EP1195845B1 - Miniaturisierte Mikrowellenantenne - Google Patents

Miniaturisierte Mikrowellenantenne Download PDF

Info

Publication number
EP1195845B1
EP1195845B1 EP01000519A EP01000519A EP1195845B1 EP 1195845 B1 EP1195845 B1 EP 1195845B1 EP 01000519 A EP01000519 A EP 01000519A EP 01000519 A EP01000519 A EP 01000519A EP 1195845 B1 EP1195845 B1 EP 1195845B1
Authority
EP
European Patent Office
Prior art keywords
antenna
metallization
substrate
conductor track
feed terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01000519A
Other languages
English (en)
French (fr)
Other versions
EP1195845A3 (de
EP1195845A2 (de
Inventor
Achim c/o Philips Corporate Intellectual Hilgers
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Philips Intellectual Property and Standards GmbH
Koninklijke Philips NV
Original Assignee
Philips Intellectual Property and Standards GmbH
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Philips Intellectual Property and Standards GmbH, Koninklijke Philips Electronics NV filed Critical Philips Intellectual Property and Standards GmbH
Publication of EP1195845A2 publication Critical patent/EP1195845A2/de
Publication of EP1195845A3 publication Critical patent/EP1195845A3/de
Application granted granted Critical
Publication of EP1195845B1 publication Critical patent/EP1195845B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/08Radiating ends of two-conductor microwave transmission lines, e.g. of coaxial lines, of microstrip lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/30Combinations of separate antenna units operating in different wavebands and connected to a common feeder system
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/342Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes
    • H01Q5/357Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes using a single feed point
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/40Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/045Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means

Definitions

  • the invention relates to a miniaturized antenna having at least one ceramic substrate and a metallization, in particular for use in the high-frequency and Mikrowsllen Scheme.
  • the invention further relates to a circuit board and a mobile telecommunication device with such an antenna.
  • the antenna of such an electronic device such as a mobile phone
  • the antenna is a resonant component which has to be adapted to the respective application or operating frequency range.
  • wire antennas are used to convey the desired information. In order to achieve good radiation and reception properties with these antennas, certain physical lengths are absolutely necessary.
  • Optimal radiation conditions have so-called ⁇ / 2 dipole antennas whose length corresponds to half the wavelength ( ⁇ ) of the signal in free space.
  • the antenna is made up of two ⁇ / 4 long wires that are rotated by 180 degrees against each other. These dipole antennas are suitable for many applications, especially for the mobile Telecommunications are too large (in the GSM900 band, the wavelength is about 32 cm), is resorted to alternative antenna structures.
  • a widely used antenna, in particular for the field of mobile telecommunications, is the so-called ⁇ / 4 monopole. This consists of a wire with a length of one quarter of the wavelength. The radiation behavior of this antenna is acceptable with a simultaneously acceptable physical length (about 8 cm for the GSM band).
  • this type of antenna is characterized by a high impedance and radiation bandwidth, so that they are also used in systems that require a relatively high bandwidth.
  • this type of antennae chooses passive electrical matching. This usually consists of a combination of at least one coil and with a capacity which, with suitable dimensioning, adapts the input impedance of the ⁇ / 4 monopole, which is different from 50 Ohm, to the upstream 50 Ohm components.
  • the wire antennas are generally used as the extendable version in, for example, a cellular phone, the ⁇ / 4 monopoles can not be soldered directly to the circuit board. As a result, the information transfer between the circuit board and the antenna requires expensive contacts
  • Another disadvantage of this type of antenna is the mechanical instability of the antenna itself as well as the adaptation of the housing to the antenna required by this instability. For example, if a mobile phone falls on the ground, the antenna generally breaks down or the case is damaged at the point where the antenna can be pulled out.
  • EP 0 762 538 discloses chip antennas having a substrate and at least one conductor.
  • these antennas have the disadvantage that at least parts of the interconnects run within the substrate, and thus the substrate in several Layers and must be made with a certain minimum size, which can be relatively expensive.
  • this conductor track guide it is not possible with this conductor track guide to make an electrical adjustment of the conductors to a concrete installation situation in the finished state, since the conductor is no longer or only partially accessible.
  • EP 0 982 798 discloses an antenna comprising a substrate with a metallization.
  • the metallization is mounted on a first surface of the substrate and is formed by a metallization structure with a metallic signal feed line.
  • the antenna is mounted with its second surface opposite the first surface on a first surface of a base substrate having two separate electrodes on opposite sides of the base substrate. The distance between the first surface of the antenna and a non-antenna side of the base substrate determines the antenna gain.
  • This antenna has the disadvantage that parts of the metallization between the antenna and the base substrate run, and thus these parts are no longer accessible, so that a change in the antenna metallization in the installed state is no longer possible.
