EP1784385A1 - Diethylmethyl-ammoniumnitrile und wasch- und reinigungsmittel, enthaltend diese ammoniumnitrile - Google Patents

Diethylmethyl-ammoniumnitrile und wasch- und reinigungsmittel, enthaltend diese ammoniumnitrile

Info

Publication number
EP1784385A1
EP1784385A1 EP05790670A EP05790670A EP1784385A1 EP 1784385 A1 EP1784385 A1 EP 1784385A1 EP 05790670 A EP05790670 A EP 05790670A EP 05790670 A EP05790670 A EP 05790670A EP 1784385 A1 EP1784385 A1 EP 1784385A1
Authority
EP
European Patent Office
Prior art keywords
acid
sodium
detergents
compounds
ammonium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05790670A
Other languages
English (en)
French (fr)
Inventor
Gerd Reinhardt
Georg Borchers
Lars Cuypers
Ekaterina Jonas
Alexander Lerch
Michael Seebach
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Clariant Produkte Deutschland GmbH
Original Assignee
Clariant Produkte Deutschland GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Clariant Produkte Deutschland GmbH filed Critical Clariant Produkte Deutschland GmbH
Publication of EP1784385A1 publication Critical patent/EP1784385A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/39Organic or inorganic per-compounds
    • C11D3/3902Organic or inorganic per-compounds combined with specific additives
    • C11D3/3905Bleach activators or bleach catalysts
    • C11D3/3907Organic compounds
    • C11D3/3917Nitrogen-containing compounds
    • C11D3/3925Nitriles; Isocyanates or quarternary ammonium nitriles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/40Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing nitrogen
    • A61K8/41Amines
    • A61K8/416Quaternary ammonium compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q11/00Preparations for care of the teeth, of the oral cavity or of dentures; Dentifrices, e.g. toothpastes; Mouth rinses
    • A61Q11/02Preparations for deodorising, bleaching or disinfecting dentures
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/08Preparations for bleaching the hair
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • C07C255/01Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms
    • C07C255/24Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms containing cyano groups and singly-bound nitrogen atoms, not being further bound to other hetero atoms, bound to the same saturated acyclic carbon skeleton
    • C07C255/25Aminoacetonitriles
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/26Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/22Organic compounds
    • C11D7/32Organic compounds containing nitrogen

