EP1242742B1 - Pompe a vide a vis refroidie - Google Patents

Pompe a vide a vis refroidie

Info

Publication number
EP1242742B1
EP1242742B1 EP00983238A EP00983238A EP1242742B1 EP 1242742 B1 EP1242742 B1 EP 1242742B1 EP 00983238 A EP00983238 A EP 00983238A EP 00983238 A EP00983238 A EP 00983238A EP 1242742 B1 EP1242742 B1 EP 1242742B1
Authority
EP
European Patent Office
Prior art keywords
shaft
coolant
rotor
bore
guide component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00983238A
Other languages
German (de)
English (en)
Other versions
EP1242742A1 (fr
Inventor
Hartmut Kriehn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Leybold GmbH
Original Assignee
Leybold Vakuum GmbH
Leybold Vacuum GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leybold Vakuum GmbH, Leybold Vacuum GmbH filed Critical Leybold Vakuum GmbH
Publication of EP1242742A1 publication Critical patent/EP1242742A1/fr
Application granted granted Critical
Publication of EP1242742B1 publication Critical patent/EP1242742B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/04Heating; Cooling; Heat insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/14Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C18/16Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type

Definitions

  • the invention relates to a screw vacuum pump having the features of the preamble of patent claim 1 or of the preamble of patent claim 4.
  • a screw vacuum pump with these features is known from DE-A-198 20 523 (FIG. 4).
  • the coolant is injected into the holes in the shafts open at the pressure side.
  • the suction side of the shafts are equipped with radial bores through which the coolant enters the rotor cavities.
  • the outer walls of these cavities are conically widening toward the pressure side.
  • the coolant film forming on the outer walls flows in the direction of the pressure side.
  • the present invention is based on the object, in a screw vacuum pump of the type mentioned not only to improve the coolant supply of the rotor cavities but also the effectiveness of the cooling.
  • the guide components used in the central shaft bores By using the guide components used in the central shaft bores, a secure and effective separation of the inflowing cold coolant from the backflowing hot coolant can be achieved, especially if the guide components consist of a poorly heat-conducting material.
  • the central shaft bore for accommodating the guide member may have a relatively large Have diameter. This is compared to individual, separate deep hole drilling for supply and discharge channels of the coolant in the shaft material itself much easier to manufacture.
  • the guide components allow the cooling of the rotors in the "countercurrent", since even a trouble-free crossing of the supplied and discharged coolant flows can be made possible.
  • the countercurrent cooling of the rotors also has the advantage of more uniform temperature control, so that the rotor housing gap can be kept uniformly small.
  • the guide components make it possible to operate the cooling of the rotors so that all lines, gaps, chambers or the like which are located in the rotor cavities and through which the coolant flows are always completely filled with the flowing coolant. The effectiveness of the cooling is thereby significantly improved.
  • the screw vacuum pump 1 shown in FIG. 1 comprises the pump chamber 2 with the rotors 3 and 4.
  • the inlet 5 and outlet 6 of the pump 1 are schematically indicated by arrows.
  • the rotors 3 and 4 are mounted on the shafts 7 and 8, respectively, which are supported in two bearings 11, 12 and 13, 14.
  • a bearing pair 11, 13 is located in a bearing plate 15, which separates the lubricant-free pump chamber from a gear chamber 16.
  • In the housing 17 of the gear chamber 16 are mounted on the shafts 7 and 8 synchronization gears 18, 19 and a drive of the pump 1 serving gear pair 21, 22, one of which with the Wave of the vertically adjacent to the pump 1 arranged drive motor 23 is coupled.
  • the gear chamber has the function of an oil sump 20th
  • FIG. 1 shows that the rotors 3 and 4 each have a cavity 31 into which the shaft 8 extends and in which there is another space 32 through which a coolant flows. Since only the rotor 4 is shown in partial section, the invention will be explained only with reference to this rotor 4.
  • the space 32 through which the coolant flows is designed as an annular gap section and is located directly between shaft 8 (or 7) and rotor 4 (or 3).
  • the cylindrical inner wall of the rotor cavity 31 is provided in its central region with a recess 33 whose depth corresponds to the thickness of the cooling gap 32. The suction side and the pressure side, the shaft 8 of the inner wall of the cavity 31 is tight.
  • the supply of the cooling gap 32 with the coolant takes place via the shaft 8. It is equipped with a central bore 41 which extends from the lower end of the shaft 8 to the suction-side end of the cooling gap 32. It forms a space 43 in which a guide member 44 for the coolant is located. The guide member 44 extends from the lower end of the shaft 8 to beyond the pressure-side end of the cooling gap 32 addition.
  • the supply of the coolant via the longitudinal bore 45 in the guide member 44, which communicates via aligned transverse bores 46 through the component 44 and the shaft 8 with the pressure-side end of the cooling gap 32 in connection.
