EP1242742B1 - Cooled screw vacuum pump - Google Patents

Cooled screw vacuum pump

Info

Publication number
EP1242742B1
EP1242742B1 EP00983238A EP00983238A EP1242742B1 EP 1242742 B1 EP1242742 B1 EP 1242742B1 EP 00983238 A EP00983238 A EP 00983238A EP 00983238 A EP00983238 A EP 00983238A EP 1242742 B1 EP1242742 B1 EP 1242742B1
Authority
EP
European Patent Office
Prior art keywords
shaft
coolant
rotor
bore
guide component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00983238A
Other languages
German (de)
French (fr)
Other versions
EP1242742A1 (en
Inventor
Hartmut Kriehn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Leybold GmbH
Original Assignee
Leybold Vakuum GmbH
Leybold Vacuum GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leybold Vakuum GmbH, Leybold Vacuum GmbH filed Critical Leybold Vakuum GmbH
Publication of EP1242742A1 publication Critical patent/EP1242742A1/en
Application granted granted Critical
Publication of EP1242742B1 publication Critical patent/EP1242742B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/04Heating; Cooling; Heat insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/14Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C18/16Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type

Definitions

  • the invention relates to a screw vacuum pump having the features of the preamble of patent claim 1 or of the preamble of patent claim 4.
  • a screw vacuum pump with these features is known from DE-A-198 20 523 (FIG. 4).
  • the coolant is injected into the holes in the shafts open at the pressure side.
  • the suction side of the shafts are equipped with radial bores through which the coolant enters the rotor cavities.
  • the outer walls of these cavities are conically widening toward the pressure side.
  • the coolant film forming on the outer walls flows in the direction of the pressure side.
  • the present invention is based on the object, in a screw vacuum pump of the type mentioned not only to improve the coolant supply of the rotor cavities but also the effectiveness of the cooling.
  • the guide components used in the central shaft bores By using the guide components used in the central shaft bores, a secure and effective separation of the inflowing cold coolant from the backflowing hot coolant can be achieved, especially if the guide components consist of a poorly heat-conducting material.
  • the central shaft bore for accommodating the guide member may have a relatively large Have diameter. This is compared to individual, separate deep hole drilling for supply and discharge channels of the coolant in the shaft material itself much easier to manufacture.
  • the guide components allow the cooling of the rotors in the "countercurrent", since even a trouble-free crossing of the supplied and discharged coolant flows can be made possible.
  • the countercurrent cooling of the rotors also has the advantage of more uniform temperature control, so that the rotor housing gap can be kept uniformly small.
  • the guide components make it possible to operate the cooling of the rotors so that all lines, gaps, chambers or the like which are located in the rotor cavities and through which the coolant flows are always completely filled with the flowing coolant. The effectiveness of the cooling is thereby significantly improved.
  • the screw vacuum pump 1 shown in FIG. 1 comprises the pump chamber 2 with the rotors 3 and 4.
  • the inlet 5 and outlet 6 of the pump 1 are schematically indicated by arrows.
  • the rotors 3 and 4 are mounted on the shafts 7 and 8, respectively, which are supported in two bearings 11, 12 and 13, 14.
  • a bearing pair 11, 13 is located in a bearing plate 15, which separates the lubricant-free pump chamber from a gear chamber 16.
  • In the housing 17 of the gear chamber 16 are mounted on the shafts 7 and 8 synchronization gears 18, 19 and a drive of the pump 1 serving gear pair 21, 22, one of which with the Wave of the vertically adjacent to the pump 1 arranged drive motor 23 is coupled.
  • the gear chamber has the function of an oil sump 20th
  • FIG. 1 shows that the rotors 3 and 4 each have a cavity 31 into which the shaft 8 extends and in which there is another space 32 through which a coolant flows. Since only the rotor 4 is shown in partial section, the invention will be explained only with reference to this rotor 4.
  • the space 32 through which the coolant flows is designed as an annular gap section and is located directly between shaft 8 (or 7) and rotor 4 (or 3).
  • the cylindrical inner wall of the rotor cavity 31 is provided in its central region with a recess 33 whose depth corresponds to the thickness of the cooling gap 32. The suction side and the pressure side, the shaft 8 of the inner wall of the cavity 31 is tight.
  • the supply of the cooling gap 32 with the coolant takes place via the shaft 8. It is equipped with a central bore 41 which extends from the lower end of the shaft 8 to the suction-side end of the cooling gap 32. It forms a space 43 in which a guide member 44 for the coolant is located. The guide member 44 extends from the lower end of the shaft 8 to beyond the pressure-side end of the cooling gap 32 addition.
  • the supply of the coolant via the longitudinal bore 45 in the guide member 44, which communicates via aligned transverse bores 46 through the component 44 and the shaft 8 with the pressure-side end of the cooling gap 32 in connection.
  • the shaft 8 is equipped with one or more transverse bores 47, which open into the space 43 formed by the blind bore 41 and the end face of the guide member 44. This communicates via the longitudinal bore 48 and the mutually aligned transverse bores 49 (in the guide member 44 and in the shaft 8) with the gear chamber 16 in connection.
  • the supply of the coolant takes place from the oil-containing space 26 via the holes 45 and 46 in the cooling gap 32. It flows through the cooling gap 32 from the pressure side to the suction side of the rotor 4. Since the dissipated heat is significantly formed on the pressure side of the rotor 4 is the rotor 4 cooled in countercurrent.
  • the discharge of the coolant takes place first via the second bore 47 in the space 43 in the shaft 8 and via the bores 48, 49.
  • the bore 48 extends from the suction side of the cooling gap 32 to the height of the gear chamber 16.
  • the transverse bore 48 provides the connection of the bore 43 with the gear chamber 16 ago.
  • the gear chamber 16 or the oil sump 20 communicates with the chamber 26 via a line 51, in which, in addition to a cooler 52 and a filter 53, there is an oil pump 54 which is designed, for example, as a gear pump.
  • the oil pump 54 ensures that the coolant enters the bore 41 cavitation-free from the space 26 with the necessary pressure.
  • oil pumps centrifugal pumps, gear pumps
  • Figure 2 shows a solution in which the guide member 44 comprises three sections 61, 62, 63, which divide the cavity in the shaft 8 in three sub-spaces 64, 65, 43, which are located at the level of the transverse bores 49, 46 and 47 , By suitable holes in sections 61 to 63 and line sections 67 and 68, which connect these holes with each other, a separate supply and discharge of the coolant to the cooling gap can be realized.
  • the coolant is supplied through the bore 45, which, in contrast to the embodiments according to FIGS. 1 and 2, passes centrally through the guide component 44.
  • the pumped by a centrifugal pump 71 into the bore 45 oil passes in the cavity 43 formed by the blind bore 41 and the guide member 44 and the transverse bore 46 in the space 32 through which the coolant flows.
  • the space 32 through which the coolant flows is a relative one large-volume annulus formed by the shaft 8 and the inner wall of the rotor cavity 31.
  • this inner wall is designed conically such that the rotor cavity 31 widens conically towards the pressure side of the rotors 3, 4, a delivery of the coolant injected from the bores 46 into the space 32 is achieved in the direction of the rotor pressure side. Bubble-free or cavitation-free operation of the coolant circuit is not required.
  • the coolant can be metered so that it flows along the inner wall of the rotor cavity 31, for example in the form of a thin film.
  • the outlet bores 47 communicate with lateral longitudinal grooves 72 (or a free rotation) in the guide component 44, which extend at the level of the bearing disk 15 to the gear chamber 16 and communicate there with the transverse bores 49.
  • the embodiment of Figure 4 differs from the embodiments described above in that the shaft 8 and the rotor 4 are pierced through.
  • a suction-side arranged cover 76 is provided, which is connected via a screw 77 with the guide member 44 in connection.
  • the guide member 44 is firmly inserted from the suction side. It serves together with the screw 77 and the Cover 76 of the axial fixation of the rotor 4.
  • the bore 41 On the pressure side, the bore 41 has a smaller diameter.
  • the shaft 8 is equipped with an outer sleeve 77, which forms the cooling gap 32 together with the inner wall of the cavity 31 in the rotor 4. This extends substantially only at the level of the pressure side of the rotor 4. The radial displacement of the cooling gap 32 to the outside improves the cooling effect.
  • the supply of the coolant takes place only over relatively short L jossnutabête 78 (or a free rotation, annular channel) in the guide member 44 to the transverse bores 46, which pass through the shaft 8 and the sleeve 77. Before it enters the longitudinal grooves 78, it flows through bores 79, 80 in the bearing disk 15 and the bearing-side space 82 of a mechanical seal 83, where it provides the necessary barrier pressure.
  • the return of the coolant via the transverse bores 47 and the central bore 45 in the guide member 44 and the bore 41 in the shaft eighth
  • the shaft 8 does not extend into the rotor cavity 31. It is connected at the level of the pressure side with the rotor 4.
  • the guide member 44 in the rotor cavity 31 has a portion 84 of increased diameter, which forms the cooling gap 32 together with the inner wall of the cavity 31 in the rotor 4.
  • a second section 85 which has a smaller diameter than the section 84, passes through the bore 41 in the shaft 8.
  • the rotor 4 comprises two sections 4 ', 4 "with different design of the screw threads and each with a cavity 31' and 31".
  • the shaft 8 extends into the cavity 31 "of the pressure-side rotor section 4 "and thus forms the cooling gap 32". It has a section 84 of increased diameter, which is located in the cavity 31 'of the rotor section 4' and together with the inner wall of this rotor section 4 ', the cooling gap 32nd 'forms.
  • Another section 85 of the smaller diameter guide member 44 passes through the central bore 41 in the shaft 8.
  • the guide member 44 is provided with a central bore 45 extending to the suction side of the rotor 4.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Description