Definitions

  • This invention relates to odorless short chain ammonium nitriles, their granules, and their use for enhancing the bleaching effect of peroxygen compounds in bleaching colored stains on textiles as well as on hard surfaces, as well as detergents and cleaners containing these nitriles as bleach activators.
  • Inorganic peroxygen compounds particularly hydrogen peroxide and solid peroxygen compounds which dissolve in water to release hydrogen peroxide, such as sodium perborate and sodium carbonate perhydrate, have long been used as oxidizing agents for disinfecting and bleaching purposes.
  • the oxidation effect of these substances in dilute solutions depends strongly on the temperature; Thus, for example, with hydrogen peroxide or perborate in alkaline bleaching liquors only at temperatures above about 80 0 C, a sufficiently fast bleaching of soiled textiles.
  • bleach activators are known that the oxidation effect of peroxidic bleaches, such as perborates, percarbonates, persilicates and perphosphates.
  • bleach activators Many substances are known in the art as bleach activators. These are usually reactive organic compounds having an O-acyl or N-acyl group which in alkaline solution together with a source of hydrogen peroxide form the corresponding peroxyacids.
  • bleach activators include N, N, N ⁇ N'-tetraacetylethylenediamine (TAED), glucose pentaacetate (GPA), xylose tetraacetate (TAX), sodium 4-benzoyloxybenzenesulfonate (SBOBS), sodium trimethylhexanoyloxybenzenesulfonate (STHOBS), tetraacetylglycoluril (TAGU).
  • 1-phenyl-3-acetylhydantoin PAH
  • NOBS sodium nonanoyloxy-benzenesulfonate
  • ISONOBS isononanoyloxy-benzenesulfonate
  • An interesting group is cationic compounds containing a quaternary ammonium group, since they are highly effective bleach activators.
  • a major drawback of said bleach activators is that they mostly leave large volume leaving groups (e.g., phenolsulfonates) after perhydrolysis, which are of no importance to the bleaching process.
  • bleach activators are of interest in which a highly reactive peracid but no leaving group is released in the perhydrolysis step. This is e.g. achieved by a cyano group. In perhydrolysis, this probably forms a peroxyimidic acid, which then acts as a bleaching agent.
  • Examples include ammonium nitriles, characterized by the structural element
  • X is an anion, for example chloride, sulfate, hydrogensulfate, methylsulfonate, ethanesulfonate, toluenesulfonate, benzenesulfonate or cumene sulfonate
  • anion for example chloride, sulfate, hydrogensulfate, methylsulfonate, ethanesulfonate, toluenesulfonate, benzenesulfonate or cumene sulfonate
  • the higher homologue (dimethylethylammonium acetonitrile tosylate) also releases traces of trimethylamine under alkaline conditions.
  • traces of trimethylamine can be detected even from N-methylmorpholinium acetonitrile methosulfate.
  • the mechanism of formation is unclear, but it is likely that one of the nitrogen groups bound to ammonia transferred, which is released by hydrolysis of the nitrile. Repeated methyl group transfer then forms traces of trimethylamine.
  • N-methyl-ammonium nitriles of the type described above which have two ethyl substituents, are effective bleach activators which do not form trimethylamine under alkaline conditions, even though one methyl group is still on the nitrogen.
  • the present invention thus relates to compounds of the general formula
  • X is an anion, for example chloride, bromide, sulfate, hydrogensulfate, methosulfonate, ethanesulfonate, toluenesulfonate, benzenesulfonate or cumene sulfonate, particularly preferably the anions chloride, hydrogensulfate, sulfate, methosulfate and toluenesulfonate.
  • anion for example chloride, bromide, sulfate, hydrogensulfate, methosulfonate, ethanesulfonate, toluenesulfonate, benzenesulfonate or cumene sulfonate, particularly preferably the anions chloride, hydrogensulfate, sulfate, methosulfate and toluenesulfonate.
  • Diethylamine is presented together with a base, preferably alkali metal carbonate or alkali metal hydroxide, in a solvent, preferably in absolute ethanol or in a toluene / water mixture.
  • a base preferably alkali metal carbonate or alkali metal hydroxide
  • a solvent preferably in absolute ethanol or in a toluene / water mixture.
  • chloroacetonitrile is added dropwise.
  • the organic phase is separated and the aqueous phase extracted with an organic solvent. From the combined organic phases, the solvent is removed.
  • the crude product obtained can be further purified by fractional distillation.
  • the resulting diethylaminoacetonitrile is taken up in water or an organic solvent and with an alkylating agent such as methyl chloride, dimethyl sulfate or p-toluenesulfonate at temperatures between 20 and 100 0 C to the corresponding N-cyanomethyl-ammonium Sa! z reacted.
  • the salt can be recovered by conventional methods of workup such as extraction, crystallization, suction filtration, washing of the crystal slurry on the filter and drying.
  • Analog can be assumed to be ethylmethylamine, wherein the quaternization is then carried out with an ethyl derivative.
  • the resulting dialkylaminoacetonitrile is taken up in an organic solvent and reacted with an alkylating agent such as methyl chloride, dimethyl sulfate or Arylsulfonklarealkylester at temperatures between 20 and 100 0 C to the corresponding N-cyanomethyl-ammonium salt.
  • the salt can be recovered by conventional methods of workup such as extraction, crystallization, suction filtration, washing of the crystal slurry on the filter and drying. Analog can be assumed that ethylmethylamine be carried out, wherein the quaternization is then carried out with an ethyl derivative.
  • the invention also provides the use of these ammonium nitriles as bleach activators in bleaching detergents and cleaners.
  • the diethylmethylammonium acetonitrile according to the invention is used in the form of granules in detergents and cleaners.
  • Such granules may contain from 5 to 95% by weight, but preferably from 20 to 90% by weight, of the diethylmethylammonium acetonitrile according to the invention.
  • Such granules may contain a further bleach activator.
  • granulation aids and / or coating materials can be used to construct the granules.
  • bleaching is understood here to mean both the bleaching of dirt located on the textile surface and the bleaching of dirt located in the wash liquor and detached from the textile surface. For bleaching on hard surfaces
  • Soiling applies mutatis mutandis the same. Further potential applications can be found in the Personal Gare area e.g. in the bleaching of hair and to improve the effectiveness of denture cleaners. Furthermore, the complexes according to the invention find use in commercial laundries, in wood and paper bleaching, bleaching of cotton and in disinfectants.
  • the invention relates to a process for the purification of textiles as well as hard surfaces, in particular dishes, using said cationic nitriles in aqueous, optionally further detergent or cleaning agent components, in particular oxidizing agents
  • Peroxygen base containing solution, and detergents and hard surface cleaners, in particular, dishwashing detergents, and such are preferred for use in machine processes containing such cationic nitriles.
  • the use according to the invention consists essentially in creating conditions under which a peroxidic oxidizing agent and the cationic nitrile can react with one another in the presence of a hard surface contaminated with colored stains or a correspondingly soiled textile, with the aim of obtaining more strongly oxidizing secondary products.
  • Such conditions are especially present when the reactants meet in aqueous solution.
  • This can be done by separately adding the peroxygen compound and the cationic nitrile to an optionally washing or cleaning agent-containing solution.
  • the process according to the invention is particularly advantageously carried out using a detergent or hard surface cleaning agent according to the invention which contains the cationic nitriles and optionally a peroxygen-containing oxidizing agent.
  • the peroxygen compound may also be added to the solution separately, in bulk or as a preferably aqueous solution or suspension, when a non-oxygen detergent or cleaner is used.
  • the detergents and cleaners according to the invention may contain, in addition to the said bleach-enhancing active substance and a peroxygen compound, in principle all known ingredients customary in such agents.
  • the compositions according to the invention may contain, in particular, builder substances, surface-active surfactants, peroxygen compounds, additional peroxygen activators or organic peracids, water-miscible organic solvents, sequestering agents, thickeners, preservatives, pearlescers, emulsifiers and enzymes, as well as special additives with color or fiber-sparing action.
  • Other excipients such as electrolytes, pH Regulators, silver corrosion inhibitors, foam regulators as well as dyes and fragrances are possible.
  • Suitable peroxygen compounds are hydrogen peroxide and hydrogen peroxide donating under the conditions of washing and purification
  • alkali metal peroxides such as alkali metal peroxides, organic peroxides such as urea-hydrogen peroxide adducts and inorganic persalts, such as alkali metal perborates, percarbonates, perphosphates, persilicates, persulfates and peroxynitrite. Mixtures of two or more of these compounds are also suitable. Particularly preferred are sodium perborate tetrahydrate and in particular sodium perborate monohydrate and sodium percarbonate. Sodium perborate monohydrate is preferred for its good storage stability and good solubility in water. Sodium percarbonate may be preferred for environmental reasons. Alkali hydroperoxides are another suitable group of
  • Peroxide compounds examples of these substances are cumene hydroperoxide and t-butyl hydroperoxide.
  • Aliphatic or aromatic mono- or dipercarboxylic acids and the corresponding salts are suitable as peroxy compounds. Examples are peroxynaphthoic acid, peroxylauric acid, peroxystearic acid,
  • N N-phthaloylaminoperoxycaproic acid, 1,12-diperoxydodecanedioic acid, 1, 9-diperoxyazelaic acid, diperoxysebacic acid, diperoxyisophthalic acid, 2-decyldiperoxybutane-1,4-diacid and 4,4'-sulfonyl-bisperoxybenzoic acid.
  • the cationic, nitrile bleach activator according to the invention may be present in a proportion by weight of about 0.1 to 20%, preferably of 0.5 to 10%, in particular of 0.5 to 5.0%, together with a peroxy compound.
  • the proportion by weight of this peroxy compound is usually from 2 to 40%, preferably from 4 to 30%, especially from 10 to 25%.
  • other suitable bleach activators may be present in the detergents and cleaners in the usual amounts (about 1 to 10% by weight).
  • Suitable bleach activators are organic compounds with an O-acyl or
  • N-acyl group in particular from the group of the activated carboxylic acid esters, in particular sodium nonanoyloxy-benzenesulfonate, sodium isononanoyloxybenzenesulfonate, sodium 4-benzoyloxy-benzenesulfonate, sodium trimethylhexanoyloxy-benzenesulfonate, carboxylic anhydrides, in particular phthalic anhydride, acylated polyhydric alcohols, in particular triacetin, ethylene glycol diacetate, 2,5-diacetoxy-2,5-dihydrofuran, lactones, acylals, carboxylic acid amides, acyl lactams, acylated ureas and oxamides, N-acylated hydantoins, for example 1-phenyl-3-acetylhydantoin, hydrazides, triazoles, hydrotriazines, Urazoles, diketopiperazides,
  • sulfonimines open chain or cyclic quaternary iminium compounds such as dihydroisoquinolinium betaines, and / or other bleach-enhancing transition metal salts, or mono- or polynuclear transition metal complexes having acyclic or macrocyclic ligands can also be included.
  • the detergents and cleaners may comprise one or more surfactants, in particular anionic surfactants, nonionic surfactants and mixtures thereof, but also cationic, zwitterionic and amphoteric surfactants.
  • Such surfactants are present in detergent compositions according to the invention in proportions of preferably from 1 to 50% by weight, in particular from 3 to 30% by weight, whereas in hard-surface cleaners normally lower proportions, that is to say amounts of up to 20% by weight , in particular up to 10 wt .-% and preferably in the range of 0.5 to 5 wt .-% are included.
  • Dishwashing detergents typically use low-foam compounds.
  • Suitable anionic surfactants are in particular soaps and those which contain sulfate or sulfonate groups.
  • surfactants of the sulfonate type are preferably Cg-C-ia-alkylbenzenesulfonates, olefinsulfonates, that is mixtures of alkene and hydroxyalkanesulfonates and disulfonates, as obtained for example from monoolefins with terminal or internal double bond by sulfonation with gaseous sulfur trioxide and subsequent alkaline or acid hydrolysis of the sulfonation obtained.
  • alkanesulfonates which are obtained from C 12 -alkanes, for example by sulfochlorination or sulfoxidation with subsequent hydrolysis or neutralization.
  • esters of alpha-sulfo fatty acids for example the alpha-sulfonated methyl esters of hydrogenated coconut, palm kernel or tallow fatty acids obtained by sulfonating the methyl esters of fatty acids of plant and / or animal origin having 8 to 20 carbon atoms be prepared in the fatty acid molecule and subsequent neutralization to water-soluble mono-salts.
  • Suitable anionic surfactants are sulfated fatty acid glycerol esters, which are mono-, di- and triesters and mixtures thereof.
  • Alk (en) yl sulfates are the alkali and especially the sodium salts of the Schwefelhoffregurester C 2 -C 8 fatty alcohols are, for example, from coconut fatty alcohol, tallow fatty alcohol, lauryl, myristyl, cetyl or stearyl alcohol or the C 8 -C 2 o-oxo alcohols and those half-esters of secondary alcohols of this chain length are preferred.
  • alk (en) ylsulfates of said chain length which contain a synthetic, straight-chain alkyl radical produced on a petrochemical basis.
  • 2,3-alkyl sulfates are also suitable anionic surfactants.
  • sulfuric acid monoesters of straight-chain or branched alcohols ethoxylated with from 1 to 6 mol of ethylene oxide such as 2-methyl-branched C 9 -Cn alcohols having on average 3.5 moles of ethylene oxide (EO) or C 12 -C 8 -fatty alcohols 1 to 4 EO.
  • the preferred anionic surfactants also include the salts of alkylsulfosuccinic acid, which are also referred to as sulfosuccinates or as sulfosuccinic acid esters, and the monoesters and / or diesters of sulfosuccinic acid with alcohols, preferably fatty alcohols and in particular ethoxylated fatty alcohols.
  • alcohols preferably fatty alcohols and in particular ethoxylated fatty alcohols.
  • Preferred sulfosuccinates contain C 8 -C 8 fatty alcohol residues or mixtures of these.
  • Suitable further anionic surfactants are fatty acid derivatives of amino acids, for example N-methyltaurine (Tauride) and / or N-methylglycine (sarcosinate).
  • anionic surfactants are in particular soaps, for example in amounts of 0.2 to 5 wt .-%, into consideration.
  • Particularly suitable are saturated fatty acid soaps, such as the salts of lauric acid, myristic acid, palmitic acid, stearic acid, hydrogenated erucic acid and behenic acid and, in particular, soap mixtures derived from natural fatty acids, for example coconut, palm kernel or tallow fatty acids.
  • the anionic surfactants may be in the form of their sodium, potassium or ammonium salts and as soluble salts of organic bases, such as mono-, di- or triethanolamine.
  • the anionic surfactants are preferably present in the form of their sodium or potassium salts, in particular in the form of the sodium salts.
  • Anionic surfactants are preferably present in detergents according to the invention in amounts of from 0.5 to 10% by weight and in particular in amounts of from 5 to 25% by weight.
  • nonionic surfactants are preferably alkoxylated, advantageously ethoxylated, in particular primary alcohols having preferably 8 to 18 carbon atoms and an average of 1 to 12 moles of ethylene oxide (EO) per mole of alcohol used, in which the alcohol radical may be linear or preferably methyl branched in the 2-position, or may contain linear and methyl-branched radicals in the mixture, as they are usually present in Oxoalkoholresten.
  • alcohol ethoxylates with linear radicals of alcohols of natural origin having 12 to 18 carbon atoms, for example of coconut, palm, tallow or Oleylaikohol, and on average 2 to 8 EO per mole of alcohol are preferred.
  • the preferred ethoxylated alcohols include, for example, C 2 -C 4 -alcohols with 3 EO or 4 EO, C 12 -n alcohols with 7 EO, C 13 -C 15 -alcohols with 3 EO 1 5 EO, 7 EO or 8 EO, C 2 -C 8 alcohols containing 3 EO, 5 EO or 7 EO and mixtures thereof, such as mixtures of C 2 -C 4 alcohol containing 3 EO and Ci2-Ci 8 linear alcohol with 7 EO.
  • the degrees of ethoxylation given represent statistical means which, for a particular product, may be an integer or a fractional number.
  • Preferred alcohol ethoxylates have a narrow homolog distribution (narrow rank ethoxylates, NRE).
  • fatty alcohols with more than 12 EO can also be used. Examples of these are (TaIg) fatty alcohols with 14 EO, 16 EO, 20 EO, 25 EO, 30 EO or 40 EO.
  • the nonionic surfactants also include alkyl glycosides of the general formula RO (G) x , in which R is a primary straight-chain or methyl-branched, in particular 2-methyl-branched aliphatic radical having 8 to 22, preferably 12 to 18 carbon atoms and 6 for a Glycoside unit with 5 or 6 C-atoms, preferably for glucose.
  • R is a primary straight-chain or methyl-branched, in particular 2-methyl-branched aliphatic radical having 8 to 22, preferably 12 to 18 carbon atoms and 6 for a Glycoside unit with 5 or 6 C-atoms, preferably for glucose.
  • the degree of oligomerization x which indicates the distribution of monoglycosides and oligoglycosides, is an arbitrary number - which, as a variable to be determined analytically, may also assume fractional values - between 1 and 10; preferably x is 1.2 to 1.4.
  • polyhydroxy fatty acid amides of the formula (I) in which R 1 is CO for an aliphatic acyl radical having 6 to 22 carbon atoms, R 2 is hydrogen; is an alkyl or hydroxyalkyl radical having 1 to 4 carbon atoms and [Z] is a linear or branched polyhydroxyalkyl radical having 3 to 10 carbon atoms and 3 to 10 hydroxyl groups R 2 R 4 -OR 5
  • the polyhydroxy fatty acid amides are preferably derived from reducing sugars having 5 or 6 carbon atoms, in particular from glucose.