  • the shaft 8 is equipped with one or more transverse bores 47, which open into the space 43 formed by the blind bore 41 and the end face of the guide member 44. This communicates via the longitudinal bore 48 and the mutually aligned transverse bores 49 (in the guide member 44 and in the shaft 8) with the gear chamber 16 in connection.
  • the supply of the coolant takes place from the oil-containing space 26 via the holes 45 and 46 in the cooling gap 32. It flows through the cooling gap 32 from the pressure side to the suction side of the rotor 4. Since the dissipated heat is significantly formed on the pressure side of the rotor 4 is the rotor 4 cooled in countercurrent.
  • the discharge of the coolant takes place first via the second bore 47 in the space 43 in the shaft 8 and via the bores 48, 49.
  • the bore 48 extends from the suction side of the cooling gap 32 to the height of the gear chamber 16.
  • the transverse bore 48 provides the connection of the bore 43 with the gear chamber 16 ago.
  • the gear chamber 16 or the oil sump 20 communicates with the chamber 26 via a line 51, in which, in addition to a cooler 52 and a filter 53, there is an oil pump 54 which is designed, for example, as a gear pump.
  • the oil pump 54 ensures that the coolant enters the bore 41 cavitation-free from the space 26 with the necessary pressure.
  • oil pumps centrifugal pumps, gear pumps
  • Figure 2 shows a solution in which the guide member 44 comprises three sections 61, 62, 63, which divide the cavity in the shaft 8 in three sub-spaces 64, 65, 43, which are located at the level of the transverse bores 49, 46 and 47 , By suitable holes in sections 61 to 63 and line sections 67 and 68, which connect these holes with each other, a separate supply and discharge of the coolant to the cooling gap can be realized.
  • the coolant is supplied through the bore 45, which, in contrast to the embodiments according to FIGS. 1 and 2, passes centrally through the guide component 44.
  • the pumped by a centrifugal pump 71 into the bore 45 oil passes in the cavity 43 formed by the blind bore 41 and the guide member 44 and the transverse bore 46 in the space 32 through which the coolant flows.
  • the space 32 through which the coolant flows is a relative one large-volume annulus formed by the shaft 8 and the inner wall of the rotor cavity 31.
  • this inner wall is designed conically such that the rotor cavity 31 widens conically towards the pressure side of the rotors 3, 4, a delivery of the coolant injected from the bores 46 into the space 32 is achieved in the direction of the rotor pressure side. Bubble-free or cavitation-free operation of the coolant circuit is not required.
  • the coolant can be metered so that it flows along the inner wall of the rotor cavity 31, for example in the form of a thin film.
  • the outlet bores 47 communicate with lateral longitudinal grooves 72 (or a free rotation) in the guide component 44, which extend at the level of the bearing disk 15 to the gear chamber 16 and communicate there with the transverse bores 49.
  • the embodiment of Figure 4 differs from the embodiments described above in that the shaft 8 and the rotor 4 are pierced through.
  • a suction-side arranged cover 76 is provided, which is connected via a screw 77 with the guide member 44 in connection.
  • the guide member 44 is firmly inserted from the suction side. It serves together with the screw 77 and the Cover 76 of the axial fixation of the rotor 4.
  • the bore 41 On the pressure side, the bore 41 has a smaller diameter.
  • the shaft 8 is equipped with an outer sleeve 77, which forms the cooling gap 32 together with the inner wall of the cavity 31 in the rotor 4. This extends substantially only at the level of the pressure side of the rotor 4. The radial displacement of the cooling gap 32 to the outside improves the cooling effect.
  • the supply of the coolant takes place only over relatively short L jossnutabête 78 (or a free rotation, annular channel) in the guide member 44 to the transverse bores 46, which pass through the shaft 8 and the sleeve 77. Before it enters the longitudinal grooves 78, it flows through bores 79, 80 in the bearing disk 15 and the bearing-side space 82 of a mechanical seal 83, where it provides the necessary barrier pressure.
  • the return of the coolant via the transverse bores 47 and the central bore 45 in the guide member 44 and the bore 41 in the shaft eighth
  • the shaft 8 does not extend into the rotor cavity 31. It is connected at the level of the pressure side with the rotor 4.
  • the guide member 44 in the rotor cavity 31 has a portion 84 of increased diameter, which forms the cooling gap 32 together with the inner wall of the cavity 31 in the rotor 4.
  • a second section 85 which has a smaller diameter than the section 84, passes through the bore 41 in the shaft 8.
  • the rotor 4 comprises two sections 4 ', 4 "with different design of the screw threads and each with a cavity 31' and 31".
  • the shaft 8 extends into the cavity 31 "of the pressure-side rotor section 4 "and thus forms the cooling gap 32". It has a section 84 of increased diameter, which is located in the cavity 31 'of the rotor section 4' and together with the inner wall of this rotor section 4 ', the cooling gap 32nd 'forms.
  • Another section 85 of the smaller diameter guide member 44 passes through the central bore 41 in the shaft 8.
  • the guide member 44 is provided with a central bore 45 extending to the suction side of the rotor 4.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Claims (18)

