および汚れ剥離剤としてのアクリレートコポリマーの使用
RU2014120925A (ru) 2011-10-25 2015-12-10 Басф Се Применение гребенчатых или блок-сополимеров в качестве средств против повторного осаждения загрязнения и грязеотталкивающих средств в процессах стирки
DE102012015826A1 (de) 2012-08-09 2014-02-13 Clariant International Ltd. Flüssige tensidhaltige Alkanolamin-freie Zusammensetzungen
US9138393B2 (en) 2013-02-08 2015-09-22 The Procter & Gamble Company Cosmetic compositions containing substituted azole and methods for improving the appearance of aging skin
US9144538B2 (en) 2013-02-08 2015-09-29 The Procter & Gamble Company Cosmetic compositions containing substituted azole and methods for alleviating the signs of photoaged skin
DE102013004428A1 (de) 2013-03-15 2014-09-18 Clariant International Ltd. Verfahren zum Waschen und Reinigen von Textilien
EP2978786A1 (en) 2013-03-27 2016-02-03 Basf Se Block copolymers as soil release agents in laundry processes
EP2857486A1 (en) 2013-10-07 2015-04-08 WeylChem Switzerland AG Multi-compartment pouch comprising cleaning compositions, washing process and use for washing and cleaning of textiles and dishes
EP2857487A1 (en) 2013-10-07 2015-04-08 WeylChem Switzerland AG Multi-compartment pouch comprising cleaning compositions, washing process and use for washing and cleaning of textiles and dishes
EP2857485A1 (en) 2013-10-07 2015-04-08 WeylChem Switzerland AG Multi-compartment pouch comprising alkanolamine-free cleaning compositions, washing process and use for washing and cleaning of textiles and dishes
DE102013019269A1 (de) 2013-11-15 2015-06-03 Weylchem Switzerland Ag Geschirrspülmittel sowie dessen Verwendung
WO2015078736A1 (en) 2013-11-27 2015-06-04 Basf Se Random copolymers as soil release agents in laundry processes
WO2017186480A1 (en) 2016-04-26 2017-11-02 Basf Se Metal free bleaching composition
DE102017004742A1 (de) 2017-05-17 2018-11-22 Weylchem Wiesbaden Gmbh Beschichtete Granulate, deren Verwendung und Wasch- und Reinigungsmittel enthaltend diese
WO2023030882A1 (en) * 2021-09-01 2023-03-09 Unilever Ip Holdings B.V. Machine dishwash detergent
CN115613069A (zh) * 2022-09-07 2023-01-17 青岛理工大学 一种电解海水制氢过渡金属氮化物Ni-Mo-N催化剂及其制备方法