  • the group of polyhydroxy fatty acid amides also includes compounds of the formula (II) R 3 for a linear or branched alkyl or alkenyl radical having 7 to 12 carbon atoms, R 4 for a linear, branched or cyclic alkylene radical or an arylene radical having 2 to 8 carbon atoms and R 5 is a linear, branched or cyclic alkyl radical or an aryl radical or an oxyalkyl radical having 1 to 8 carbon atoms, preference being given to C 1 -C 4 -alkyl or phenyl radicals, and [Z] for a linear polyhydroxyalkyl radical whose alkyl chain has at least two Is substituted hydroxyl groups, or alkoxylated, preferably ethoxylated or propoxylated derivatives of this group.
  • [Z] is also obtained here preferably by reductive amination of a sugar such as glucose, fructose, maltose, lactose, galactose, mannose or xylose.
  • a sugar such as glucose, fructose, maltose, lactose, galactose, mannose or xylose.
  • the N-alkoxy- or N-alyloxy-substituted compounds can then be converted into the desired polyhydroxy fatty acid amides by reaction with fatty acid methyl esters in the presence of an alkoxide as catalyst.
  • nonionic surfactants used either as the sole nonionic surfactant or in combination with other nonionic surfactants, in particular together with alkoxylated fatty alcohols and / or alkyl glycosides, are alkoxylated, preferably ethoxylated or ethoxylated and propoxylated fatty acid alkyl esters, preferably from 1 to 4 carbon atoms in the alkyl chain, especially fatty acid methyl ester.
  • Nonionic surfactants of the amine oxide type for example N-cocoalkyl N, N-dimethylamine oxide and N-tallow alkyl N, N-dihydroxyethyl amine oxide and the fatty acid alkanolamides may also be suitable.
  • Other suitable surfactants are so-called gemini surfactants. These are generally understood as meaning those compounds which have two hydrophilic groups per molecule. These groups are usually separated by a so-called "spacer". This spacer is typically a carbon chain that should be long enough for the hydrophilic groups to be spaced sufficiently apart for them to act independently of each other.
  • Such surfactants are generally characterized by an unusually low critical micelle concentration and the ability to greatly reduce the surface tension of the water.
  • gemini-polyhydroxy fatty acid amides or poly-polyhydroxy fatty acid amides may have dendrimeric structures.
  • Suitable organic and inorganic builders are neutral or in particular alkaline salts which precipitate or complex calcium ions. Suitable and in particular ecologically harmless
  • Builders are crystalline, layered silicates of the general formula NaMSi ( X ) O (2x + i), where M is sodium or hydrogen, x is a number from 1, 9 to 22, preferably from 1.9 to 4 and y for a Number from 0 to 33, for example Na-SKS-5 (O, -Na 2 Si 2 O 5 ), Na-SKS-7 (P-Na 2 Si 2 O 5 , natrosilite), Na-SKS-9 (NaHSi 2 O 5 * H 2 O), Na-SKS-10 (NaHSi 2 O 3 * 3H 2 O, kanemite), Na-SKS-11 (T-Na 2 Si 2 O 5) and Na-SKS-13 (NaHSi 2 O 5 ), but especially Na-SKS-6 (5-Na 2 Si 2 O 5 ) and finely crystalline, synthetic hydrous zeolites, in particular of the NaA type, which have a calcium binding capacity in the range from 100 to 200 mg CaO / g. Zeolites and
  • non-neutralized or partially neutralized (co) polymeric polycarboxylic acids are suitable. These include the homopolymers of acrylic acid or methacrylic acid or their copolymers with other ethylenically unsaturated monomers such as acrolein, dimethylacrylic acid, ethylacrylic acid, vinylacetic acid, allylacetic acid, maleic acid, fumaric acid, itaconic acid, meth (allylsulfonic acid), vinylsulfonic acid, styrenesulfonic acid, acrylamidomethylpropanesulfonic acid and phosphorous groups Monomers such as vinylphosphoric acid, allylphosphoric acid and acrylamidomethylpropanephosphoric acid and their salts, and hydroxyethyl (meth) acrylate sulfate, allyl alcohol sulfate and allyl alcohol phosphates.
  • ethylenically unsaturated monomers such as acrolein, dimethylacrylic acid
  • Preferred (co) polymers have an average molar mass of from 1000 to 100 000 g / mol, preferably from 2000 to 75000 g / mol and in particular from 2000 to 35000 g / mol.
  • the degree of neutralization of the acid groups is advantageously from 0 to 90%, preferably from 10 to 80% and in particular from 30 to 70%.
  • Particularly suitable polymers include homopolymers of acrylic acid and copolymers of (meth) acrylic acid with maleic acid or maleic anhydride.
  • copolymers are derived from terpolymers which are obtained by polymerization of 10 to 70 wt .-% of monoethylenically unsaturated dicarboxylic acids having 4 to 8 carbon atoms, their salts, 20 to 85 wt .-% monoethylenically unsaturated monocarboxylic acids having 3 to 10 C -Atoms or their salts, 1 to 50 wt .-% of monounsaturated monomers which release after hydrolysis hydroxyl groups on the polymer chain, and 0 to 10 wt .-% of other free-radically copolymerizable monomers.
  • graft polymers of monosaccharides, oligosaccharides, polysaccharides and modified polysaccharides and animal or vegetable proteins are also suitable.
  • copolymers of sugar and other polyhydroxy compounds and a monomer mixture of 45 to 96 wt .-% monoethylenically unsaturated C 3 - to Cio-monocarboxylic acids or mixtures of C 3 - to Cio-monocarboxylic acids and / or their salts with monovalent cations, 4 to 55 Wt .-% monoethylenically unsaturated
  • Monosulfonic acid-containing monomers monoethylenically unsaturated sulfuric acid esters, vinylphosphoric acid esters and / or the salts of these acids with monovalent cations and 0 to 30 wt .-% of water-soluble unsaturated Compounds modified with 2 to 50 moles of alkylene oxide per mole of monoethylenically unsaturated compounds.
  • polyspartic acid or its derivatives in non-neutralized or only partially neutralized form.
  • graft polymers of acrylic acid, methacrylic acid, maleic acid and other ethylenically unsaturated monomers to salts of polyaspartic acid, as usually obtained in the hydrolysis of the polysuccinimide described above. This can be dispensed with the otherwise necessary addition of acid for the preparation of only partially neutralized form of polyaspartic acid.
  • the amount of polyaspartate is usually chosen so that the degree of neutralization of all incorporated in the polymer carboxyl groups does not exceed 80%, preferably 60%.
  • carboxylic acids preferably used in the form of their sodium salts, such as citric acid, in particular trisodium citrate and trisodium citrate dihydrate, nitrilotriacetic acid and their water-soluble salts; the alkali metal salts of carboxymethyloxysuccinic acid, ethylenediaminetetraacetic acid, mono-, dihydroxy-succinic acid, ⁇ -hydroxypropionic acid, gluconic acid, mellitic acid, benzopolycarboxylic acids and those disclosed in U.S. Patent Nos. 4,144,226 and 4,146,495.
  • their sodium salts such as citric acid, in particular trisodium citrate and trisodium citrate dihydrate, nitrilotriacetic acid and their water-soluble salts
  • Phosphate-containing builders such as alkali metal phosphates, which may be in the form of their alkaline neutral or acidic sodium or potassium salts,. are suitable. Examples of these are trisodium phosphate, tetrasodium diphosphate, disodium dihydrogen phosphate, pentasodium triphosphate, so-called sodium hexametaphosphate, oligomeric trisodium phosphate with oligomerization amounts in the range of 5 to 1000, in particular 5 to 50, and mixtures of sodium and potassium salts. These builders may be contained from 5 to 80 wt .-%, preferably a proportion of 10 to 60 wt .-%.
  • the desired viscosity of the liquid agents can be achieved by adding water and / or organic solvents or by adding a combination of organic solvents and thickening agents.
  • Alcohols having 1 to 4 carbon atoms such as methanol, ethanol, propanol, isopropanol, straight-chain and branched butanol, glycerol and mixtures of the alcohols mentioned are preferably used.
  • Further preferred alcohols are polyethylene glycols with a molecular weight below 2000. In particular, a use of polyethylene glycol having a molecular weight between 200 and 600 and in amounts up to
  • An advantageous mixture of solvents consists of monomeric alcohol, for example ethanol and polyethylene glycol in a ratio of 0.5: 1 to 1.2: 1.
  • Suitable solvents include triacetin (glycerol triacetate) and 1-methoxy-2-propanol.
  • Preferred thickeners are hardened castor oil, salts of long-chain fatty acids, preferably in amounts of from 0 to 5% by weight and in particular in amounts of from 0.5 to 2% by weight, for example sodium, potassium, aluminum, magnesium and titanium stearates or the sodium and / or potassium salts of behenic acid, and polysaccharides, in particular xanthan gum, guar-guar, agar-agar, alginates and tyloses, carboxymethylcellulose and hydroxyethylcellulose, furthermore higher molecular weight polyethylene glycol mono- and diesters of fatty acids, polyacrylates, Polyvinyl alcohol and polyvinylpyrrolidone and electrolytes such as sodium chloride and ammonium chloride used.
  • Suitable thickeners are water-soluble polyacrylates which are, for example, cross-linked with about 1% of a polyallyl ether of sucrose and which have a relative molecular weight of above one million. Examples include under the name Carbopol ® 940 and 941 polymers available.
  • the crosslinked polyacrylates are used in amounts of not more than 1% by weight, preferably in amounts of from 0.2 to 0.7% by weight.
  • the enzymes optionally contained in the agents according to the invention include proteases, amylases, pullulanases, cellulases, cutinases and / or lipases, for example proteases such as BLAP®, Optimase®, Opticlean®, Maxacal®, Maxapem®, Durazym®, Purafect® OxP, Esperase® and / or Savinase®, amylases such as Termamy®, amylase-LT, Maxamyl®, Duramyl®,
  • cellulases such as Celluzyme®, Carezyme®, K-AC® and / or the cellulases and / or lipases known from international patent applications WO 96/34108 and WO 96/34092, such as Lipolase®, Lipomax®, Lumafast® and / or Lipozym®.
  • the enzymes used can be adsorbed on carriers and / or embedded in encapsulants, as described, for example, in International Patent Applications WO 92/111347 or WO 94/23005, in order to protect them against premature inactivation. They are preferably present in detergents and cleaners according to the invention in amounts of up to 10% by weight, in particular from 0.05 to 5% by weight, enzymes which are particularly preferably stabilized against oxidative degradation being used.
  • Machine dishwashing detergents according to the invention preferably comprise the customary alkali carriers, for example alkali metal silicates, alkali metal carbonates and / or alkali hydrogen carbonates.
  • the alkali carriers commonly used include carbonates, bicarbonates and alkali metal silicates having a molar ratio SiO 2 / M 2 O.
  • Alkali silicates may be present in amounts of up to 40 wt .-%, in particular 3 to 30 wt .-%, based on the total agent.
  • the alkali carrier system preferably used in cleaning agents according to the invention is a mixture of carbonate and
  • Hydrogen carbonate preferably sodium carbonate and bicarbonate, which may be present in an amount of up to 50 wt .-%, preferably 5 to 40 wt .-%.
  • a further subject of the invention is a machine for cleaning dishes containing 15 to 65% by weight, in particular 20 to 60% by weight of water-soluble builder component, 5 to 25% by weight, in particular 8 to 17% by weight.
  • Oxygen-based bleaching agents respectively; based on the total agent, and 0.1 to 5 wt .-% of one or more of the above defined cationic nitrile activators.
  • Such an agent is preferably low alkaline, that is its weight percent solution has a pH of 8 to 11, 5, in particular 9 to 11.
  • inventive means for the automatic cleaning of dishes are 20 to 60 wt .-% of water-soluble organic builder, in particular alkali citrate, 3 to 20 wt .-% alkali carbonate and 3 to 40 wt .-% Alkalidisilikat included.
  • silver corrosion inhibitors can be used in dishwashing detergents according to the invention.
  • Preferred silver corrosion inhibitors are organic sulfides such as cystine and cysteine, di- or trihydric phenols, optionally alkyl- or aryl-substituted triazoles such as benzotriazole, isocyanuric acid, titanium, zirconium, hafnium, molybdenum, vanadium or cerium salts and / or complexes.
  • the agents foam too much during use, they may still contain up to 6% by weight, preferably about 0.5 to 4% by weight, of a foam-regulating compound, preferably from the group consisting of silicones, paraffins, paraffin-alcohol combinations , Hydrophobicized silicic acids, Bisfettklareamide and mixtures thereof and other other known commercially available foam inhibitors are added.
  • a foam-regulating compound preferably from the group consisting of silicones, paraffins, paraffin-alcohol combinations , Hydrophobicized silicic acids, Bisfettklareamide and mixtures thereof and other other known commercially available foam inhibitors are added.
  • the foam inhibitors in particular silicone and / or paraffin-containing foam inhibitors, are bound to a granular, water-soluble or dispersible carrier substance.
  • mixtures of paraffins and bistearylethylenediamide are preferred.
  • Further optional ingredients in the compositions according to the invention are, for example, perfume oils.
  • organic solvents which can be used in the compositions according to the invention, especially if they are in liquid or pasty form, are alcohols having 1 to 4 C atoms, in particular methanol, ethanol, Isopropanol and tert-butanol, diols having 2 to 4 carbon atoms, in particular ethylene glycol and propylene glycol, and mixtures thereof and the derivable from said classes of compounds ethers.
  • Such water-miscible solvents are preferably not present in the cleaning agents according to the invention
  • the compositions according to the invention may contain system and environmentally acceptable acids, in particular citric acid, acetic acid, tartaric acid, malic acid, lactic acid, glycolic acid, succinic acid, glutaric acid and / or adipic acid, but also mineral acids, in particular sulfuric acid or alkali hydrogen sulfates, or bases, in particular ammonium or alkali metal hydroxides.
  • Such pH regulators are preferably not more than 10% by weight, in particular from 0.5 to 6% by weight, in the compositions according to the invention.
  • Suitable preservatives are, for example, phenoxyethanol, formaldehyde solution, pentanediol or sorbic acid.
  • Suitable pearlescing agents are, for example, glycol distearate esters, such as ethylene glycol distearate, but also fatty acid monoglycol esters.
  • Suitable salts or setting agents are, for example, sodium sulfate, sodium carbonate or sodium silicate (water glass).
  • sodium borate, starch, sucrose, polydextrose, RAED, stilbene compounds, methylcellulose, toluenesulfonate, cumene sulfonate, soaps and Siiicone be mentioned.
  • compositions according to the invention are preferably in the form of pulverulent, granular or tablet-like preparations which compact in a manner known per se, for example by mixing, granulating, rolling and / or by spray-drying the thermally stable components and admixing the more sensitive components, in particular enzymes, bleaching agents and the bleach catalyst are to be expected, can be prepared.
  • Solutions according to the invention in the form of aqueous or other conventional solvent-containing solutions are particularly advantageously prepared by simply mixing the ingredients, which can be added in bulk or as a solution in an automatic mixer.
  • compositions according to the invention in the form of non-dusting, storage-stable free-flowing powders and / or granules with high bulk densities in the range from 800 to 1000 g / l can also be achieved by using the builder components with at least a proportion of liquid mixture components in a first process stage mixed with increasing the bulk density of this premix and subsequently - if desired, after an intermediate drying - the other constituents of the agent, including the cationic nitrile activator, combined with the thus obtained premix.
  • compositions according to the invention in tablet form, the procedure is preferably such that all components are mixed together in a mixer and the mixture is compressed by means of conventional tablet presses, for example Exzeriterpressen or rotary presses.
  • a tablet produced in this way has a weight of 1-5 g to 40 g, in particular from 20 g to 30 g; at a diameter of 3-5 mm to 40 mm.
  • the detergents and cleaners may contain any of the conventional additives in amounts commonly found in such compositions. Examples
  • Reaction mixture was evaporated to dryness on a rotary evaporator (40 0 C;
  • Example 4 Production of a granulate
  • the distance between roller and ring die was about 0.4 mm set the distance of the Abstreifermessers was adjusted mm to about 4 the noodle resulting granules had a temperature of approx.
  • Pasta granules were present in a composition of 87.5% (cyanomethyl) -diethyl-methyl-ammonium tosylate and 12.5% Genapol T-500.
  • Example 5
  • the powder mixture thus prepared was then pressed in a roll Konnpaktor (type: Hosokawa-Bepex Pharmapaktor L 200/30 P).
  • the speed of the rolls was in the range of about 4 - 8 min "1 and the speed of the screw plug was in the range of about 18 - 25 min " 1 varied in order to achieve a sufficient compaction of the powder.
  • the pressed pieces were then comminuted gently on a screen mill (type: Alexanderwerk SKM / NR), using a sieve insert with a mesh width of 1600 ⁇ m.
  • the comminuted product was finally fractionated on a laboratory sieve (type Retsch AS 200 control) in order to separate off fine particles ⁇ 400 ⁇ m from the target product, the finished compact being in a composition of 46% TAED , 46% (cyanomethyl) -di-ethyl-methyl ammonium tosylate and 8% bentonite.
  • washing powder Ariel, Fa. Procter & Gamble
  • 5 g of a Cyanomethylammoniumsalzes were filled into 250 ml glass bottles and added in each case 5 g of a Cyanomethylammoniumsalzes. Subsequently, the bottles were stored for 4 weeks at 40 0 C. After this time, the smell of the washing powder was smelled by a test penny.
  • the cyanomethylammonium salt according to the invention has no fishy odor and is therefore suitable for use in commercial products.
  • TMA trimethylamine
  • the bleach activator according to the invention (prepared according to Example 3) has a comparable bleaching action as the prior art (cyanomethyltrimethylammonium tosylate, prepared by reacting dimethylaminoacetonitrile with p-toluenesulfonic acid methyl ester).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Public Health (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Birds (AREA)
  • Epidemiology (AREA)
  • Detergent Compositions (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Es werden Diethylmethyl-Ammoniumnitrile der Formel (1) worin A ein Anion bedeutet, beansprucht. Diese Verbindungen eignen sich als Bleichaktivator in Wasch- und Reinigungsmitteln.