Die Erfindung bezieht sich auf eine Schraubenvakuumpumpe mit den Merkmalen des Oberbegriffs des Patentanspruchs 1 oder des Oberbegriffs des Patentanspruchs 4.The invention relates to a screw vacuum pump having the features of the preamble of patent claim 1 or of the preamble of patent claim 4.

Eine Schraubenvakuumpumpe mit diesen Merkmalen ist aus der DE-A-198 20 523 (Figur 4) bekannt. Das Kühlmittel wird in die druckseitig offenen Bohrungen in den Wellen eingespritzt. Saugseitig sind die Wellen mit Radialbohrungen ausgerüstet, durch die das Kühlmittel in die Rotorhohlräume gelangt. Die Außenwandungen dieser Hohlräume sind konisch sich in Richtung Druckseite erweiternd gestaltet. Dadurch strömt der sich auf den Außenwandungen ausbildende Kühlmittelfilm in Richtung Druckseite. Über druckseitig angeordnete Radialbohrungen in der Welle gelangt das heiße Kühlmittel in die jeweilige zentrale Wellenbohrung zurück und strömt durch diese Bohrungen zu deren jeweiliger Mündung zurück.A screw vacuum pump with these features is known from DE-A-198 20 523 (FIG. 4). The coolant is injected into the holes in the shafts open at the pressure side. The suction side of the shafts are equipped with radial bores through which the coolant enters the rotor cavities. The outer walls of these cavities are conically widening toward the pressure side. As a result, the coolant film forming on the outer walls flows in the direction of the pressure side. By means of radial bores arranged in the shaft on the pressure side, the hot coolant returns to the respective central shaft bore and flows back through these bores to its respective orifice.

Nachteilig an der vorbekannten Lösung ist, dass die Zuströmung des kalten und die Abströmung des heißen Kühlmittels jeweils durch eine gemeinsame Bohrung in den Wellen erfolgt. Eine Vermischung der Kühlmittelströmungen ist unvermeidbar, wodurch bereits die Effektivität der Kühlung beeinträchtigt ist. Weiterhin ist es nicht möglich, die Kühlung der Rotoren im "Gegenstrom" zu betreiben. Das Kühlmittel gelangt zunächst zur kühleren Seite der Rotoren (saugseitig) und strömt danach zur Druckseite, wo die abzuführende Verdichtungswärme am höchsten ist. Schließlich setzt die Lösung nach dem Stand der Technik eine konische Ausbildung der jeweiligen Rotor-Hohlräume voraus, die nur mit relativ hohem Aufwand gefertigt werden kann.A disadvantage of the previously known solution that the inflow of the cold and the outflow of the hot coolant takes place in each case by a common bore in the waves. A mixing of the coolant flows is unavoidable, whereby already the effectiveness of the cooling is impaired. Furthermore, it is not possible to operate the cooling of the rotors in "countercurrent". The coolant first reaches the cooler side of the rotors (suction side) and then flows to the pressure side, where the dissipated heat of compression is highest. Finally, the solution according to the prior art requires a conical design of the respective rotor cavities, which can be manufactured only with relatively high effort.

Der vorliegenden Erfindung liegt die Aufgabe zu Grunde, bei einer Schraubenvakuumpumpe der eingangs erwähnten Art nicht nur die Kühlmittelversorgung der Rotorhohlräume sondern auch die Effektivität der Kühlung zu verbessern.The present invention is based on the object, in a screw vacuum pump of the type mentioned not only to improve the coolant supply of the rotor cavities but also the effectiveness of the cooling.

Erfindungsgemäß wird diese Aufgabe durch die kennzeichnenden Merkmale der Patentansprüche gelöst.According to the invention this object is achieved by the characterizing features of the claims.

Durch die Verwendung der in den zentralen Wellenbohrungen eingesetzten Führungsbauteile kann zunächst eine sichere und wirksame Trennung des zuströmenden kalten Kühlmittels vom zurückströmenden heißen Kühlmittel erreicht werden, insbesondere dann, wenn die Führungsbauteile aus einem schlecht Wärme leitendem Werkstoff bestehen. Die zentrale Wellenbohrung für die Unterbringung des Führungsbauteiles kann einen relativ großen Durchmesser haben. Diese ist gegenüber einzelnen, separaten Tieflochbohrungen für Zu- und Abführungskanäle des Kühlmittels im Wellenmaterial selbst wesentlich einfacher zu fertigen. Weiterhin erlauben die Führungsbauteile die Kühlung der Rotoren im "Gegenstrom", da selbst ein störungsfreies Kreuzen der zu- und abzuführenden Kühlmittelströme ermöglicht werden kann. Die Kühlung der Rotoren im Gegenstrom hat noch den Vorteil der gleichmäßigeren Temperierung, so dass die Rotor-Gehäuse-Spalte gleichmäßig klein gehalten werden können. Schließlich erlauben es die Führungsbauteile, die Kühlung der Rotoren so zu betreiben, dass sämtliche Leitungen, Spalte, Kammern oder dergleichen, die sich in den Rotorhohlräumen befinden und vom Kühlmittel durchströmt werden, stets vollständig mit dem strömenden Kühlmittel gefüllt sind. Die Effektivität der Kühlung wird dadurch erheblich verbessert.By using the guide components used in the central shaft bores, a secure and effective separation of the inflowing cold coolant from the backflowing hot coolant can be achieved, especially if the guide components consist of a poorly heat-conducting material. The central shaft bore for accommodating the guide member may have a relatively large Have diameter. This is compared to individual, separate deep hole drilling for supply and discharge channels of the coolant in the shaft material itself much easier to manufacture. Furthermore, the guide components allow the cooling of the rotors in the "countercurrent", since even a trouble-free crossing of the supplied and discharged coolant flows can be made possible. The countercurrent cooling of the rotors also has the advantage of more uniform temperature control, so that the rotor housing gap can be kept uniformly small. Finally, the guide components make it possible to operate the cooling of the rotors so that all lines, gaps, chambers or the like which are located in the rotor cavities and through which the coolant flows are always completely filled with the flowing coolant. The effectiveness of the cooling is thereby significantly improved.

