EP1225282A2 - Bauelement zur Wärmedämmung - Google Patents

Bauelement zur Wärmedämmung Download PDF

Info

Publication number
EP1225282A2
EP1225282A2 EP02000345A EP02000345A EP1225282A2 EP 1225282 A2 EP1225282 A2 EP 1225282A2 EP 02000345 A EP02000345 A EP 02000345A EP 02000345 A EP02000345 A EP 02000345A EP 1225282 A2 EP1225282 A2 EP 1225282A2
Authority
EP
European Patent Office
Prior art keywords
pressure
component
component according
concrete
components
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP02000345A
Other languages
English (en)
French (fr)
Other versions
EP1225282B1 (de
EP1225282A3 (de
Inventor
Harald. Brasch
Gerhard. Böckmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schoeck Bauteile GmbH
Original Assignee
Schock Entwicklungsgesellschaft Mbh
SCHOECK ENTWICKLUNGSGMBH
Schoeck Bauteile GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7671473&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1225282(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Schock Entwicklungsgesellschaft Mbh, SCHOECK ENTWICKLUNGSGMBH, Schoeck Bauteile GmbH filed Critical Schock Entwicklungsgesellschaft Mbh
Priority to EP05017447A priority Critical patent/EP1612339B1/de
Priority to PL351808A priority patent/PL208285B1/pl
Priority to CZ2002-281A priority patent/CZ304194B6/cs
Publication of EP1225282A2 publication Critical patent/EP1225282A2/de
Publication of EP1225282A3 publication Critical patent/EP1225282A3/de
Application granted granted Critical
Publication of EP1225282B1 publication Critical patent/EP1225282B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/003Balconies; Decks
    • E04B1/0038Anchoring devices specially adapted therefor with means for preventing cold bridging