Description

Diethylmethyl-Ammoniumnitrile und Wasch- und Reinigungsmittel, enthaltend diese Ammoniumnitrile
Diese Erfindung betrifft geruchsneutrale kurzkettige Ammoniumnitrile, deren Granulate sowie deren Verwendung zur Verstärkung der Bleichwirkung von Persauerstoffverbindungen beim Bleichen von gefärbten Anschmutzungen sowohl an Textilien wie auch an harten Oberflächen, sowie Wasch- und Reinigungsmittel, die diese Nitrile als Bleichaktivatoren enthalten.
Anorganische Persauerstoffverbindungen, insbesondere Wasserstoffperoxid und feste Persauerstoffverbindungen, die sich in Wasser unter Freisetzung von Wasserstoffperoxid lösen, wie Natriumperborat und Natriumcarbonat-Perhydrat, werden seit langem als Oxidationsmittel zu Desinfektions- und Bleichzwecken verwendet. Die Oxidationswirkung dieser Substanzen hängt in verdünnten Lösungen stark von der Temperatur ab; so erzielt man beispielsweise mit Wasserstoffperoxid oder Perborat in alkalischen Bleichflotten erst bei Temperaturen oberhalb von etwa 800C eine ausreichend schnelle Bleiche verschmutzter Textilien.
Es ist bekannt, dass die Oxidationswirkung peroxidischer Bleichmittel, wie Perborate, Percarbonate, Persilikate und Perphosphate bei niedrigen Temperaturen verbessert werden kann, indem man Vorstufen von bleichenden Peroxysäuren, sogenannte Bleichaktivatoren, zusetzt. Viele Substanzen sind nach dem Stand der Technik als Bleichaktivatoren bekannt. Gewöhnlich handelt es sich dabei um reaktive organische Verbindungen mit einer O-Acyl- oder N-Acyl- Gruppe, die in alkalischer Lösung zusammen mit einer Quelle für Wasserstoffperoxid die entsprechenden Peroxysäuren bilden. Repräsentative Beispiele für Bleichaktivatoren sind etwa N,N,N\N'- Tetraacetylethylendiamin (TAED), Glucosepentaacetat (GPA), Xylosetetraacetat (TAX), Natrium-4-benzoyloxybenzolsulfonat (SBOBS), Natriumtrimethylhexanoyloxy-benzolsulfonat (STHOBS), Tetraacetylglycoluril (TAGU), 1-Phenyl-3-acetylhydantoin (PAH), Natrium-nonanoyloxy-benzolsulfonat (NOBS) und Natrium-isononanoyloxy-benzolsulfonat (ISONOBS). Eine interessante Gruppe stellen kationische Verbindungen, die eine quartäre Ammoniumgruppe enthalten, dar, da sie hocheffektive Bleichaktivatoren darstellen.
Durch Zusatz dieser Aktivatoren zu einer wässriger Peroxidlösungen findet eine Perhydrolyse unter Freisetzung einer organischen Persäure statt. Hierdurch wird die Bleichwirkung der Lösungen so weit gesteigert, dass sie bereits bei Temperaturen zwischen 40 und 600C im wesentlichen die gleichen Wirkungen wie eine Peroxidlösung allein bei 950C aufweisen.
Ein weitgehender Nachteil der genannten Bleichaktivatoren ist, dass sie meist nach erfolgter Perhydrolyse großvolumige Abgangsgruppen (z.B. Phenolsulfonate) hinterlassen, die von keinerlei Bedeutung für den Bleichprozess sind.
Aus ökologischer Sicht sind daher Bleichaktivatoren von Interesse, bei denen im Perhydrolyseschritt zwar eine hochreaktive Persäure aber keine Abgangsgruppe freigesetzt wird. Dies wird z.B. durch eine Cyanogruppe erreicht. Wahrscheinlich bildet diese bei der Perhydrolyse eine Peroxyimidsäure, welche dann als bleichendes Agens wirkt.
Beispiele hierfür sind Ammoniumnitrile, gekennzeichnet durch das Strukturelement
Verbindungen dieser Art und deren Verwendung als Aktivatoren in Bleichmitteln sind beschrieben in EP-A-303 520, EP-A-458 396 und EP-A-464 880. Ammoniumnitrile, wobei zwei der Gruppen R1, R2 oder R3 eine langkettige Alkylgruppe darstellen, werden in WO 03/078561 beansprucht. Von besonderem Interesse sind aber niedermolekulare Ammoniumnitrile mit in Summe nicht mehr als 12 Kohlenstoffatomen, da sie ausgezeichnet wasserlöslich, hoch reaktive und zugleich besonders gewichtseffektiv sind. Letzteres spielt bei volumeneffektiven Waschmitteln mit niedriger Dosiermenge eine besondere Rolle. Es hat daher in der Vergangenheit nicht an Versuchen gemangelt, solche Verbindungen herzustellen. Zahlreiche Patentanmeldungen beschreiben daher die Verwendung von Trimethylammoniumacetonitrilen der Formel
wobei X" ein Anion ist, beispielsweise Chlorid, Sulfat, Hydrogensulfat, Methylsulfonat, Ethansulfonat, Toluolsulfonat, Benzolsulfonat oder Cumolsulfonat. Beispiele für Synthese, Granulierung und Verwendung dieser Trimethylammoniumacetonitrile finden sich in WO 02/012175, WO 02/012427, DE 100 38 844 oder EP 13 12 665.
Ein gravierender Nachteil aller Trimethylammoniumacetonitrile ist jedoch, dass sie unter alkalischen Bedingungen, sei es in der Waschlauge oder bei verlängerter Lagerung in einem alkalischen Waschmittel, Spuren von Trimethylamin und damit einen fischartigen Geruch freisetzen, der ihren Einsatz im Haushaltsbereich unmöglich macht. Es hat deshalb nicht an Versuchen gemangelt, geruchsfreie Trimethylammoniumacetonitrile herzustellen, beispielsweise durch Austausch des Anions oder durch Deodorierung, wie in DE 102 24 509 beschrieben.
Überraschenderweise setzt auch das höhere Homologe (Dimethylethylammonium-acetonitril-tosylat) unter alkalischen Bedingungen Spuren Trimethylamin frei. Durch alkalische Behandlung können selbst aus N- Methylmorpholiniumacetonitril-methosulfat Spuren von Trimethylamin nachgewiesen werden. Der Mechanismus der Bildung ist unklar, wahrscheinlich wird jedoch eine der an Stickstoffatom gebundenen Methylgruppen auf Ammoniak übertragen, der durch Hydrolyse des Nitrils freigesetzt wird. Durch mehrmalige Methylgruppenübertragung bilden sich dann Spuren von Trimethylamin.
Überraschenderweise wurde nun gefunden, dass N-Methyl-Ammoniumnitrile der zuvor beschriebenen Art, die zwei Ethyl-Substituenten aufweisen, wirksame Bleichaktivatoren darstellen, die unter alkalischen Bedingungen kein Trimethylamin bilden, obwohl noch eine Methylgruppe am Stickstoff sitzt.
Gegenstand der vorliegenden Erfindung sind somit Verbindungen der allgemeinen Formel
wobei X" ein Anion ist, beispielsweise Chlorid, Bromid, Sulfat, Hydrogensulfat, Methosulfonat, Ethansulfonat, Toluolsulfonat, Benzolsulfonat oder Cumolsulfonat. Besonders bevorzugt sind die Anionen Chlorid, Hydrogensulfat, Sulfat, Methosulfat und Toluolsulfonat.
Anhand einiger allgemeiner Beispiele sollen die Synthesewege für die Diethylmethyl-ammoniumacetonitrile dieser Erfindung dargestellt werden:
1. Diethylamin wird zusammen mit einer Base, vorzugsweise Alkalicarbonat oder Alkalihydroxid, in einem Lösemittel, vorzugsweise in absolutem Ethanol oder in einem Toluol/Wasser-Gemisch, vorgelegt. Bei Temperaturen zwischen 0 und 5O0C, vorzugsweise bei 10 bis 300C, wird Chloracetonitril zugetropft. Nach 1 bis 50 Stunden Reaktionszeit wird die organische Phase abgetrennt und die wässrige Phase mit einem organischen Lösungsmittel extrahiert. Von den vereinigten organischen Phasen wird das Lösungsmittel abgezogen. Das erhaltene Rohprodukt kann durch fraktionierende Destillation weiter gereinigt werden. Das entstandene Diethylaminoacetonitril wird in Wasser oder einem organischen Lösungsmittel aufgenommen und mit einem Alkylierungsmittel wie Methylchlorid, Dimethylsulfat oder p-Toluolsulfonsäuremethylester bei Temperaturen zwischen 20 und 1000C zum entsprechenden N-Cyanomethyl-ammonium-Sa!z umgesetzt. Das Salz kann durch herkömmliche Methoden der Aufarbeitung, wie Extraktion, Kristallisation, Abnutschen, Waschen des Kristallbreis auf der Nutsche und Trocknen, gewonnen werden. Analog kann von Ethylmethylamin ausgegangen werden, wobei die Quatemisierung dann mit einem Ethylderivat durchgeführt wird.
2. Diethylmethylamin und Chloracetonitril werden in einem geeigneten Lösungsmittel, z.B. in Aceton für 1 bis 12 Stunden bei Temperaturen zwischen 10 und 700C zur Reaktion gebracht. Der entstandene Niederschlag, das N-Cyanomethyl-ammonium-Chlorid wird abfiltriert, mit einem organischen Lösungsmittel gewaschen und getrocknet.
3. Diethylamin, Natriumcyanid und ein Aldehyd oder ein Keton, vorzugsweise Formaldehyd in Form einer 36%igen Formalinlösung, werden in einem Lösungsmittel, vorzugsweise ein Ethanol/Wasser-Gemisch oder Wasser zusammengegeben. Nach einer Reaktionszeit von 1 bis 12 Stunden bei Temperaturen zwischen 10 und 800C, vorzugsweise bei 10 bis 300C wird dem Ansatz wässrige Salzsäure zugesetzt. Die wässrige Phase wird mit einem geeigneten organischen Lösungsmittel, z.B. Methylenchlorid oder Diethylether extrahiert. Von den vereinigten organischen Phasen wird nach Trocknen über Magnesiumsulfat das Lösungsmittel abgezogen. Das erhaltene Rohprodukt kann durch fraktionierende Destillation weiter gereinigt werden. Das entstandene Dialkylaminoacetonitril wird in einem organischen Lösungsmittel aufgenommen und mit einem Alkylierungsmittel wie Methylchlorid, Dimethylsulfat oder Arylsulfonsäurealkylester bei Temperaturen zwischen 20 und 1000C zum entsprechenden N-Cyanomethyl-ammonium-Salz umgesetzt. Das Salz kann durch herkömmliche Methoden der Aufarbeitung, wie Extraktion, Kristallisation, Abnutschen, Waschen des Kristallbreis auf der Nutsche und Trocknen, gewonnen werden. Analog kann von Ethylmethylamin ausgegangen werden, wobei die Quatemisierung dann mit einem Ethylderivat durchgeführt wird.
Gegenstand der Erfindung ist auch die Verwendung dieser Ammoniumnitrile als Bleichaktivatoren in bleichenden Wasch- und Reinigungsmitteln. In einer besonderen Ausführungsform wird das erfindungsgemäße Diethylmethylammoniumacetonitril in Form eines Granulates in Wasch- und Reinigungsmitteln eingesetzt. Solche Granulate können 5 bis 95 Gew.-%, vorzugsweise jedoch 20 bis 90 Gew.-% des erfindungsgemäßen Diethylmethylammoniumacetonitrils enthalten. Als weitere Bestandteile kann ein solches Granulat einen weiteren Bleichaktivator enthalten. Bevorzugt sind hier Decanoyloxybenzoesäure, Nonanoyloxybenzolsulfonat-Natrium, Tetraacetylethylendiamin oder 1 ,5-Diacetyl-2,4-dioxo-1 ,3,5-hexahydrotriazin. Zusätzlich können Granulierhilfsmittel und/oder Coatingmaterialien zum Aufbau des Granulates verwandt werden.
Unter dem Begriff der Bleiche wird hier sowohl das Bleichen von sich auf der Textiloberfläche befindendem Schmutz als auch das Bleichen von in der Waschflotte befindlichem, von der textilen Oberfläche abgelöstem Schmutz verstanden. Für das Bleichen von auf harten Oberflächen befindlichen
Anschmutzungen gilt sinngemäß das gleiche. Weitere potentielle Anwendungen finden sich im Personal Gare Bereich z.B. bei der Bleiche von Haaren und zur Verbesserung der Wirksamkeit von Gebissreinigern. Des weiteren finden die erfindungsgemäßen Komplexe Verwendung in gewerblichen Wäschereien, bei der Holz- und Papierbleiche, der Bleiche von Baumwolle und in Desinfektionsmitteln.
Weiterhin betrifft die Erfindung ein Verfahren zur Reinigung von Textilien wie auch von harten Oberflächen, insbesondere von Geschirr, unter Einsatz der genannten kationischen Nitrile in wässriger, gegebenenfalls weitere Wasch- beziehungsweise Reinigungsmittelbestandteile, insbesondere Oxidationsmittel auf
Persauerstoffbasis, enthaltender Lösung, und Waschmittel sowie Reinigungsmittel für harte Oberflächen, insbesondere Reinigungsmittel für Geschirr, wobei solche für den Einsatz in maschinellen Verfahren bevorzugt sind, die derartige kationischen Nitrile enthalten.
Die erfindungsgemäße Verwendung besteht im wesentlichen darin, in Gegenwart einer mit gefärbten Anschmutzungen verunreinigten harten Oberfläche beziehungsweise eines entsprechend verschmutzten Textils Bedingungen zu schaffen, unter denen ein peroxidisches Oxidationsmittel und das kationische Nitril miteinander reagieren können, mit dem Ziel, stärker oxidierend wirkende Folgeprodukte zu erhalten. Solche Bedingungen liegen insbesondere dann vor, wenn die Reaktionspartner in wässriger Lösung aufeinander treffen. Dies kann durch separate Zugabe der Persauerstoffverbindung und des kationischen Nitrils zu einer gegebenenfalls Wasch- beziehungsweise Reinigungsmittel-haltigen Lösung geschehen. Besonders vorteilhaft wird das erfindungsgemäße Verfahren jedoch unter Verwendung eines erfindungsgemäßen Waschmittels beziehungsweise Reinigungsmittels für harte Oberflächen, das die kationischen Nitrile und gegebenenfalls ein persauerstoffhaltiges Oxidationsmittel enthält, durchgeführt. Die Persauerstoffverbindung kann auch separat in Substanz oder als vorzugsweise wässrige Lösung oder Suspension zur Lösung zugegeben werden, wenn ein persauerstofffreies Wasch- oder Reinigungsmittel verwendet wird.
