EP1021654B1 - Pompe a vide a vis pourvue de rotors - Google Patents

Pompe a vide a vis pourvue de rotors Download PDF

Info

Publication number
EP1021654B1
EP1021654B1 EP98937515A EP98937515A EP1021654B1 EP 1021654 B1 EP1021654 B1 EP 1021654B1 EP 98937515 A EP98937515 A EP 98937515A EP 98937515 A EP98937515 A EP 98937515A EP 1021654 B1 EP1021654 B1 EP 1021654B1
Authority
EP
European Patent Office
Prior art keywords
rotor
pump
pump according
housing
suction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98937515A
Other languages
German (de)
English (en)
Other versions
EP1021654A1 (fr
Inventor
Rudolf Bahnen
Thomas Dreifert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Leybold GmbH
Original Assignee
Leybold Vakuum GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leybold Vakuum GmbH filed Critical Leybold Vakuum GmbH
Publication of EP1021654A1 publication Critical patent/EP1021654A1/fr
Application granted granted Critical
Publication of EP1021654B1 publication Critical patent/EP1021654B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/24Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves
    • F04C28/26Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves using bypass channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/082Details specially related to intermeshing engagement type pumps
    • F04C18/084Toothed wheels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/04Heating; Cooling; Heat insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/14Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C18/16Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2220/00Application
    • F04C2220/10Vacuum