Weitere Vorteile und Einzelheiten der Erfindung sollen an Hand von in den Figuren 1 bis 7 schematisch dargestellten Ausführungsbeispielen erläutert werden. Es zeigen

  • Figur 1 einen Schnitt durch eine Schraubenvakuumpumpe nach der Erfindung,
  • Figuren 2 und 3 Schnitte durch jeweils einen von zwei fliegend gelagerten Rotoren einer Schraubenvakuumpumpe, die weitere Lösungen für die Gestaltung des Führungsbauteiles zeigen,
  • Figur 4 einen Schnitt durch einen Rotor mit Mitteln zur Verlagerung des Kühlspaltes nach außen,
  • Figuren 5 und 6 eine Lösung, bei der das Führungsbauteil den Kühlspalt begrenzt, und
  • Figur 7 eine Lösung mit einem aus zwei Abschnitten bestehenden Rotor.
Further advantages and details of the invention will be explained with reference to embodiments schematically illustrated in Figures 1 to 7. Show it
  • 1 shows a section through a screw vacuum pump according to the invention,
  • FIGS. 2 and 3 are sections through each one of two cantilevered rotors of a screw vacuum pump, which show further solutions for the design of the guide component,
  • FIG. 4 shows a section through a rotor with means for displacing the cooling gap to the outside,
  • Figures 5 and 6, a solution in which the guide member defines the cooling gap, and
  • Figure 7 shows a solution with a two-section rotor.

Die in Figur 1 dargestellte Schraubenvakuumpumpe 1 umfasst das Schöpfraumgehäuse 2 mit den Rotoren 3 und 4. Einlass 5 und Auslass 6 der Pumpe 1 sind schematisch durch Pfeile gekennzeichnet. Die Rotoren 3 und 4 sind auf den Wellen 7 bzw. 8 befestigt, die sich jeweils in zwei Lagern 11, 12 bzw. 13, 14 abstützen. Ein Lagerpaar 11, 13 befindet sich in einer Lagerscheibe 15, die den schmiermittelfreien Schöpfraum von einem Getrieberaum 16 trennt. Das zweite Lagerpaar 12, 14 befindet sich im Schöpfraumgehäuse 2. Im Gehäuse 17 des Getrieberaumes 16 befinden sich die auf den Wellen 7 und 8 montierten Synchronisationszahnräder 18, 19 sowie ein dem Antrieb der Pumpe 1 dienendes Zahnradpaar 21, 22, von denen eines mit der Welle des vertikal neben der Pumpe 1 angeordneten Antriebmotors 23 gekoppelt ist. Außerdem hat der Getrieberaum die Funktion eines Ölsumpfes 20.The screw vacuum pump 1 shown in FIG. 1 comprises the pump chamber 2 with the rotors 3 and 4. The inlet 5 and outlet 6 of the pump 1 are schematically indicated by arrows. The rotors 3 and 4 are mounted on the shafts 7 and 8, respectively, which are supported in two bearings 11, 12 and 13, 14. A bearing pair 11, 13 is located in a bearing plate 15, which separates the lubricant-free pump chamber from a gear chamber 16. In the housing 17 of the gear chamber 16 are mounted on the shafts 7 and 8 synchronization gears 18, 19 and a drive of the pump 1 serving gear pair 21, 22, one of which with the Wave of the vertically adjacent to the pump 1 arranged drive motor 23 is coupled. In addition, the gear chamber has the function of an oil sump 20th

Die getrieberaumseitigen Enden der Wellen 7, 8 durchsetzen in Bohrungen 24, 25 im Boden des Getrieberaumgehäuses 17 und enden in einem Öl enthaltenden Raum 26, der vom Gehäuse 17 sowie einer daran befestigten Wanne 27 gebildet wird. Beim dargestellten Ausführungsbeispiel, bei dem das Rotorpaar 3, 4 beidseitig gelagert ist, erfolgt die Trennung des Ölsumpfes 16 vom Öl enthaltenden Raum 26 durch Dichtungen 28, 29. Für den Fall einer fliegenden Lagerung des Rotorpaares 3, 4 befindet sich das zweite Lagerpaar 12, 14 im Bereich der Bohrungen 24, 25.The drive-chamber-side ends of the shafts 7, 8 pass through bores 24, 25 in the bottom of the gear housing 17 and terminate in an oil-containing space 26 formed by the housing 17 and a trough 27 attached thereto. In the illustrated embodiment, in which the rotor pair 3, 4 mounted on both sides is the separation of the oil sump 16 from the oil-containing space 26 by seals 28, 29. In the case of flying support of the rotor pair 3, 4, the second pair of bearings 12, 14 in the region of the bores 24, 25th

Die Figur 1 lässt erkennen, dass die Rotoren 3 und 4 jeweils einen Hohlraum 31 aufweisen, in den sich die Welle 8 erstreckt und in dem sich jeweils ein weiterer von einem Kühlmittel durchströmter Raum 32 befindet. Da nur der Rotor 4 im Teilschnitt dargestellt ist, wird die Erfindung nur anhand dieses Rotors 4 erläutert.FIG. 1 shows that the rotors 3 and 4 each have a cavity 31 into which the shaft 8 extends and in which there is another space 32 through which a coolant flows. Since only the rotor 4 is shown in partial section, the invention will be explained only with reference to this rotor 4.

Bei der Lösung nach Figur 1 ist der vom Kühlmittel durchströmte Raum 32 als Ringspaltabschnitt ausgebildet und befindet sich unmittelbar zwischen Welle 8 (bzw. 7) und Rotor 4 (bzw. 3). Die zylindrische Innenwandung des Rotorhohlraumes 31 ist dazu in ihrem mittleren Bereich mit einer Eindrehung 33 versehen, deren Tiefe der Dicke des Kühlspaltes 32 entspricht. Saugseitig und druckseitig liegt die Welle 8 der Innenwandung des Hohlraumes 31 dicht an.In the solution according to FIG. 1, the space 32 through which the coolant flows is designed as an annular gap section and is located directly between shaft 8 (or 7) and rotor 4 (or 3). The cylindrical inner wall of the rotor cavity 31 is provided in its central region with a recess 33 whose depth corresponds to the thickness of the cooling gap 32. The suction side and the pressure side, the shaft 8 of the inner wall of the cavity 31 is tight.

Die Versorgung des Kühlspaltes 32 mit dem Kühlmittel erfolgt über die Welle 8. Sie ist mit einer zentralen Bohrung 41 ausgerüstet, die sich vom unteren Ende der Welle 8 bis zum saügseitigen Ende des Kühlspaltes 32 erstreckt. Sie bildet einen Raum 43, in dem sich ein Führungsbauteil 44 für das Kühlmittel befindet. Das Führungsbauteil 44 erstreckt sich vom unteren Ende der Welle 8 bis über das druckseitige Ende des Kühlspaltes 32 hinaus. Die Zuführung des Kühlmittels erfolgt über die Längsbohrung 45 im Führungsbauteil 44, die über miteinander fluchtende Querbohrungen 46 durch das Bauteil 44 und die Welle 8 mit dem druckseitigen Ende des Kühlspaltes 32 in Verbindung steht.The supply of the cooling gap 32 with the coolant takes place via the shaft 8. It is equipped with a central bore 41 which extends from the lower end of the shaft 8 to the suction-side end of the cooling gap 32. It forms a space 43 in which a guide member 44 for the coolant is located. The guide member 44 extends from the lower end of the shaft 8 to beyond the pressure-side end of the cooling gap 32 addition. The supply of the coolant via the longitudinal bore 45 in the guide member 44, which communicates via aligned transverse bores 46 through the component 44 and the shaft 8 with the pressure-side end of the cooling gap 32 in connection.