  • the base substrate with antenna metallised on both sides requires a considerable volume in a device which should have the smallest possible dimensions.
  • the invention is therefore based on the object to provide an antenna with at least one ceramic substrate and a metallization, in particular for use in the high-frequency and microwave range, which has a high mechanical stability and is particularly suitable for miniaturization.
  • an antenna is to be created in which can be at least largely dispensed with passive matching circuits and also for surface mounting with SMD (surface mounted device) technology on a Circuit board and for operation in the GSM or UMTS bands sufficiently high resonant frequency and impedance bandwidth is suitable.
  • SMD surface mounted device
  • an antenna is to be created in which the impedance matching in the installed state can be made.
  • a first metallization further comprises a first conductor portion which connects the at least first metallization plate to the conductor track, wherein the conductor track portion extends away from the first metallization plate in one direction from the feeder.
  • the antenna can be surface mounted (SMD) on a printed circuit board (along with the other components).
  • SMD surface mounted
  • the size of the antenna can be further reduced, and the antenna is mechanically much more stable and insensitive to external influences.
  • the embodiments according to claim 3 has the advantage that the production of the substrate and the surface metallization is technically relatively simple.
  • the embodiments described below have a substrate of a substantially block-shaped block whose height is about a factor of 3 to 10 smaller than its length or width.
  • the upper and lower (large) surfaces of the substrates in the representations of the figures are to be referred to as upper and lower end surfaces and the surfaces perpendicular thereto as side surfaces.
  • a cuboid substrate it is also possible, instead of a cuboid substrate, to select other geometric shapes, such as, for example, a cylindrical shape, to which a corresponding resonant strip conductor structure having, for example, a spiral shape is applied.
  • the substrates can be produced by embedding a ceramic powder in a polymer matrix and have a dielectric constant of ⁇ r > 1 and / or a permeability of ⁇ r > 1.
  • a first embodiment shown in Figure 1 includes a cuboid substrate 10 having a resonant wiring pattern 20, 30.
  • the substrate 10 is provided at the corners of its lower end face with a plurality of solder pads 11, with which it by surface mounting (SMD technique) on a circuit board can be soldered.
  • SMD technique surface mounting
  • a feed 12 in the form of a metallization which is soldered during assembly on a circuit board to a corresponding conductor region, via which the antenna is fed with radiated electromagnetic energy.
  • a first portion 21 of a conductor track 20 which then continues in a horizontal direction along the first side surface 13 to a second side surface 14.
  • the trace then continues in the horizontal direction along the second side surface 14 at about half its height as the second portion 22 and along one of the first side surface 13 opposite third side surface 15 at about half height as the third portion 23 in the region of the center of the third side surface 15th
  • the third conductor track section 23 then extends in the vertical direction as far as the end face in the illustration, where it is connected to a first conductor track section 31 of a (first) metallization structure 30 applied thereto.
  • the metallization structure 30 comprises the first conductor track section 31, which extends in the longitudinal direction of the substrate in the direction of the feed 12, and a substantially rectangular metallization plate 32, into which the first trace section 31 opens.
  • the effective length of the structure between the feed 12 and the metallization plate 32 corresponds to approximately half the wavelength of the signal to be radiated in the substrate.
  • this antenna combines several advantageous properties.
  • the antenna has a particularly high impedance bandwidth
  • the antenna has a very uniform, quasi omnidirectional directivity.
  • the dimensions of the ceramic substrate were about 17 x 11 x 4 mm 3 and the total length of the resonator structure formed of the trace 20 and the metallization structure 30 was about 39 mm.
  • the input impedance of the antenna is approximately 50 ohms.
  • This antenna is thus ideally suited for use in a mobile device, especially since it can also be applied (together with the other components) by surface mounting (SMD technology) to a circuit board, whereby the production is considerably simplified.
  • SMD surface mounting
  • Another advantage of this antenna is that by introducing a slot 211 (air gap) between the feed 12 and the first section 21 of the track, the input impedance of the antenna can be influenced and adapted to a specific installation situation. This is possible in the installed state of the antenna, for example by a laser trimming, in which the width and / or the length of the slot (and thus the capacitive coupling between the feed 12 and the resonator structure 20, 30) is increased by a laser beam until a optimal adaptation is achieved.
  • the tuning is preferably performed so that the particularly large bandwidth of the first harmonic of the resonance frequency is used to cover the GSM bands.
  • the antenna can also be designed for use in the UMTS band (1970 to 2170 MHz).
  • FIG. 4 shows a second embodiment of the antenna.
  • This antenna is formed by a substrate 10 with a resonant metallic trace structure 20, 30, 40, which is composed essentially of three parts, namely a common trace 20 according to FIG. 4a, a first metallization structure 30 on the upper (first) end face of the substrate (FIG. 4b) and a second metallization structure 40 on the opposite lower (second) end face of the substrate (FIG. 4c), wherein these structures 30, 40 are fed through the conductor 20.