  1. Pompe à vide à vis (1) avec deux rotors (3, 4) qui possèdent un côté aspiration et un côté refoulement et qui sont en liaison chacun avec un arbre (7, 8) monté du côté refoulement; chaque système rotor-arbre ayant les caractéristiques suivantes :
    - le rotor (3, 4) possède une cavité (31) accessible du côté refoulement;
    - l'arbre (7,8) pénètre au moins avec un segment dans la cavité (31);
    - entre le rotor (3, 4) et l'arbre (7, 8) se trouve une chambre annulaire (32) servant à la circulation d'un fluide de refroidissement;
    - l'arbre (7, 8) possède au moins un perçage (41) accessible du côté refoulement qui commence dans la région d'un collecteur de fluide de refroidissement. (16, 26) et s'étend jusqu'à la hauteur de la chambre annulaire (32) ;
    - l'arbre (7, 8) est doté à la hauteur de la chambre annulaire (32) d'au moins deux perçages transversaux (46, 47) placés respectivement du côté aspiration et du coté refoulement qui relient la chambre annulaire (32) avec le perçage (41) de l'arbre (7, 8);
    - dans le perçage (41) de l'arbre (7, 8) se trouve un élément de guidage (44) à l'aide duquel l'écoulement d'un fluide de refroidissement s'écoulant dans le perçage (41) de l'arbre (7, 8) peut être influencé.
    La pompe à vide à vis dotée des caractéristiques ci-dessus est caractérisée par les caractéristiques suivantes :
    - l'élément de guidage (44) est configuré de sorte qu'il permette une amenée du fluide de refroidissement à travers la cavité (41) de l'arbre (7, 8) à la chambre annulaire (32) ainsi qu'une évacuation séparée du fluide de refroidissement de la chambre annulaire (32);
    - l'élément de guidage (44) est doté de perçages (45, 48), de gorges ou de trous libres (72, 78) qui servent à l'amenée du fluide de refroidissement de l'extrémité du côté refoulement de l'arbre (7, 8) à la chambre annulaire (32) via un des perçages transversaux (46, 47) de l'arbre (7, 8);
    - l'arbre (7, 8) est doté d'un autre perçage transversal (49) dans la région du collecteur de fluide de refroidissement (16, 26);
    - l'élément de guidage (44) est doté de perçages (45, 48), de gorges ou de trous libres (72, 78) qui servent à l'amenée du fluide de refroidissement de la chambre annulaire (32) au perçage transversal (49) via un des perçages transversaux (46, 47).
  2. Pompe selon la revendication 1, caractérisée en ce que l'élément de guidage est constitué de trois segments (61, 62, 63) qui divisent la cavité de l'arbre (8) en trois chambres partielles (64, 65, 43) qui se trouvent respectivement à la hauteur des perçages transversaux (46, 47, 49), et en ce qu'une amenée et une évacuation séparées du fluide de refroidissement passent par des perçages appropriés dans les segments (61 à 63) ainsi que les segments de conduite reliant ces perçages entre eux.
  3. Pompe selon la revendication 1 ou 2, caractérisée en ce que l'arbre (7, 8) est doté d'un manchon (87) dont la face extérieure délimite l'interstice annulaire (32).
  4. Pompe à vide à vis (1) avec deux rotors (3, 4) qui possèdent un côté aspiration et un côté refoulement et qui sont en liaison chacun avec un arbre (7, 8) monté du côté refoulement; chaque système rotor-arbre ayant les caractéristiques suivantes :
    - le rotor (3, 4) possède une cavité (31) accessible du côté refoulement;
    - la paroi intérieure de la cavité (31) dans le rotor (3, 4) délimite une chambre annulaire (32) servant à la circulation d'un fluide de refroidissement;
    - l'arbre (7, 8) possède un perçage (41) qui commence dans la région d'un collecteur de fluide de refroidissement (16, 26);
    - dans le perçage (41) de l'arbre (7, 8) se trouve un élément de guidage (44) à l'aide duquel l'écoulement d'un fluide de refroidissement s'écoulant dans le perçage (41) de l'arbre (7, 8) peut être influencé.
    La pompe à vide à vis dotée des caractéristiques ci-dessus est caractérisée par les caractéristiques suivantes :
    - l'élément de guidage (44) possède deux segments (84, 85) dont l'un (85) se trouve dans le perçage (41) de l'arbre (7, 8) et l'autre (84) s'étend dans la cavité (31) du rotor (3, 4);
    - le segment (84) se trouvant dans la cavité (31) du rotor (3, 4) délimite avec la paroi intérieure de la cavité (31) du rotor (3, 4) la chambre annulaire (32);
    - l'élément de guidage (44) est configuré de telle sorte qu'il permette une amenée du fluide de refroidissement à travers la cavité (41) de l'arbre (7, 8) à la chambre annulaire (32) ainsi qu'une évacuation séparée du fluide de refroidissement de la chambre annulaire (32);