Definitions

  • the invention relates to a screw vacuum pump with the features of the preamble of the claim 1.
  • a screw pump is the one here affected species known.
  • the sections on the suction side the rotors have a larger thread profile than the sections arranged on the pressure side.
  • the content of US-A-3 also belongs to the prior art 807 911. Disclosed is a compressor whose rotors also rotor sections with different thread profiles exhibit.
  • the present invention is based on the object a screw vacuum pump of the type mentioned to be able to manufacture more cheaply than before.
  • the main advantage associated with the invention is that the rotor sections are different Materials and / or with different accuracies can be manufactured to match physical Necessities in the affected area (Heat conduction, thermal expansion, corrosion resistance, Weight, mass distribution, etc.) adjust to can.
  • the suction side, thermally less stressed section of the rotor made of aluminum, the pressure side, more thermally stressed Section be made of steel.
  • the accuracy requirements of the screw profile of the two sections the required sealing effects be adjusted. There are backflows in the suction area only little influence on the effective pumping speed the pump.
  • the one in this area Screw profile can therefore be made with much larger Tolerances, that is, cheaper, can be produced. Higher accuracy requirements are only required in the pressure area required.
  • Rotor sections with different Profiles can be put together in such a way that the different screw profiles immediately merge. Are harmful dead spaces not available anymore. A shorter overall length or -height can be realized.
  • the invention enables one Screw vacuum pump to apply the modular principle, in order to be able to adapt them to the application. about the volume, the slope and / or the length of the profiles on the suction side, the pumping speed or influence on the final pressure. With a small gradation can have a higher fluid compatibility, with a larger gradation a lower power consumption or a higher pumping speed at relative low power consumption can be achieved.
  • FIG. 1 shows a cut by a screw vacuum pump 1 according to the invention, namely at the level of that of the two rotating ones Systems equipped with the drive motor 2.
  • the two rotating systems are synchronized with the help of gears 3.
  • the rotating systems housed in housing 4 are each comprised of the rotor 5 and the shaft 6. Each Rotor 5 is flying, that is, supported on one side.
  • the shaft 6 is supported via the bearings 7 and 8 as well as the bearing brackets 11 and 12 in the housing 4. face side housing covers 13, 14 are provided, of which the rotor-side cover 13 with an inlet connector 15 is equipped. Part of the transmission side Cover 14 is the bearing bracket 12.
  • the rotor 5 consists of two form-fitting with each other connected rotor sections 17, 18 with different Profiles 19, 20.
  • the suction-side rotor section 17 has a large-volume profile 19 to achieve high Volume flows in the helical scoop.
  • the pressure-side section 18 of the rotor 5 has both a reduced profile volume as well as a lower one Diameter. This takes the cross section of the helical Scooping rooms. An inner compression will achieved, the compaction work reduced.
  • the inner wall of the housing 4 is the rotor gradation adjusted (gradation 21).
  • Gradation 21 The inner wall of the housing 4 is the rotor gradation adjusted (gradation 21).
  • dash-dotted line Line 22 indicates that the housing is at the height of the Gradation 21 can be formed divisible. This is it is possible to the suction-side rotor section 17 and suction-side part 4 'of the housing 4 by rotor sections with other profiles, lengths and / or diameters as well as adapted housing sections 4 ' replace the pump to different applications to be able to adapt.
  • the one following the pressure-side end of the threads Outlet of the pump 1 is designated 24. It is led out to the side. Flows into the outlet also a housing bore 25 which the scoop in the height at which its cross-section - be it by grading and / or by changing the thread profile - decreases, connects to the outlet. In the housing bore 25 there is a check valve 26, which is at overpressures in the scoop and the thread on the suction side opens of rotor section 17 with outlet 24 shorts. For sealing the helical scoops shaft seals 27 are provided from the bearing, which is between the bearing 7 and the rotor section 18 are located.
  • the cooling system of the illustrated embodiment includes an internal rotor cooling and a casing jacket cooling.
  • the rotor is for realizing the rotor internal cooling 5 with a cavity open to its bearing side 31 equipped, which extends almost through the entire rotor 5 can extend.
  • the pressure side Section 18 is hollow.
  • the suction side Section 17 closes the suction end of the cavity 31.
  • the shaft 6, which is expedient with the rotor 5 or with the pressure-side section 18 of the rotor 5 is integrally formed, is also hollow (Cavity 32). Is in the cavities 31, 32 a central cooling tube 33, the bearing side of the Shaft 6 is brought out and on the rotor side just before suction-side end of the cavity 31 opens.
  • the cooling pipe 33 and that formed by the cooling pipe 33 and the hollow shaft 6 Annulus stand for the supply and discharge of a Coolant available.