Die erfindungsgemäßen Wasch- und Reinigungsmittel, die als Granulate, pulver- oder tablettenförmige Feststoffe, als sonstige Formkörper, homogene Lösungen oder Suspensionen vorliegen können, können außer dem genannten bleichverstärkenden Wirkstoff sowie einer Persauerstoffverbindung im Prinzip alle bekannten und in derartigen Mitteln üblichen Inhaltsstoffe enthalten. Die erfindungsgemäßen Mittel können insbesondere Buildersubstanzen, oberflächenaktive Tenside, Persauerstoffverbindungen, zusätzliche Persauerstoff- Aktivatoren oder organische Persäuren, wassermischbare organische Lösungsmittel, Sequestrierungsmittel, Verdickungsmittel, Konservierungsmittel, Perlglanzmittel, Emulgatoren und Enzyme, sowie spezielle Additive mit färb- oder faserschonender Wirkung enthalten. Weitere Hilfsstoffe wie Elektrolyte, pH- Regulatoren, Silberkorrosionsinhibitoren, Schaumregulatoren sowie Färb- und Duftstoffe sind möglich.
Geeignete Persauerstoffverbindungen sind Wasserstoffperoxid und unter den Wasch- und Reinigungsbedingungen Wasserstoffperoxid abgebende
Verbindungen wie Alkalimetallperoxide, organische Peroxide wie Harnstoff- Wasserstoffperoxid-Addukte und anorganische Persalze, wie Alkaliperborate, -percarbonate, -perphosphate, -persilikate, -persulfate und -peroxynitrite. Mischungen aus zwei oder mehreren dieser Verbindungen sind ebenfalls geeignet. Besonders bevorzugt sind Natriumperborat-Tetrahydrat und insbesondere Natriumperborat-Monohydrat sowie Natriumpercarbonat. Natriumperborat-Monohydrat ist wegen seiner guten Lagerbeständigkeit und seiner guten Löslichkeit in Wasser bevorzugt. Natriumpercarbonat kann aus ökologischen Gründen bevorzugt sein. Alkalihydroperoxide sind eine weitere geeignete Gruppe von
Peroxidverbindungen. Beispiele für diese Stoffe sind Cumolhydroperoxid und t-Butylhydroperoxid.
Auch aliphatische oder aromatische Mono- oder Dipercarbonsäuren sowie die entsprechenden Salze eignen sich als Peroxyverbindungen. Beispiele hierfür sind Peroxynaphthoesäure, Peroxylaurinsäure, Peroxystearinsäure,
N,N-Phthaloylaminoperoxycapronsäure, 1 ,12-Diperoxydodecandisäure, 1 ,9-Diperoxyazelainsäure, Diperoxysebacinsäure, Diperoxyisophthalsäure, 2-Decyldiperoxybutan-1 ,4-disäure und 4,4'-Sulfonyl-bisperoxybenzoesäure.
In derartigen Wasch- und Reinigungsmitteln kann der erfindungsgemäße kationische, nitrilische Bleichaktivator mit einem Gewichtsanteil von etwa 0,1 bis 20 %, bevorzugt von 0,5 bis 10 %, insbesondere von 0,5 bis 5,0 % enthalten sein, zusammen mit einer Peroxyverbindung. Der Gewichtsanteil dieser Peroxyverbindung beträgt gewöhnlich von 2 bis 40 %, bevorzugt von 4 bis 30 %, insbesondere von 10 bis 25 %. In den Wasch- und Reinigungsmitteln können neben den erfindungsgemäßen kationischen, nitrilischen Bleichaktivatoren noch andere geeignete Bleichaktivatoren in den üblichen Mengen (ca. 1 bis 10 Gew.-%) enthalten sein. Als Bleichaktivatoren geeignet sind organische Verbindungen mit einer O-Acyl- oder
N-Acyl-Gruppe, insbesondere aus der Gruppe der aktivierten Carbonsäureester, insbesondere Natrium-nonanoyloxy-benzolsulfonat, Natrium-isononanoyloxy- benzolsulfonat, Natrium-4-benzoyloxy-benzolsulfonat, Natrium- trimethylhexanoyloxy-benzolsulfonat, Carbonsäureanhydride, insbesondere Phthalsäureanhydrid, acylierte mehrwertige Alkohole, insbesondere Triacetin, Ethylenglykoldiacetat, 2,5-Diacetoxy-2,5-dihydrofuran, Lactone, Acylale, Carbonsäureamide, Acyllactame, acylierte Harnstoffe und Oxamide, N-acylierte Hydantoine, beispielsweise 1-Phenyl-3-acetylhydantoin, Hydrazide, Triazole, Hydrotriazine, Urazole, Diketopiperazide, Sulfurylamide mehrfach acylierte Alkylendiamine beispielsweise N.N.N'.N'-Tetraacetylethylendiamin, acylierte Triazinderivate, insbesondere 1 ,5-Diacetyl-2,4-dioxohexahydro-1 ,3,5-triazin, acylierte Glykolurile, insbesondere Tetraacetylglykoluril, N-Acylimide, insbesondere N-Nonaoylsuccinimid, und acylierte Zuckerderivate, insbesondere Pentaacetylglukose (PAG), Pentaacetylfructose, Tetraacetylxylose und Octaacetyllactose, sowie acetyliertes, gegebenenfalls N-alkyliertes Glucamin und Gluconolacton und/oder N-acylierte Lactame, beispielsweise N-Benzoylcaprolactam, aber auch quaternäre Nitrilverbindungen, beispielsweise quaternäre Trialkylammoniumnitrilsalze wie sie in EP-A-303 520, EP-A-458 396 und EP-A-464 880 beschrieben sind, insbesondere das Cyanomethyltrimethylammoniumsalz, aber auch heterocyclisch substituierte quaternäre Nitrilverbindungen, wie in EP-A-790 244 beschrieben.
Zusätzlich zu den oben aufgeführten konventionellen Bleichaktivatoren oder an deren Stelle können auch Sulfonimine, offenkettige oder cyclische quaternäre Iminiumverbindungen wie Dihydroisochinoliniumbetaine und/oder weitere bleichverstärkende Übergangsmetallsalze beziehungsweise ein- oder mehrkernige Übergangsmetallkomplexe mit acyclischen oder makrocyclischen Liganden, enthalten sein. Die Wasch- und Reinigungsmittel können ein oder mehrere Tenside enthalten, wobei insbesondere anionische Tenside, nichtionische Tenside und deren Gemische, aber auch kationische, zwitterionische und amphotere Tenside in Frage kommen. Derartige Tenside sind in erfindungsgemäßen Waschmittein in Mengenanteilen von vorzugsweise 1 bis 50 Gew.-%, insbesondere von 3 bis 30 Gew.-%, enthalten, wohingegen in Reinigungsmitteln für harte Oberflächen normalerweise geringere Anteile, das heißt Mengen bis zu 20 Gew.-%, insbesondere bis zu 10 Gew.-% und vorzugsweise im Bereich von 0,5 bis 5 Gew.-% enthalten sind. In Reinigungsmitteln für den Einsatz in maschinellen Geschirrspülverfahren werden normalerweise schaumarme Verbindungen eingesetzt.
Geeignete anionische Tenside sind insbesondere Seifen und solche, die Sulfat¬ oder Sulfonat-Gruppen enthalten. Als Tenside vom Sulfonat-Typ kommen vorzugsweise Cg-C-ia-Alkylbenzolsulfonate, Olefinsulfonate, das heißt Gemische aus Alken- und Hydroxyalkansulfonaten sowie Disulfonaten, wie man sie beispielsweise aus Monoolefinen mit end- oder innenständiger Doppelbindung durch Sulfonieren mit gasförmigem Schwefeltrioxid und anschließende alkalische oder saure Hydrolyse der Sulfonierungsprodukte erhält, in Betracht. Geeignet sind auch Alkansulfonate, die aus Ci2-Cis-Alkanen beispielsweise durch Sulfochlorierung oder Sulfoxidation mit anschließender Hydrolyse beziehungsweise Neutralisation gewonnen werden. Geeignet sind auch die Ester von alpha-Sulfofettsäuren (Estersulfonate), zum Beispiel die alpha-sulfonierten Methylester der hydrierten Kokos-, Palmkern- oder Taigfettsäuren, die durch Sulfonierung der Methylester von Fettsäuren pflanzlichen und/oder tierischen Ursprungs mit 8 bis 20 C-Atomen im Fettsäuremolekül und nachfolgende Neutralisation zu wasserlöslichen Mono-Salzen hergestellt werden.
Weitere geeignete Aniontenside sind sulfierte Fettsäureglycerinester, welche Mono-, Di- und Triester sowie deren Gemische darstellen. Als Alk(en)ylsulfate werden die Alkali- und insbesondere die Natriumsalze der Schwefelsäurehalbester der Ci2-Ci8-Fettalkohole beispielsweise aus Kokosfettalkohol, Taigfettalkohol, Lauryl-, Myristyl-, Cetyl- oder Stearylalkohol oder der C8-C2o-Oxoalkohole und diejenigen Halbester sekundärer Alkohole dieser Kettenlänge bevorzugt. Weiterhin bevorzugt sind Alk(en)ylsulfate der genannten Kettenlänge, welche einen synthetischen, auf petrochemischer Basis hergestellten geradkettigen Alkylrest enthalten. Auch 2,3-Alkylsulfate, sind geeignete Anionentenside. Geeignet sind auch die Schwefelsäurermonoester der mit 1 bis 6 Mol Ethylenoxid ethoxylierten geradkettigen oder verzweigten Alkohole, wie 2-Methylverzweigte C9-Cn-Alkohole mit im Durchschnitt 3,5 Mol Ethylenoxid (EO) oder C12-C-ι8-Fettalkohole mit 1 bis 4 EO.
Zu den bevorzugten Aniontensiden gehören auch die Salze der Alkylsulfobemsteinsäure, die auch als Sulfosuccinate oder als Sulfobernsteinsäureester bezeichnet werden, und die Monoester und/oder Diester der Sulfobemsteinsäure mit Alkoholen, vorzugsweise Fettalkoholen und insbesondere ethoxylierten Fettalkoholen darstellen. Bevorzugte Sulfosuccinate enthalten C8-Ci8-Fettalkoholreste oder Mischungen aus diesen. Als weitere anionische Tenside kommen Fettsäurederivate von Aminosäuren, beispielsweise von N-Methyltaurin (Tauride) und/oder von N-Methylglycin (Sarkosinate) in Betracht. Als weitere anionische Tenside kommen insbesondere Seifen, beispielsweise in Mengen von 0,2 bis 5 Gew.-%, in Betracht. Geeignet sind insbesondere gesättigte Fettsäureseifen, wie die Salze der Laurinsäure, Myristinsäure, Palmitinsäure, Stearinsäure, hydrierten Erucasäure und Behensäure sowie insbesondere aus natürlichen Fettsäuren, z.B. Kokos-, Palmkern- oder Taigfettsäuren, abgeleitete Seifengemische.
Die anionischen Tenside, einschließlich der Seifen, können in Form ihrer Natrium- , Kalium- oder Ammoniumsalze sowie als lösliche Salze organischer Basen, wie Mono-, Di- oder Triethanolamin, vorliegen. Vorzugsweise liegen die anionischen Tenside in Form ihrer Natrium- oder Kaliumsalze, insbesondere in Form der Natriumsalze vor. Anionische Tenside sind in erfindungsgemäßen Waschmitteln vorzugsweise in Mengen von 0,5 bis 10 Gew.-% und insbesondere in Mengen von 5 bis 25 Gew.-% enthalten.
Als nichtionische Tenside werden vorzugsweise alkoxylierte, vorteilhafterweise ethoxylierte, insbesondere primäre Alkohole mit vorzugsweise 8 bis 18 C-Atomen und durchschnittlich 1 bis 12 Mol Ethylenoxid (EO) pro Mol Alkohol eingesetzt, in denen der Alkoholrest linear oder bevorzugt in 2-Stellung methylverzweigt sein kann, beziehungsweise lineare und methylverzweigte Reste im Gemisch enthalten kann, so wie sie üblicherweise in Oxoalkoholresten vorliegen. Insbesondere sind jedoch Alkoholethoxylate mit linearen Resten aus Alkoholen nativen Ursprungs mit 12 bis 18 C-Atomen, z.B. aus Kokos-, Palm, Taigfett- oder Oleylaikohol, und durchschnittlich 2 bis 8 EO pro Mol Alkohol bevorzugt. Zu den bevorzugten ethoxylierten Alkoholen gehören beispielsweise Ci2-Ci4-Alkohole mit 3 EO oder 4 EO, Cg-Cn-Alkohole mit 7 EO, C13-C15-Alkohole mit 3 EO1 5 EO, 7 EO oder 8 EO, Ci2-Ci8-Alkohole mit 3 EO, 5 EO oder 7 EO und Mischungen aus diesen, wie Mischungen aus Ci2-Ci4-Alkohol mit 3 EO und Ci2-Ci8-Alkohol mit 7 EO. Die angegebenen Ethoxylierungsgrade stellen statistische Mittelwerte dar, die für ein spezielles Produkt eine ganze oder eine gebrochene Zahl sein können. Bevorzugte Alkoholethoxylate weisen eine eingeengte Homologenverteilung auf (narrow ränge ethoxylates, NRE). Zusätzlich zu diesen nichtionischen Tensiden können auch Fettalkohole mit mehr als 12 EO eingesetzt werden. Beispiele hierfür sind (TaIg-) Fettalkohole mit 14 EO, 16 EO, 20 EO, 25 EO, 30 EO oder 40 EO.
Zu den nichtionischen Tensiden zählen auch Alkylglykoside der allgemeinen Formel RO(G)x, in der R einen primären geradkettigen oder methylverzweigten, insbesondere in 2-Stellung methylverzweigten aliphatischen Rest mit 8 bis 22, vorzugsweise 12 bis 18 C-Atomen bedeutet und 6 für eine Glykosideinheit mit 5 oder 6 C-Atomen, vorzugsweise für Glucose, steht. Der Oligomerisierungsgrad x, der die Verteilung von Monoglykosiden und Oligoglykosiden angibt, ist eine beliebige Zahl - die als analytisch zu bestimmende Größe auch gebrochene Werte annehmen kann - zwischen 1 und 10; vorzugsweise liegt x bei 1,2 bis 1,4. Ebenfalls geeignet sind Polyhydroxyfettsäureamide der Formel (I), in der Rest R1CO für einen aliphatischen Acylrest mit 6 bis 22 Kohlenstoffatomen, R2 für Wasserstoff; einen Alkyl- oder Hydroxyalkylrest mit 1 bis 4 Kohlenstoffatomen und [Z] für einen linearen oder verzweigten Polyhydroxyalkylrest mit 3 bis 10 Kohlenstoffatomen und 3 bis 10 Hydroxylgruppen steht R2 R4-O-R5
I I
(I) R1-CO~N-Z (II) R3CO-N-Z
Vorzugsweise leiten sich die Polyhydroxyfettsäureamide von reduzierenden Zuckern mit 5 oder 6 Kohlenstoffatomen, insbesondere von der Glucose ab. Zur Gruppe der Polyhydroxyfettsäureamide gehören auch Verbindungen der Formel (II) R3 für einen linearen oder verzweigten Alkyl- oder Alkenylrest mit 7 bis 12 Kohlenstoffatomen, R4 für einen linearen, verzweigten oder cyclischen Alkylenrest oder einen Arylenrest mit 2 bis 8 Kohlenstoffatomen und R5 für einen linearen, verzweigten oder cyclischen Alkylrest oder einen Arylrest oder einen Oxy-Alkylrest mit 1 bis 8 Kohlenstoffatomen steht, wobei Ci-C4-Alkyl- oder Phenylreste bevorzugt sind, und [Z] für einen linearen Polyhydroxyalkylrest, dessen Alkylkette mit mindestens zwei Hydroxylgruppen substituiert ist, oder alkoxylierte, vorzugsweise ethoxylierte oder propoxylierte Derivate dieses Restes steht. [Z] wird auch hier vorzugsweise durch reduktive Aminierung eines Zuckers wie Glucose, Fructose, Maltose, Lactose, Galactose, Mannose oder Xylose erhalten. Die N-Alkoxy- oder N-Alyloxy-substituierten Verbindungen können dann durch Umsetzung mit Fettsäuremethylestem in Gegenwart eines Alkoxids als Katalysator in die gewünschten Polyhydroxyfettsäureamide überführt werden.