Definitions

  • the present invention relates to a component for thermal insulation between two components to be concreted, in particular between a building and a protruding outer part, consisting of one to be installed in between Insulating body with at least integrated pressure elements that are built in State of the component essentially horizontal and transverse to the substantially horizontal longitudinal extent of the insulating body through this run and can be connected to both components.
  • Such components are, for example, between a balcony and the associated floor ceiling installed to a cold bridge in this area as far as possible to avoid reinforcement bars attached to both components, So on the balcony and on the floor ceiling, by crossing the insulating body are connected, for the necessary transmission of the occurring train, Ensure lateral and compressive forces.
  • these reinforcement elements exist in the joint area made of stainless steel, sufficient protection against corrosion offers and on the other hand also has good thermal insulation properties.
  • a disadvantage of the stainless steel reinforcement bars is the high ones Costs, especially if - as is the case with the printing elements - for Achieving a sufficient load-bearing capacity with relative reinforcement elements large cross sections must be used.
  • the present invention is based on the object a component for thermal insulation of the type mentioned is available to provide, whose pressure elements are characterized by good thermal insulation properties, good corrosion resistance and low cost.
  • the pressure elements are made of concrete in such a way that they are at least two transverse to the longitudinal extent of the insulating body through these pressure bars and between the pressure bars at least one insulating element in the form of an opposite the concrete components have a shielded cavity.
  • the lightweight construction is favored by the fact that the pressure elements on their Contact profiles for the introduction of pressure force to the end faces facing the concrete components or have pressure force discharge.
  • These contact profiles extend expediently parallel to the longitudinal extent of the insulating body and are plate-shaped with a vertical facing the concrete components Area at least the size of the area enclosed by the webs Vertical cross-sectional area corresponds. In other words, they should Contact profiles enable a large-area introduction or discharge of pressure and the compressive force on the smaller cross-sectional area pass on the pressure bars. So that the pressure bars of the pressure force better Hold up, the contact profiles connect the at least two pressure bars a profile body, so that the contact profiles give the pressure bars further stability can lend.
  • the pressure bars connected to each other via a cross strut crossing the cavity are the buckling of the not yet hardened after the extrusion process Prevents pressure element in the area of the slim pressure bars. So how the cross strut can be easily handled by the extrusion process according to the invention can be introduced into the printing elements, without much effort additional stability on the one hand and thermal insulation on the other Favorable constructive measures are taken, which in the usual Stainless steel thrust bearings hardly or only with disproportionately high effort it is possible.
  • the cavity face through the contact profiles the concrete components are shielded, i.e. to manufacture the pressure element in such a way that the cavity axis and thus the extrusion direction in the plane of the Insulating body horizontally in the direction of the longitudinal extent of the insulating body or extends perpendicularly to it in the vertical direction.
  • the Pressure elements protrude at least into one of the two concrete components and in this concrete component are anchored, in particular that the cavity on the side of the pressure element projecting into the concrete component approximately to Concrete component can extend and only through the associated contact profile is shielded from this concrete component. This increases it also the length of the pressure bars and thus the thin-walled pressure element area and thus the thermal insulation also improves.
  • the object stated at the outset can also be achieved by a further embodiment with the features of the preamble of claim 1 solve by using pressure elements made of concrete by casting a lost mold are made.
  • cast concrete pressure elements to use can be in almost any shape - compared to extrusion - bring even greater variety, so that the concrete pressure element can really be adapted to all requirements. Above all, these requirements are in a relatively large force application area and a relatively small cross-sectional area in the area within the insulating body.
  • the small cross-sectional area can be curved on the one hand especially concave type of the pressure element top and on the other hand also by waisting the pressure elements based on a horizontal cut to reach.
  • a key benefit of lost by casting using Mold made concrete pressure elements is that you have the concrete pressure elements can be built into the component together with the casting mold and so it also provides an all-round sliding layer for the concrete pressure element or built in, which ensures that the concrete pressure element according to the invention any Relative movements of the two adjacent concrete components without any problems - and "sliding" - can follow; this leads to the important advantage that such Relative movements are no longer associated with significant noise are, when using conventional printing elements due to static friction not between the pressure element and the adjacent concrete component were prevent.
  • the mold can be made of plastic, which ensures that the concrete pressure element always with a flat and smooth outer surface is in contact with the adjacent concrete component, regardless of whether it is in the mold filled concrete material. Even if this is so grainy or is fibrous, the outer surface formed by the casting mold remains flat and smooth.
  • front contact profiles in vertical longitudinal section be concave in particular so that the concrete thrust bearing too even after setting the adjacent concrete components despite the then taken slight inclination an optimal system to the adjacent Has concrete component by the concave curved area at the vertical Settling movement rolls on the concrete component and thus an articulated connection between the concrete pressure element and the adjacent concrete component Provides.
  • the production of the concrete pressure element by casting can be done, for example also take advantage of two horizontally adjacent pressure elements in one Mold and to connect to each other via a connection area, so that the double pressure element thus provided between can have a heat-insulating cavity. Overall leaves this design extrudes a reference to the aforementioned Design with two pressure bars and provided between the pressure bars Create cavity with all its advantages.
  • FIG. 2 shows an extract of a component 1 for thermal insulation, installed between a building A and a cantilevered outer part B. is and from an insulating body 2 and Reinforcement elements in the form of a pressure element 3.
  • the component is extended upwards and carries tension and shear bars there as known per se.
  • the pressure element 3 has two plate-shaped contact profiles 5, 6 which the end faces of the pressure element facing the two concrete components A and B. 3 are arranged and parallel to the longitudinal extent of the insulating body run.
  • the contact profiles 5, 6 are used for introducing or discharging the Pressure force, the pressure force transmission through the joint between the two Components is provided by two pressure bars 7, 8, accordingly run through the insulating body transversely to the longitudinal extent thereof.
  • the two pressure webs 7, 8 enclose between them a cavity 9 which acts as an insulating element and only needs to be filled with air.
  • the pressure element 3 in the concrete component B in the region of the contact profile 6 protrudes, the void volume or the length of the Increase pressure bars and thus the pressure element according to the invention further optimize the thermal insulation provided.
  • FIGS. 3 and 4 show a component 21 for thermal insulation, whose pressure element 23 differs from the pressure element 3 due to the shape of the extrusion cross section and differentiated by the installation orientation.
  • the pressure element 23 has two on the concrete components A, B facing end faces provided contact profiles 25, 26 and two themselves pressure webs 27, 28 extending between the two contact profiles.
  • the contact profiles 25, 26 not like a plate parallel to the longitudinal extent of the insulating body are arranged, but instead are arched with a based on the horizontal section approximately circular arc-shaped outer shape.
  • a cross strut 30 connecting the two pressure bars is provided, which the Crosses cavity 29 and divides it into two cavity halves 29a, 29b.
  • the pressure webs 27, 28 are provided with concave curved outer sides and the cavities 29a, 29b, in contrast, are convex. hereby the two webs have approximately a cup shape in horizontal section on that an optimal pressure force transmission with minimal cross-sectional areas and thus enables optimal thermal insulation.
  • the curved outer shape of the contact profiles 25, 26 has due to its convex
  • the effect is that the pressure element, like a joint, is possibly caused by temperature Relative movements between the two concrete components Rotation or by rolling in the horizontal plane can follow.
  • FIG. 5 An alternative design of the present invention is shown in FIG. 5: There is a component 31 for thermal insulation between a building A. and a balcony B in horizontal section at the level of pressure elements 33a, 33b. There is also an insulating body between building A and balcony B. 32 shown, the left along the between the two components Fugue extends.
  • the main difference of the pressure elements 33a, 33b compared to that The pressure element from FIG. 3 now consists of a pressure element in each case is replaced by two parallel printing elements, one corresponding smaller force application area in the form of contact profiles 35a, 35b, 36a, 36b need. This results in a double joint similar to a parallelogram linkage, that the displacement path between the contact profiles and the adjacent concrete components further reduced.
  • Both types of pressure element have in addition to the circular arc Contact profiles also have very similar pressure element cross-sectional shapes, namely, a continuous and seamless from the edges of the contact profiles Transitional goblet-like outer shape that tapers slowly towards the center of the joint and then on the way to the opposite contact profile again continually widened to get there in the edges of the opposite Transition contact profile.
  • This shape ensures optimal force transmission from the balcony plate B into the pressure element, an optimal pressure force transmission with reduced heat conduction through the joint and optimal Pressure force is diverted into building A.
  • the cross sections are designed so that they have the largest possible force transmission area and if possible slim compression force cross-sectional area with mutual continuous Transition a non-kink-resistant, stable pressure element with - due to the small cross-sectional area - nevertheless cheaper thermal insulation result, especially if concrete is used as the material for the pressure element becomes.
  • a lost casting mold 40 is shown in perspective in FIGS. 6 to 8 shown, which is used for the production of pressure elements made of concrete and but together with the concrete pressure elements in the invention (here Component (not shown) is used for thermal insulation.
  • Figures 9 to 15 show only the mold 40 and not the concrete pressure elements self; these roughly correspond in their appearance and arrangement the design of Figure 5, but with the lost mold is provided, together with the concrete pressure elements in the component Thermal insulation to be installed, so that is the representation of figure 5 does not transfer directly to the exemplary embodiment from FIGS. 6 to 15 bar.
  • the casting mold 40 has two to be filled with concrete and in the installed position cavities 41, 42 open at the bottom, which form the shape of the concrete pressure element pretend.
  • the concrete pressure elements receive one through the casting mold Structure related to both the horizontal section and related tapered towards the vertical section towards the center: using the example of the mold 40 enclosed cavity 41, this means that the concrete pressure element starting of the largest possible cross-sectional and surface area in the area of front curved contact profiles 43, 44 in the direction of the central region 45 is tapered between the two contact profiles; based on a horizontal section recognizable from FIG. 9 or on the in FIG This bottom view shown in FIG.
  • the mold 40 has a connecting region 46 between the two Cavities 41, 42 surrounding cup-shaped individual molds 40a, 40b.
  • this connection area there is a cavity enclosed by the mold 40 47, which is filled with air and serves as an insulating body.
  • a recess 48 Im neighboring to the connection area 46 between the two individual casting molds 40a, 40b arranged area is a recess 48 for receiving a transverse force rod provided which is in the space between the two Immersed pressure elements and is fixed there on the mold.
  • the casting mold has vertically extending webs 49, 50 on its outside, which are provided when an adjacent double pressure element is attached laterally with a correspondingly constructed casting mold Seal the space between the two molds by each the individual webs 50 in the space between the two double webs 49 immerse. This can prevent liquid concrete from getting into the gap flows between the two molds and their function is impaired.
  • the casting mold 40 also has on the edge of an end contact profile 43 on a T-shaped web in horizontal section, which is provided for into the adjacent concrete component - especially one in a precast plant protruding molded filigree plate and anchored with this form-fitting become. Because in contrast to previous pressure element designs, the form-fitting that was anchored in the adjacent concrete components rolling contact profile the disadvantage, no connection in the direction of pull To make available what is particularly relevant for transport; therefore the T-shaped web 51 serves as a tension band for the transmission of tensile forces between Casting mold or associated pressure elements and adjacent concrete component.
  • the Casting mold has hole-like recesses 52 on its upper side; these serve to promote the escape of air when casting the pressure elements; They also ensure a positive connection between the mold and concrete pressure element due to concrete material emerging from the openings 52 and thus serve as transport and loss prevention and prevent the falling out of the pressure elements from the mold when the mold is oriented so that the cavities 41, 42 are open at the bottom and the Pressure elements could fall out.
  • the mold has hook-like locking lugs 53 on its underside on, which serve the casting mold on a the component for thermal insulation to lock and fix on the underside of the surrounding rail.
  • the present invention offers the advantage of an optimized one Printing element that is easy due to the production by extrusion provided with cavities and thus can be manufactured in a lightweight construction. As a result you get a pressure element with improved thermal insulation properties, better load capacity and at the same time low manufacturing costs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Building Environments (AREA)
  • On-Site Construction Work That Accompanies The Preparation And Application Of Concrete (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Insulated Conductors (AREA)

Abstract

Die Erfindung betrifft ein Bauelement zur Wärmedämmung zwischen zwei zu betonierenden Bauteilen (A,B), bestehend aus einem dazwischen zu verlegenden Isolierkörper (22) mit zumindest integrierten Druckelementen (23), wobei diese Druckelemente aus Beton bestehen und durch Extrusion oder Gießen hergestellt sind. <IMAGE>