  • a resonant metallic trace structure 20, 30, 40 which is composed essentially of three parts, namely a common trace 20 according to FIG. 4a, a first metallization structure 30 on the upper (first) end face of the substrate (FIG. 4b) and a second metallization structure 40 on the opposite lower (second) end face of the substrate (FIG. 4c), wherein these structures 30, 40 are fed through the conductor 20.
  • a feed 12 in the form of a metallization piece is in turn arranged on the lower end face of the substrate 10 in the region of the center of a first side face 13, which is soldered in the surface mounting of the antenna to a conductor region, via which the antenna is fed with electromagnetic energy.
  • a first section 21 of the conductor track 20 at the first side face 13 initially extends vertically in the direction of the upper end face and then in the horizontal direction up to a second side face 14.
  • the trace 20 extends as a second section 22 further along the second side surface 14 and as a third portion 23 along one of the first side surface 13 opposite third side surface 15 at which the third portion ends with a along an edge to a fourth side surface 16 perpendicularly extending T-like end piece 231.
  • a first (upper) limb of the end piece 231 extending in the direction of the upper end face is connected to the first metallization structure 30, which comprises a first section 31 extending in the longitudinal direction of the substrate 10 in a manner similar to the first embodiment Direction extends to the feed 12 and finally into a first, substantially rectangular metallization plate 33 opens.
  • the first portion 31 is connected to the upper leg of the end piece 231 via a second track portion 32, which runs along the edge to the third side surface 15.
  • a lower limb of the end piece 231 extending in the direction of the lower end face is connected to the second metallization structure 40, which in a manner similar to the first metallization structure 30 is connected by a first Section 41 is formed, which extends in the longitudinal direction of the substrate in the direction of the feed 12 and finally in a second, substantially rectangular Metallmaschinesplättchen 43 opens.
  • a second section 42 extending along the edge to the third side face 15 is provided, which establishes a connection between the lower leg of the end piece 231 and the first section 41.
  • the effective length of the structures between the feed 12 and the first metallization plate 33 and between the feed 12 and the second metallization plate 43 again corresponds to approximately half the wavelength of the signal to be radiated in the substrate.
  • this second embodiment of the antenna can be mounted by surface mounting on a printed circuit board (SMD technique). Furthermore, a very uniform, quasi omnidirectional directional characteristic can be achieved both in the horizontal direction and in the direction perpendicular thereto.
  • SMD technique printed circuit board
  • the two metallization structures 30, 40 slightly different, that is, with different lengths or widths, with different coupling (for example, by a slot 211 variable width and / or length) to the common conductor track 20 or with different sizes of the first and second metallization plates 33, 43 are formed, two resonance frequencies are excited, which are shifted according to these deviations from each other.
  • the first metallization structure 30 generates a somewhat lower resonant frequency than the second metallization structure 40.
  • the number of these resonances can be increased by, for example, applying one or more further substrates with the same or similar resonant conductor track structures 20, 30, 40 to the substrate shown in FIG. This is relatively easy to manufacture, especially with the introduction of multilayer technology manufacturing technology. Furthermore, in the case of a layer structure comprising two substrates, a further resonance can be generated between these substrates.
  • the position and the spacing of the resonance frequencies can be adjusted as desired by appropriate choice of the dimensions of the substrates as well as of the resonant structures 20, 30, 40 , This also applies to the adaptation of the impedance of the antenna to the feeder wherein here by a corresponding change in the achieved with a variable slot 211 capacitive coupling, for example by Auslägerung and / or broadening of the slot with a laser beam (laser trimming), a setting on a concrete installation situation is possible.
  • Another advantage of this embodiment results in connection with the steepness of the impedance curve in the range of the resonance frequencies.
  • the steepness of this curve can provide a filtering effect of the antenna between the transmit and receive frequencies which can be used to reduce or even eliminate the requirements for the upstream and downstream filter circuits.
  • separate feeds are preferably provided for each of the first and second metallization structures 30, 40.
  • the dimensions of the ceramic substrate were about 17 x 11 x 4 mm 3 and the total length of the trace 20 and the first metallization structure 30 and the second metallization structure, respectively 40 each about 39 mm. This resulted in the course of the impedance spectrum shown in FIG. 5, in which the two resonance peaks are clearly recognizable.
  • FIG. 6 schematically shows a printed circuit board (PCB) 100 to which an antenna 110 according to the invention has been applied together with other components in the areas 120 and 130 of the circuit board 100 by surface mounting (SMD).
  • SMD surface mounting
  • the antenna according to the invention can also be used in the GSM1800 (DCS) band, in the UMTS band and in the Bluetooth band (BT band at 2480 MHz) with appropriate dimensioning.