    - l'élément de guidage (44) est doté de perçages(45, 48), de gorges ou de trous libres (72, 78) qui servent à l'amenée du fluide de refroidissement de l'extrémité du côté refoulement de l'arbre (7, 8) à la chambre annulaire (32);
    - l'arbre (7, 8) est doté d'un perçage transversal (49) dans la région du collecteur de fluide de refroidissement (16, 26);
    - l'élément de guidage (44) est doté de perçages (45, 48), de gorges ou de trous libres (72, 78) qui servent à l'amenée du fluide de refroidissement de la chambre annulaire (32) au perçage transversal (49).
  5. Pompe selon la revendication 4, caractérisée en ce que l'extrémité du côté aspiration de l'arbre (7, 8) est en liaison avec l'extrémité du côté refoulement du rotor (3, 4) et que l'élément de guidage (44) s'étend jusque dans la cavité de rotor (31).
  6. Pompe selon la revendication 4 ou 5, caractérisée en ce que le perçage (41) dans l'arbre (7, 8) est un perçage traversant et que le diamètre du segment (84) de l'élément de guidage (44) est plus grand que le diamètre du segment (85) de l'élément de guidage (44).
  7. Pompe selon l'une des revendications précédentes, caractérisée en ce que le rotor (4) est constitué de deux segments (4', 4") et qu'il existe deux chambres (32', 32") traversées par le fluide de refroidissement qui sont alimentées par des canaux dans l'élément de guidage (44).
  8. Pompe selon l'une des revendications précédentes, caractérisée en ce que des segments de conduite axiaux et radiaux sont agencés de telle sorte dans l'élément de guidage (44) qu'ils permettent un guidage séparé se croisant du fluide de refroidissement amené d'une part et du fluide de refroidissement évacué d'autre part.
  9. Pompe selon la revendication 8, caractérisée en ce qu'une gorge longitudinale ou une paire de gorges longitudinales (89) servent à l'amenée et une gorge longitudinale ou une paire de gorges longitudinales (91) tournées à 90° par rapport à elles servent à l'évacuation du fluide de refroidissement.
  10. Pompe selon la revendication 9, caractérisée en ce qu'un croisement des flux de fluide de refroidissement est obtenu à l'aide de perçages transversaux supplémentaires (88, 90).
  11. Pompe selon l'une des revendications précédentes, caractérisée en ce que des conduites d'amenée et d'évacuation orientées axialement sont reliées avec la cavité (32) par des perçages orientés sensiblement radialement.
  12. Pompe selon l'une des revendications précédentes, caractérisée en ce que l'élément de guidage (44) est constitué de matériau léger, de préférence de matière plastique.
  13. Pompe selon l'une des revendications précédentes, caractérisée en ce que le rotor (3, 4) est perforé et en ce que l'élément de guidage (44) a la fonction d'un tirant pour fixer le rotor (3, 4) sur l'arbre (7, 8).
  14. Pompe selon l'une des revendications précédentes, caractérisée en ce que la paroi intérieure de la cavité de rotor (31) délimitant la chambre annulaire (32) s'étend de manière conique en direction du côté refoulement.
  15. Pompe selon l'une des revendications 1 à 14, caractérisée en ce que la chambre annulaire (32) est un segment d'interstice annulaire cylindrique relativement étroit, traversé par le fluide de refroidissement.
  16. Pompe selon la revendication 7 et une des revendications 4, 5 ou 6, caractérisée en ce que l'arbre (7, 8) traverse le segment du côté refoulement (4'') du rotor (-4), en ce que le segment du côté aspiration (4') est relié avec l'extrémité du côté refoulement de l'arbre (7, 8), et en ce que l'élément de guidage (44) s'étend jusque dans la cavité du segment côté aspiration (4') du rotor et délimite la chambre (32').
  17. Pompe selon l'une des revendications précédentes, caractérisée en ce que le sens d'écoulement du fluide de refroidissement est choisi de sorte que la chambre (32) est traversée du côté refoulement en direction du côté aspiration.
  18. Pompe selon l'une des revendications précédentes, caractérisée en ce que des pompes à fluide de refroidissement se trouvent dans la région des extrémités du côté refoulement de l'arbre (7,8).
EP00983238A 1999-12-27 2000-12-07 Pompe a vide a vis refroidie Expired - Lifetime EP1242742B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19963171 1999-12-27
DE19963171A DE19963171A1 (de) 1999-12-27 1999-12-27 Gekühlte Schraubenvakuumpumpe
PCT/EP2000/012318 WO2001048383A1 (fr) 1999-12-27 2000-12-07 Pompe a vide a vis refroidie