Description

Die vorliegende Erfindung betrifft ein Bauelement zur Wärmedämmung zwischen zwei zu betonierenden Bauteilen, insbesondere zwischen einem Gebäude und einem vorkragenden Außenteil, bestehend aus einem dazwischen zu verlegenden Isolierkörper mit zumindest integrierten Druckelementen, die im eingebauten Zustand des Bauelementes im wesentlichen horizontal und quer zur im Wesentlichen horizontalen Längserstreckung des Isolierkörpers durch diesen hindurch verlaufen und jeweils an beide Bauteile anschließbar sind.
Derartige Bauelemente werden beispielsweise zwischen einem Balkon und der zugehörigen Geschossdecke eingebaut, um eine Kältebrücke in diesem Bereich weitestgehend zu vermeiden, wobei Bewehrungsstäbe, die an beide Bauteile, also an den Balkon und an die Geschossdecke, unter Durchquerung des Isolierkörpers angeschlossen sind, für die nötige Übertragung der auftretenden Zug-, Quer- und Druckkräfte sorgen. Im Regelfall bestehen diese Bewehrungselemente im Fugenbereich aus Edelstahl, der ausreichenden Schutz vor Korrosion bietet und auf der anderen Seite auch gute Wärmedämmeigenschaften besitzt. Nachteilig an den Edelstahl-Bewehrungsstäben sind aber insbesondere die hohen Kosten, vor allem wenn - wie es bei den Druckelementen der Fall ist - zur Erzielung einer ausreichenden Tragfähigkeit Bewehrungselemente mit relativ großen Querschnitten verwendet werden müssen.
Im Stand der Technik sind zwar bereits Lösungsansätze dafür bekannt, wie man den Einsatz von Edelstahl-Druckelementen umgeht und statt dessen alternative Materialien verwendet: So schlägt beispielsweise die DE 34 26 538 vor, die Druckelemente aus Ortbeton herzustellen, wobei sich diese Betondruckelemente sowohl durch einen günstigen Preis als auch durch ausreichend günstige Korrosionsbeständigkeit auszeichnen. Nachteilig an diesen Betondruckelementen ist jedoch die vergleichsweise schlechte Wärmedämmeigenschaft von Beton, die ja gerade durch die Verwendung des Bauelements zur Wärmedämmung im Fugenbereich umgangen werden sollte.
Hiervon ausgehend liegt nun der vorliegenden Erfindung die Aufgabe zugrunde, ein Bauelement zur Wärmedämmung der eingangs genannten Art zur Verfügung zu stellen, dessen Druckelemente sich durch gute Wärmedämmeigenschaften, eine gute Korrosionsbeständigkeit und durch günstige Kosten auszeichnen.
Diese Aufgabe wird erfindungsgemäß dadurch gelöst, dass die Druckelemente aus Beton hergestellt sind derart, dass sie zumindest zwei quer zur Längserstreckung des Isolierkörpers durch diesen hindurch verlaufende Druckstege und zwischen den Druckstegen zumindest ein Isolierelement in Form eines gegenüber den Betonbauteilen abgeschirmten Hohlraumes aufweisen.
Hierdurch ergibt sich der Vorteil eines Druckelementes, das nicht nur kostengünstiger als Edelstahl-Druckelemente ist, sondern bei größerer Tragfähigkeit auch eine bessere Wärmedämmung aufweist. Wenn in besonders vorteilhafter Weise das Druckelement durch Extrusion hergestellt wird, lassen sich in einfacher Weise Hohlräume in das Beton-Druckelement einbringen, die erst für die gegenüber Edelstahl verbesserte Wärmedämmung sorgen. Mit anderen Worten ermöglicht das Extrusionsverfahren ein Druckelement in Leichtbauweise mit schlanken und dennoch tragfähigen Druckstegen und mit einem zwischen den Druckstegen eingeschlossenen Isolierelement, das in einfachster Weise aus Luft besteht und damit beste Dämmeigenschaften besitzt.
Die Leichtbauweise wird dadurch begünstigt, dass die Druckelemente an ihren den Betonbauteilen zugewandten Stirnseiten Kontaktprofile zur Druckkrafteinleitung bzw. Druckkraftausleitung aufweisen. Diese Kontaktprofile erstrecken sich zweckmäßigerweise parallel zur Längserstreckung des lsolierkörpers und sind plattenförmig ausgebildet mit einer den Betonbauteilen zugewandten vertikalen Fläche, die in ihrer Größe zumindest der von den Druckstegen umschlossenen Vertikalquerschnittsfläche entspricht. Mit anderen Worten sollen die Kontaktprofile eine großflächige Druckkrafteinleitung bzw. -ausleitung ermöglichen und hierbei die Druckkraft an die demgegenüber kleinere Querschnittsfläche der Druckstege weitergeben. Damit die Druckstege der Druckkraft besser Stand halten, verbinden die Kontaktprofile die zumindest zwei Druckstege zu einem Profilkörper, so dass die Kontaktprofile den Druckstegen weitere Stabilität verleihen können.
Darüber hinaus kann es herstellungsbedingt von Vorteil sein, wenn die Druckstege über eine den Hohlraum durchquerende Querstrebe miteinander verbunden sind, die das Einknicken des nach dem Extrusionsvorgang noch nicht ausgehärteten Druckelements im Bereich der schlanken Druckstege verhindert. So wie sich die Querstrebe problemlos durch das erfindungsgemäße Extrusionsverfahren in die Druckelemente einbringen lässt, können ohne größeren Aufwand zusätzliche die Stabilität einerseits und die Wärmedämmung andererseits begünstigende konstruktive Maßnahmen getroffen werden, was bei den üblichen Edelstahldrucklagern kaum bzw. mit nur unverhältnismäßig hohem Aufwand möglich wäre.
Was die Extrusionsrichtung bei dem erfindungsgemäßen Druckelement betrifft, so empfiehlt es sich, dass der Hohlraum durch die Kontaktprofile gegenüber dem Betonbauteilen abgeschirmt ist, also das Druckelement so herzustellen, dass sich die Hohlraumachse und damit die Extrusionsrichtung in der Ebene des Isolierkörpers horizontal in Richtung der Längserstreckung des Isolierkörpers oder senkrecht hierzu in Vertikalrichtung erstreckt.
Zur Vergrößerung des Hohlraums empfiehlt es sich darüber hinaus, dass die Druckelemente zumindest in eines der beiden Betonbauteile vorstehen und in diesem Betonbauteil verankert sind, insbesondere dass sich der Hohlraum auf der in das Betonbauteil vorstehenden Seite des Druckelementes etwa bis zum Betonbauteil erstrecken kann und nur noch durch das zugehörige Kontaktprofil gegenüber diesem Betonbauteil abgeschirmt ist. Hierdurch vergrößert sich darüber hinaus die Länge der Druckstege und damit des dünnwandigen Druckelementbereichs und somit verbessert sich auch die Wärmedämmung.
Die eingangs gestellte Aufgabe lässt sich erfindungsgemäß noch durch eine weitere Ausführungsform mit den Merkmalen des Oberbegriffs von Anspruch 1 dadurch lösen, dass die Druckelemente aus Beton durch Gießen unter Verwendung einer verlorenen Gießform hergestellt sind. Neben dem vorstehend erwähnten Extrusionsverfahren empfiehlt es sich somit, gegossene Betondruckelemente zu verwenden. Diese lassen sich in nahezu beliebige Formen mit - gegenüber Extrusion - noch vergrößerter Variantenvielfalt bringen, so dass das Betondruckelement wirklich an alle Anforderungen angepasst werden kann. Diese Anforderungen liegen vor allem in einer relativ großen Krafteinleitungsfläche und einer relativ kleine Querschnittsfläche im Bereich innerhalb des Isolierkörpers. Die kleine Querschnittsfläche lässt sich zum einen durch eine Wölbung insbesondere konkaver Art der Druckelementoberseite und andererseits aber auch durch eine Taillierung der Druckelemente bezogen auf einen Horizontalschnitt erreichen.