In Höhe des saugseitigen Endes des Kühlspaltes 32 ist die Welle 8 mit einer oder mehreren Querbohrungen 47 ausgerüstet, die in den von der Sackbohrung 41 und der Stirnseite des Führungsbauteils 44 gebildeten Raum 43 münden. Dieser steht über die Längsbohrung 48 und die miteinander fluchtenden Querbohrungen 49 (im Führungsbauteil 44 und in der Welle 8) mit dem Getrieberaum 16 in Verbindung.At the suction end of the cooling gap 32, the shaft 8 is equipped with one or more transverse bores 47, which open into the space 43 formed by the blind bore 41 and the end face of the guide member 44. This communicates via the longitudinal bore 48 and the mutually aligned transverse bores 49 (in the guide member 44 and in the shaft 8) with the gear chamber 16 in connection.

Die Zuführung des Kühlmittels erfolgt aus dem Öl enthaltenden Raum 26 über die Bohrungen 45 und 46 in den Kühlspalt 32. Es durchströmt den Kühlspalt 32 von der Druckseite zur Saugseite des Rotors 4. Da die abzuführende Wärme maßgeblich auf der Druckseite des Rotors 4 entsteht, ist der Rotor 4 im Gegenstrom gekühlt. Die Abführung des Kühlmittels erfolgt zunächst über die zweite Bohrung 47 in den Raum 43 in der Welle 8 sowie über die Bohrungen 48, 49. Die Bohrung 48 erstreckt sich von der Saugseite des Kühlspaltes 32 bis in die Höhe des Getrieberaumes 16. Die Querbohrung 48 stellt die Verbindung der Bohrung 43 mit dem Getrieberaum 16 her.The supply of the coolant takes place from the oil-containing space 26 via the holes 45 and 46 in the cooling gap 32. It flows through the cooling gap 32 from the pressure side to the suction side of the rotor 4. Since the dissipated heat is significantly formed on the pressure side of the rotor 4 is the rotor 4 cooled in countercurrent. The discharge of the coolant takes place first via the second bore 47 in the space 43 in the shaft 8 and via the bores 48, 49. The bore 48 extends from the suction side of the cooling gap 32 to the height of the gear chamber 16. The transverse bore 48 provides the connection of the bore 43 with the gear chamber 16 ago.

Eine sichere Kühlung der Rotoren 3, 4 wird erreicht, wenn das Kühlmittel die relativ engen Kühlspalte 32 relativ schnell und störungsfrei (frei von Kavitationen und Verschmutzungen) durchströmt. Es ist deshalb zweckmäßig, neben der Kühlung und Filterung des Kühlmittels für eine ausreichende Förderkraft zu sorgen. Beim Ausführungsbeispiel nach Figur 1 steht dazu der Getrieberaum 16 bzw. der Ölsumpf 20 mit dem Raum 26 über eine Leitung 51 in Verbindung, in dem sich neben einem Kühler 52 und einem Filter 53 eine Ölpumpe 54 befindet, die z.B. als Zahnradpumpe ausgebildet ist. Die Ölpumpe 54 sorgt dafür, dass das Kühlmittel mit dem notwendigen Druck kavitationsfrei aus dem Raum 26 in die Bohrung 41 eintritt.Reliable cooling of the rotors 3, 4 is achieved when the coolant flows through the relatively narrow cooling gaps 32 relatively quickly and without interference (free from cavitation and contamination). It is therefore appropriate in addition to the cooling and filtering of the coolant to ensure adequate delivery. In the embodiment according to FIG. 1, the gear chamber 16 or the oil sump 20 communicates with the chamber 26 via a line 51, in which, in addition to a cooler 52 and a filter 53, there is an oil pump 54 which is designed, for example, as a gear pump. The oil pump 54 ensures that the coolant enters the bore 41 cavitation-free from the space 26 with the necessary pressure.

Es besteht auch die Möglichkeit, Ölpumpen (Zentrifugalpumpen, Zahnradpumpen) im Bereich der unteren Enden der Wellen 7, 8 anzuordnen. Diese müssen jedoch so ausgebildet sein, dass sie die Anforderungen an die gewünschte Fördereigenschaften erfüllen.It is also possible to arrange oil pumps (centrifugal pumps, gear pumps) in the region of the lower ends of the shafts 7, 8. However, these must be designed so that they meet the requirements for the desired conveying properties.

Figur 2 zeigt eine Lösung, bei der das Führungsbauteil 44 drei Abschnitte 61, 62, 63 umfasst, die den Hohlraum in der Welle 8 in drei Teilräume 64, 65, 43 unterteilen, die sich jeweils in Höhe der Querbohrungen 49, 46 und 47 befinden. Durch geeignete Bohrungen in den Abschnitten 61 bis 63 sowie Leitungsabschnitte 67 und 68, die diese Bohrungen miteinander verbinden, kann eine separate Zu- und Abführung des Kühlmittels zum Kühlspalt realisiert werden.Figure 2 shows a solution in which the guide member 44 comprises three sections 61, 62, 63, which divide the cavity in the shaft 8 in three sub-spaces 64, 65, 43, which are located at the level of the transverse bores 49, 46 and 47 , By suitable holes in sections 61 to 63 and line sections 67 and 68, which connect these holes with each other, a separate supply and discharge of the coolant to the cooling gap can be realized.

Bei der Ausführung nach Figur 3 erfolgt die Zuführung des Kühlmittels durch die Bohrung 45, die im Gegensatz zu den Ausführungen nach den Figuren 1 und 2 zentral das Führungsbauteil 44 durchsetzt. Das von einer Zentrifugalpumpe 71 in die Bohrung 45 geförderte Öl gelangt in den von der Sackbohrung 41 sowie dem Führungsbauteil 44 gebildeten Hohlraum 43 und über die Querbohrung 46 in den vom Kühlmittel durchströmten Raum 32. Anders als bei den Ausführungen nach den Figuren 1 und 2 handelt es sich bei dem vom Kühlmittel durchströmten Raum 32 um einen relativ großvolumigen Ringraum, der von der Welle 8 und der Innenwandung des Rotorhohlraumes 31 gebildet wird. Da diese Innenwandung derart konisch gestaltet ist, dass sich der Rotorhohlraum 31 zur Druckseite der Rotoren 3, 4 konisch erweitert, wird eine Förderung des aus den Bohrungen 46 in den Raum 32 eingespritzten Kühlmittels in Richtung Rotor-Druckseite erreicht. Ein blasen- oder kavitationsfreier Betrieb des Kühlmittelkreislaufs ist nicht erforderlich. Das Kühlmittel kann so dosiert werden, dass es der Innenwandung des Rotorhohlraumes 31 z.B. in Form eines dünnen Filmes entlang strömt.In the embodiment according to FIG. 3, the coolant is supplied through the bore 45, which, in contrast to the embodiments according to FIGS. 1 and 2, passes centrally through the guide component 44. The pumped by a centrifugal pump 71 into the bore 45 oil passes in the cavity 43 formed by the blind bore 41 and the guide member 44 and the transverse bore 46 in the space 32 through which the coolant flows. Unlike the embodiments according to FIGS. 1 and 2, the space 32 through which the coolant flows is a relative one large-volume annulus formed by the shaft 8 and the inner wall of the rotor cavity 31. Since this inner wall is designed conically such that the rotor cavity 31 widens conically towards the pressure side of the rotors 3, 4, a delivery of the coolant injected from the bores 46 into the space 32 is achieved in the direction of the rotor pressure side. Bubble-free or cavitation-free operation of the coolant circuit is not required. The coolant can be metered so that it flows along the inner wall of the rotor cavity 31, for example in the form of a thin film.

