EP0446221B1 - Compresseur multicellulaire a ailettes - Google Patents

Compresseur multicellulaire a ailettes Download PDF

Info

Publication number
EP0446221B1
EP0446221B1 EP89912400A EP89912400A EP0446221B1 EP 0446221 B1 EP0446221 B1 EP 0446221B1 EP 89912400 A EP89912400 A EP 89912400A EP 89912400 A EP89912400 A EP 89912400A EP 0446221 B1 EP0446221 B1 EP 0446221B1
Authority
EP
European Patent Office
Prior art keywords
rotor
low
pressure
pressure cells
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89912400A
Other languages
German (de)
English (en)
Other versions
EP0446221A1 (fr
Inventor
Jürgen Hess
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0446221A1 publication Critical patent/EP0446221A1/fr
Application granted granted Critical
Publication of EP0446221B1 publication Critical patent/EP0446221B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/344Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/344Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • F04C18/3446Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along more than one line or surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/04Heating; Cooling; Heat insulation
    • F04C29/042Heating; Cooling; Heat insulation by injecting a fluid

Definitions

  • the invention relates to a vane compressor or vane compressor of the type defined in the preamble of claim 1.
  • the inlet openings for each low-pressure cell are arranged at an axial distance from one another over the rotor length and are connected to an axial inlet channel, so that the refrigerant flows radially into the low-pressure cells.
  • the inlet channels closed on one end face lead on the other end face beyond the boundary wall of the housing recess which is close to the drive shaft and open there in an annular chamber which is connected to a radial connecting piece for the refrigerant return from the system.
  • oil is separated from the refrigerant on the pressure side and the high-pressure oil is used as a sealant, which is supplied via the lateral boundary walls.
  • recesses are provided in the boundary walls, which are connected to bores, which open into an oil reservoir supplied by an oil separator. Due to the high pressure prevailing in the oil storage space, the oil is pressed into the bores and reaches the recesses between the end faces of the rotor and the lateral boundary walls.
  • the disadvantage must be accepted that the oil temperature is only slightly lower than the temperature of the high-pressure refrigerant, the so-called hot gas temperature, and therefore has a lower viscosity and can no longer absorb heat.
  • this hot oil also reaches the underside of the wing in the cavity in the wing guide slots of the rotor, which cavity is delimited by the slot base and wing, also makes the rotor relatively warm.
  • the delivery medium is fed into the low-pressure chambers in the axial direction of the rotor shaft through the two lateral boundary walls.
  • the medium first arrives in a first distribution chamber located next to the one boundary wall, from where a medium partial flow is fed directly to the low-pressure chambers.
  • a second medium partial flow or residual flow passes overflow channels - which penetrate the housing in the axial direction on the other side of the vane cell compressor into a second distribution chamber next to the other boundary wall and from there into the low-pressure chambers. So these are filled by two opposing partial flows.
  • the residual flow is already heated, so that this known vane compressor also has the shortcomings already described. All the more so since it is housed in an additional, sealed housing which is filled with hot, compressed gas.
  • the vane compressor according to the invention with the characterizing features of claim 1 has the advantage that from the refrigerant supply separate feed paths coaxial to the rotor shaft result in the same feed paths, and thus an almost uniform heating of the housing is obtained.
  • a uniform temperature distribution over the middle part of the housing surrounding the rotor is achieved in that the refrigerant is supplied axially at approximately the same temperature on both ends of the low-pressure cells.
  • the temperature at the front and rear ends of the rotor is thus kept at the same level, which increases only slightly towards the center of the rotor. Overall, a largely uniform temperature distribution is achieved in the entire vane compressor.
  • the refrigerant return line from the system can be connected centrally to the one inlet chamber.
  • the refrigerant flow is then divided once in the first inlet chamber into the inlet channels leaving there and once over the hollow rotor shaft to the other inlet chamber. In the latter, the refrigerant flow is subdivided again into the partial flows supplying the branching inlet channels. This not only allows the low-pressure cells to flow from the front and rear in a simple manner, but also only applies suction pressure and low temperature to the shaft seal.
  • Oil separation is achieved by dividing and diverting the individual partial refrigerant flows.
  • the dynamic pressure resulting from the distribution of the refrigerant flow in the first inlet chamber is directed by suitable measures into the cavities in the wing guide slots, which are delimited by the base of the slot and the underside of the wing, and by means of suitable measures to ensure that when the wing is inserted into the wing guide slots
  • the refrigerant located in the cavities can drain off at the end faces of the rotor, not only is good lubrication and sealing achieved, but the frictional heat on the end faces of the blades is now also absorbed by the cool oil.
  • the seal between low and high pressure cells is made by cooler and therefore more viscous oil, the temperature level in the vane compressor is lower overall.
  • suitable measures for supplying the cavities in the wing guide slots consist in the fact that in the end face facing the rotor of the boundary wall closest to the first inlet chamber, there are ring-section-like depressions which penetrate through the boundary wall, approximately axial bores with the first inlet chamber in Connect and communicate with the cavity in the wing guide slots as the wing passes through the low pressure areas.
  • Suitable measures for pushing out the oil-enriched refrigerant located in the cavities of the wing guide slots are, according to a further embodiment of the invention, that ring-section-shaped grooves are present in the end faces of the two boundary walls which face the rotor and which each have the cavities during the passage of the wings through the high-pressure cell areas communicate in the wing guide slots.