  • the sump 37 and the line system 38 are designed such that the pump 1 shown in any position can be operated between vertical and horizontal. Coolant levels that are at horizontal and at Set the vertical position of pump 1 are shown.
  • the coolant pump 36 outside (as shown) or inside (e.g. on the second, invisible shaft of the pump 1 in height of the drive motor 2) of the housing 4 is located the opening 34 of the cooling tube 33 outside or inside the housing 4.
  • Coolant is used to operate the internal cooling of the rotor 5 from the coolant pump 36 from the coolant sump 37 via the cooling tube 33 into the cavity 31 in the rotor 5 promoted. From there it flows over the annulus between cooling pipe 33 and shaft 6 back into the swamp 37.
  • the cavity 31 is at the level of the pressure side Range of threads of pump 1 so that this area is effectively cooled.
  • the outside of the cooling pipe 33 coolant flowing back et al the hollow shaft 6, the bearings 7 and 8, the Drive motor 2 (anchor side) and the gears 3, see above that thermal expansion problems are reduced.
  • the cross section of the annular space is expediently reduced between cooling pipe 33 and shaft 6 in the area of his pressure side end e.g. in that the cooling pipe 33 has a larger outer diameter in this area. This creates a narrow passage 39. This constriction ensures a complete filling of the coolant leading spaces.
  • cooling tube 3 It can be useful as a material for the cooling tube 3 a poorly heat-conducting material (e.g. plastic / stainless steel or the like.) This will a more effective cooling of the rotor 5 and a uniform Temperature control of the pump components close to the shaft 1 reached.
  • a poorly heat-conducting material e.g. plastic / stainless steel or the like.
  • the housing jacket cooling shown comprises cavities or channels in the housing 4. Provided in the area of the rotor 5 Cooling channels are at 41, in the area of the engine 2 located cooling channels designated 42.
  • the cooling channels 41 located in the area of the rotor 5 have the task, in particular, in the print side Area of the rotor 5 to dissipate heat generated. On the other hand, they should the housing 4 in height temper the entire rotor as evenly as possible. After all, they are supposed to replenish the absorbed heat hand in outside.
  • the cavities through which the coolant flows 41 therefore extend over the full length of the rotor 5.
  • the housing cover 13 serves as a suction side Completion of the cavities 41. Also on the outlet side the housing 4 effectively cooled.
  • the cooling channels located at the level of the drive motor 2 42 also have the tasks described. They bring about a temperature control of the drive motor (winding side) and the bearing bracket 7. Finally they significantly increase the heat emission outer surfaces of the pump 1. This is useful at least at the level of the cooling channels 41 and 42 with ribs 44 equipped.
  • the cooling channels 41, 42 are supplied with coolant also with the help of the coolant pump 36, and via lines 45 and 46 if they are parallel should be flowed through. Depending on the thermal requirements there is also the possibility to use them one by one to supply with coolant. One of the lines 45 or 46 could then be omitted. About not shown in detail The coolant comes out of the holes Cavities 41, 42 back into the sump 37.
  • FIG. 1 In the illustrated embodiment according to FIG. 1 are - as already mentioned - the housing 4 and the rotor 5 divisible at the level of line 22. Thereby there is the possibility of the suction-side sections of rotor 5 (section 17) and housing 4 (section 4 ') to be replaced by other components.
  • Pump 1 can be on Different applications can be customized by using rotor sections 17 with different profiles 19, different Length, different slope and / or different diameters, each together with an adapted housing section become. Different sized profiles can be placed on the Suction side to achieve high pumping speeds, various long profiles on the suction side to achieve this lower final pressures and / or different volume gradations to achieve e.g.
  • the coolant flowing through the screw vacuum pump 1 can be water, oil (mineral oil, PTFE oil or the like) or some other liquid. Is expedient the use of oil to make bearings 7, 8 and to be able to lubricate the gears 3. A separate tour of coolant and lubricant as well as corresponding This eliminates the need for seals. It must only for a metered supply of oil to the bearings 7, 8 are taken care of.
  • the solutions described allow an advantageous one Material selection.
  • the rotors 5 and the housing 4 made of relatively inexpensive aluminum materials consist.
  • the proposed cooling and above all cause uniform temperature control of pump 1, that it is even at different operating temperatures and relatively small columns not too local Game consumption comes up, which is a tarnishing rotor to rotor and / or rotor on housing result.
  • a further reduction of the column is possible if for the inner, more thermally stressed components (Rotors, bearings, bearing supports, gears) of the pump 1 Materials are used that have a smaller coefficient of thermal expansion have as the material for the less thermally stressed housing 4.
  • An example of one Material selection is steel (e.g. CrNi steel) for the internal components and aluminum for the housing.
  • Materials for the inner components can also be bronze, Brass or nickel silver are used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Claims (16)