Ein wesentlicher Vorteil der durch Gießen unter Verwendung einer verlorenen Gießform hergestellten Betondruckelemente liegt darin, dass man die Betondruckelemente zusammen mit der Gießform in das Bauteil einbauen kann und so gleich eine allseitige Gleitschicht für das Betondruckelement mitliefert bzw. miteinbaut, die dafür sorgt, dass das erfindungsgemäße Betondruckelement etwaigen Relativbewegungen der beiden angrenzenden Betonbauteile problemlos - und "gleitend" - folgen kann; dies führt zu dem wichtigen Vorteil, dass solche Relativbewegungen nicht mehr mit erheblichen Geräuschentwicklungen verbunden sind, die bei Verwendung bisher üblicher Druckelemente durch die Haftreibung zwischen dem Druckelement und dem angrenzenden Betonbauteil nicht zu verhindern waren.
So kann beispielsweise die Gießform aus Kunststoff bestehen, der dafür sorgt, dass das Betondruckelement immer mit einer ebenen und glatten Außenfläche am angrenzenden Betonbauteil anliegt, unabhängig vom jeweils in die Gießform eingefüllten Betonmaterial. Selbst wenn dieses also noch so grobkörnig oder faserig ist, so bleibt die von der Gießform gebildete Außenfläche dennoch eben und glatt.
Die Möglichkeit, sowohl die Betondruckelemente als auch die Gießform selbst in ihrer Form zu optimieren, lässt sich beispielsweise dazu verwenden, dass die verlorene Gießform im unteren Fußbereich der Kontaktprofile eine größere Dicke aufweist; dieser Fußbereich stellt den Abschnitt dar, in dem die Kantenpressung am größten ist, so dass die größere Dicke der Gießform in diesem Bereich für eine "elastische Beschichtung" und damit für die Aufrechterhaltung der Gleitschicht sorgt.
Darüber hinaus können die stirnseitigen Kontaktprofile im vertikalen Längsschnitt insbesondere konkav gewölbt sein, damit das Betondrucklager auch noch nach dem Setzen der angrenzenden Betonbauteile trotz der dann eingenommenen leichten Schrägstellung eine optimale Anlage an das angrenzende Betonbauteil aufweist, indem der konkav gekrümmte Bereich sich bei der vertikalen Setzungsbewegung am Betonbauteil abwälzt und somit eine Gelenkverbindung zwischen Betondruckelement und angrenzendem Betonbauteil zur Verfügung stellt.
Die Herstellung des Betondruckelements durch Gießen lässt sich beispielsweise auch dazu ausnutzen, zwei horizontal benachbarte Druckelemente in einer gemeinsamen Gießform und über einen Verbindungsbereich miteinander zu verbinden, so dass das dadurch zur Verfügung gestellte Doppel-Druckelement zwischen sich einen wärmedämmenden Hohlraum aufweisen kann. Insgesamt lässt sich durch diese Bauform eine Anlehnung an die vorstehend erwähnte extrudierte Bauform mit zwei Druckstegen und zwischen den Druckstegen vorgesehenem Hohlraum mit all deren Vorteilen schaffen.
Weitere Merkmale und Vorteile der vorliegenden Erfindung ergeben sich aus der nachfolgenden Beschreibung von Ausführungsbeispielen anhand der Zeichnung; hierbei zeigen
Figur 1
ein erfindungsgemäßes Druckelement in Draufsicht;
Figur 2
das Druckelement eingebaut in ein Bauelement zur Wärmedämmung in einem Vertikalschnitt;
Figur 3
eine alternative Ausführungsform eines Bauelements zur Wärmedämmung in einem Horizontalschnitt;
Figur 4
das Bauelement aus Figur 3 entlang der Schnittebene IV-IV aus Figur 3;
Figur 5
eine alternative Ausführungsform eines Bauelementes zur Wärmedämmung mit erfindungsgemäßem Druckelement in geschnittener Draufsicht;
Figuren 6 - 8
eine Gießform für ein erfindungsgemäßes Doppeldruckelement in verschiedenen perspektivischen Ansichten;
Figur 9
eine Draufsicht auf die Gießform aus den Figuren 6-8;
Figur 10
eine Seitenansicht der Gießform;
Figur 11
eine Darstellung entlang der Schnittebene A-A aus Figur 9;
Figur 12
eine Schnittdarstellung entlang der Schnittebene B-B aus Figur 9;
Figur 13
eine Schnittdarstellung entlang der ebene C-C aus Figur 10;
Figur 14
eine Schnittdarstellung entlang der Ebene D-D aus Figur 10; und
Figur 15
eine Ansicht der Gießform von unten.
In Figur 2 ist ein Bauelement 1 zur Wärmedämmung auszugsweise dargestellt, das zwischen einem Gebäude A und einem vorkragenden Außenteil B eingebaut ist und aus einem zwischen den beiden Bauteilen verlegten Isolierkörper 2 und Bewehrungselementen in Form eines Druckelementes 3 besteht. Im allgemeinen ist das Bauelement nach oben verlängert und trägt dort Zugstäbe und Querkraftstäbe wie an sich bekannt.
Das Druckelement 3 weist zwei plattenförmige Kontaktprofile 5, 6 auf, die an den den beiden Betonbauteilen A und B zugewandten Stirnseiten des Druckelements 3 angeordnet sind und parallel zu der Längserstreckung des Isolierkörpers verlaufen. Die Kontaktprofile 5, 6 dienen zur Ein- bzw. Ausleitung der Druckkraft, wobei die Druckkraftübertragung durch die Fuge zwischen den beiden Bauteilen durch zwei Druckstege 7, 8 zur Verfügung gestellt wird, die demgemäss quer zur Längserstreckung des Isolierkörpers durch diesen hindurchverlaufen.
Die beiden Druckstege 7, 8 schließen zwischen sich einen Hohlraum 9 ein, der als Isolierelement fungiert und hierzu lediglich mit Luft gefüllt sein muss.
Dadurch dass das Druckelement 3 in das Betonbauteil B im Bereich des Kontaktprofils 6 vorsteht, lässt sich das Hohlraumvolumen bzw. die Länge der Druckstege vergrößern und damit die durch das erfindungsgemäße Druckelement zur Verfügung gestellte Wärmedämmung weiter optimieren.
In den Figuren 3 und 4 ist ein Bauelement 21 zur Wärmedämmung dargestellt, dessen Druckelement 23 sich vom Druckelement 3 durch die Form des Extrusionsquerschnitts und durch die Einbauorientierung unterscheidet. Wie auch das Druckelement 3 weist das Druckelement 23 zwei an den den Betonbauteilen A, B zugewandten Stirnseiten vorgesehene Kontaktprofile 25, 26 auf und zwei sich zwischen den beiden Kontaktprofilen erstreckende Druckstege 27, 28.
Die wesentlichen Unterschiede liegen demgegenüber darin, dass die Kontaktprofile 25, 26 nicht plattenähnlich parallel zur Längserstreckung des Isolierkörpers angeordnet sind, sondern statt dessen gewölbt ausgebildet sind mit einer auf den Horizontalschnitt bezogenen etwa kreisbogenförmigen Außenform. Um das Ausknicken der Druckstege im Bereich des Hohlraums 29 zu verhindern, ist eine die beiden Druckstege verbindende Querstrebe 30 vorgesehen, die den Hohlraum 29 durchquert und in zwei Hohlraumhälften 29a, 29b teilt. Darüber hinaus sind die Druckstege 27, 28 mit konkav gekrümmten Außenseiten versehen und die Hohlräume 29a, 29b sind im Gegensatz dazu konvex gewölbt. Hierdurch weisen die beiden Druckstege im Horizontalschnitt ungefähr eine Kelchform auf, die eine optimale Druckkraftübertragung bei minimalen Querschnittsflächen und somit optimaler Wärmedämmung ermöglicht.
Die gewölbte Außenform der Kontaktprofile 25, 26 hat aufgrund ihres konvexen Verlaufs den Effekt, dass das Druckelement wie ein Gelenk etwaigen temperaturbedingten Relativbewegungen zwischen den beiden Betonbauteilen durch Drehung bzw. durch Abwälzen in der horizontalen Ebene folgen kann.
Eine alternative Bauform der vorliegenden Erfindung ist in Figur 5 dargestellt: Dort ist ein Bauelement 31 zur Wärmedämmung zwischen einem Gebäude A und einem Balkon B im Horizontalschnitt auf der Höhe von Druckelementen 33a, 33b gezeigt. Zwischen Gebäude A und Balkon B ist außerdem ein Isolierkörper 32 dargestellt, der sich entlang der zwischen den beiden Bauteilen belassenen Fuge erstreckt.