  • the communication of the ring-segment-shaped depressions or grooves with the cavities of the wing guide slots is advantageously realized according to an advantageous embodiment of the invention in that the depressions or grooves having a small radial width lie with their inner longitudinal edge approximately on the rotation path spanned by the slot base of the wing guide slots and extend for at least one partial region of the low-pressure cells or high-pressure cells provided in the circumferential direction.
  • the vane compressor or vane compressor shown in longitudinal section in FIG. 1 and in cross section in FIG. 2 has a housing 10, which is essentially composed of three parts, namely a left end cover 11, a right end cover 12 and a middle housing part 13.
  • a housing recess 14 is provided in the middle housing part 13 , the lateral boundary walls 15, 16 of which are formed by the end covers 11, 12 in the axial direction.
  • the inner wall 17 of the housing middle part 13 has an ellipse-like Guide curve, which also forms the stroke curve of the vane compressor.
  • a cylindrical rotor 18 is arranged in the housing recess 14, the diameter of which corresponds to the length of the smaller axis of the ellipse except for a small running clearance.
  • the rotor 18 is seated on a rotor shaft 20, which in the exemplary embodiment is integral with it.
  • the rotor shaft 20 is supported in two needle bearings 23, 24, which are arranged in the two end covers 11, 12.
  • One end of the rotor shaft 20, which is on the left in FIG. 1, is connected in a rotationally fixed manner to a drive shaft 25.
  • the rotor shaft 20 and thus the rotor 18 are set in rotation via the drive shaft 25.
  • a radial sealing ring 26 is arranged between the end cover 11 and the drive shaft 25 .
  • Each of the two crescent-shaped working spaces 21, 22 has a suction or low-pressure cell 30 or 31 and a high-pressure cell 32 or 33.
  • Each low-pressure cell has two inlet openings on opposite end faces, of which the inlet openings 34, 35 in Fig.
  • the inlet openings 35, 36 can be seen, which are each arranged in the two lateral boundary walls 15, 16 of the end cover 11, 12, so that two inlet openings 35 and 36 and 34 are present in each boundary wall 15 and 16, respectively are.
  • the inlet openings 34 - 36 are the mouths of inlet channels running in the end covers 11, 12, of which only the inlet channels 38, 39 and 40 can be seen in FIG. 1.
  • the inlet channels 38 and 39.40 which lead to the inlet openings 34 and 35 and 36 located in a boundary wall 15 and 16 respectively open into an inlet chamber 41 and 42 which is coaxial with the rotor shaft 20.
  • the inlet channels 38 and 39.40 branch off approximately radially from the associated inlet chamber 41 or 42.
  • the inlet channels 38 and 39, 40 opening in the same inlet chamber 41 and 42 are guided symmetrically to the rotor shaft 20 in the two end covers 11, 12 and are therefore of the same length.
  • the first inlet chamber 42 present in the right end cover 11 is arranged such that it is partially delimited on one side by the free end of the rotor shaft 20. It is directly connected to the refrigerant return, which is symbolically represented by arrow 43 in FIG. 1.
  • the relaxed, recooled refrigerant coming back from the system flows axially into the first inlet chamber 42.
  • the second inlet chamber 41 present in the left front cover 12 is designed as an annular chamber which surrounds the rotor shaft 20.
  • the rotor shaft 20 has a blind bore 44 which extends into the region of the second inlet chamber 41 and opens into the first inlet chamber 42 at the free end of the rotor shaft 20.
  • the latter is connected to the second inlet chamber 41 via a radial bore 45 which completely penetrates the rotor shaft 20 and which intersects the blind bore 44.
  • Each high-pressure cell 32, 33 is connected to a pressure channel 48 or 49 via a radial outlet opening 46 or 47 (FIG. 2).
  • the outlet openings 46, 47 are provided with outlet valves 51, 52, which are designed here as tongue valves and are only shown schematically.
  • the two pressure channels are 48, 49 led to a common collecting space 53 (Fig. 1), which opens into a pressure connection piece 54.
  • the compressed refrigerant is fed into the system via the pressure connection piece 54, which is symbolized by the arrow 55.
  • the depressions 59, 60 are shown in broken lines in FIG. 2. They lie with their inner longitudinal edge 61, 62 on the rotation path spanned by the slot base 57 of the wing guide slots 27 and extend completely or partially in the circumferential direction over the low-pressure cells 30, 31.
  • Each recess 59, 60 is connected to the first inlet chamber 42 via bores 63, 64 which run approximately axially in the end cover 12. In this way, each time the wings 28 pass through the low-pressure cells 30, 31, the cavities 56 in the wing guide slots 27 communicate with the depressions 59, 60.
  • the dynamic pressure in the first inlet chamber 42 thus presses cool, oil-enriched refrigerant into the cavities 56 via the bores 63, 64 and the depressions 59, 60.
  • the vanes 28 pass through the high pressure cells 32, 33, the vanes 28 are pushed deeper into the slots 27 and the volume of the cavities 56 decreases to a minimum at the end of the high pressure cells 32, 33.
  • the refrigerant present in the cavities 56 is pushed out in the form of ring-shaped grooves in both boundary walls 15, 16 of the two end covers 11, 12 and from here reaches the two working spaces along the end faces of the rotor 18 and the boundary walls 15, 16 of the end cover 11, 12 21.22.
  • the refrigerant has a sealing and lubricating effect between the surfaces mentioned. Small amounts of refrigerant also flow from the cavities 56 directly along the wing surfaces into the working spaces 21, 22 and also develop a sealing, lubricating and cooling effect.
  • the grooves 65, 66 in the boundary wall 16 of the right front cover 12 can be seen in dashed lines in FIG. 2. They lie with their inner longitudinal edges 67 and 68 approximately on the rotational path spanned by the slot base 57 of the wing guide slots 27 and extend in the circumferential direction in each case completely or partially over the high-pressure cells 32, 33. Like the recesses 59, 60, they have a small radial width.
  • the invention is not restricted to the described embodiment of a vane compressor with an elliptical cross section of the housing recess 14. It can also be realized with advantage in a single-flow vane compressor, in which the rotor is arranged eccentrically in a circular cylindrical housing recess.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