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8415909D0 (en) 1984-06-21 1984-07-25 Procter & Gamble Ltd Peracid compounds
GB8629837D0 (en) 1986-12-13 1987-01-21 Interox Chemicals Ltd Bleach activation
GB8908416D0 (en) * 1989-04-13 1989-06-01 Unilever Plc Bleach activation
FR2646673B1 (fr) 1989-05-02 1991-09-06 Rhone Poulenc Chimie Silice sous forme de bille, procede de preparation et son utilisation au renforcement des elastomeres
WO1991002047A1 (de) 1989-08-09 1991-02-21 Henkel Kommanditgesellschaft Auf Aktien Herstellung verdichteter granulate für waschmittel
GB9003741D0 (en) 1990-02-19 1990-04-18 Unilever Plc Bleach activation
DE69125309T2 (de) * 1990-05-21 1997-07-03 Unilever Nv Bleichmittelaktivierung
DE4041752A1 (de) 1990-12-24 1992-06-25 Henkel Kgaa Enzymzubereitung fuer wasch- und reinigungsmittel
JP3293636B2 (ja) 1991-01-10 2002-06-17 日本化学工業株式会社 結晶性層状珪酸ナトリウムの製造方法
JP3299763B2 (ja) 1991-02-14 2002-07-08 日本化学工業株式会社 改質ジ珪酸ナトリウムの製造方法
CA2083661A1 (en) 1991-11-26 1993-05-27 Rudolf J. Martens Detergent bleach compositions
CA2085642A1 (en) 1991-12-20 1993-06-21 Ronald Hage Bleach activation
DE4216774A1 (de) 1992-05-21 1993-11-25 Henkel Kgaa Verfahren zur kontinuierlichen Herstellung eines granularen Wasch und/oder Reinigungsmittels
DE4310506A1 (de) 1993-03-31 1994-10-06 Cognis Bio Umwelt Enzymzubereitung für Wasch- und Reinigungsmittel
DE69412188T2 (de) 1993-06-19 1999-03-11 Ciba Geigy Ag Inhibierung der Wiederabsorption von migrierenden Farbstoffen in der Waschlösung
WO1995007331A1 (en) 1993-09-09 1995-03-16 The Procter & Gamble Company Liquid detergents with n-alkoxy or n-aryloxy polyhydroxy fatty acid amide surfactants
WO1995019955A1 (en) 1994-01-25 1995-07-27 The Procter & Gamble Company Gemini polyether fatty acid amides and their use in detergent compositions
US5512699A (en) 1994-01-25 1996-04-30 The Procter & Gamble Company Poly polyhydroxy fatty acid amides
US5534197A (en) 1994-01-25 1996-07-09 The Procter & Gamble Company Gemini polyhydroxy fatty acid amides
DE4416438A1 (de) 1994-05-10 1995-11-16 Basf Ag Ein- oder mehrkernige Metall-Komplexe und ihre Verwendung als Bleich- und Oxidationskatalysatoren
DE4443177A1 (de) 1994-12-05 1996-06-13 Henkel Kgaa Aktivatormischungen für anorganische Perverbindungen
WO1996023859A1 (en) 1995-02-02 1996-08-08 The Procter & Gamble Company Automatic dishwashing compositions comprising cobalt catalysts
WO1996023860A1 (en) * 1995-02-02 1996-08-08 The Procter & Gamble Company Automatic dishwashing compositions comprising cobalt chelated catalysts
DE19530786A1 (de) 1995-08-22 1997-02-27 Hoechst Ag Bleichmittelzusammensetzung enthaltend Polyoxometallate als Bleichkatalysator
DE19641708A1 (de) 1996-10-10 1998-04-16 Clariant Gmbh Verfahren zur Herstellung eines gecoateten Bleichaktivatorgranulats
DE19714122A1 (de) 1997-04-05 1998-10-08 Clariant Gmbh Bleichaktive Metall-Komplexe
DE19719397A1 (de) 1997-05-07 1998-11-12 Clariant Gmbh Bleichaktive Metall-Komplexe
DE19728021A1 (de) 1997-07-01 1999-01-07 Clariant Gmbh Metall-Komplexe als Bleichaktivatoren
JPH1150095A (ja) * 1997-08-07 1999-02-23 Kao Corp 漂白活性化剤及び漂白洗浄剤組成物
JPH1157488A (ja) * 1997-08-26 1999-03-02 Mitsui Chem Inc 過酸化物の漂白作用に対する触媒組成物
DE19740668A1 (de) 1997-09-16 1999-03-18 Clariant Gmbh Lagerstabiles Bleichaktivator-Granulat
DE19740671A1 (de) 1997-09-16 1999-03-18 Clariant Gmbh Bleichaktivator-Granulate
CA2248476A1 (en) * 1997-10-01 1999-04-01 Unilever Plc Bleach activation
DE19841184A1 (de) 1998-09-09 2000-03-16 Clariant Gmbh Bleichaktivatorgranulate
DE69817832T2 (de) * 1998-11-10 2004-10-07 Unilever Nv Bleich- und Oxidationskatalysator
DE19943254A1 (de) 1999-09-10 2001-03-15 Clariant Gmbh Bleichaktive Metallkomplexe
DE10019878A1 (de) 2000-04-20 2001-10-25 Clariant Gmbh Bleichaktive Dendrimer-Liganden und deren Metall-Komplexe
DE10019877A1 (de) 2000-04-20 2001-10-25 Clariant Gmbh Wasch- und Reinigungsmittel enthaltend bleichaktive Dendrimer-Liganden und deren Metall-Komplexe
DE10102248A1 (de) 2001-01-19 2002-07-25 Clariant Gmbh Verwendung von Übergangsmetallkomplexen mit Oxim-Liganden als Bleichkatalysatoren
GB0107366D0 (en) * 2001-03-23 2001-05-16 Unilever Plc Ligand and complex for catalytically bleaching a substrate
DE10161766A1 (de) 2001-12-15 2003-06-26 Clariant Gmbh Bleichaktivator-Co-Granulate
GB2394720A (en) * 2002-10-30 2004-05-05 Reckitt Benckiser Nv Metal complex compounds in dishwasher formulations