Der wesentliche Unterschied der Druckelemente 33a, 33b gegenüber dem Druckelement aus Figur 3 besteht nun darin, dass jeweils ein Druckelement durch zwei parallelgeschaltete Druckelemente ersetzt wird, die eine entsprechend kleinere Krafteinleitungsfläche in Form von Kontaktprofilen 35a, 35b, 36a, 36b benötigen. Hierdurch ergibt sich ein Doppelgelenk ähnlich einem Parallelogrammgestänge, das den Verschiebeweg zwischen dem Kontaktprofilen und den angrenzenden Betonbauteilen noch einmal weiter reduziert.
Beide Druckelementbauformen weisen neben der kreisbogenförmig ausgebildeten Kontaktprofile auch sehr ähnliche Druckelementquerschnittsformen auf, nämlich eine kontinuierlich und absatzlos von den Rändern der Kontaktprofile übergehende kelchartige Außenform, die sich zur Fugenmitte langsam verjüngt und anschließend auf dem Weg zum gegenüberliegenden Kontaktprofil wieder kontinuierlich verbreitert, um dort absatzlos in die Ränder des gegenüberliegenden Kontaktprofils überzugehen. Diese Form gewährleistet eine optimale Krafteinleitung von der Balkonplatte B in das Druckelement, eine optimale Druckkraftübertragung bei reduzierter Wärmeleitung durch die Fuge und eine optimale Druckkraftausleitung in das Gebäude A. Die Querschnitte sind hierbei so gestaltet, dass sie bei möglichst großer Krafteinleitungsfläche und möglichst schlanker Druckkraftübertragungsquerschnittsfläche bei gegenseitigem kontinuierlichem Übergang ein dennoch knickfestes, stabiles Druckelement mit - aufgrund der geringen Querschnittsfläche - dennoch günstiger Wärmedämmung ergeben, insbesondere wenn als Material für das Druckelement Beton verwendet wird.
In den Figuren 6 bis 8 ist eine verlorene Gießform 40 in perspektivischer Darstellung gezeigt, die zur Herstellung von Druckelementen aus Beton dient und aber zusammen mit den Betondruckelementen in das erfindungsgemäße (hier nicht näher dargestellte) Bauelement zur Wärmedämmung eingesetzt wird.
Auch die Figuren 9 bis 15 zeigen nur die Gießform 40 und nicht die Betondruckelemente selbst; diese entsprechen in ihrem Aussehen und ihrer Anordnung ungefähr der Bauform aus Figur 5, wobei die verlorene Gießform allerdings dazu vorgesehen ist, zusammen mit den Betondruckelementen in das Bauelement zur Wärmedämmung eingebaut zu werden, insofern ist also die Darstellung aus Figur 5 nicht direkt auf das Ausführungsbeispiel aus den Figuren 6 bis 15 übertrag bar.
Die Gießform 40 weist zwei mit Beton zu verfüllende und in Einbaulage nach unten offene Hohlräume 41, 42 auf, die die Form des Beton-Druckelementes vorgeben. Obwohl die beiden Betondruckelemente durch eine Gießform miteinander verbunden sind, weisen sie selbst keine direkte Verbindung auf, das heißt der Beton beschränkt sich tatsächlich auf die Hohlräume 41, 42 ohne Verbindungsstege etc. Die Betondruckelemente erhalten durch die Gießform einen Aufbau, der sich sowohl bezogen auf den Horizontalschnitt als auch bezogen auf den Vertikalschnitt zur Mitte hin verjüngt: Am Beispiel des von der Gießform 40 umschlossenen Hohlraums 41 heißt dies, dass das Betondruckelement ausgehend von einer möglichst großen Querschnitts- und Oberfläche im Bereich der stirnseitigen gewölbten Kontaktprofile 43, 44 in Richtung auf den mittleren Bereich 45 zwischen den beiden Kontaktprofilen sich verjüngend ausgebildet ist; bezogen auf einen aus Figur 9 erkennbaren Horizontalschnitt bzw. auf die in Figur 13 dargestellte Unteransicht bedeutet dies eine im mittleren Bereich 45 taillierte Form, während es im Bezug auf den aus Figur 12 ersichtlichen Vertikalschnitt eine im mittleren Bereich 45 reduzierte Höhe bedeutet. Die Übergänge von der großen Oberfläche der Kontaktprofile 43, 44 zu den reduzierten Querschnitten im mittleren Bereich 45 erfolgen fließend.
Die Gießform 40 weist einen Verbindungsbereich 46 zwischen den beiden die Hohlräume 41, 42 umgebenden becherförmigen Einzelgießformen 40a, 40b auf. In diesem Verbindungsbereich ist ein von der Gießform 40 umschlossener Hohlraum 47 belassen, der mit Luft gefüllt ist und als Isolierkörper dient. Im benachbart zum Verbindungsbereich 46 zwischen den beiden Einzelgießformen 40a, 40b angeordneten Bereich ist eine Aussparung 48 zur Aufnahme eines Querkraftstabes vorgesehen, welcher in den Zwischenraum zwischen die beiden Druckelemente eintaucht und dort an der Gießform festgelegt ist.
Die Gießform weist an ihrer Außenseite vertikal verlaufende Stege 49, 50 auf, die dazu vorgesehen sind, bei seitlichem Anfügen eines benachbarten Doppeldruckelements mit entsprechend aufgebauter Gießform dadurch den gegenseitigen Zwischenraum zwischen den beiden Gießformen abzudichten, indem jeweils die einzelnen Stege 50 in den Zwischenraum zwischen die beiden Doppelstege 49 eintauchen. So lässt sich verhindern, dass flüssiger Beton in den Zwischenraum zwischen die beiden Gießformen fließt und deren Funktion beeinträchtigt.
Die Gießform 40 weist darüber hinaus am Rand eines stirnseitigen Kontaktprofils 43 einen im Horizontalschnitt T-förmigen Steg auf, der dazu vorgesehen ist, in das angrenzende Betonbauteil - insbesondere in eine in einem Fertigteilwerk angeformte Filigranplatte vorzustehen und mit dieser formschlüssig verankert zu werden. Denn im Gegensatz zu bisherigen Druckelementbauformen, die formschlüssig in den angrenzenden Betonbauteilen verankert waren, besitzt das sich abwälzende Kontaktprofil den Nachteil, keine Verbindung in Zugrichtung zur Verfügung zu stellen, was insbesondere beim Transport relevant ist; deshalb dient der T-förmige Steg 51 als Zugband zur Übertragung von Zugkräften zwischen Gießform bzw. zugeordneten Druckelementen und angrenzendem Betonbauteil.
Schließlich fällt bei Betrachtung der Figuren 6, 7 und 13 noch auf, dass die Gießform an ihrer Oberseite lochartige Aussparungen 52 besitzt; diese dienen dazu, beim Gießen der Druckelemente das Entweichen von Luft zu begünstigen; außerdem gewährleisten sie einen formschlüssigen Verbund zwischen Gießform und Betondruckelement aufgrund von aus den Öffnungen 52 austretendem Betonmaterial und dienen somit als Transport- und Verliersicherung und verhindern das Herausfallen der Druckelemente aus der Gießform, wenn die Gießform so orientiert ist, dass die Hohlräume 41, 42 nach unten offen sind und die Druckelemente herausfallen könnten.
Schließlich weist die Gießform an ihrer Unterseite hakenartige Rastnasen 53 auf, die dazu dienen, die Gießform an einer das Bauelement zur Wärmedämmung auf dessen Unterseite umgebenden Schiene zu verrasten und festzulegen.
Es sei noch erwähnt, dass die Druckelemente im Bereich der Kontaktprofile 43, 44 mit ihrem unteren Fußbereich 43a, 44a weiter in das zugehörige Bauteil (A, B) vorstehen als mit ihrem oberen Kopfbereich 43b, 44b. Darüber hinaus ist die als Gleitschicht für die Kontaktprofile fungierende Gießform 40 im unteren Fußbereich 43a, 44a mit einer größeren Dicke versehen, da in diesem Bereich die Belastungen infolge Kantenpressung am höchsten sind.
Zusammenfassend bietet die vorliegende Erfindung den Vorteil eines optimierten Druckelementes, das sich aufgrund der Herstellung durch Extrusion einfach mit Hohlräumen versehen und somit in Leichtbauweise herstellen lässt. Als Ergebnis erhält man ein Druckelement mit verbesserten Wärmedämmeigenschaften, besserer Tragfähigkeit und gleichzeitig günstigen Herstellungskosten.