  • DCS GSM1800
  • UMTS UMTS
  • Bluetooth band BT band at 2480 MHz
  • the antenna can also be composed of a plurality of ceramic substrates with the same or different dielectric and / or permeable properties, each with a surface metallization.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Details Of Aerials (AREA)
  • Constitution Of High-Frequency Heating (AREA)
  • Waveguide Aerials (AREA)
  • Support Of Aerials (AREA)

Description

  • Die Erfindung betrifft eine miniaturisierte Antenne mit mindestens einem keramischen Substrat und einer Metallisierung insbesondere zur Anwendung im Hochfrequenz- und Mikrowsllenbereich. Die Erfindung betrifft weiterhin eine Schaltungsplatine sowie ein mobiles Telekommunikationsgerät mit einer solchen Antenne.
  • Um dem Trend nach immer kleiner werdenden elektronischen Bauteilen insbesondere im Bereich der Telekommunikationstechnik gerecht zu werden, verstärken alle Hersteller von passiven und /oder aktiven elektronischen Bauelementen ihre Aktivitäten auf diesem Gebiet. Speziell für den Einsatz elektronischer Bauelemente im Bereich der Hochfrequenz- und Mikrowellentechnik entstehen dabei besondere Probleme, da viele Eigenschaften der Bauelemente von ihren physikalischen Abmessungen abhängig sind. Dies beruht bekanntlich auf die Tatsache, dass mit zunehmender Frequenz die Wellenlänge des Signals kürzer wird, was wiederum zu einer Beeinflussung der speisenden Signalquelle insbesondere durch Reflektionen führt.
  • Davon ist insbesondere die Struktur der Antenne eines solchen elektronischen Gerätes, wie zum Beispiel eines Mobiltelefons betroffen, die stärker als alle anderen HF-Bauelemente von dem gewünschten Frequenzbereich der Anwendung abhängig ist. Dies beruht darauf, dass die Antenne ein resonantes Bauteil ist, das an die jeweilige Anwendung bzw. den Betriebs-Frequenzbereich angepasst werden muss. Im allgemeinen werden Drahtantennen verwendet, um die gewünschten Informationen zu übermitteln. Um gute Abstrahl- und Empfangseigenschaften bei diesen Antennen zu erzielen, sind bestimmte physikalische Längen zwingend erforderlich.
  • Optimale Abstrahlbedingungen haben dabei sogenannte λ/2 Dipolantennen, deren Länge der halben Wellenlänge (λ) des Signals im freien Raum entspricht. Die Antenne setzt sich dabei aus jeweils zwei λ/4 langen Drähten zusammen, die um 180 Grad gegeneinander verdreht sind Da diese Dipolantennen für viele Anwendungen insbesondere für die mobile Telekommunikation jedoch zu groß sind (im GSM900 Band beträgt die Wellenlänge etwa 32 cm), wird auf alternative Antennenstrukturen zurückgegriffen. Eine weit verbreitete Antenne insbesondere für dem Bereich der mobilen Telekommunikation ist der sogenannte λ/4 Monopol. Dieser besteht aus einem Draht mit einer Länge von einem Viertel der Wellenlänge. Das Abstrahlverhalten dieser Antenne ist bei gleichzeitig vertretbarer physikalischer Länge (etwa 8 cm für das GSM-Band) akzeptabel. Weiterhin zeichnet sich diese Art von Antennen durch eine hohe Impedanz- und Strahlungsbandbreite aus, so dass sie auch bei Systemen Anwendung finden, die eine relativ hohe Bandbreite erfordern. Um eine optimale Leistungsanpassung an 50 Ohm zu erzielen, wird bei dieser Art von Antennen wie auch bei den meisten λ/2 Dipolen eine passive elektrische Anpassung gewählt. Diese besteht in der Regel aus einer Kombination von mindestens einer Spule und mit einer Kapazität, die bei geeigneter Dimensionierung die von 50 Ohm verschiedene Eingangsimpedanz des λ/4 Monopols an die vorgeschalteten 50 Ohm Komponenten anpasst.
  • Auch wenn diese Art von Antennen weit verbreitet ist, haben sie doch erhebliche Nachteile. Diese bestehen einerseits in der oben erwähnten passiven Anpassungsschaltung
  • Da die Drahtantennen andererseits im allgemeinen als ausziehbare Version zum Beispiel in einem Mobiltelefon verwendet werden, können die λ/4 Monopole nicht direkt auf die Schaltungsplatine aufgelötet werden. Dies hat zur Folge, dass für die Informationsübertragung zwischen der Schaltungsplatine und der Antenne teure Kontakte erforderlich sind
  • Ein weiterer Nachteil dieser Art von Antennen ist die mechanische Instabilität der Antenne selbst sowie die durch diese Instabilität erforderliche Anpassung des Gehäuses an die Antenne. Fällt ein Mobiltelefon zum Beispiel auf dem Boden, so bricht im allgemeinen die Antenne ab, oder das Gehäuse wird an der Stelle beschädigt, an der die Antenne herausgezogen werden kann.