  1. Pompe à vide à vis (1) comportant un boítier (4), des chambres de détente prévues dans le boítier (4) et des rotors (5) qui se trouvent à l'intérieur des chambres de détente et qui se composent chacun de sections de rotor (17, 18) fabriquées séparément et assemblées par complémentarité de forme ou par adhérence, caractérisée en ce que les sections de rotor (17, 18) se composent de matériaux différents, à savoir des matériaux permettant d'adapter les sections de rotor (17, 18) aux nécessités physiques présentes dans la zone de chambre de détente concernée.
  2. Pompe selon la revendication 1, caractérisée en ce que chacun des rotors (5) présente au moins deux sections (17, 18) comportant des profils de rotor (19, 20) différents.
  3. Pompe selon la revendication 1 ou 2, caractérisée en ce que la section (17) du côté aspiration a un plus grand diamètre que la section (18) du côté pression.
  4. Pompe selon la revendication 1, 2 ou 3, caractérisée en ce que la section (17) du côté aspiration du rotor (5) est réalisée en aluminium et la section (18) du côté pression en acier.
  5. Pompe selon l'une quelconque des revendications 1 à 4, caractérisée en ce que la section de rotor (17) du côté aspiration est fabriquée avec une tolérance plus importante que la section de rotor (18) du côté pression.
  6. Pompe selon l'une quelconque des revendications 1 à 5, caractérisée en ce que le boítier (4) est conçu de manière divisible.
  7. Pompe selon la revendication 6, caractérisée en ce que le plan de jonction situé entre les deux parties du boítier est identique au plan de jonction (22) situé entre les deux sections de rotor (17, 18).
  8. Pompe selon l'une quelconque des revendications précédentes, caractérisée en ce qu'un alésage de boítier (25) est prévu, qui raccorde à une sortie (27) les chambres de détente de forme spiralée à la hauteur où leur section transversale diminue, que ce soit par étagement et/ou par changement du profil fileté, et en ce qu'il se trouve, dans l'alésage de boítier (25), un clapet anti-retour (26) qui s'ouvre en cas de surpression.
  9. Pompe selon l'une quelconque des revendications précédentes, caractérisée en ce qu'elle est munie d'un dispositif de refroidissement/régulation de la température.
  10. Pompe selon la revendication 9, caractérisée en ce qu'elle est munie d'un dispositif de refroidissement interne de rotor.
  11. Pompe selon la revendication 10, caractérisée en ce que le dispositif de refroidissement interne de rotor se trouve dans une cavité (31) ouverte du côté palier située à l'intérieur du rotor (5).
  12. Pompe selon la revendication 11, caractérisée en ce qu'un tuyau de refroidissement (33) fixe traversant l'arbre (6) de configuration creuse débouche dans la cavité (31).
  13. Pompe selon l'une quelconque des revendications 9, 10 ou 11, caractérisée en ce que des canaux (41) parcourus par un liquide de refroidissement sont prévus dans la paroi du boítier (4) de la pompe (1), et ce à hauteur du rotor (5).
  14. Pompe selon la revendication 13, caractérisée en ce que des canaux (42) parcourus par un liquide de refroidissement sont également prévus dans la zone du boítier (4) située du côté palier.
  15. Pompe selon l'une quelconque des revendications 8 à 14, caractérisée en ce que le liquide de refroidissement parcourant la pompe (1) est identique au lubrifiant destiné aux paliers (7, 8).
  16. Procédé de fabrication d'une pompe (1) présentant les caractéristiques d'une ou plusieurs des revendications précédentes, caractérisé en ce que les sections de rotor (17) destinées à être disposées du côté aspiration à l'intérieur de la chambre de détente correspondante sont fabriquées avec une tolérance plus importante que les sections de rotor (18) destinées à être disposées du côté pression.
EP98937515A 1997-10-10 1998-06-19 Pompe a vide a vis pourvue de rotors Expired - Lifetime EP1021654B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19745615 1997-10-10
DE19745615A DE19745615A1 (de) 1997-10-10 1997-10-10 Schraubenvakuumpumpe mit Rotoren
PCT/EP1998/003757 WO1999019631A1 (fr) 1997-10-10 1998-06-19 Pompe a vide a vis pourvue de rotors