Dans un compresseur multicellulaire à ailettes, comportant des ailettes (28) guidées dans des rainures (27) s'étendant longitudinalement dans le sens radial, ménagées dans le rotor (18) et qui séparent au moins un espace de travail (21, 22), formé entre la paroi intérieure (17) d'un logement (14) de l'enveloppe, en cellules basse pression et haute pression (30-33), des ouvertures d'admission (34-36) sont associées aux cellules basse pression (30, 31) en vue d'obtenir une répartition uniforme de la température dans l'ensemble du compresseur, lesdites ouvertures étant agencées sur les parties frontales opposées des cellules basse pression (30, 31), de façon que l'agent réfrigérant en retour s'écoule axialement dans chaque cellule basse pression (30, 31) en des sens d'écoulement opposés. Les canaux d'amenée (38-40) débouchant dans les ouvertures d'admission (34-36) sont d'égale longueur et sont orientés symétriquement par rapport à l'axe du rotor. Les canaux d'amenée (38 ou 39, 40) débouchant dans les ouvertures d'admission (34 ou 35, 36) situées sur la même partie frontale, se ramifient à partir d'une chambre d'entrée (41, 42). Les chambres d'entrée (41, 42) sont montées coaxiales par rapport à l'axe du rotor et sont reliées entre elles par l'intermédiaire d'un arbre creux de rotor (20).