Publications (2)

Publication Number Publication Date
EP1242742A1 EP1242742A1 (fr) 2002-09-25
EP1242742B1 true EP1242742B1 (fr) 2006-08-16

Family

ID=7934616

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00983238A Expired - Lifetime EP1242742B1 (fr) 1999-12-27 2000-12-07 Pompe a vide a vis refroidie

Country Status (5)

Country Link
US (1) US20050069446A1 (fr)
EP (1) EP1242742B1 (fr)
JP (1) JP4800542B2 (fr)
DE (2) DE19963171A1 (fr)
WO (1) WO2001048383A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010061202A1 (de) 2010-12-14 2012-06-14 Gebr. Becker Gmbh Vakuumpumpe

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10039006A1 (de) * 2000-08-10 2002-02-21 Leybold Vakuum Gmbh Zweiwellenvakuumpumpe
DE10156179A1 (de) 2001-11-15 2003-05-28 Leybold Vakuum Gmbh Kühlung einer Schraubenvakuumpumpe
DE10156180B4 (de) * 2001-11-15 2015-10-15 Oerlikon Leybold Vacuum Gmbh Gekühlte Schraubenvakuumpumpe
AU2002365681A1 (en) 2001-12-04 2003-06-17 Kag Holding A/S Screw pump for transporting emulsions susceptible to mechanical handling
EP1784576B2 (fr) 2004-09-02 2016-01-13 Edwards Limited Refroidissement de rotors de pompe
DE102005012040A1 (de) * 2005-03-16 2006-09-21 Gebr. Becker Gmbh & Co Kg Rotor und Schraubenvakuumpumpe
GB0510892D0 (en) * 2005-05-27 2005-07-06 Boc Group Plc Vacuum pump
BE1017371A3 (nl) * 2006-11-23 2008-07-01 Atlas Copco Airpower Nv Rotor en compressorelement voorzien van zulke rotor.
US20090129956A1 (en) * 2007-11-21 2009-05-21 Jean-Louis Picouet Compressor System and Method of Lubricating the Compressor System
US8720805B1 (en) 2009-07-29 2014-05-13 Larry E. Koenig System and method for cooling a densifier
JP5138662B2 (ja) * 2009-11-06 2013-02-06 株式会社神戸製鋼所 蒸気圧縮機
US8851409B2 (en) 2010-12-09 2014-10-07 Mark E. Koenig System for crushing
US8708266B2 (en) 2010-12-09 2014-04-29 Mark E. Koenig System for crushing with screw porition that increases in diameter
US9403336B2 (en) 2010-12-09 2016-08-02 Mark E. Koenig System and method for crushing and compaction
CN102192151A (zh) * 2011-05-19 2011-09-21 台州市星光真空设备制造有限公司 内冷式真空泵
KR101064152B1 (ko) 2011-06-20 2011-09-15 주식회사 에스백 직접 냉각 스크루식 진공펌프
US9586770B2 (en) 2011-08-05 2017-03-07 Mark E. Koenig Material waste sorting system and method
US9132968B2 (en) 2011-11-04 2015-09-15 Mark E. Koenig Cantilevered screw assembly
US9346624B2 (en) 2011-11-04 2016-05-24 Mark E. Koenig Cantilevered screw assembly
EP2615307B1 (fr) * 2012-01-12 2019-08-21 Vacuubrand Gmbh + Co Kg Pompe à vide à vis