Publications (2)

Publication Number Publication Date
EP1021654A1 EP1021654A1 (fr) 2000-07-26
EP1021654B1 true EP1021654B1 (fr) 2004-10-06

Family

ID=7845647

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98937515A Expired - Lifetime EP1021654B1 (fr) 1997-10-10 1998-06-19 Pompe a vide a vis pourvue de rotors

Country Status (7)

Country Link
US (1) US6382930B1 (fr)
EP (1) EP1021654B1 (fr)
JP (1) JP4146081B2 (fr)
KR (1) KR20010030995A (fr)
DE (2) DE19745615A1 (fr)
TW (1) TW452631B (fr)
WO (1) WO1999019631A1 (fr)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19945871A1 (de) 1999-09-24 2001-03-29 Leybold Vakuum Gmbh Schraubenpumpe, insbesondere Schraubenvakuumpumpe, mit zwei Pumpstufen
GB9930556D0 (en) * 1999-12-23 2000-02-16 Boc Group Plc Improvements in vacuum pumps
DE19963170A1 (de) 1999-12-27 2001-06-28 Leybold Vakuum Gmbh Vakuumpumpe mit Wellendichtmitteln
DE19963171A1 (de) * 1999-12-27 2001-06-28 Leybold Vakuum Gmbh Gekühlte Schraubenvakuumpumpe
US6394777B2 (en) 2000-01-07 2002-05-28 The Nash Engineering Company Cooling gas in a rotary screw type pump
DE10019637B4 (de) * 2000-04-19 2012-04-26 Leybold Vakuum Gmbh Schraubenvakuumpumpe
DE10039006A1 (de) * 2000-08-10 2002-02-21 Leybold Vakuum Gmbh Zweiwellenvakuumpumpe
DE10110368A1 (de) * 2001-03-03 2002-09-12 Leybold Vakuum Gmbh Vakuumpumpe mit Schöpfraum und Austritt
DE10129340A1 (de) * 2001-06-19 2003-01-02 Ralf Steffens Trockenverdichtende Spindelpumpe
US7165933B2 (en) 2001-12-04 2007-01-23 Kag Holding A/S Screw pump for transporting emulsions susceptible to mechanical handling
US7400217B2 (en) * 2003-10-30 2008-07-15 Avago Technologies Wireless Ip Pte Ltd Decoupled stacked bulk acoustic resonator band-pass filter with controllable pass bandwith
JP4955558B2 (ja) * 2004-09-02 2012-06-20 エドワーズ リミテッド ポンプロータの冷却
DE102005012040A1 (de) * 2005-03-16 2006-09-21 Gebr. Becker Gmbh & Co Kg Rotor und Schraubenvakuumpumpe
US20080121497A1 (en) * 2006-11-27 2008-05-29 Christopher Esterson Heated/cool screw conveyor
GB0907298D0 (en) * 2009-04-29 2009-06-10 Edwards Ltd Vacuum pump
US8764424B2 (en) 2010-05-17 2014-07-01 Tuthill Corporation Screw pump with field refurbishment provisions
EP2615307B1 (fr) * 2012-01-12 2019-08-21 Vacuubrand Gmbh + Co Kg Pompe à vide à vis
FR3010153B1 (fr) * 2013-08-30 2018-01-05 Pcm Technologies Rotor helicoidal, pompe a cavites progressives et dispositif de pompage
JP6982380B2 (ja) * 2016-03-08 2021-12-17 コベルコ・コンプレッサ株式会社 スクリュ圧縮機
DE202016005209U1 (de) 2016-08-30 2017-12-01 Leybold Gmbh Schraubenvakuumpumpe
EP3499039B1 (fr) * 2017-12-15 2021-03-31 Pfeiffer Vacuum Gmbh Pompe à vide à vis
WO2020257033A1 (fr) * 2019-06-17 2020-12-24 Nov Process & Flow Technologies Us, Inc. Pompe à cavité progressive ou rotor de moteur
US11268385B2 (en) 2019-10-07 2022-03-08 Nov Canada Ulc Hybrid core progressive cavity pump
CN111594439A (zh) * 2020-04-23 2020-08-28 浙江佳成机械有限公司 一种三级螺杆压缩机
US11813580B2 (en) 2020-09-02 2023-11-14 Nov Canada Ulc Static mixer suitable for additive manufacturing
CN115853780B (zh) * 2022-11-10 2023-09-12 江阴华西节能技术有限公司 一种变螺距螺杆真空泵