Claims (7)

  1. Compresseur multicellulaire à ailettes avec un rotor cylindrique (18) disposé dans un évidement de carter (14) qui repose solidaire en rotation sur un arbre de rotor (20) monté de façon à pouvoir tourner dans le carter (10), et pouvant être entraîné par un arbre d'entraînement (25) et dont les parois frontales passent avec un faible jeu sur les parois latérales de délimitation (15, 16) de l'évidement du carter (14) et avec des ailettes (28) guidées dans le rotor dans des fentes s'étendant radialement en passant à travers longitudinalement, ailettes qui subdivisent au moins une chambre de travail (21, 22), formée entre la paroi intérieure (17) de l'évidement de carter (14) et la surface de l'enveloppe du rotor (19), en des cellules basse et haute pression, les cellules basse pression (30, 31) se trouvant en liaison par des ouvertures d'admission (34 ou 35, 36) avec des canaux d'admission (38 ou 39, 40) conduisant l'agent frigorigène et les cellules haute pression (32, 33) se trouvant en liaison via des ouvertures de sortie (46, 47), pourvues de vannes de sortie, avec des canaux sous pression (48, 49), les ouvertures d'admission (34, 36) étant disposées sur les côtés frontaux se faisant vis-à-vis des cellules basse pression (30, 31) dans les deux parois latérales de délimitation (15, 16) de telle sorte que l'agent frigorigène s'écoule dans chaque cellule basse pression (30, 31) axialement avec des sens d'écoulement opposés et une chambre d'admission (41, 42) étant disposée coaxialement à l'arbre du rotor (20) sur le côté des parois de délimitation (15, 16) tourné à l'opposé du rotor (18), compresseur multicellulaire à ailettes caractérisé en ce que les canaux d'admission (38, 39, 40), qui débouchent dans des ouvertures d'admission (34 ou 35, 36) disposées dans les mêmes parois de délimitation (15, 16), ont à peu près la même longueur, de préférence s'étendent symétriquement par rapport à l'arbre du rotor (20), divergent à partir d'une chambre commune d'admission remplie d'agent frigorigène et en ce que l'arbre du rotor (20) a un alésage longitudinal (44) qui débouche dans la première chambre d'admission (42) et est relié à la deuxième chambre d'admission (41).
  2. Compresseur selon la revendication 1, caractérisé en ce que les canaux d'admission (38, 39, 41) partent à peu près radialement de chaque chambre d'admission (44, 42).
  3. Compresseur selon la revendication 1 ou 2, caractérisé en ce que l'extrémité libre de l'arbre du rotor (20) tournée à l'opposé de l'arbre d'entraînement (25) délimite la première chambre d'admission (42) pouvant être reliée à un circuit de retour (43) de l'agent frigorigène avec un sens d'écoulement axial, en ce que la deuxième chambre d'admission (41) entoure l'arbre du rotor (20) comme une chambre annulaire et en ce que l'alésage longitudinal (44) dans l'arbre du rotor (20) présente un trou borgne, qui débouche à une extrémité libre de l'arbre du rotor (20) et se trouve en liaison par au moins un alésage radial (45) dans l'arbre du rotor (20) avec la chambre annulaire (41).
  4. Compresseur selon la revendication 3, caractérisé en ce qu'à partir de la première chambre d'admission (42) en utilisant lors de la déviation de l'agent frigorigène la pression dynamique apparaissant dans les canaux d'admission (39, 40), on amène de faibles quantités d'agent frigorigène directement dans les espaces creux (56) délimités par le côté inférieur de l'ailette (58) et le fond de la fente (57) dans les fentes de guidage d'ailettes (27), qui sont lors de l'enfoncement de l'ailette (28) dans la fente de guidage (27) déviés dans les côtés frontaux du rotor et de là s'écoulent dans au moins une chambre de travail (21, 22).
  5. Compresseur selon la revendication 4, caractérisé en ce que dans la paroi de délimitation (16) de l'évidement de carter (14), se trouvant à proximité de la première chambre de d'admission (42), il y a des renfoncements (59, 60) en forme de découpe annulaire, qui se trouvent en liaison via des alésages (63, 64) passant à travers cette paroi de délimitation (16) et de préférence à peu près axiaux, avec la première chambre d'admission (42) et qui communiquent pendant le passage de l'ailette (28) à travers les cellules basse pression (30, 31) avec l'espace creux (56) délimité par le côté inférieur de l'ailette (58) et le fond de la fente (57) dans les fentes de guidage d'ailette (27).
  6. Compresseur selon la revendication 4 ou 5, caractérisé en ce que dans les deux parois de délimitation (15, 16) de l'évidement de carter (14), il y a des rainures en forme de découpe annulaire (65, 66) qui pendant le passage de l'ailette (28) à travers les cellules haute pression (32, 33) communiquent avec l'espace creux (56), délimité par le côté inférieur de l'ailette (58) et le fond de la fente (57) dans les fentes de guidage d'ailette (27).
  7. Compresseur selon la revendication 5 ou 6, caractérisé en ce que les renfoncements (59, 60) ou les rainures (65, 66) présentant une faible largeur radiale reposent par leur arête longitudinale intérieure (61 ou 62) à peu près sur la trajectoire de rotation décrite par le fond (57) des fentes de guidage d'ailette (27) et s'étendent respectivement sur au moins une zone partielle, vue dans le sens périphérique des cellules basse pression (30, 31) ou des cellules haute pression (32, 33).
EP89912400A 1988-12-03 1989-11-16 Compresseur multicellulaire a ailettes Expired - Lifetime EP0446221B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3840764 1988-12-03
DE3840764A DE3840764A1 (de) 1988-12-03 1988-12-03 Fluegelzellenverdichter