  • Zwar sind aus der EP 0 762 538 Chip-Antennen mit einem Substrat und mindestens einem Leiter bekannt. Diese Antennen habe jedoch den Nachteil, dass zumindest Teile der Leiterbahnen innerhalb des Substrates verlaufen, und somit das Substrat in mehreren Schichten und mit einer gewissen Mindestgröße hergestellt werden muss, was relativ aufwendig sein kann. Außerdem ist es mit dieser Leiterbahn-Führung nicht möglich, im fertiggestellten Zustand eine elektrische Anpassung der Leiterbahnen an eine konkrete Einbausituation vorzunehmen, da die Leiterbahn nicht mehr oder nur noch teilweise zugänglich ist.
  • Die EP 0 982 798 offenbart eine Antenne, die ein Substrat mit einer Metallisierung umfasst. Die Metallisierung ist auf einer ersten Oberfläche des Substrats angebracht und wird durch eine Metallisierungsstruktur mit einer metallischen Zuführungsleitung für Signale gebildet. Die Antenne ist mit ihrer der ersten Oberfläche gegenüberliegenden, zweiten Oberfläche auf einer ersten Oberfläche eines Basissubstrats montiert, das zwei von einander getrennte Elektroden auf sich gegenüberliegenden Seiten des Basissubstrats aufweist. Der Abstand zwischen der ersten Oberfläche der Antenne und einer nicht die Antennne tragenden Seite des Basissubstrats bestimmt den Antennengewinn. Diese Antenne hat den Nachteil, dass Teile der Metallisierung zwischen der Antenne und dem Basisubstrat verlaufen, und somit diese Teile nicht mehr zugänglich sind, so dass eine Änderung der Antennenmetallisierung in eingebautem Zustand nicht mehr möglich ist. Außerdem erfordert das auf beiden Seiten metallisierte Basissubstrat mit Antenne ein erhebliches Volumen in einem Gerät, das möglichst geringe Abmessungen aufweisen soll.
  • Der Erfindung liegt deshalb die Aufgabe zugrunde, eine Antenne mit mindestens einem keramischen Substrat und einer Metallisierung, insbesondere zur Anwendung im Hochfrequenz- und Mikrowellenbereich zu schaffen, die eine hohe mechanische Stabilität besitzt und besonders zur Miniaturisierung geeignet ist.
  • Weiterhin soll eine Antenne geschaffen werden, bei der auf passive Anpassungsschaltungen zumindest weitgehend verzichtet werden kann und die auch zur Oberflächenmontage mit SMD- (surface mounted device) Technik auf einer Schaltungsplatine sowie zum Betrieb in den GSM- oder UMTS-Bändern ausreichend hohen Resonanzfrequenz- und Impedanz-Bandbreite geeignet ist.
  • Schließlich soll auch eine Antenne geschaffen werden, bei der die Impedanzanpassung in eingebautem Zustand vorgenommen werden kann.
  • Gelöst wird diese Aufgabe mit einer Antenne der eingangs genannten Art, die sich dadurch auszeichnet, dass eine erste Metallisierungsstruktur ferner einen ersten Leiterbahnabschnitt umfasst, der das mindestens erste Metallisierungsplättchen mit der Leiterbahn verbindet, wobei der Leiterbahnabschnitt sich erstreckt von dem ersten Metallisierungsplättchen in eine Richtung weg von der Zuführung.
  • Diese Lösung vereint zahlreiche Vorteile miteinander. Da die Zuführung ein Teil der auf der Oberfläche des Substrates vorhandenen Metallisierung ist, sind keine Kontaktstifte oder ähnliches erforderlich, um die abzustrahlende elektromagnetische Energie zuzuführen.
  • Dies bedeutet, dass die Antenne durch Oberflächenmontage (SMD-Technik) auf eine gedruckte Schaltungsplatine (zusammen mit den anderen Bauelementen) aufgebracht werden kann. Dadurch kann auch die Größe der Antenne weiter vennindert werden, und die Antenne ist mechanisch wesentlich stabiler und unempfindlicher gegen äußere Einflüsse.
  • Weiterhin hat sich gezeigt, dass auf passive Schaltungen zur Impedanzanpassung verzichtet werden kann, da eine solche Anpassung durch Veränderung der vollständig zugänglichen Metallisierung (z. B. durch Lasertrimmung) in eingebautem Zustand der Antenne vorgenommen werden kann. Schließlich hat sich auch gezeigt, dass die Antenne eine überraschend große Impedanz- und Strahlungsbandbreite aufweist.