DE102013009040B4 (de) * 2013-05-28 2024-04-11 Ralf Steffens Spindelkompressor mit hoher innerer Verdichtung
US9821962B2 (en) 2015-12-14 2017-11-21 Mark E. Koenig Cantilevered screw assembly
CN106762668B (zh) * 2017-03-07 2018-06-22 北京艾岗科技有限公司 一种立式真空泵自循环润滑冷却系统
CN108869295A (zh) * 2018-08-02 2018-11-23 中船重工重庆智能装备工程设计有限公司 干式螺杆真空泵的散热系统
IT201800010291A1 (it) * 2018-11-13 2020-05-13 Tt Italy S P A Testa di miscelazione
CN112012931B (zh) * 2020-09-04 2022-05-24 浙江思科瑞真空技术有限公司 一种泵转子的冷却方法
CN114393811A (zh) * 2022-01-21 2022-04-26 玉环楚港模具科技有限公司 一种长滴管吹塑模具

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB464493A (en) * 1934-10-16 1937-04-16 Milo Ab Improvements in rotary engines
FR1290239A (fr) * 1961-02-28 1962-04-13 Alsacienne Constr Meca Pompe à vide
SE315444B (fr) * 1965-05-14 1969-09-29 A Lysholm
US3531227A (en) * 1968-07-05 1970-09-29 Cornell Aeronautical Labor Inc Gear compressors and expanders
US3796526A (en) * 1972-02-22 1974-03-12 Lennox Ind Inc Screw compressor
EP0290663B1 (fr) * 1987-05-15 1993-08-04 Leybold Aktiengesellschaft Pompe à vide à deux arbres, mono-ou polyétagée
JPH0645135B2 (ja) * 1990-10-08 1994-06-15 株式会社神戸製鋼所 溶融樹脂用ギアポンプ
DE4444535A1 (de) * 1994-12-14 1996-06-20 Inst Luft Kaeltetech Gem Gmbh Lagerung der Rotoren von Schraubenverdichtern
DE19522559A1 (de) * 1995-06-21 1997-01-02 Sihi Ind Consult Gmbh Verdichter mit axialer Förderrichtung, insbesondere in Schraubenspindel-Bauweise
DE59603870D1 (de) * 1995-06-21 2000-01-13 Sterling Ind Consult Gmbh Mehrstufiger schraubenspindelverdichter
JPH10281089A (ja) * 1997-04-03 1998-10-20 Matsushita Electric Ind Co Ltd 真空ポンプ
DE19745615A1 (de) * 1997-10-10 1999-04-15 Leybold Vakuum Gmbh Schraubenvakuumpumpe mit Rotoren
DE19745616A1 (de) * 1997-10-10 1999-04-15 Leybold Vakuum Gmbh Gekühlte Schraubenvakuumpumpe
DE19800825A1 (de) * 1998-01-02 1999-07-08 Schacht Friedrich Trockenverdichtende Schraubenspindelpumpe
US6045343A (en) * 1998-01-15 2000-04-04 Sunny King Machinery Co., Ltd. Internally cooling rotary compression equipment
JPH11236891A (ja) * 1998-02-23 1999-08-31 Teijin Seiki Co Ltd 真空ポンプ
DE19820523A1 (de) * 1998-05-08 1999-11-11 Peter Frieden Schraubenspindel-Vakuumpumpe mit Rotorkühlung
DE19963172A1 (de) * 1999-12-27 2001-06-28 Leybold Vakuum Gmbh Schraubenpumpe mit einem Kühlmittelkreislauf
US6394777B2 (en) * 2000-01-07 2002-05-28 The Nash Engineering Company Cooling gas in a rotary screw type pump
JP2001317480A (ja) * 2000-04-28 2001-11-16 Hitachi Ltd スクリュー圧縮機
DE10039006A1 (de) * 2000-08-10 2002-02-21 Leybold Vakuum Gmbh Zweiwellenvakuumpumpe