Publications (2)

Publication Number Publication Date
EP0446221A1 EP0446221A1 (fr) 1991-09-18
EP0446221B1 true EP0446221B1 (fr) 1993-07-14

Family

ID=6368388

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89912400A Expired - Lifetime EP0446221B1 (fr) 1988-12-03 1989-11-16 Compresseur multicellulaire a ailettes

Country Status (6)

Country Link
EP (1) EP0446221B1 (fr)
JP (1) JP2809780B2 (fr)
KR (1) KR0148559B1 (fr)
DE (2) DE3840764A1 (fr)
ES (1) ES2017397A6 (fr)
WO (1) WO1990006447A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105649983A (zh) * 2016-01-14 2016-06-08 陈勇翔 一种空气压缩泵

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3929745A1 (de) * 1989-09-07 1991-03-14 Bosch Gmbh Robert Fluegelzellenkompressor
IT1248932B (it) * 1990-06-01 1995-02-11 Enea Mattei Spa Compressore rotativo per gas refrigerante e procedimento relativo
DE4036251A1 (de) * 1990-11-14 1992-05-21 Bosch Gmbh Robert Fluegelzellenpumpe, insbesondere fluegelzellenkompressor
DE4118934C2 (de) * 1991-06-08 2001-04-05 Bosch Gmbh Robert Kompressor
DE69411351T2 (de) * 1993-10-27 1999-04-22 Mitsubishi Denki K.K., Tokio/Tokyo Umschaltbarer Rotationsverdichter
KR101011202B1 (ko) * 2002-09-26 2011-01-26 파나소닉 주식회사 베인 로터리형 공기펌프
DE102019208816A1 (de) * 2019-06-18 2020-12-24 Robert Bosch Gmbh Verfahren zum Steuern einer Getriebepumpe und Getriebepumpenanordnung
CN110552883B (zh) * 2019-08-12 2021-06-04 张英华 一种旋转活塞压缩机
DE102019219039A1 (de) * 2019-12-06 2021-06-10 Robert Bosch Gmbh Getriebepumpenanordnung, Verfahren zum Betreiben einer Getriebepumpe und Computerprogrammprodukt