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB464493A (en) * 1934-10-16 1937-04-16 Milo Ab Improvements in rotary engines
GB785860A (en) * 1955-01-17 1957-11-06 Manfred Dunkel Improvements in or relating to rotary piston blowers
FR1290239A (fr) * 1961-02-28 1962-04-13 Alsacienne Constr Meca Pompe à vide
FR1500160A (fr) 1966-07-29 1967-11-03 Perfectionnements aux compresseurs et moteurs rotatifs
US3807911A (en) * 1971-08-02 1974-04-30 Davey Compressor Co Multiple lead screw compressor
FR2637655B1 (fr) * 1988-10-07 1994-01-28 Alcatel Cit Machine rotative du type pompe a vis
JPH03111690A (ja) 1989-09-22 1991-05-13 Tokuda Seisakusho Ltd 真空ポンプ
KR100190310B1 (ko) * 1992-09-03 1999-06-01 모리시따 요오이찌 진공배기장치
DE19522560A1 (de) * 1995-06-21 1997-01-02 Sihi Ind Consult Gmbh Vakuumpumpe mit einem Paar innerhalb eines axial durchströmten Schöpfraums umlaufender Verdrängerrotoren
JPH1054382A (ja) * 1996-08-14 1998-02-24 Mitsubishi Electric Corp ベーン式真空ポンプ
US5791888A (en) * 1997-01-03 1998-08-11 Smith; Clyde M. Static seal for rotary vane cartridge pump assembly
US6019586A (en) * 1998-01-20 2000-02-01 Sunny King Machinery Co., Ltd. Gradationally contracted screw compression equipment

Also Published As

Publication number Publication date
JP2001520353A (ja) 2001-10-30
TW452631B (en) 2001-09-01
DE59812093D1 (de) 2004-11-11
KR20010030995A (ko) 2001-04-16
JP4146081B2 (ja) 2008-09-03
US6382930B1 (en) 2002-05-07
DE19745615A1 (de) 1999-04-15
WO1999019631A1 (fr) 1999-04-22
EP1021654A1 (fr) 2000-07-26

Similar Documents

Publication Publication Date Title
EP1021654B1 (fr) Pompe a vide a vis pourvue de rotors
EP1021653B1 (fr) Pompe a vide a vis refroidie
DE2529317C2 (fr)
EP1242743B1 (fr) Pompe a vide a vis pourvue d'un circuit de refrigerant
EP0156951B1 (fr) Pompe à vide avec deux arbres et avec obtention du vide de l'espace d'engrenage
EP1242742A1 (fr) Pompe a vide a vis refroidie
WO2002012726A1 (fr) Pompe a vide a deux arbres
DE19749572A1 (de) Trockenlaufender Schraubenverdichter oder Vakuumpumpe
DE19820523A1 (de) Schraubenspindel-Vakuumpumpe mit Rotorkühlung
EP0839283B1 (fr) Pompe a vide a palettes rendue etanche a l'huile, avec alimentation en huile
EP2185819A1 (fr) Compresseur d'agent de refroidissement
DE19802461C2 (de) Kühlmittelverdichter
DE102006049663A1 (de) Schraubenspindelpumpe mit Scheibenpumpen-Axiallager
CH628709A5 (en) Roots pump
DE2948993A1 (de) Verdichter, insbesondere schraubenverdichter, mit schmiermittelkreislauf
DE19847159C2 (de) Kompressor zur Erzeugung ölfreier Druckluft
DE19748385A1 (de) Trockenlaufender Schraubenverdichter oder Vakuumpumpe
EP0287797B1 (fr) Pompe à vide à deux arbres munie d'une transmission de synchronisation
EP2652332B1 (fr) Pompe à vide
DE19736017A1 (de) Trockenverdichtende Vakuumpumpe oder Kompressor
DE19849756A1 (de) Antriebskopf für ein drehantreibbares Gestänge, insbes. zum Antreiben einer Bohrlochpumpe
EP1741931B1 (fr) Compresseur à lobes
DE3301140C2 (fr)
DE4302242A1 (fr)
DE102010004594B4 (de) Regelölpumpe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000218

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI

17Q First examination report despatched

Effective date: 20010912

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20041006

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: LEYBOLD VACUUM GMBH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59812093

Country of ref document: DE

Date of ref document: 20041111

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050112

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

ET Fr: translation filed
26N No opposition filed

Effective date: 20050707

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20080516

Year of fee payment: 11

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20100706

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20100618

Year of fee payment: 13

Ref country code: DE

Payment date: 20100625

Year of fee payment: 13

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110619

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20120229

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59812093

Country of ref document: DE

Effective date: 20120103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110630

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110619