Eine weitere Klasse bevorzugt eingesetzter nichtionischer Tenside, die entweder als alleiniges nichtionisches Tensid oder in Kombination mit anderen nichtionischen Tensiden, insbesondere zusammen mit alkoxylierten Fettalkoholen und/oder Alkylglykosiden, eingesetzt werden, sind alkoxylierte, vorzugsweise ethoxylierte oder ethoxylierte und propoxylierte Fettsäurealkylester, vorzugsweise mit 1 bis 4 Kohlenstoffatomen in der Alkylkette, insbesondere Fettsäuremethylester.
Auch nichtionische Tenside vom Typ der Aminoxide, beispielsweise N-Kokosalkyl- N,N-dimethylaminoxid und N-Talgalkyl-N,N-dihydroxyethylaminoxid und der Fettsäurealkanolamide können geeignet sein. Als weitere Tenside kommen sogenannte Gemini-Tenside in Betracht. Hierunter werden im Allgemeinen solche Verbindungen verstanden, die zwei hydrophile Gruppen pro Molekül besitzen. Diese Gruppen sind in der Regel durch einen sogenannten "Spacer" voneinander getrennt. Dieser Spacer ist in der Regel eine Kohlenstoffkette, die lang genug sein sollte, dass die hydrophilen Gruppen einen ausreichenden Abstand haben, damit sie unabhängig voneinander agieren können. Derartige Tenside zeichnen sich allgemeinen durch eine ungewöhnlich geringe kritische Micellkonzentration und die Fähigkeit, die Oberflächenspannung des Wassers stark zu reduzieren, aus. Eingesetzt werden können aber auch Gemini-Polyhydroxyfettsäureamide oder Poly-Polyhydroxyfettsäureamide. Weitere Tensidtypen können dendrimere Strukturen aufweisen.
Als organische und anorganische Gerüststoffe (Builder) eignen sich neutral oder insbesondere alkalisch reagierende Salze, die Calciumionen ausfällen oder komplexieren können. Geeignet und insbesondere ökologisch unbedenkliche
Buildersubstanzen, sind kristalline, schichtförmige Silikate der allgemeinen Formel NaMSi(X)O(2x+i), wobei M für Natrium oder Wasserstoff, x für eine Zahl von 1 ,9 bis 22, vorzugsweise von 1,9 bis 4 und y für eine Zahl von 0 bis 33 steht, beispielsweise Na-SKS-5 (0,-Na2Si2O5), Na-SKS-7 (P-Na2Si2O5, Natrosilit), Na- SKS-9 (NaHSi2O5*H2O), Na-SKS- 10 (NaHSi2O3*3H2O, Kanemit), Na-SKS-11 (t- Na2Si2O5) und Na-SKS-13 (NaHSi2O5), insbesondere aber Na-SKS-6 (5-Na2Si2O5) sowie feinkristalline, synthetische wasserhaltige Zeolithe, insbesondere vom Typ NaA, die ein Calciumbindevermögen im Bereich von 100 bis 200 mg CaO/g aufweisen. Zeolithe und Schichtsilikate können in einer Menge bis zu 20 Gew.-% im Mittel enthalten sein.
Des weiteren eignen sich nicht oder teilweise neutralisierte (co)polymere Polycarbonsäuren. Hierzu gehören die Homopolymere der Acrylsäure oder der Methacrylsäure bzw. deren Copolymere mit weiteren ethylenisch ungesättigten Monomeren wie beispielsweise Acrolein, Dimethylacrylsäure, Ethylacrylsäure, Vinylessigsäure, Allylessigsäure, Maleinsäure, Fumarsäure, Itaconsäure, Meth(-allylsulfonsäure), Vinylsulfonsäure, Styrolsulfonsäure, Acrylamidomethylpropansulfonsäure sowie Phosphorgruppen enthaltende Monomere wie beispielsweise Vinylphosphorsäure, Allylphosphorsäure und Acrylamidomethylpropanphosphorsäure und deren Salze, sowie Hydroxyethyl(meth)acrylatsulfat, Allylalkoholsulfat und Allylalkoholphosphate.
Bevorzugte (Co-)Polymere weisen eine mittlere Molmasse von 1000 bis 100 000 g/mol, vorzugsweise von 2000 bis 75000 g/mol und insbesondere von 2000 bis 35000 g/mol auf.
Der Neutralisierungsgrad der Säuregruppen liegt vorteilhafterweise bei 0 bis 90 %, vorzugsweise bei 10 bis 80 % und insbesondere bei 30 bis 70 %.
Zu den geeigneten Polymeren zählen vor allem auch Homopolymere der Acrylsäure und Copolymere der (Meth-)Acrylsäure mit Maleinsäure bzw. Maleinsäureanhydrid.
Weitere geeignete Copolymere leiten sich von Terpolymeren ab, die sich durch Polymerisation von 10 bis 70 Gew.-% monoethylenisch ungesättigten Dicarbonsäuren mit 4 bis 8 C-Atomen, deren Salzen, 20 bis 85 Gew.-% monoethylenisch ungesättigten Monocarbonsäuren mit 3 bis 10 C-Atomen bzw. deren Salzen, 1 bis 50 Gew.-% einfach ungesättigten Monomeren, welche nach der Verseifung Hydroxylgruppen an der Polymerkette freisetzen, und 0 bis 10 Gew.-% weiteren, radikalisch copolymerisierbaren Monomeren erhalten lassen.
Ebenfalls geeignet sind Pfropfpolymerisate von Monosacchariden, Oligosacchariden, Polysacchariden und modifizierten Polysacchariden sowie tierischen oder pflanzlichen Proteinen.
Bevorzugt sind Copolymerisate aus Zucker und anderen Polyhydroxyverbindungen und einer Monomermischung aus 45 bis 96 Gew.-% monoethylenisch ungesättigten C3- bis Cio-Monocarbonsäuren oder Mischungen von C3- bis Cio-Monocarbonsäuren und/ oder deren Salze mit einwertigen Kationen, 4 bis 55 Gew.-% monoethylenisch ungesättigte
Monosulfonsäuregruppen enthaltende Monomere, monoethylenisch ungesättigte Schwefelsäureester, Vinylphosphorsäureester und/ oder die Salze dieser Säuren mit einwertigen Kationen sowie 0 bis 30 Gew.-% wasserlösliche ungesättigte Verbindungen, die mit 2 bis 50 Mol Alkylenoxid pro Mol monoethylenisch ungesättigter Verbindungen modifiziert sind.
Weitere geeignete Polymere sind Polyasparaginsäure bzw. deren Derivate in nicht oder nur teilneutralisierter Form.
Besonders geeignet sind auch Pfropfpolymerisate von Acrylsäure, Methacrylsäure, Maleinsäure und weiteren ethylenisch ungesättigten Monomeren auf Salze der Polyasparaginsäure, wie sie üblicherweise bei der zuvor beschriebenen Hydrolyse des Polysuccinimids anfallen. Hierbei kann auf die sonst notwendige Zugabe von Säure zur Herstellung der nur teilweise neutralisierten Form der Polyasparaginsäure verzichtet werden. Die Menge an Polyaspartat wird üblicherweise so gewählt, dass der Neutralisationsgrad aller im Polymerisat eingebauten Carboxylgruppen 80 %, vorzugsweise 60 %, nicht überschreitet.
Weitere einsetzbare Gerüststoffe sind beispielsweise die bevorzugt in Form ihrer Natriumsalze eingesetzten Carbonsäuren, wie Zitronensäure, insbesondere Trinatriumcitrat und Trinatriumcitratdihydrat, Nitrilotriessigsäure und ihre wasserlöslichen Salze; die Alkalimetallsalze der Carboxymethyloxybernsteinsäure, Ethylendiamintetraessigsäure, Mono-, Dihydroxybemsteinsäure, α-Hydroxypropionsäure, Gluconsäure, Mellithsäure, Benzopolycarbonsäuren und solche wie in US-P-4 144 226 und 4 146 495 offenbart. Auch phosphathaltige Builder, beispielsweise Alkaliphosphate, die in Form ihrer alkalischen neutralen oder sauren Natrium- oder Kaliumsalze vorliegen können, . sind geeignet. Beispiele hierfür sind Trinatriumphosphat, Tetranatriumdiphosphat, Dinatriumdihydrogenphosphat, Pentanatriumtriphosphat, sogenanntes Natriumhexametaphosphat, oligomeres Trinatriumphosphat mit Oligomerisierungsmengen im Bereich von 5 bis 1000, insbesondere 5 bis 50, sowie Gemische aus Natrium- und Kaliumsalzen. Diese Buildersubstanzen können von 5 bis 80 Gew.-% enthalten sein, bevorzugt ist ein Anteil von 10 bis 60 Gew.-%.
Die gewünschte Viskosität der flüssigen Mittel kann durch Zugabe von Wasser und/oder organischen Lösungsmitteln oder durch Zugabe einer Kombination aus organischen Lösungsmitteln und Verdickungsmitteln eingestellt werden.
Prinzipiell kommen als organische Lösungsmittel alle ein- oder mehrwertigen Alkohole in Betracht. Bevorzugt werden Alkohole mit 1 bis 4 Kohlenstoffatomen, wie Methanol, Ethanol, Propanol, Isopropanol, geradkettiges und verzweigtes Butanol, Glycerin und Mischungen aus den genannten Alkoholen eingesetzt. Weitere bevorzugte Alkohole sind Polyethylenglykole mit einer relativen Molekülmasse unter 2000. Insbesondere ist ein Einsatz von Polyethylenglykol mit einer relativen Molekülmasse zwischen 200 und 600 und in Mengen bis zu
45 Gew.-% und von Polyethylenglykol mit einer relativen Molekülmasse zwischen 400 und 600 in Mengen von 5 bis 25 Gew.-% bevorzugt. Eine vorteilhafte Mischung aus Lösungsmitteln besteht aus monomerem Alkohol, beispielsweise Ethanol und Polyethylenglykol im Verhältnis 0,5 : 1 bis 1,2 : 1.
Weitere geeignete Lösungsmittel sind beispielsweise Triacetin (Glycerintriacetat) und 1-Methoxy-2-propanol.
Als Verdickungsmittel werden bevorzugt gehärtetes Rizinusöl, Salze von langkettigen Fettsäuren, die vorzugsweise in Mengen von 0 bis 5 Gew.-% und insbesondere in Mengen von 0,5 bis 2 Gew.-%, beispielsweise Natrium-, Kalium-, Aluminium-, Magnesium- und Titanstearate oder die Natrium- und/oder Kaliumsalze der Behensäure, sowie Polysaccharide, insbesondere Xanthan-Gum, Guar-Guar, Agar-Agar, Alginate und Tylosen, Carboxymethylcellulose und Hydroxyethylcellulose, ferner höhermolekulare Polyethylenglycolmono- und -diester von Fettsäuren, Polyacrylate, Polyvinylalkohol und Polyvinylpyrrolidon sowie Elektrolyte wie Kochsalz und Ammoniumchlorid eingesetzt. Als Verdicker eignen sich wasserlösliche Polyacrylate, die beispielsweise mit etwa 1 % eines Polyallylethers der Sucrose quervernetzt sind und die eine relative Molekülmasse oberhalb einer Million besitzen. Beispiele hierfür sind die unter dem Namen Carbopol® 940 und 941 erhältlichen Polymere. Die quervernetzten Polyacrylate werden in Mengen nicht über 1 Gew.-%, vorzugsweise in Mengen on 0,2 bis 0,7 Gew.-% eingesetzt. Zu den in erfindungsgemäßen Mitteln gegebenenfalls enthaltenen Enzymen gehören Proteasen, Amylasen, Pullulanasen, Cellulasen, Cutinasen und/oder Lipasen, beispielsweise Proteasen wie BLAP®, Optimase®, Opticlean®, Maxacal®, Maxapem®, Durazym®, Purafect® OxP, Esperase® und/oder Savinase®, Amylasen wie Termamy®, Amylase-LT, Maxamyl®, Duramyl®,
Purafectel OxAm, Cellulasen wie Celluzyme®, Carezyme®, K-AC® und/oder die aus den internationalen Patentanmeldungen WO 96/34108 und WO 96/34092 bekannten Cellulasen und/oder Lipasen wie Lipolase®, Lipomax®, Lumafast® und/oder Lipozym®. Die verwendeten Enzyme können, wie zum Beispiel in den internationalen Patentanmeldungen WO 92/111347 oder WO 94/23005 beschrieben, an Trägerstoffen adsorbiert und/oder in Hüllsubstanzen eingebettet sein, um sie gegen vorzeitige Inaktivierung zu schützen. Sie sind in erfindungsgemäßen Wasch- und Reinigungsmitteln vorzugsweise in Mengen bis zu 10 Gew.-%, insbesondere von 0,05 bis 5 Gew.-%, enthalten, wobei besonders bevorzugt gegen oxidativen Abbau stabilisierte Enzyme, eingesetzt werden.
Vorzugsweise enthalten erfindungsgemäße maschinelle Geschirrreinigungsmittel die üblichen Alkaliträger wie zum Beispiel Alkalisilikate, Alkalicarbonate und/oder Alkalihydrogencarbonate. Zu den üblicherweise eingesetzten Alkaliträgern zählen Carbonate, Hydrogencarbonate und Alkalisilikate mit einem Molverhältnis SiO2/M2O
(M = Alkaliatom) von 1 : 1 bis 2,5 : 1. Alkalisilikate können dabei in Mengen von bis zu 40 Gew.-%, insbesondere 3 bis 30 Gew.-%, bezogen auf das gesamte Mittel, enthalten sein. Das in erfindungsgemäßen Reinigungsmitteln bevorzugt eingesetzte Alkaliträgersystem ist ein Gemisch aus Carbonat und
Hydrogencarbonat, vorzugsweise Natriumcarbonat und -hydrogencarbonat, das in einer Menge von bis zu 50 Gew.-%, vorzugsweise 5 bis 40 Gew.-%, enthalten sein kann.
Ein weiterer Erfindungsgegenstand ist ein Mittel zum maschinellen Reinigen von Geschirr, enthaltend 15 bis 65 Gew.-%, insbesondere 20 bis 60 Gew.-% wasserlösliche Builderkompenente, 5 bis 25 Gew.-%, insbesondere 8 bis 17 Gew.-%. Bleichmittel auf Sauerstoffbasis, jeweils; bezogen auf das gesamte Mittel, und 0,1 bis 5 Gew.-% einer oder mehrerer der oben definierten kationischen nitrilischen Aktivatoren. Ein derartiges Mittel ist vorzugsweise niederalkalisch, das heißt seine Gewichtsprozentige Lösung weist einen pH-Wert von 8 bis 11 ,5, insbesondere 9 bis 11 auf.
In einer weiteren Ausführungsform erfindungsgemäßer Mittel zur automatischen Reinigung von Geschirr sind 20 bis 60 Gew.-% wasserlöslicher organischer Builder, insbesondere Alkalicitrat, 3 bis 20 Gew.-% Alkalicarbonat und 3 bis 40 Gew.-% Alkalidisilikat enthalten.
Um einen Silberkorrosionsschutz zu bewirken, können in erfindungsgemäßen Reinigungsmitteln für Geschirr Silberkorrosionsinhibitoren eingesetzt werden. Bevorzugte Silberkorrosionsschutzmittel sind organische Sulfide wie Cystin und Cystein, zwei- oder dreiwertige Phenole, gegebenenfalls alkyl- oder arylsubstituierte Triazole wie Benzotriazol, Isocyanursäure, Titan-, Zirkonium-, Hafnium-, Molybdän-, Vanadium- oder Cersalze und/oder -komplexe.
Sofern die Mittel bei der Anwendung zu stark schäumen, können ihnen noch bis zu 6 Gew.-%, vorzugsweise etwa 0,5 bis 4 Gew.-% einer schaumregulierenden Verbindung, vorzugsweise aus der Gruppe umfassend Silikone, Paraffine, Paraffin-Alkohol-Kombinationen, hydrophobierte Kieselsäuren, Bisfettsäureamide sowie deren Gemische und sonstige weitere bekannte im Handel erhältliche Schauminhibitoren zugesetzt werden. Vorzugsweise sind die Schauminhibitoren, insbesondere Silikon- und/oder paraffinhaltige Schauminhibitoren, an eine granuläre, in Wasser lösliche beziehungsweise dispergierbare Trägersubstanz gebunden. Insbesondere sind dabei Mischungen aus Paraffinen und Bistearylethylendiamid bevorzugt. Weitere fakultative Inhaltsstoffe in den erfindungsgemäßen Mitteln sind zum Beispiel Parfümöle.