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010061202A1 (de) 2010-12-14 2012-06-14 Gebr. Becker Gmbh Vakuumpumpe
WO2012080034A2 (fr) 2010-12-14 2012-06-21 Gebr. Becker Gmbh Pompe à vide

Also Published As

Publication number Publication date
JP4800542B2 (ja) 2011-10-26
WO2001048383A1 (fr) 2001-07-05
DE50013338D1 (de) 2006-09-28
DE19963171A1 (de) 2001-06-28
EP1242742A1 (fr) 2002-09-25
JP2003518588A (ja) 2003-06-10
US20050069446A1 (en) 2005-03-31

Similar Documents

Publication Publication Date Title
EP1242742B1 (fr) Pompe a vide a vis refroidie
EP1242743B1 (fr) Pompe a vide a vis pourvue d'un circuit de refrigerant
DE3212363C2 (fr)
DE10248926B4 (de) Kompressor
DE10240409B4 (de) Variable Verdrängungspumpe
EP1021654B1 (fr) Pompe a vide a vis pourvue de rotors
DE102005000899B4 (de) Spiralverdichter
DE2223156C2 (de) Flügelzellenverdichter
EP1731722A1 (fr) Déphaseur d'arbre à came à rotor de moteur oscillant et fuite hydraulique réduite
DE10039006A1 (de) Zweiwellenvakuumpumpe
EP1936200B1 (fr) Pompe à vide à palettes étanchéifiée à l'aide de lubrifiants
EP2171284A1 (fr) Pompe a liquide
DE102006049663A1 (de) Schraubenspindelpumpe mit Scheibenpumpen-Axiallager
DE10240800B4 (de) Pumpe für chemisch aggressive Fördermedien
EP0446221B1 (fr) Compresseur multicellulaire a ailettes
EP4217610B1 (fr) Groupe moteur-pompe
DE4325286A1 (de) Zweistufige Drehschiebervakuumpumpe
DE102008032921A1 (de) Lagersystem
EP1936199B1 (fr) Pompe à vide à palettes lubrifiée
DE102005043253B4 (de) Verfahren zum Herstellen einer Verdrängerpumpe und eine danach hergestellte Verdrängerpumpe
EP1413757A2 (fr) Assemblage d'un moteur et d'une pompe
DE4220830A1 (de) Fluidverdichter
DE102007030199A1 (de) Getriebe für eine Schraubenspindelpumpe
DE202006007301U1 (de) Trockenverdichtende Schraubenspindelpumpe
DE3740365A1 (de) Fluegelzellenverdichter fuer druckluft

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020610

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RBV Designated contracting states (corrected)

Designated state(s): AT BE CH CY DE FR GB IT LI

17Q First examination report despatched

Effective date: 20040506

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LEYBOLD VACUUM GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50013338

Country of ref document: DE

Date of ref document: 20060928

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20061108

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070518

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20110107

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20101221

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20101228

Year of fee payment: 11

Ref country code: DE

Payment date: 20101229

Year of fee payment: 11

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20111207

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20120831

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50013338

Country of ref document: DE

Effective date: 20120703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111207

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120102