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2223156C2 (de) * 1972-05-12 1985-02-14 Robert Bosch Gmbh, 7000 Stuttgart Flügelzellenverdichter
JPS58202389A (ja) * 1982-05-21 1983-11-25 Diesel Kiki Co Ltd ベ−ン型圧縮機
JPS618492A (ja) * 1984-06-25 1986-01-16 Mitsubishi Electric Corp 回転式圧縮機
JPS63186982A (ja) * 1987-01-28 1988-08-02 Diesel Kiki Co Ltd ベ−ン型圧縮機

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105649983A (zh) * 2016-01-14 2016-06-08 陈勇翔 一种空气压缩泵

Also Published As

Publication number Publication date
KR0148559B1 (ko) 1999-01-15
WO1990006447A1 (fr) 1990-06-14
JP2809780B2 (ja) 1998-10-15
JPH04501901A (ja) 1992-04-02
DE58904923D1 (en) 1993-08-19
DE3840764A1 (de) 1990-06-07
ES2017397A6 (es) 1991-01-16
EP0446221A1 (fr) 1991-09-18
KR910700410A (ko) 1991-03-15

Similar Documents

Publication Publication Date Title
DE2661104C2 (fr)
EP1242742B1 (fr) Pompe a vide a vis refroidie
EP0446221B1 (fr) Compresseur multicellulaire a ailettes
DE2223156C2 (de) Flügelzellenverdichter
DE102016121241B4 (de) Hydraulischer Antrieb, hydraulischer Motor und integrierte Pumpe mit dem hydraulischen Antrieb
DE3341637A1 (de) Stroemungsmaschine in spiralbauweise
DE1808826A1 (de) Drehlkolbenmaschine
EP1495227B1 (fr) Groupe motopompe hydraulique
DE4030295C2 (de) Pumpeneinheit mit Steuerventil
DE3826548C2 (de) Flügelzellenverdichter mit variabler Förderleistung
DE2835816A1 (de) Drehkolbenpumpe
DE2921311C2 (fr)
EP0116136A2 (fr) Compresseur rotatif
DE3242983A1 (de) Regelbare fluegelzellenpumpe
DE3027898A1 (de) Fluegelrad-fluidmotor
DE3627956A1 (de) Exzenterwelle einer rotationskolbenbrennkraftmaschine
DE2857494A1 (de) Druckoelschmierung fuer eine vakuumpumpe
CH667702A5 (de) Zahnradpumpe.
DE4035464A1 (de) Fluegelzellenverdichter
DE3322549A1 (de) Fluegelzellenpumpe mit veraenderlichem foerderhub fuer hydraulische betriebsmittel insbesondere von kraftfahrzeugen
DE3228345A1 (de) Steuervorrichtung fuer fluessiges oder gasfoermiges medium
DE2434782A1 (de) Drehkolbenmaschine
DE102016121238B4 (de) Hydraulischer Antrieb, hydraulischer Motor und Pumpe mit dem hydraulischen Antrieb
DE4019097A1 (de) Fluegelzellenpumpe
DE19654951C2 (de) Rotationskolben-Verbrennungsmotor mit Ölzuführung für Schmier- und Kühlzwecke

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19901217

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR IT

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ROBERT BOSCH GMBH

17Q First examination report despatched

Effective date: 19920610

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR IT

ET Fr: translation filed
REF Corresponds to:

Ref document number: 58904923

Country of ref document: DE

Date of ref document: 19930819

ITF It: translation for a ep patent filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20010126

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20011120

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020702

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030731

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051116