Zu den in den erfindungsgemäßen Mitteln, insbesondere wenn sie in flüssiger oder pastöser Form vorliegen, verwendbaren organischen Lösungsmitteln gehören Alkohole mit 1 bis 4 C-Atomen, insbesondere Methanol, Ethanol, Isopropanol und tert-Butanol, Diole mit 2 bis 4 C-Atomen, insbesondere Ethylenglykol und Propylenglykol, sowie deren Gemische und die aus den genannten Verbindungsklassen ableitbaren Ether. Derartige wassermischbare Lösungsmittel sind in den erfindungsgemäßen Reinigungsmitteln vorzugsweise nicht über
20 Gew.-%, insbesondere von 1 bis 15 Gew.-%, vorhanden. Zur Einstellung eines gewünschten, sich durch die Mischung der übrigen Komponenten nicht von selbst ergebenden pH-Werts können die erfindungsgemäßen Mittel System- und umweltverträgliche Säuren, insbesondere Zitronensäure, Essigsäure, Weinsäure, Äpfelsäure, Milchsäure, Glykolsäure, Bemsteinsäure, Glutarsäure und/oder Adipinsäure, aber auch Mineralsäuren, insbesondere Schwefelsäure oder Alkalihydrogensulfate, oder Basen, insbesondere Ammonium- oder Alkalihydroxide, enthalten. Derartige pH- Regulatoren sind in den erfindungsgemäßen Mitteln vorzugsweise nicht über 10 Gew.-%, insbesondere von 0,5 bis 6 Gew.-%, enthalten.
Als Konservierungsmittel eignen sich beispielsweise Phenoxyethanol, Formaldehydlösung, Pentandiol oder Sorbinsäure.
Als Perlglanzmittel kommen beispielsweise Glycoldistearinsäureester wie Ethylenglycoldistearat, aber auch Fettsäuremonoglykolester in Betracht. Als Salze bzw. Stellmittel kommen beispielsweise Natriumsulfat, Natriumcarbonat oder Natriumsilikat (Wasserglas) in Betracht.
Als typische Einzelbeispiele, für weitere Zusatzstoffe sind Natriumborat, Stärke, Saccharose, Polydextrose, RAED, Stilbenverbindungen, Methylcellulose, Toluolsulfonat, Cumolsulfonat, Seifen und Siiicone zu nennen.
Die erfindungsgemäßen Mittel liegen vorzugsweise als pulverförmige, granuläre oder tablettenförmige Präparate vor, die in an sich bekannter Weise, beispielsweise durch Mischen, Granulieren, Walzen kompaktieren und/oder durch Sprühtrocknung der thermisch belastbaren Komponenten und Zumischen der empfindlicheren Komponenten, zu denen insbesondere Enzyme, Bleichmittel und der Bleichkatalysator zu rechnen sind, hergestellt werden können. Erfindungsgemäße Mittel in Form wässriger oder sonstige übliche Lösungsmittel enthaltender Lösungen werden besonders vorteilhaft durch einfaches Mischen der Inhaltsstoffe, die in Substanz oder als Lösung in einen automatischen Mischer gegeben werden können, hergestellt.
Zur Herstellung von teilchenförmigen Mitteln mit erhöhtem Schüttgewicht, insbesondere im Bereich von 650 g/l bis 950 g/l, ist ein aus der europäischen Patentschrift EP 0 486 592 bekanntes, einen Extrusionsschritt aufweisendes Verfahren bevorzugt. Eine weitere bevorzugte Herstellung mit Hilfe eines Granulationsverfahrens ist in der europäischen Patentschrift EP 0 642 576 beschrieben. Die Herstellung erfindungsgemäßer Mittel in Form von nicht staubenden, lagerstabil rieselfähigen Pulvern und/oder Granulaten mit hohen Schüttdichten im Bereich von 800 bis 1000 g/l kann auch dadurch erfolgen, dass man in einer ersten Verfahrensstufe die Builder-Komponenten mit wenigstens einem Anteil flüssiger Mischungskomponenten unter Erhöhung der Schüttdichte dieses Vorgemisches vermischt und nachfolgend - gewünschtenfalls nach einer Zwischentrocknung - die weiteren Bestandteile des Mittels, darunter den kationischen, nitrilischen Aktivator, mit dem so gewonnenen Vorgemisch vereinigt.
Zur Herstellung von erfindungsgemäßen Mitteln in Tablettenform geht man vorzugsweise derart vor, dass man alle Bestandteile in einem Mischer miteinander vermischt und das Gemisch mittels herkömmlicher Tablettenpressen, beispielsweise Exzeriterpressen oder Rundläuferpressen verpresst. Man erhält so problemlos bruchfeste und dennoch unter Anwendungsbedingungen ausreichend schnell lösliche Tabletten mit Biegefestigkeiten von normalerweise über 150 N. Vorzugsweise weist eine derart hergestellte Tablette ein Gewicht von 1-5 g bis 40 g, insbesondere von 20 g bis 30 g auf; bei einem Durchmesser von 3-5 mm bis 40 mm.
Neben den bereits erwähnten Inhaltsstoffen können die Wasch- und Reinigungsmittel jeden der konventionellen Zusatzstoffe in Mengen enthalten, die man üblicherweise in solchen Mitteln vorfindet. Beispiele
Beispiel 1 : Synthese von (Cyanomethy^-di-ethyl-methyl-ammoniumchlorid
17,4 g (0,2 mol) N,N-Diethylmethylamin wurden in 100 ml Aceton vorgelegt. Zu dieser Lösung tropfte man bei RT innerhalb von 10 min 15,1 g (0,2 mol)
Chloracetonitril, wobei die Temperatur auf 27°C anstieg. Nach ca. 5 min wurden erste Ausfällungen sichtbar. Man rührt bei RT über Nacht nach, filtrierte das Produkt auf der Saugnutsche ab und wusch mit Aceton. Anschließend wurde im
Vakuumtrockenschrank getrocknet. Man erhielt 20,4 g (0,125 mol; 63 %)
(CyanomethyO-di-ethyl-methyl-ammoniumchlorid.
1H-NMR: δ = 1.3 ppm (t, 6H, Ethyl-CH3); 3.2 (s, 3H, N-CH3); 3.55 (q, 4H, Ethyl-
CH2); 5.15 (s, 2H, N-CH2-CN).
Beispiel 2:
Synthese von (Cyanomethyl)-di-ethyl-methyl-ammonium-methosulfat
22,4 g (0,2 mol) Diethylaminoacetonitril wurden in 100 ml Essigsäureethylester vorgelegt. Innerhalb von 10 min wurden unter Eiskühlung bei einer Innentemperatur von 10-150C 25,2 g (0,2 mol) Dimethylsulfat zugetropft. Das
Reaktionsgemisch wurde am Rotationsverdampfer zur Trockene einrotiert (400C;
0,1 mbar). Man erhielt 43,2 g (0,181 mol; 91 %) (Cyanomethyl)-di-ethyl-methyl- ammonium-methosulfat.
1H-NMR: δ = 1.3 ppm (t, 6H, Ethyl-CH3); 3.1 (s, 3H, N-CH3); 3.4 (s, 3H1 CH3OSO3); 3.5 (q, 4H1 Ethyl-CH2); 4.85 (s, 2H, N-CH2-CN).
Beispiel 3:
Synthese von (Cyanomethyl)-di-ethyl-methyl-ammonium-tosylat 56,1g (0,5 mol) Diethylaminoacetonitril wurden in 75 ml Toluol gelöst und innerhalb von 30 Minuten eine Lösung von 93,1 g (0,5 mol) Methyltosylat in 75 ml Toluol zugetropft. Das Reaktionsgemisch wurde 4 Stunden unter Rückfluss gerührt. Das Reaktionsgemisch wurde auf Raumtemperatur abgekühlt und der ausgefallene Feststoff abfiltriert. Der Filterkuchen wurde mit 100 ml Toluol gewaschen und der Feststoff bei 6O0C im Vakuum getrocknet. Es wurden 142,9 g (0,48 mol) reines (Cyanomethyl)-di-ethyl-methyl-ammonium- tosylat erhalten, entsprechend einer Ausbeute von 95,8 %. Fp.: 115°C
1H-NMR (D2O): δ = 7,65,(2 H, d); δ = 7,32 (2 H, d); δ = 4,59 (2 H, s); δ = 3,51 (4 H, q); δ = 3,14 (3 H, s); δ = 2,35 (3 H, s); δ = 1 ,34 (6 H, t)
Beispiel 4: Herstellung eines Granulates
In einem Labor-Pflugscharmischer (Typ: Lödige M5R mit Messerkopf) wurden 875 g (Cyanomethyl)-di-ethyl-methyl-ammonium-tosylat-Pulver vorgelegt und bei einer Mischerdrehzahl von n = 100 min"1 auf eine Temperatur von T = 600C erwärmt. Bei Erreichen der Zieltemperatur wurde die Mischerdrehzahl auf n = 250 min"1 erhöht, der Messerkopf zugeschaltet und innerhalb von 2 min eine Menge von 125 g einer Genapol T-500-Schmelze in den Mischer eindosiert. (Genapol T-500 = Fettalokohololyglykolether - Handelsprodukt Clariant GmbH). Die Genapol-Schmelze war vor der Dosierung auf eine Temperatur von T = 800C erwärmt. Die Produktmischung wurde nach dem Eintrag der Gesamtmenge der Schmelze noch für ca. 30 sec. nachgemischt und anschließend aus dem Mischer entleert.
Zur Granulierung kam eine Labor-Ringkollerpresse (Typ: Schlüter PP 85) zum Einsatz, die mit einer 1 mm-Matrize ausgerüstet war. Vor der Granulierung wurden die wesentlichen Arbeitsbereiche, Matrize und Koller, auf eine Temperatur von T = 600C vorgewärmt. Die Produktmischung aus dem Pflugscharmischer wurde mit einer Dosierrate von ca. 80 - 100 g/min in die Ringkollerpresse eindosiert, die mit einer Drehzahl von n = 300 min"1 arbeitete. Der Abstand zwischen Koller und Ringmatrize war auf ca. 0,4 mm eingestellt, der Abstand des Abstreifermessers war auf ca. 4 mm justiert. Die entstandenen Nudelgranulate hatten eine Temperatur von ca. 65 - 700C und wurden vor der weiteren Verarbeitung auf Raumtemperatur abgekühlt. Produkt wurde abschließend auf einem Laborsieb (Typ. Retsch AS 200 control) fraktioniert, um Feinanteile < 400 μm und Grobanteile > 1600 μm aus dem Zielprodukt abzutrennen. Das fertige P2005/009118
24
Nudelgranulat lag mit einer Zusammensetzung von 87,5 % (Cyanomethyl)-di- ethyl-methyl-ammonium-tosylat und 12,5 % Genapol T-500 vor. Beispiel 5:
Herstellung eines Co-Granulates aus TAED und (Cyanomethyl)-di-ethyl-methyl- ammonium-tosylat
In einem Labormischer (Typ: Eirich R-02) wurden vorgelegt 0,92 kg TAED-Pulver, 0,92 kg (Cyanomethyl)-di-ethyl-methyl-ammonium-tosylat-Pulver und 0,16 kg Bentonit (z.B. Ikomont NA weiß - Handelsprodukt der Fa. S&B Industrial Minerals GmbH). Die Produkte wurden bei einer Mischbehälterdrehzahl von n = 32 min'1 (Stufe I) und einer Wirbler-Drehzahl von n = 750 min"1 für 2 min intensiv gemischt
Die so hergestellte Pulvermischung wurde anschließend in einem Walzen- Konnpaktor (Typ: Hosokawa-Bepex Pharmapaktor L 200/30 P) verpreßt. Die Drehzahl der Walzen wurde im Bereich von ca. 4 - 8 min"1 und die Drehzahl der Stopfschnecke wurde im Bereich von ca. 18 - 25 min"1 variiert, um eine hinreichende Kompaktierung des Pulvers zu erreichen. Die Pressstücke wurden anschließend auf einer Siebmühle (Typ: Alexanderwerk SKM/NR) schonend zerkleinert, wobei mit einem Siebeinsatz mit einer Maschenweite von 1600 μm . und einer Drehzahl von 33 min"1 gearbeitet wurde. Das zerkleinerte Produkt wurde abschließend auf einem Laborsieb (Typ. Retsch AS 200 control) fraktioniert, um Feinanteile < 400 μm aus dem Zielprodukt abzutrennen. Das fertige Kompaktat lag mit einer Zusammensetzung von 46 % TAED, 46 % (Cyanomethyl)-di-ethyl- methyl-ammonium-tosylat und 8 % Bentonit vor.
Bespiel 6: Geruchstest
Jeweils 100 g Waschpulver (Ariel, Fa. Procter & Gamble) wurden in 250 ml Glasflaschen abgefüllt und jeweils 5 g eines Cyanomethylammoniumsalzes hinzugegeben. Anschließend wurden die Flaschen 4 Wochen bei 400C gelagert. Nach dieser Zeit wurde der Geruch des Waschpulvers von einem Testpennal abgerochen.
Cyanomethylammoniumsalz Geruchsbeurteilung Cyanomethyltrimethylammonium chlorid stark fischartig
Cyanomethyldimethylethylammonium tosylat schwach fischartig
Cyanomethyldiethylmethylammonium tosyiat (gemäß Beispiel 3 ) neutral
Die erfindungsgemäße Cyanomethylammoniumsalz weist keinen fischartigen Geruch auf und ist deshalb zum Einsatz in Handelsprodukten geeignet.
Beispiel 7: Analytischer Nachweis von Trimethylamin, entstanden aus Cyanomethyl- ammonium-Salzen unter alkalischen Bedingungen.
Eine 100 mg Probe der Cyanomethyl-ammonium-Salze wurde in 100 μl_ Wasser und 2 mL einer 20 %iger Sodalösung gelöst und anschließend 16 h bei 7O0C gelagert. Anschließend wurde der Gehalt des gebildeten Trimethylamins (TMA) mittels Gaschromatographie bestimmt.
Cyanomethyl-ammonium-Salz TMA nach Reaktion Cyanomethyl-trimethylammonium-Tosylat 26 ppm
Cyanomethyl-dimethylethylammonium-Tosylat 20 ppm Methyl-morpholiniumacetonitril-methosulfat 3 ppm
Cyanomethyl-diethylmethylammonium-Tosylat 0 ppm
Beispiel 8:
Bleichleistung von Cyanomethyl-trialkylammonium-Salzen Die Bleichleistung der Cyanomethyl-trialkylammonium-Salzen wurde in einem Linitest-Gerät (Fa. Heraus) bei 400C untersucht. Hierzu wurden 5 g/l eines bleichmittelfreien Grundwaschmittels (WMP, WFK, Krefeld) und 0,5 g/l Natriumperborat Monohydrat (Fa. Degussa) in Wasser der Härtestufe 3 gelöst. Anschließend wurden 100 mg/l Aktivator zugegeben. Die Waschzeit betrug 30 min. Als Bleichtestgewebe dienten Curry, Ketchup und Tee auf Baumwolle (BC-4, 10T und BC-1 , WFK Testgewebe GmbH, Krefeld). Als Bleichergebnis wurde die Remissionsdifferenz, gemessen mit einem Elrepho-Gerät, nach der Wäsche im Vergleich zum ungewaschenen Gewebe gewertet. Remissionsdifferenz (dR%)
Aktivator BC-4 10T BC-1
Cyanomethyl-trimethylammonium-Tosylat 62,1 74,7 55,1
Cyanomethyl-diethylmethylammonium-Tosylat 62,9 75,2 54,9
Man erkennt, dass der erfindungsgemäßen Bleichaktivator (hergestellt gemäß Beispiel 3) eine vergleichbare Bleichwirkung ausweist wie der Stand der Technik (Cyanomethyltrimethylammonium-Tosylat, hergestellt durch Umsetzung von Dimethylaminoacetonitril mit p-Toluolsulfonsäuremethylester).
Im wesentlichen gleiche Ergebnisse wurden erhalten, wenn man das Natriumperborat durch0 Natriumpercarbonat Monohydrat ersetzte.