  • Die Unteransprüche haben vorteilhafte Weiterbildungen der Erfindung zum Inhalt.
  • Die Ausführungen gemäß dem Anspruch 3 hat den Vorteil, dass die Herstellung des Substrates und der Oberflächenmetallisierung technisch relativ einfach ist.
  • Die Ausführungen gemäß den Ansprüchen 4 und 7 haben den Vorteil, dass mit der Kombination von zwei Metallisierungsstrukturen insbesondere dann, wenn diese sich geringfügig voneinander unterscheiden, und / oder mit einer Stapelung mehrerer Substrate mit solchen Strukturen, eine sehr flexible Einstellung der Lage und des Abstandes sowie der Breite der Resonanzfrequenzen vorgenommen werden kann.
  • Dies gilt analog auch für die Impedanz der Antenne und deren Verlauf über der Frequenz im Hinblick auf die Ausführungen gemäß den Ansprüchen 6 und 7.
  • Weitere Einzelheiten, Merkmale und Vorteile der Erfindung ergeben sich aus der folgenden Beschreibung von bevorzugten Ausführungsformen anhand der Zeichnung. Es zeigt:
  • Fig. 1
    eine schematische Darstellung einer ersten Ausführungsform der Erfindung;
    Fig. 2
    ein für diese Ausführungsform gemessenes Impedanzspektrum;
    Fig. 3
    eine für diese Ausführungsform gemessene Richtcharakteristik;
    Fig. 4
    eine zweite Ausführungsform der Erfindung;
    Fig. 5
    ein an dieser Ausführungsform gemessenes Impedanzspektrum; und
    Fig. 6
    eine Schaltungsplatine mit einer erfindungsgemäßen Antenne.
  • Die nachfolgend beschriebenen Ausführungsformen weisen ein Substrat aus einem im wesentlichen jeweils quaderförmigen Block auf, dessen Höhe etwa um einen Faktor 3 bis 10 kleiner ist, als dessen Länge oder Breite. Davon ausgehend sollen in der folgenden Beschreibung die in den Darstellungen der Figuren jeweils oberen bzw. unteren (großen) Flächen der Substrate als obere bzw. untere Stirnflächen und die demgegenüber senkrechten Flächen als Seitenflächen bezeichnet werden.
  • Alternativ dazu ist es allerdings auch möglich, anstelle eines quaderförmigen Substrates andere geometrische Formen wie zum Beispiel eine Zylinderform zu wählen, auf die eine entsprechende resonanten Leiterbahnstruktur mit zum Beispiel spiralförmigem Verlauf aufgebracht ist.
  • Die Substrate können durch Einbetten eines keramischen Pulvers in eine Polymermatrix hergestellt werden und haben eine Dielektrizitätszahl von εr>1 und / oder eine Permeabilitätszahl von µr>1.
  • Im einzelnen umfasst eine in Figur 1 gezeigte erste Ausführungsform ein quaderförmiges Substrat 10 mit einer resonanten Leiterbahnstruktur 20, 30. Das Substrat 10 ist an den Ecken seiner unteren Stirnfläche mit mehreren Lötpunkten 11 versehen ist, mit denen es durch Oberflächenmontage (SMD-Technik) auf eine Schaltungsplatine aufgelötet werden kann. Weiterhin befindet sich an der unteren Stirnfläche im Bereich der Mitte einer ersten Seitenfläche 13 eine Zuführung 12 in Form eines Metallisierungsstücks, das bei der Montage auf einer Schaltungsplatine auf einen entsprechenden Leiterbereich gelötet wird, über den die Antenne mit abzustrahlender elektromagnetischer Energie gespeist wird. Ausgehend von der Zuführung 12 erstreckt sich vertikal bis auf etwa halbe Höhe der ersten Seitenfläche 13 ein erster Abschnitt 21 einer Leiterbahn 20, die sich dann in dazu horizontaler Richtung entlang der ersten Seitenfläche 13 bis zu einer zweiten Seitenfläche 14 fortsetzt. Die Leiterbahn verläuft dann weiter in horizontaler Richtung entlang der zweiten Seitenfläche 14 etwa auf deren halber Höhe als zweiter Abschnitt 22 sowie entlang einer der ersten Seitenfläche 13 gegenüberliegenden dritten Seitenfläche 15 auf etwa halber Höhe als dritter Abschnitt 23. Im Bereich der Mitte der dritten Seitenfläche 15 verläuft der dritte Leiterbahnabschnitt 23 dann in vertikaler Richtung bis an die in der Darstellung obere Stirnfläche und ist dort mit einem ersten Leiterbahnabschnitt 31 einer auf diese aufgebrachten (ersten) Metallisierungsstruktur 30 verbunden.