Claims (18)

  1. Bauelement zur Wärmedämmung zwischen zwei Bauteilen, insbesondere zwischen einem Gebäude (A) und einem vorkragenden Außenteil (B), bestehend aus einem dazwischen zu verlegenden Isolierkörper (2, 22) mit zumindest integrierten Druckelementen (3, 23), die im eingebauten Zustand des Bauelementes im wesentlichen horizontal und quer zur im wesentlichen horizontalen Längserstreckung des Isolierkörpers durch diesen hindurchverlaufen und jeweils an beide Bauteile anschließbar sind,
    dadurch gekennzeichnet, dass die Druckelemente (3, 23) aus Beton hergestellt sind derart, dass sie zumindest zwei quer zur Längserstreckung des Isolierkörpers (2, 22) durch diesen hindurchverlaufende Druckstege (7, 8, 27, 28) und zwischen den Druckstegen zumindest ein Isolierelement (9, 29) in Form eines gegenüber den Bauteilen (A, B) abgeschirmten Hohlraumes aufweisen.
  2. Bauelement nach Anspruch 1,
    dadurch gekennzeichnet, dass die Beton-Druckelemente (3, 23) durch Extrusion hergestellt sind.
  3. Bauelement zur Wärmedämmung zwischen zwei Bauteilen, insbesondere zwischen einem Gebäude (A) und einem vorkragendem Außenteil (B), bestehend aus einem dazwischen zu verlegenden Isolierkörper (32) mit zumindest integrierten Druckelementen (33a, 33b), die im eingebauten Zustand des Bauelementes im wesentlichen horizontal und quer zur im wesentlichen horizontalen Längserstreckung des Isolierkörpers durch diesen hindurchverlaufen und jeweils an beide Bauteile anschließbar sind,
    dadurch gekennzeichnet, dass die Druckelemente (33a, 33b) aus Beton durch Gießen unter Verwendung einer verlorenen Gießform (40) hergestellt sind.
  4. Bauelement nach Anspruch 3,
    dadurch gekennzeichnet, dass die Beton-Druckelemente (33a, 33b) zusammen mit der Gießform (40) in das Bauteil eingebaut sind.
  5. Bauelement nach zumindest einem der Ansprüche 3 oder 4,
    dadurch gekennzeichnet, dass die Gießform (40) aus Kunststoff besteht.
  6. Bauelement nach zumindest einem der vorstehenden Ansprüche,
    dadurch gekennzeichnet, dass die Druckelemente (3, 23, 33a, 33b) an ihren den Bauteilen (A, B) zugewandten Stirnseiten Kontaktprofile (5, 6, 25, 26, 43, 44) zur Druckkrafteinleitung und/oder -ausleitung aufweisen.
  7. Bauelement nach Anspruch 6,
    dadurch gekennzeichnet, dass sich die Kontaktprofile (5, 6) parallel zur Längserstreckung des Isolierkörpers (2, 22) erstrecken und plattenförmig ausgebildet sind.
  8. Bauelement nach Anspruch 6,
    dadurch gekennzeichnet, dass die Kontaktprofile (25, 26, 43, 44) im Horizontalschnitt kreisbogenförmig gewölbt ausgebildet sind und mit ihrem gewölbten Bereich in die Bauteile (A, B) vorstehen.
  9. Bauelement nach einem der vorstehenden Ansprüche 6 bis 8,
    dadurch gekennzeichnet, dass die den Bauteilen (A, B) zugewandte vertikale Fläche der Kontaktprofile (5, 6, 25, 26) in ihrer Größe zumindest der von den Druckstegen (7, 8, 27, 28) umschlossenen Vertikalquerschnittsfläche entspricht.
  10. Bauelement nach zumindest Anspruch 1 und 6,
    dadurch gekennzeichnet, dass die Kontaktprofile (5, 6, 25, 26) die zumindest zwei Druckstege (7, 8, 27, 28) zu einem Profilkörper verbinden.
  11. Bauelement nach zumindest Anspruch 1 und 6,
    dadurch gekennzeichnet, dass der Hohlraum (9, 29) durch die Kontaktprofile (5, 6, 25, 26) gegenüber den Bauteilen (A, B) abgeschirmt ist.
  12. Bauelement nach zumindest Anspruch 1,
    dadurch gekennzeichnet, dass die Druckstege (27, 28) über eine den Hohlraum (29) durchquerende Querstrebe (30) miteinander verbunden sind.
  13. Bauelement nach zumindest Anspruch 3 und Anspruch 6,
    dadurch gekennzeichnet, dass die verlorene Gießform (40) im unteren Fußbereich (43a, 44a) der Kontaktprofile (43, 44) eine größere Dicke aufweist.
  14. Bauelement zumindest nach Anspruch 3 und Anspruch 6,
    dadurch gekennzeichnet, dass die stirnseitigen Kontaktprofile (43, 44) im vertikalen Längsschnitt insbesondere konkav gewölbt sind.
  15. Bauelement nach zumindest Anspruch 3,
    dadurch gekennzeichnet, dass zwei horizontal benachbarte Druckelemente über einen Verbindungsbereich (46) miteinander verbunden sind.
  16. Bauelement nach zumindest einem der vorstehenden Ansprüche,
    dadurch gekennzeichnet, dass die Druckelemente (3, 23, 43, 44) zumindest in eines der Bauteile (A, B) vorstehen und in diesem verankert sind.
  17. Bauelement nach zumindest Anspruch 1 und 6,
    dadurch gekennzeichnet, dass sich der Hohlraum (9, 9a, 9b) auf der in das Bauteil (B) vorstehenden Seite des Druckelementes (3) bis etwa zum Bauteil (B) erstreckt und ihm gegenüber durch das zugehörige Kontaktprofil (6) abgeschirmt ist.
  18. Bauelement nach zumindest einem der vorstehenden Ansprüche,
    dadurch gekennzeichnet, dass die Druckelemente (3, 23, 43, 44) aus hochfestem Beton mit insbesondere Faserarmierung hergestellt sind.
EP02000345A 2001-01-23 2002-01-04 Bauelement zur Wärmedämmung Expired - Lifetime EP1225282B1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP05017447A EP1612339B1 (de) 2001-01-23 2002-01-04 Bauelement zur Wärmedämmung
PL351808A PL208285B1 (pl) 2001-01-23 2002-01-22 Element konstrukcyjny do izolacji cieplnej
CZ2002-281A CZ304194B6 (cs) 2001-01-23 2002-01-23 Stavební dílec pro tepelnou izolaci mezi dvěma stavebními částmi