Claims

Patentansprüche:
1. Diethylmethyl-Ammoniumnitrile der Formel (1 )
C2H5
H3C N CH9CN A"
C2H5 (1 )
worin A ein Anion bedeutet.
2. Verbindungen der Formel 1 nach Anspruch 1 , dadurch gekennzeichnet, dass A Chlorid, Bromid, Sulfat, Hydrogensulfat, Methosulfonat, Ethansulfonat,
Toluolsulfonat, Benzolsulfonat oder Cumolsulfonat bedeutet.
3. Verbindungen der Formel 1 nach Anspruch 1, dadurch gekennzeichnet, dass A Chlorid, Hydrogensulfat, Sulfat, Methosulfat, Ethansulfonat oder Toluolsulfonat bedeutet.
4. Wasch- und Reinigungsmittel enthaltend eine Verbindung der Formel 1 gemäß Anspruch 1.
5. Wasch- und Reinigungsmittel enthaltend eine Verbindung der Formel 1 gemäß Anspruch 1 in Form eines Granulats.
6. Verwendung der Diethyl-ammoniumnitrile der Formel (1 ) gemäß Anspruch 1 zusammen mit einer Persauerstoffverbindung zum Bleichen.
EP05790670A 2004-08-28 2005-08-24 Diethylmethyl-ammoniumnitrile und wasch- und reinigungsmittel, enthaltend diese ammoniumnitrile Withdrawn EP1784385A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004041760A DE102004041760A1 (de) 2004-08-28 2004-08-28 Diethylmethyl-Ammoniumnitrile und Wasch- und Reinigungsmittel, enthaltend diese Ammoniumnitrile
PCT/EP2005/009118 WO2006024434A1 (de) 2004-08-28 2005-08-24 Diethylmethyl-ammoniumnitrile und wasch- und reinigungsmittel, enthaltend diese ammoniumnitrile

Publications (1)

Publication Number Publication Date
EP1784385A1 true EP1784385A1 (de) 2007-05-16

Family

ID=35745632

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05790670A Withdrawn EP1784385A1 (de) 2004-08-28 2005-08-24 Diethylmethyl-ammoniumnitrile und wasch- und reinigungsmittel, enthaltend diese ammoniumnitrile

Country Status (5)

Country Link
US (1) US20070245498A1 (de)
EP (1) EP1784385A1 (de)
JP (1) JP2008511701A (de)
DE (1) DE102004041760A1 (de)
WO (1) WO2006024434A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008061040A1 (de) * 2008-12-11 2010-06-17 Henkel Ag & Co. Kgaa Kräftigende Coloration

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4387888A (en) * 1981-01-29 1983-06-14 James Marinakis Table apparatus
GB9012001D0 (en) * 1990-05-30 1990-07-18 Unilever Plc Bleaching composition
US5898025A (en) * 1992-09-25 1999-04-27 Henkel Kommanditgesellschaft Auf Aktien Mildly alkaline dishwashing detergents
US20030166484A1 (en) * 2000-09-28 2003-09-04 Kingma Arend Jouke Coated, granular n-alkylammonium acetonitrile salts and use thereof as bleach activators
DE10161766A1 (de) * 2001-12-15 2003-06-26 Clariant Gmbh Bleichaktivator-Co-Granulate
US6934987B2 (en) * 2002-03-11 2005-08-30 Hill-Rom Services, Inc. Surgical table having integral lateral supports

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2006024434A1 *

Also Published As

Publication number Publication date
US20070245498A1 (en) 2007-10-25
WO2006024434A1 (de) 2006-03-09
DE102004041760A1 (de) 2006-03-02
JP2008511701A (ja) 2008-04-17

Similar Documents

Publication Publication Date Title
EP1557457B1 (de) Verwendung von Übergangsmetallkomplexen als Bleichkatalysatoren in Wasch- und Reinigungsmitteln
EP1209221B1 (de) Verwendung von cyclischen Zuckerketonen als Katalysatoren für Persauerstoffverbindungen
EP1445305B1 (de) Verwendung von Übergangsmetallkomplexen als Bleichkatalysatoren
EP1520910B1 (de) Verwendung von Übergangsmetallkomplexen mit Lactamliganden als Bleichkatalysatoren
EP2673349B1 (de) Verwendung von übergangsmetallkomplexen als bleichkatalysatoren in wasch- und reinigungsmitteln
EP1225215B1 (de) Verwendung von Übergangsmetallkomplexen mit Oxim-Liganden als Bleichkatalysatoren
EP2049643A1 (de) Verwendung von aminoacetonen und deren salzen als bleichkraftverstärker für persauerstoffverbindungen
EP1319705B1 (de) Bleichaktivator-Co-Granulate
EP1487955B1 (de) Ammoniumnitrile und deren verwendung als hydrophobe bleichaktivatoren
EP1934324B1 (de) Granuläre bleichaktivator-mischungen
WO2000032731A1 (de) Verwendung von übergangsmetallkomplexen mit stickstoffhaltigen heterocyclischen liganden zur verstärkung der bleichwirkung von persauerstoffverbindungen
EP1207195A2 (de) Teilchenförmige Bleichaktivatoren auf der Basis von Acetonitrilen
WO1999033947A1 (de) Verwendung von übergangsmetallkomplexen mit dendrimer-liganden zur verstärkung der bleichwirkung von persauerstoffverbindungen
EP1784385A1 (de) Diethylmethyl-ammoniumnitrile und wasch- und reinigungsmittel, enthaltend diese ammoniumnitrile
WO2007017216A1 (de) Wasch- und reinigungsmittel enthaltend 1,3,5-triacetyl-2,4-dioxo-1,3,5-hexahydrotriazin als bleichaktivator
WO2006092246A1 (de) Ammoniumnitrile und deren verwendung als bleichaktivatoren
DE19809713A1 (de) Verwendung von Übergangsmetallkomplexen mit Dendrimer-Liganden zur Verstärkung der Bleichwirkung von Persauerstoffverbindungen
WO2001018166A2 (de) Verwendung von übergangsmetallkomplexverbindungen zur verstärkung der bleichwirkung von persauerstoffverbindungen in sauren systemen
WO1996030482A1 (de) Aktivatoren für peroxoverbindungen und sie enthaltende mittel
DE19738274A1 (de) Verwendung von Cyanpyridin-N-oxiden als Bleichaktivatoren

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070328

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20070905

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RBV Designated contracting states (corrected)

Designated state(s): BE CH DE ES FR GB IT LI PL

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

RBV Designated contracting states (corrected)

Designated state(s): BE CH DE ES FR GB IT LI

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20090805