  • Die Metallisierungsstruktur 30 umfasst den ersten Leiterbahnabschnitt 31, der sich im wesentlichen in Längsrichtung des Substrates in Richtung auf die Zuführung 12 erstreckt, sowie ein im wesentlichen rechteckiges Metallisierungsplättchen 32, in das der erste Leiterbahnabschnitt 31 mündet.
  • Die effektive Länge der Struktur zwischen der Zuführung 12 und dem Metallisierungsplättchen 32 entspricht dabei etwa der halben Wellenlänge des abzustrahlenden Signals in dem Substrat.
  • Es hat sich überraschend gezeigt, dass diese Antenne mehrere vorteilhafte Eigenschaften vereint. Einerseits hat die Antenne eine besonders hohe Impedanzbandbreite, andererseits weist die Antenne eine sehr gleichmäßige, quasi omnidirektionale Richtcharakteristik auf.
  • Bei einer für das GSM900-Band (etwa 890 bis 960 MHz) realisierten Ausführungsform betrugen die Abmessungen des keramischen Substrates etwa 17 x 11 x 4 mm3 und die Gesamtlänge der aus der Leiterbahn 20 und der Metallisierungsstruktur 30 gebildeten Resonatorstruktur etwa 39 mm. Für diese Dimensionierung kann auf passive Impedanz-Anpassungsschaltungen verzichtet werden, da die Eingangsimpedanz der Antenne näherungsweise 50 Ohm ist.
  • Hierfür ergab sich der in Figur 2 dargestellte Verlauf der Impedanz über der Frequenz sowie die in Figur 3 gezeigte Richtcharakteristik, wobei die Kurve (a) die horizontale und die Kurve (b) die senkrechte Richtcharakteristik darstellt. Diese Kurven zeigen, dass das Verhalten der Antenne im wesentlichen dem einer Dipol- bzw. Monopolantenne entspricht.
  • Diese Antenne ist somit in idealer Weise zur Anwendung in einem Mobilfunkgerät geeignet, zumal sie auch (zusammen mit den anderen Bauelementen) durch Oberflächenmontage (SMD-Technik) auf eine Schaltungsplatine aufgebracht wenden kann, wodurch die Herstellung erheblich vereinfacht wird.
  • Durch Veränderung der Form des keramischen Substrates 10 sowie eine weitere Strukturierung der resonanten Leiterbahnstruktur 20, 30 kann eine weitere Miniaturisierung im Vergleich zu bekannten Drahtantennen sowie eine weitete Erhöhung der Frequenzbandbreite insbesondere der ersten Harmonischen erzielt werden.
  • Ein weiterer Vorteil dieser Antenne besteht deren, dass durch das Einbringen eines Schlitzes 211 (Luftspalt) zwischen der Zuführung 12 und dem ersten Abschnitt 21 der Leiterbahn die Eingangampedanz der Antenne beeinflusst und an eine konkrete Einbausituation angepasst werden kann. Dies ist im eingebauten Zustand der Antenne zum Beispiel durch eine Lasertrimmung möglich, bei der die Breite und /oder die Länge des Schlitzes (und damit die kapazitive Kopplung zwischen der Zuführung 12 und der Resonatorstruktur 20, 30) mit einem Laserstrahl vergrößert wird, bis eine optimale Anpassung erzielt ist.
  • Für eine bevorzugte Anwendung der Antenne in einem Dual- oder Mehrband-Mobilfunkgerät wird die Abstimmung vorzugsweise so vorgenommen, dass die besonders große Bandbreite der ersten Harmonischen der Resonanzfrequenz zum Abdecken der GSM-Bänder verwendet wird. Auf diese Weise kann die Antenne auch zur Anwendung im UMTS-Band (1970 bis 2170 MHz) ausgelegt werden.
  • Figur 4 zeigt eine zweite Ausführungsform der Antenne. Diese Antenne ist durch ein Substrat 10 mit einer resonanten metallischen Leiterbahnstruktur 20, 30, 40 gebildet, die sich im wesentlichen aus drei Teilen zusammensetzt, nämlich einer gemeinsamen Leiterbahn 20 gemäß Figur 4a, einer ersten Metallisierungsstruktur 30 auf der in der Darstellung oberen (ersten) Stirnfläche des Substrates (Figur 4b) sowie einer zweiten Metallisierungstruktur 40 auf der gegenüberliegenden unteren (zweiten) Stirnfläche des Substrates (Figur 4c), wobei diese Strukturen 30, 40 durch die Leiterbahn 20 gespeist werden. Zur Verdeutlichung des Aufbaus sind diese drei Teile jeweils getrennt in einer Darstellung gezeigt.