Die Austrittsbohrungen 47 stehen mit seitlichen Längsnuten 72 (oder eine Freidrehung) im Führungsbauteil 44 in Verbindung, welche sich in Höhe der Lagerscheibe 15 bis zum Getrieberaum 16 erstrecken und dort mit den Querbohrungen 49 in Verbindung stehen.The outlet bores 47 communicate with lateral longitudinal grooves 72 (or a free rotation) in the guide component 44, which extend at the level of the bearing disk 15 to the gear chamber 16 and communicate there with the transverse bores 49.

Die Ausführung nach Figur 4 unterscheidet sich von den vorstehend beschriebenen Ausführungen dadurch, dass die Welle 8 und der Rotor 4 durchgehend durchbohrt sind. Zur Bildung des Hohlraumes 31 ist eine saugseitig angeordnete Abdeckung 76 vorgesehen, die über eine Schraube 77 mit dem Führungsbauteil 44 in Verbindung steht. Das Führungsbauteil 44 ist von der Saugseite her fest eingesetzt. Es dient zusammen mit der Schraube 77 und der Abdeckung 76 der axialen Fixierung des Rotors 4. Druckseitig hat die Bohrung 41 einen kleineren Durchmesser.The embodiment of Figure 4 differs from the embodiments described above in that the shaft 8 and the rotor 4 are pierced through. To form the cavity 31, a suction-side arranged cover 76 is provided, which is connected via a screw 77 with the guide member 44 in connection. The guide member 44 is firmly inserted from the suction side. It serves together with the screw 77 and the Cover 76 of the axial fixation of the rotor 4. On the pressure side, the bore 41 has a smaller diameter.

Die Welle 8 ist mit einer äußeren Hülse 77 ausgerüstet, die zusammen mit der Innenwandung des Hohlraumes 31 im Rotor 4 den Kühlspalt 32 bildet. Dieser erstreckt sich im wesentlichen nur in Höhe der Druckseite des Rotors 4. Die radiale Verlegung des Kühlspaltes 32 nach außen verbessert die Kühlwirkung. Die Zuführung des Kühlmittels erfolgt nur über relativ kurze Längsnutabschnitte 78 (oder eine Freidrehung, Ringkanal) im Führungsbauteil 44 bis zu den Querbohrungen 46, die die Welle 8 und die Hülse 77 durchsetzen. Bevor es in die Längsnuten 78 eintritt, durchströmt es Bohrungen 79, 80 in der Lagerscheibe 15 sowie den lagerseitigen Raum 82 einer Gleitringdichtung 83 und sorgt dort für den notwendigen Sperrdruck. Die Rückführung des Kühlmittels erfolgt über die Querbohrungen 47 sowie die zentrale Bohrung 45 im Führungsbauteil 44 bzw. die Bohrung 41 in der Welle 8.The shaft 8 is equipped with an outer sleeve 77, which forms the cooling gap 32 together with the inner wall of the cavity 31 in the rotor 4. This extends substantially only at the level of the pressure side of the rotor 4. The radial displacement of the cooling gap 32 to the outside improves the cooling effect. The supply of the coolant takes place only over relatively short Längsnutabschnitte 78 (or a free rotation, annular channel) in the guide member 44 to the transverse bores 46, which pass through the shaft 8 and the sleeve 77. Before it enters the longitudinal grooves 78, it flows through bores 79, 80 in the bearing disk 15 and the bearing-side space 82 of a mechanical seal 83, where it provides the necessary barrier pressure. The return of the coolant via the transverse bores 47 and the central bore 45 in the guide member 44 and the bore 41 in the shaft eighth

Bei der Lösung nach den Figuren 5a erstreckt sich die Welle 8 nicht bis in den Rotorhohlraum 31. Sie ist in Höhe der Druckseite mit dem Rotor 4 verbunden. Das Führungsbauteil 44 im Rotorhohlraum 31 hat einen Abschnitt 84 mit vergrößertem Durchmesser, welcher zusammen mit der Innenwandung des Hohlraumes 31 im Rotor 4 den Kühlspalt 32 bildet. Ein zweiter Abschnitt 85, der gegenüber dem Abschnitt 84 einen kleineren Durchmesser hat, durchsetzt die Bohrung 41 in der Welle 8.In the solution according to the figures 5a, the shaft 8 does not extend into the rotor cavity 31. It is connected at the level of the pressure side with the rotor 4. The guide member 44 in the rotor cavity 31 has a portion 84 of increased diameter, which forms the cooling gap 32 together with the inner wall of the cavity 31 in the rotor 4. A second section 85, which has a smaller diameter than the section 84, passes through the bore 41 in the shaft 8.

Um aus thermischen Gründen einerseits die Zufuhr des Kühlmittels von der offenen Seite der Bohrung 41 her über eine zentrale Bohrung 45 im Führungsbauteil 44 und andererseits eine Kühlung des Rotors 4 im Gegenstrom zu ermöglichen, ist es erforderlich, dass das Führungsbauteil 44 eine Kreuzung der Kühlmittelströme vorsieht. Dieses geschieht über Querbohrungen und äußere Nutabschnitte im Führungsbauteil 44, die im einzelnen folgendermaßen gestaltet sind (vgl. Figuren 5a, 5b und 6):In order to allow for thermal reasons, on the one hand, the supply of the coolant from the open side of the bore 41 via a central bore 45 in the guide member 44 and on the other hand, a cooling of the rotor 4 in countercurrent, it is necessary that the guide member 44 provides an intersection of the coolant flows , This is done via transverse bores and outer groove sections in the guide component 44, which are designed in detail as follows (compare FIGS. 5a, 5b and 6):

Über die Sackbohrung 45 zentral zugeführtes Kühlmittel gelangt über eine Querbohrung 88 in zwei einander gegenüberliegende Nutabschnitte 89 bis in den Hohlraum 31 (Druckseite). Danach durchströmt das Kühlmittel den Kühlspalt 32 und gelangt über die Querbohrungen 47 in einen zentral im Führungsbauteil gelegenen Leitungsabschnitt 45'. Dieser erstreckt sich bis zu einer zweiten, saugseitig zur ersten Querbohrung 88 gelegenen Querbohrung 90. Die beiden Querbohrungen 88 und 90 sind etwa senkrecht zueinander ausgerichtet. Die Querbohrung 90 mündet in einander gegenüberliegende Nutabschnitte 91, die um etwa 90° gegenüber den Nutabschnitten 89 versetzt sind. Dadurch ist es möglich, das zurückströmende Kühlmittel durch diese Nutabschnitte 91 bis zu den Querbohrungen 49 im Bereich des Getrieberaumes 16 zu führen.Via the blind bore 45 centrally supplied coolant passes through a transverse bore 88 in two mutually opposite groove portions 89 into the cavity 31 (pressure side). Thereafter, the coolant flows through the cooling gap 32 and passes through the transverse bores 47 in a centrally located in the guide member line section 45 '. This extends to a second, suction side located to the first transverse bore 88 transverse bore 90. The two transverse bores 88 and 90 are approximately perpendicular to each other. The transverse bore 90 opens into mutually opposite groove portions 91, which are offset by approximately 90 ° relative to the groove portions 89. As a result, it is possible to guide the coolant flowing back through these groove sections 91 as far as the transverse bores 49 in the region of the gear chamber 16.