Also Published As

Publication number Publication date
DE502004001553D1 (de) 2006-11-09
ES2273103T3 (es) 2007-05-01
US6875734B2 (en) 2005-04-05
US20040198626A1 (en) 2004-10-07
JP2004238623A (ja) 2004-08-26
EP1445305A1 (de) 2004-08-11
DE10304131A1 (de) 2004-08-05

Similar Documents

Publication Publication Date Title
EP1445305B1 (de) Verwendung von Übergangsmetallkomplexen als Bleichkatalysatoren
EP1557457B1 (de) Verwendung von Übergangsmetallkomplexen als Bleichkatalysatoren in Wasch- und Reinigungsmitteln
EP1209221B1 (de) Verwendung von cyclischen Zuckerketonen als Katalysatoren für Persauerstoffverbindungen
EP1520910B1 (de) Verwendung von Übergangsmetallkomplexen mit Lactamliganden als Bleichkatalysatoren
EP2673349B1 (de) Verwendung von übergangsmetallkomplexen als bleichkatalysatoren in wasch- und reinigungsmitteln
EP1225215B1 (de) Verwendung von Übergangsmetallkomplexen mit Oxim-Liganden als Bleichkatalysatoren
EP0912690B1 (de) Katalytisch wirksame aktivatorkomplexe mit n 4?-liganden für persauerstoffverbindungen
EP2329000B1 (de) Verwendung von mangan-oxalaten als bleichkatalysatoren
DE19649375A1 (de) Acetonitril-Derivate als Bleichaktivatoren in Reinigungsmitteln
DE19908051A1 (de) Verfahren zur Herstellung compoundierter Acetonitril-Derivate
EP1487955B1 (de) Ammoniumnitrile und deren verwendung als hydrophobe bleichaktivatoren
WO2000032731A1 (de) Verwendung von übergangsmetallkomplexen mit stickstoffhaltigen heterocyclischen liganden zur verstärkung der bleichwirkung von persauerstoffverbindungen
DE19713851B4 (de) Verwendung von Komplexen des Molybdäns, Vanadiums oder Wolframs zur Verstärkung der Bleichwirkung
DE19755493A1 (de) Verwendung von Übergangsmetallkomplexen mit tripodalen Liganden zur Verstärkung der Bleichwirkung von Persauerstoffverbindungen
EP1042444A1 (de) Verwendung von übergangsmetallkomplexen mit dendrimer-liganden zur verstärkung der bleichwirkung von persauerstoffverbindungen
DE19809713A1 (de) Verwendung von Übergangsmetallkomplexen mit Dendrimer-Liganden zur Verstärkung der Bleichwirkung von Persauerstoffverbindungen
DE19942224A1 (de) Verwendung von Übergangsmetallkomplexverbindungen zur Verstärkung der Bleichwirkung von Persauerstoffverbindungen in sauren Systemen
EP1784385A1 (de) Diethylmethyl-ammoniumnitrile und wasch- und reinigungsmittel, enthaltend diese ammoniumnitrile
EP1969112B1 (de) Reinigungsmittel mit bleichkatalytisch aktiven komplexen
DE19800623A1 (de) Verwendung von Mn-Thiosemicarbazonkomplexen zur Verstärkung der Bleichwirkung von Persauerstoffverbindungen
WO2006092246A1 (de) Ammoniumnitrile und deren verwendung als bleichaktivatoren

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17P Request for examination filed

Effective date: 20050211

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20050601

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CLARIANT PRODUKTE (DEUTSCHLAND) GMBH

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE ES FR GB IT LI

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20060927

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 502004001553

Country of ref document: DE

Date of ref document: 20061109

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070108

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2273103

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070628

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20071219

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20071212

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20080212

Year of fee payment: 5

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090131

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20090130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090130

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140122

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20140123

Year of fee payment: 11

Ref country code: IT

Payment date: 20140128

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20140121

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502004001553

Country of ref document: DE

Representative=s name: ACKERMANN, JOACHIM KARL WILHELM, DIPL.-CHEM. D, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502004001553

Country of ref document: DE

Representative=s name: ACKERMANN, JOACHIM KARL WILHELM, DIPL.-CHEM. D, DE

Effective date: 20140908

Ref country code: DE

Ref legal event code: R081

Ref document number: 502004001553

Country of ref document: DE

Owner name: WEYLCHEM WIESBADEN GMBH, DE

Free format text: FORMER OWNER: CLARIANT PRODUKTE (DEUTSCHLAND) GMBH, 65929 FRANKFURT, DE

Effective date: 20140908

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004001553

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150801

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150129

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150129