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10102931 2001-01-23
DE10102931A DE10102931A1 (de) 2001-01-23 2001-01-23 Bauelement zur Wärmedämmung

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP05017447A Division EP1612339B1 (de) 2001-01-23 2002-01-04 Bauelement zur Wärmedämmung

Publications (3)

Publication Number Publication Date
EP1225282A2 true EP1225282A2 (de) 2002-07-24
EP1225282A3 EP1225282A3 (de) 2003-06-11
EP1225282B1 EP1225282B1 (de) 2006-07-12

Family

ID=7671473

Family Applications (2)

Application Number Title Priority Date Filing Date
EP05017447A Expired - Lifetime EP1612339B1 (de) 2001-01-23 2002-01-04 Bauelement zur Wärmedämmung
EP02000345A Expired - Lifetime EP1225282B1 (de) 2001-01-23 2002-01-04 Bauelement zur Wärmedämmung

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP05017447A Expired - Lifetime EP1612339B1 (de) 2001-01-23 2002-01-04 Bauelement zur Wärmedämmung

Country Status (5)

Country Link
EP (2) EP1612339B1 (de)
AT (2) ATE333011T1 (de)
DE (3) DE10102931A1 (de)
DK (1) DK1225282T3 (de)
ES (1) ES2267870T3 (de)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005106144A1 (de) * 2004-04-28 2005-11-10 Max Frank Gmbh & Co. Kg Kragplattenanschlusselement
DE102007014922A1 (de) 2007-03-22 2008-09-25 Bert Kolpatzik Druckelement eines Bauelementes zur Wärmedämmung
WO2008113347A2 (de) * 2007-03-22 2008-09-25 Bert Kolpatzik Bauelement zur wärmedämmung
EP2138641A2 (de) 2008-06-24 2009-12-30 SCHÖCK BAUTEILE GmbH Bauelement zur Wärmedämmung und Dämmmaterial für Bauanwendungen
EP2063033A3 (de) * 2007-11-22 2010-02-10 BS Ingenieure AG Anschlusselement, Einsatzteil sowie Kartusche
EP2354343A1 (de) 2010-02-10 2011-08-10 Bossard + Staerkle AG Kragplattenanschlusselement / Druckelemente
CH702671A1 (de) * 2010-02-10 2011-08-15 Bosshard & Staerkle Ag Kragplattenanschlusselement.
WO2012071596A1 (de) * 2010-11-30 2012-06-07 Avi Alpenländische Veredelungs-Industrie Einrichtung zum anschliessen von stahlbetonplatten an eine wand- oder deckenkonstruktion aus stahlbeton
WO2013021070A1 (de) 2011-08-11 2013-02-14 Schöck Bauteile GmbH Bauelement zur wärmedämmung
DE102011109962A1 (de) 2011-08-11 2013-02-14 Schöck Bauteile GmbH Bauelement zur Wärmedämmung
DE102011109958A1 (de) 2011-08-11 2013-02-14 Schöck Bauteile GmbH Bauelement zur Wärmedämmung
EP2610410A2 (de) 2011-12-30 2013-07-03 SCHÖCK BAUTEILE GmbH Bauelement zur Wärmedämmung
EP2679737A2 (de) 2012-06-29 2014-01-01 SCHÖCK BAUTEILE GmbH Bauelement zur Wärmedämmung
EP2937481A1 (de) * 2014-04-24 2015-10-28 HALFEN GmbH Thermisch isolierendes Bauelement
EP3225759A1 (de) * 2016-04-01 2017-10-04 SCHÖCK BAUTEILE GmbH Anschlussbauteil zur wärmeentkopplung von vertikal verbundenen gebäudeteilen
CN108691366A (zh) * 2017-04-05 2018-10-23 哈尔芬有限公司 起热隔离作用的结构元件
EP3444409A1 (de) 2017-08-17 2019-02-20 SCHÖCK BAUTEILE GmbH Bauelement zur wärmedämmung

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011109959A1 (de) 2011-08-11 2013-02-14 Schöck Bauteile GmbH Bauelement zur Wärmedämmung
DE102012103776A1 (de) 2012-04-27 2013-10-31 Rainer Eger Drucklager, Bauelement und Verfahren zur Herstellung des Bauelements
DE202012101586U1 (de) 2012-04-27 2013-07-30 Rainer Eger Drucklager und Bauelement

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3116381A1 (de) * 1981-04-24 1982-11-11 Eberhard 7570 Baden-Baden Schöck Waermedaemmelement fuer gebaeude mit vorkragenden wandteilen
DE3801121A1 (de) * 1987-02-19 1988-09-01 Egco Ag Zug- oder druckstab zur verbindung zweier betonteile
EP0831183A2 (de) * 1996-09-20 1998-03-25 SCHÖCK BAUTEILE GmbH Bauelement zur Wärmedämmung
DE19711813A1 (de) * 1997-03-21 1998-10-01 Fraunhofer Ges Forschung Thermisch isolierendes Bauelement

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3309254A1 (de) * 1983-03-15 1984-10-04 Manfred Dierichs Druckelement in einem waermedaemmenden bauteil fuer vorkragende gebaeudeteile
DE19627342B4 (de) * 1996-06-29 2006-06-22 Schöck Bauteile GmbH Bauelement zur Wärmedämmung

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3116381A1 (de) * 1981-04-24 1982-11-11 Eberhard 7570 Baden-Baden Schöck Waermedaemmelement fuer gebaeude mit vorkragenden wandteilen
DE3801121A1 (de) * 1987-02-19 1988-09-01 Egco Ag Zug- oder druckstab zur verbindung zweier betonteile
EP0831183A2 (de) * 1996-09-20 1998-03-25 SCHÖCK BAUTEILE GmbH Bauelement zur Wärmedämmung
DE19711813A1 (de) * 1997-03-21 1998-10-01 Fraunhofer Ges Forschung Thermisch isolierendes Bauelement