Beim Ausführungsbeispiel nach Figur 7 umfasst der Rotor 4 zwei Abschnitte 4', 4" mit unterschiedlicher Gestaltung der Schraubengänge sowie mit jeweils einem Hohlraum 31' bzw. 31". Die Welle 8 erstreckt sich bis in den Hohlraum 31" des druckseitigen Rotorabschnittes 4" und bildet damit den Kühlspalt 32". Das Führungsbauteil 44 ist ähnlich gestaltet wie bei der Ausführung nach den Figuren 5, 6. Es weist einen Abschnitt 84 mit vergrößertem Durchmesser auf, der sich im Hohlraum 31' des Rotorabschnittes 4' befindet und zusammen mit der Innenwandung dieses Rotorabschnittes 4' den Kühlspalt 32' bildet. Ein weiterer Abschnitt 85 des Führungsbauteiles 44 mit kleinerem Durchmesser durchsetzt die zentrale Bohrung 41 in der Welle 8. Das Führungsbauteil 44 ist mit einer sich bis zur Saugseite des Rotors 4 erstreckenden zentralen Bohrung 45 versehen.In the embodiment of Figure 7, the rotor 4 comprises two sections 4 ', 4 "with different design of the screw threads and each with a cavity 31' and 31". The shaft 8 extends into the cavity 31 "of the pressure-side rotor section 4 "and thus forms the cooling gap 32". It has a section 84 of increased diameter, which is located in the cavity 31 'of the rotor section 4' and together with the inner wall of this rotor section 4 ', the cooling gap 32nd 'forms. Another section 85 of the smaller diameter guide member 44 passes through the central bore 41 in the shaft 8. The guide member 44 is provided with a central bore 45 extending to the suction side of the rotor 4.

Der Einfachheit und Übersichtlichkeit halber ist eine Lösung dargestellt, bei der das Kühlmittel über die zentrale Bohrung 45 zugeführt wird und über seitliche Bohrungen 46' im Abschnitt 84 saugseitig in den Kühlspalt 32' einströmt. Über eine Freidrehung 78' (oder auch über Längsnuten) sowie über Querbohrungen 46" steht das druckseitige Ende des Kühlspaltes 32' mit dem saugseitigen Ende des Kühlspaltes 32" in Verbindung, so dass die beiden Kühlspalte 32', 32" nacheinander vom Kühlmittel durchströmt werden. Über eine weitere Freidrehung 78" steht die druckseitige Ausströmöffnung 47" des Kühlspaltes 32" mit der Ausströmöffnung 49 in Höhe des Getrieberaumes 16 in Verbindung. Auch bei dieser Lösung besteht die Möglichkeit, das Führungsbauteil 44 gleichzeitig als Zuganker zu verwenden, und zwar zur Fixierung des Rotorabschnittes 4'.For the sake of simplicity and clarity, a solution is shown in which the coolant is supplied via the central bore 45 and flows through lateral bores 46 'in the section 84 on the suction side into the cooling gap 32'. About a free rotation 78 '(or via longitudinal grooves) and transverse holes 46 "is the pressure-side end of the cooling gap 32' with the suction end of the cooling gap 32" in conjunction, so that the two cooling gaps 32 ', 32 "flowed through in succession by the coolant Via a further free rotation 78 ", the pressure-side outflow opening 47" of the cooling gap 32 "communicates with the outflow opening 49 at the level of the geared space 16. Also in this solution, it is possible to use the guide member 44 at the same time as a tie rod, namely for fixing the rotor section 4 '.

Natürlich besteht bei der Ausführung nach Figur 7 auch die Möglichkeit, die Zu- und Abführungsleitungen des Kühlmittels so zu gestalten, dass die Kühlspalte 32', 32" getrennt und/oder im Gegenstrom versorgt werden.Of course, there is the possibility in the embodiment of Figure 7, the supply and discharge lines of the Coolant to be designed so that the cooling gaps 32 ', 32 "separated and / or supplied in countercurrent.

Die Lösungen nach den Figuren 5 bis 7 sind insbesondere dann von Vorteil, wenn die Rotoren 3, 4 fliegend gelagert sind, da die Möglichkeit besteht, das Führungsbauteil 62 aus leichten Werkstoffen, z.B. Kunststoff, herzustellen. Dadurch kann die lagerferne Masse der Rotoren klein gehalten werden. Die Verwendung von Kunststoff oder ähnlichen Werkstoffen hat auch noch generell den Vorteil, dass sich zwischen dem zuströmenden und dem abströmenden Kühlmittel schlecht wärmeleitende Materialien befinden.The solutions according to Figures 5 to 7 are particularly advantageous when the rotors 3, 4 are cantilevered, since it is possible, the guide member 62 made of lightweight materials, e.g. Plastic, manufacture. As a result, the stock distant mass of the rotors can be kept small. The use of plastic or similar materials also generally has the advantage that there are poorly heat-conducting materials between the inflowing and the outflowing coolant.

Claims (18)