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005106144A1 (de) * 2004-04-28 2005-11-10 Max Frank Gmbh & Co. Kg Kragplattenanschlusselement
JP2007534866A (ja) * 2004-04-28 2007-11-29 マックス フランク ジーエムビーエイチ アンド シーオー.ケージー 片持板接合部材
AU2005238187B2 (en) * 2004-04-28 2008-01-10 Max Frank Gmbh & Co. Kg Cantilever plate connection arrangement
US8092113B2 (en) 2004-04-28 2012-01-10 Max Frank Gmbh & Co. Kg Cantilever plate connection arrangement
WO2008113347A3 (de) * 2007-03-22 2009-06-04 Bert Kolpatzik Bauelement zur wärmedämmung
DE102007014923A1 (de) 2007-03-22 2008-09-25 Bert Kolpatzik Druckelement eines Bauelementes zur Wärmedämmung
WO2008113347A2 (de) * 2007-03-22 2008-09-25 Bert Kolpatzik Bauelement zur wärmedämmung
DE102007014922A1 (de) 2007-03-22 2008-09-25 Bert Kolpatzik Druckelement eines Bauelementes zur Wärmedämmung
EP2063033A3 (de) * 2007-11-22 2010-02-10 BS Ingenieure AG Anschlusselement, Einsatzteil sowie Kartusche
EP2138641A2 (de) 2008-06-24 2009-12-30 SCHÖCK BAUTEILE GmbH Bauelement zur Wärmedämmung und Dämmmaterial für Bauanwendungen
DE102008029701A1 (de) 2008-06-24 2009-12-31 Schöck Bauteile GmbH Bauelement zur Wärmedämmung und Dämmmaterial für Bauanwendungen
EP2354343A1 (de) 2010-02-10 2011-08-10 Bossard + Staerkle AG Kragplattenanschlusselement / Druckelemente
CH702671A1 (de) * 2010-02-10 2011-08-15 Bosshard & Staerkle Ag Kragplattenanschlusselement.
WO2012071596A1 (de) * 2010-11-30 2012-06-07 Avi Alpenländische Veredelungs-Industrie Einrichtung zum anschliessen von stahlbetonplatten an eine wand- oder deckenkonstruktion aus stahlbeton
WO2013021070A1 (de) 2011-08-11 2013-02-14 Schöck Bauteile GmbH Bauelement zur wärmedämmung
US9382705B2 (en) 2011-08-11 2016-07-05 Schöck Bauteile GmbH Structural element for heat-insulating purposes
DE102011109958A1 (de) 2011-08-11 2013-02-14 Schöck Bauteile GmbH Bauelement zur Wärmedämmung
WO2013021069A1 (de) 2011-08-11 2013-02-14 Schöck Bauteile GmbH Bauelement zur wärmedämmung
DE102011109962A1 (de) 2011-08-11 2013-02-14 Schöck Bauteile GmbH Bauelement zur Wärmedämmung
EP3118382A1 (de) 2011-08-11 2017-01-18 SCHÖCK BAUTEILE GmbH Bauelement zur wärmedämmung
US9435115B2 (en) 2011-08-11 2016-09-06 Schöck Bauteile GmbH Structural element for heat-insulating purposes
EP2610410A2 (de) 2011-12-30 2013-07-03 SCHÖCK BAUTEILE GmbH Bauelement zur Wärmedämmung
DE102011122589A1 (de) 2011-12-30 2013-07-04 Schöck Bauteile GmbH Bauelement zur Wärmedämmung
DE102012012912A1 (de) 2012-06-29 2014-04-10 Schöck Bauteile GmbH Bauelement zur Wärmedämmung
EP2679737A2 (de) 2012-06-29 2014-01-01 SCHÖCK BAUTEILE GmbH Bauelement zur Wärmedämmung
EP2937481A1 (de) * 2014-04-24 2015-10-28 HALFEN GmbH Thermisch isolierendes Bauelement
EP3225759A1 (de) * 2016-04-01 2017-10-04 SCHÖCK BAUTEILE GmbH Anschlussbauteil zur wärmeentkopplung von vertikal verbundenen gebäudeteilen
CN108691366A (zh) * 2017-04-05 2018-10-23 哈尔芬有限公司 起热隔离作用的结构元件
EP3444409A1 (de) 2017-08-17 2019-02-20 SCHÖCK BAUTEILE GmbH Bauelement zur wärmedämmung
DE102017118745A1 (de) 2017-08-17 2019-04-11 Schöck Bauteile GmbH Bauelement zur Wärmedämmung

Also Published As

Publication number Publication date
EP1225282B1 (de) 2006-07-12
ES2267870T3 (es) 2007-03-16
EP1225282A3 (de) 2003-06-11
ATE475751T1 (de) 2010-08-15
EP1612339A2 (de) 2006-01-04
DK1225282T3 (da) 2006-11-13
DE50214558D1 (de) 2010-09-09
ATE333011T1 (de) 2006-08-15
EP1612339A3 (de) 2008-01-23
EP1612339B1 (de) 2010-07-28
DE10102931A1 (de) 2002-07-25
DE50207459D1 (de) 2006-08-24

Similar Documents

Publication Publication Date Title
EP1225282A2 (de) Bauelement zur Wärmedämmung
CH676615A5 (de)
EP0081762A1 (de) Zarge für Entwässerungsrinnen
EP2138641A2 (de) Bauelement zur Wärmedämmung und Dämmmaterial für Bauanwendungen
DE19652165C2 (de) Fertigbauteil für eine auskragende Balkonplatte
EP2610410A2 (de) Bauelement zur Wärmedämmung
DE3001309A1 (de) Tragsystem fuer baukonstruktionen
DE102005039025A1 (de) Bauelement zur Wärmedämmung
EP1225283B1 (de) Bauelement zur Wärmedämmung
DE19711813C2 (de) Thermisch isolierendes Bauelement
DE9413502U1 (de) Bauelement für die Wärmedämmung in Mauerwerk
WO2008113347A2 (de) Bauelement zur wärmedämmung
EP2742191B1 (de) Bauelement zur wärmedämmung
DE9318354U1 (de) Balkonanschluß
EP0933482B1 (de) Fertigbauteil für eine auskragende Balkonplatte
EP1229176B1 (de) Kragplattenanschlusselement
DE19519630A1 (de) Kragplatten- und/oder Fugenelement für bewehrte Baukonstruktionen
EP0745734B1 (de) Kragplatten- und/oder Fugenelement für bewehrte Baukonstruktionen
EP0584455B1 (de) Hochloch-Leichtziegel
WO2008113348A2 (de) Bauelement zur wärmedämmung
DE20221825U1 (de) Bauelement zur Wärmedämmung
AT397528B (de) Ziegel-überlage
EP4328395A2 (de) Bauwerk mit thermisch isolierendem bauelement
EP2679737B1 (de) Bauelement zur Wärmedämmung
AT208564B (de) Hohlformstein, insbesondere zur Herstellung von Hohlstein-Deckenbalken, sowie aus solchen Hohlformsteinen hergestellter Deckenbalken

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20030830

AKX Designation fees paid

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

17Q First examination report despatched

Effective date: 20040527

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SCHOECK BAUTEILE GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BOECKMANN, GERHARD

Inventor name: BRASCH, HARALD.

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 20060712

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50207459

Country of ref document: DE

Date of ref document: 20060824

Kind code of ref document: P

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: R. A. EGLI & CO. PATENTANWAELTE

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060925

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070131

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2267870

Country of ref document: ES

Kind code of ref document: T3

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: HALFEN GMBH

Effective date: 20070320

EN Fr: translation not filed
PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

NLR1 Nl: opposition has been filed with the epo

Opponent name: HALFEN GMBH

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061013

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060712

PLCK Communication despatched that opposition was rejected

Free format text: ORIGINAL CODE: EPIDOSNREJ1

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060712

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

REG Reference to a national code

Ref country code: DE

Ref legal event code: R008

Ref document number: 50207459

Country of ref document: DE

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 20110728

REG Reference to a national code

Ref country code: DE

Ref legal event code: R100

Ref document number: 50207459

Country of ref document: DE

Effective date: 20110728

REG Reference to a national code

Ref country code: DE

Ref legal event code: R039

Ref document number: 50207459

Country of ref document: DE

Effective date: 20111012

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20200127

Year of fee payment: 19

Ref country code: ES

Payment date: 20200219

Year of fee payment: 19

Ref country code: DK

Payment date: 20200123

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20200127

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20200102

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20210120

Year of fee payment: 20

Ref country code: FI

Payment date: 20210119

Year of fee payment: 20

Ref country code: CH

Payment date: 20210122

Year of fee payment: 20

Ref country code: NL

Payment date: 20210120

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20210119

Year of fee payment: 20

Ref country code: BE

Payment date: 20210120

Year of fee payment: 20

Ref country code: DE

Payment date: 20201210

Year of fee payment: 20

Ref country code: GB

Payment date: 20210122

Year of fee payment: 20

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20210131

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210104

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20210129

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210105

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50207459

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MK

Effective date: 20220103

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20220103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20220103

REG Reference to a national code

Ref country code: BE

Ref legal event code: MK

Effective date: 20220104

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK07

Ref document number: 333011

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220104

REG Reference to a national code

Ref country code: FI

Ref legal event code: MAE

REG Reference to a national code

Ref country code: IE

Ref legal event code: MK9A

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20220413

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20220104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210105