  1. Screw vacuum pump (1) with two rotors (3, 4) which have a suction side and a delivery side and which are each linked to a shaft (7, 8) supported on the delivery side; each rotor/shaft system has the following characteristics:
    - the rotor (3, 4) has a hollow chamber (31) accessible from the delivery side;
    - at least one section of the shaft (7, 8) projects into the hollow chamber (31);
    - located between rotor (3, 4) and shaft (7, 8) is an annular chamber (32) serving for the throughflow of a coolant;
    - the shaft (7, 8) has at least one bore (41) which is accessible from the delivery side, starts in the area of a coolant sump (16, 26) and extends up to the level of the annular chamber (32);
    - the shaft (7, 8) is provided, at the level of the annular chamber (32), with at least one cross bore (46, 47) located on the suction side and with at least one cross bore (46, 47) located on the delivery side, which link the annular chamber (32) to the bore (41) in the shaft (7, 8) ;
    - located in the bore (41) of the shaft (7, 8) is a guide component (44), with the aid of which the flow of a coolant flowing in the bore (41) of the shaft (7, 8) can be influenced.
    The screw vacuum pump with the above features is characterised by the following features:
    - the guide component (44) is so designed that it effects a supply of the coolant through the hollow chamber (41) of the shaft (7, 8) to the annular chamber (32) and an evacuation, separately therefrom, of the coolant from the annular chamber (32);
    - the guide component (44) is provided with bores (45, 48), grooves or turned recesses (72, 78) which serve for supplying the coolant from the end of the shaft (7, 8) on the delivery side to the annular chamber (32) through one of the cross bores (46, 47) in the shaft (7, 8);
    - the shaft (7, 8) is provided with a further cross bore (49) in the area of the coolant sump (16, 26) ;
    - the guide component (44) is provided with bores (45, 48), grooves or turned recesses (72, 78) which serve for guiding the coolant, emerging from the annular chamber (32) through one of the cross bores (46, 47), up to the cross bore (49).
  2. Pump according to claim 1, characterised in that the guide component comprises three sections (61, 62, 63) which divide the hollow chamber in the shaft (8) into three partial chambers (64, 65, 43) which are each located at the level of cross bores (46, 47, 49), and in that through suitable bores in the sections (61 to 63) as well as line sections (67, 68) linking said bores, separate supply and evacuation of the coolant is implemented.
  3. Pump according to claim 1 or 2, characterised in that the shaft (7, 8) is equipped with a sleeve (77), the outside of which limits the annular gap (32).
  4. Screw vacuum pump (1) with two rotors (3, 4) which have a suction side and a delivery side and which are each linked to a shaft (7, 8) supported on the delivery side; each rotor/shaft system has the following characteristics:
    - the rotor (3, 4) has a hollow chamber (31) accessible from the delivery side;
    - the inside wall of the hollow chamber (31) in the rotor (3, 4) limits an annular chamber (32) serving for the throughflow of a coolant;
    - the shaft (7, 8) has a bore (41) which starts in the area of a coolant sump (16, 26);
    - located in the bore (41) of the shaft (7, 8) is a guide component (44), with the aid of which the flow of a coolant flowing in the bore (41) of the shaft (7, 8) can be influenced.
    The screw vacuum pump with the above features is characterised by the following features:
    - the guide component (44) has two sections (84, 85), of which one (85) is located in the bore (41) of the shaft (7, 8) and the other (84) extends into the hollow chamber (31) of the rotor (3, 4) ;
    - the section (84) located in the hollow chamber (31) of the rotor (3, 4) limits, together with inside wall of the hollow chamber (31) in the rotor (3, 4), the annular chamber (32);
    - the guide component (44) is so designed that it effects a supply of the coolant through the hollow chamber (41) of the shaft (7, 8) to the annular chamber (32) and an evacuation, separately therefrom, of the coolant from the annular chamber (32);
    - the guide component (44) is provided with bores (45, 48), grooves or turned recesses (72, 78) which serve for supplying the coolant from the end of the shaft (7, 8) on the delivery side to the annular chamber (32);
    - the shaft (7, 8) is provided with a cross bore (49) in the area of the coolant sump (16, 26);
    - the guide component (44) is provided with bores (45, 48), grooves or turned recesses (72, 78) which serve for guiding the coolant, emerging from the annular chamber (32), up to the cross bore (49).
  5. Pump according to claim 4, characterised in that the end of the shaft (7, 8) on the suction side is linked to the end of the rotor (3, 4) on the delivery side and in that the guide component (44) extends up to and into the rotor's hollow chamber (31).
  6. Pump according to claim 4 or 5, characterised in that the bore (41) in the shaft (7, 8) is a through bore and in that the diameter of the section (84) of the guide component (44) is greater than the diameter of the section (85) of the guide component (44).
  7. Pump according to one of the above claims, characterised in that the rotor (4) comprises two sections (4', 4") and in that two chambers (32', 32"), are present through which coolant flows, said chambers being supplied through channels in the guide component (44).
  8. Pump according to one of the above claims, characterised in that axial and radial line sections are so arranged in the guide component (44) that these allow for separate crossing guidance of the supplied coolant on the one hand and of the evacuated coolant on the other hand.
  9. Pump according to claim 8, characterised in that a longitudinal groove or a pair of longitudinal grooves (89) serve the purpose of supplying the coolant and a longitudinal groove or pair of longitudinal grooves (91) offset by 90° relative thereto serve the purpose of returning the coolant.
  10. Pump according to claim 9, characterised in that with the aid of additional cross bores (88, 90) crossing of the coolant flows is attained.
  11. Pump according to one of the above claims, characterised in that axially directed supply and evacuation lines are linked to the hollow chamber (32) through bores substantially extending in the radial direction.
  12. Pump according to one of the above claims, characterised in that the guide component (44) is made of a light material, preferably plastic.
  13. Pump according to one of the above claims,
    characterised in that a bore fully penetrates the rotor (3, 4) and in that the guide component (44) has the function of a tie rod for affixing the rotor (3, 4) to the shaft (7, 8).
  14. Pump according to one of the above claims,
    characterised in that the inside wall of the rotor's hollow chamber (31) limiting the annular chamber (32) widens conically in the direction of the delivery side.
  15. Pump according to one of claims 1 to 14, characterised in that the annular chamber (32) is a relatively narrow cylindrical annular gap section (32) through which the coolant flows.
  16. Pump according to claim 7 and one of claims 4, 5 or 6, characterised in that the shaft (7, 8) penetrates the rotor (4) at its section (4") on the delivery side, in that the section (4') on the suction side is linked to the end of the shaft (7, 8) on the delivery side, in that the guide component (44) extends up to and into the hollow chamber of the rotor section (4') on the suction side and limits the chamber (32').
  17. Pump according to one of the above claims, characterised in that the direction of the flowing coolant is so selected that the flow passes through the chamber (32) from the delivery side in the direction of the suction side.
  18. Pump according to one of the above claims, characterised in that coolant pumps are located in the area of the ends of the shaft (7, 8) on the delivery side.
EP00983238A 1999-12-27 2000-12-07 Cooled screw vacuum pump Expired - Lifetime EP1242742B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19963171A DE19963171A1 (en) 1999-12-27 1999-12-27 Screw-type vacuum pump used in cooling circuits has guide components located in open bores in shafts serving for separate guiding of inflowing and outflowing cooling medium
DE19963171 1999-12-27
PCT/EP2000/012318 WO2001048383A1 (en) 1999-12-27 2000-12-07 Cooled screw vacuum pump

Publications (2)

Publication Number Publication Date
EP1242742A1 EP1242742A1 (en) 2002-09-25
EP1242742B1 true EP1242742B1 (en) 2006-08-16

Family

ID=7934616

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00983238A Expired - Lifetime EP1242742B1 (en) 1999-12-27 2000-12-07 Cooled screw vacuum pump

Country Status (5)

Country Link
US (1) US20050069446A1 (en)
EP (1) EP1242742B1 (en)
JP (1) JP4800542B2 (en)
DE (2) DE19963171A1 (en)
WO (1) WO2001048383A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010061202A1 (en) 2010-12-14 2012-06-14 Gebr. Becker Gmbh vacuum pump

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10039006A1 (en) 2000-08-10 2002-02-21 Leybold Vakuum Gmbh Two-shaft vacuum pump
DE10156180B4 (en) * 2001-11-15 2015-10-15 Oerlikon Leybold Vacuum Gmbh Cooled screw vacuum pump
DE10156179A1 (en) 2001-11-15 2003-05-28 Leybold Vakuum Gmbh Cooling a screw vacuum pump
WO2003048579A2 (en) 2001-12-04 2003-06-12 Kag Holding A/S Screw pump for transporting emulsions susceptible to mechanical handling
US7963744B2 (en) * 2004-09-02 2011-06-21 Edwards Limited Cooling of pump rotors
DE102005012040A1 (en) * 2005-03-16 2006-09-21 Gebr. Becker Gmbh & Co Kg Rotor and screw vacuum pump
GB0510892D0 (en) * 2005-05-27 2005-07-06 Boc Group Plc Vacuum pump
BE1017371A3 (en) * 2006-11-23 2008-07-01 Atlas Copco Airpower Nv ROTOR AND COMPRESSOR ELEMENT FITTED WITH SUCH ROTOR.
US20090129956A1 (en) * 2007-11-21 2009-05-21 Jean-Louis Picouet Compressor System and Method of Lubricating the Compressor System
US8720805B1 (en) 2009-07-29 2014-05-13 Larry E. Koenig System and method for cooling a densifier
JP5138662B2 (en) * 2009-11-06 2013-02-06 株式会社神戸製鋼所 Steam compressor
US9403336B2 (en) 2010-12-09 2016-08-02 Mark E. Koenig System and method for crushing and compaction
US8851409B2 (en) 2010-12-09 2014-10-07 Mark E. Koenig System for crushing
US8708266B2 (en) 2010-12-09 2014-04-29 Mark E. Koenig System for crushing with screw porition that increases in diameter
CN102192151A (en) * 2011-05-19 2011-09-21 台州市星光真空设备制造有限公司 Inner cooled type vacuum pump
KR101064152B1 (en) 2011-06-20 2011-09-15 주식회사 에스백 Screw type vacuum pump having direct cooling device
US9586770B2 (en) 2011-08-05 2017-03-07 Mark E. Koenig Material waste sorting system and method
US9132968B2 (en) 2011-11-04 2015-09-15 Mark E. Koenig Cantilevered screw assembly
US9346624B2 (en) 2011-11-04 2016-05-24 Mark E. Koenig Cantilevered screw assembly
EP2615307B1 (en) * 2012-01-12 2019-08-21 Vacuubrand Gmbh + Co Kg Screw vacuum pump
DE102013009040B4 (en) * 2013-05-28 2024-04-11 Ralf Steffens Spindle compressor with high internal compression
US9821962B2 (en) 2015-12-14 2017-11-21 Mark E. Koenig Cantilevered screw assembly
CN106762668B (en) * 2017-03-07 2018-06-22 北京艾岗科技有限公司 A kind of vertical type vacuum pump self-circulation lubricating cooling system
CN108869295A (en) * 2018-08-02 2018-11-23 中船重工重庆智能装备工程设计有限公司 The cooling system of dry screw vacuum pump
IT201800010291A1 (en) * 2018-11-13 2020-05-13 Tt Italy S P A Mixing head
CN112012931B (en) * 2020-09-04 2022-05-24 浙江思科瑞真空技术有限公司 Cooling method of pump rotor
CN114393811A (en) * 2022-01-21 2022-04-26 玉环楚港模具科技有限公司 Long burette blowing mould
CN118564457B (en) * 2024-07-31 2024-10-18 厦门太星机电有限公司 Small liquid-cooled vacuum pump

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB464493A (en) * 1934-10-16 1937-04-16 Milo Ab Improvements in rotary engines
FR1290239A (en) * 1961-02-28 1962-04-13 Alsacienne Constr Meca Vacuum pump
SE315444B (en) * 1965-05-14 1969-09-29 A Lysholm
US3531227A (en) * 1968-07-05 1970-09-29 Cornell Aeronautical Labor Inc Gear compressors and expanders
US3796526A (en) * 1972-02-22 1974-03-12 Lennox Ind Inc Screw compressor
DE3786917D1 (en) * 1987-05-15 1993-09-09 Leybold Ag SINGLE OR MULTI-STAGE TWO-SHAFT VACUUM PUMP.
JPH0645135B2 (en) * 1990-10-08 1994-06-15 株式会社神戸製鋼所 Gear pump for molten resin
DE4444535A1 (en) * 1994-12-14 1996-06-20 Inst Luft Kaeltetech Gem Gmbh Rotor location in screw compressor
DE19522559A1 (en) * 1995-06-21 1997-01-02 Sihi Ind Consult Gmbh Axial delivery compressor, especially screw compressor
PT834018E (en) * 1995-06-21 2000-05-31 Sterling Ind Consult Gmbh HELICOIDAL FILL COMPRESSOR FOR MULTIPLE STATIONS
JPH10281089A (en) * 1997-04-03 1998-10-20 Matsushita Electric Ind Co Ltd Vacuum pump
DE19745615A1 (en) * 1997-10-10 1999-04-15 Leybold Vakuum Gmbh Screw vacuum pump with rotors
DE19745616A1 (en) * 1997-10-10 1999-04-15 Leybold Vakuum Gmbh Cooling system for helical vacuum pump
DE19800825A1 (en) * 1998-01-02 1999-07-08 Schacht Friedrich Dry compacting screw pump
US6045343A (en) * 1998-01-15 2000-04-04 Sunny King Machinery Co., Ltd. Internally cooling rotary compression equipment
JPH11236891A (en) * 1998-02-23 1999-08-31 Teijin Seiki Co Ltd Vacuum pump
DE19820523A1 (en) * 1998-05-08 1999-11-11 Peter Frieden Spindle screw pump assembly for dry compression of gases
DE19963172A1 (en) * 1999-12-27 2001-06-28 Leybold Vakuum Gmbh Screw-type vacuum pump has shaft-mounted rotors each with central hollow chamber in which are located built-in components rotating with rotor and forming relatively narrow annular gap through which flows cooling medium
US6394777B2 (en) * 2000-01-07 2002-05-28 The Nash Engineering Company Cooling gas in a rotary screw type pump
JP2001317480A (en) * 2000-04-28 2001-11-16 Hitachi Ltd Screw compressor
DE10039006A1 (en) * 2000-08-10 2002-02-21 Leybold Vakuum Gmbh Two-shaft vacuum pump

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010061202A1 (en) 2010-12-14 2012-06-14 Gebr. Becker Gmbh vacuum pump
WO2012080034A2 (en) 2010-12-14 2012-06-21 Gebr. Becker Gmbh Vacuum pump

Also Published As

Publication number Publication date
JP4800542B2 (en) 2011-10-26
US20050069446A1 (en) 2005-03-31
JP2003518588A (en) 2003-06-10
DE19963171A1 (en) 2001-06-28
WO2001048383A1 (en) 2001-07-05
DE50013338D1 (en) 2006-09-28
EP1242742A1 (en) 2002-09-25

Similar Documents

Publication Publication Date Title
EP1242742B1 (en) Cooled screw vacuum pump
EP1242743B1 (en) Screw vacuum pump with a coolant circuit
DE10248926B4 (en) compressor
DE10240409B4 (en) Variable displacement pump
EP1021654B1 (en) Screw vacuum pump provided with rotors
DE102005000899B4 (en) scroll compressor
DE2223156C2 (en) Vane compressors
EP1731722A1 (en) Camshaft adjusting device with a rotor of a swivel motor type with reduced leckage
DE10039006A1 (en) Two-shaft vacuum pump
EP1936200B1 (en) Lubricant sealed rotary slide vacuum pump
WO2009015957A1 (en) Fluid pump
DE102006049663A1 (en) Screw spindle pump for conveying working fluid, particularly lubricant or cooling lubricant, has pump spindles, which are rotatably mounted in housing, where pump spindles are supported in axial direction by axial bearing in housing
DE10064717A1 (en) Method for operating a pump set
DE10240800B4 (en) Pump for chemically aggressive fluids
EP0446221B1 (en) Cellular blower
EP4217610B1 (en) Motor-pump unit
DE4325286A1 (en) Two-stage rotary vane vacuum pump
EP1936199B1 (en) Lubricated vane type vacuum pump
DE102005043253A1 (en) Positive-displacement pump e.g. sliding vane pump, producing method for motor vehicle, involves providing connections at recesses and suction oil inlets, where connections are produced by smooth processing and breaking of partition walls
EP1413757A2 (en) Assembly of a motor and a pump
DE4220830A1 (en) FLUID COMPRESSORS
DE69303502T2 (en) Vehicle transmission with forced lubrication of the free-running gears
DE102007030199A1 (en) Screw spindle pump, to impel and compress gases, has an oil flow from an oil pump to the cogwheel teeth of the gearing
DE202006007301U1 (en) Dry compacting screw spindle pump for conveying and compacting gases has drive gear wheel with crown gears so that as drive wheel rotates coolant and lubricant are pressed into oil supply tube
DE19918393A1 (en) Rotary pump supplying fuel oil to diesel engine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020610

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RBV Designated contracting states (corrected)

Designated state(s): AT BE CH CY DE FR GB IT LI

17Q First examination report despatched

Effective date: 20040506

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LEYBOLD VACUUM GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50013338

Country of ref document: DE

Date of ref document: 20060928

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20061108

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070518

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20110107

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20101221

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20101228

Year of fee payment: 11

Ref country code: DE

Payment date: 20101229

Year of fee payment: 11

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20111207

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20120831

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50013338

Country of ref document: DE

Effective date: 20120703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111207

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120102