  • In einzelnen ist wiederum an der unteren Stirnfläche des Substrates 10 im Bereich der Mitte einer ersten Seitenfläche 13 eine Zuführung 12 in Form eines Metallisierungsstücks angeordnet, das bei der Oberflächenmontage der Antenne auf einen Leiterbereich aufgelötet wird, über den die Antenne mit elektromagnetischer Energie gespeist wird.
  • Ausgehend von der Zuführung 12 erstreckt sich ein erster Abschnitt 21 der Leiterbahn 20 an der ersten Seitenfläche 13 zunächst vertikal in Richtung auf die obere Stirnfläche und dann in horizontaler Richtung bis zu einer zweiten Seitenfläche 14. Die Leiterbahn 20 verläuft als zweiter Abschnitt 22 weiter entlang der zweiten Seitenfläche 14 sowie als dritter Abschnitt 23 entlang einer der ersten Seitenfläche 13 gegenüberliegenden dritten Seitenfläche 15, an der der dritte Abschnitt mit einem entlang einer Kante zu einer vierten Seitenfläche 16 senkrecht verlaufenden T-ähnlichen Endstück 231 endet.
  • Gemäß Figur 4b ist mit einem sich in Richtung auf die obere Stirnfläche erstreckenden (oberen) Schenkel des Endstücks 231 die erste Metallisierungsstruktur 30 verbunden, die in ähnlicher Weise wie bei der ersten Ausführungsform einen ersten Abschnitt 31 umfasst, der sich in Längsrichtung des Substrates 10 in Richtung auf die Zuführung 12 erstreckt und schließlich in ein erstes, im wesentlichen rechteckiges Metallisierungsplättchen 33 mündet. Der erste Abschnitt 31 ist jedoch über einen zweiten Leiterbahnabschnitt 32, der entlang der Kante zur dritten Seitenfläche 15 verläuft, mit dem oberen Schenkel des Endstücks 231 verbunden.
  • Schließlich ist gemäß Figur 4c mit einem sich in Richtung auf die untere Stirnfläche erstreckenden (unteren) Schenkel des Endstücks 231 die zweite Metallisierungstruktur 40 verbunden, die in ähnlicher Weise wie die erste Metallisierungsstruktur 30 durch einen ersten Abschnitt 41 gebildet ist, der sich in Längsrichtung des Substrates in Richtung auf die Zuführung 12 erstreckt und schließlich in ein zweites, im wesentlichen rechteckiges Metallisierungsplättchen 43 mündet. Auch hier ist ein entlang der Kante zur dritten Seitenfläche 15 verlaufender zweiter Abschnitt 42 vorgesehen, der eine Verbindung zwischen dem unteren Schenkel des Endstücks 231 und dem ersten Abschnitt 41 herstellt.
  • Die effektive Länge der Strukturen zwischen der Zuführung 12 und dem ersten Metallisierungsplättchen 33 sowie zwischen der Zuführung 12 und dem zweiten Metallisierungsplättchen 43 entspricht dabei wiederum etwa der halben Wellenlänge des abzustrahlenden Signals in dem Substrat.
  • Auch diese zweite Ausführungsform der Antenne kann durch Oberflächenmontage auf einer gedruckten Schaltungsplatine (SMD-Technik) montiert werden. Weiterhin ist auch eine sehr gleichmäßige, quasi omnidirektionale Richtcharakteristik sowohl in horizontaler, als auch in der dazu senkrechten Richtung zu erzielen.
  • Darüber hinaus hat sich gezeigt, dass in dem Fall, in dem die beiden Metallisierungsstrukturen 30, 40 leicht unterschiedlich, das heißt mit unterschiedlichen Längen oder Breiten, mit unterschiedlicher Kopplung (z. B. durch einen Schlitz 211 variabler Breite und /oder Länge) an die gemeinsame Leiterbahn 20 oder mit unterschiedlicher Größe des ersten bzw. zweiten Metallisierungsplättchens 33, 43 ausgebildet werden, zwei Resonanzfrequenzen angeregt werden, die entsprechend diesen Abweichungen gegeneinander verschoben sind. Hierbei erzeugt zum Beispiel die erste Metallisierungsstruktur 30 eine etwas niedrigere Resonanzfrequenz als die zweite Metallisierungsstruktur 40.
  • Die Anzahl dieser Resonanzen kann erhöht werden, indem zum Beispiel auf das in Figur 4 gezeigte Substrat ein oder mehrere weitere Substrate mit gleichen oder ähnlichen resonanten Leiterbahnstrukturen 20, 30, 40 aufgebracht werden. Dies ist insbesondere mit der Einführung der Vielschichttechnik herstellungstechnisch relativ leicht möglich.
    Weiterhin kann bei einer Schichtstruktur aus zwei Substraten eine weitere Resonanz zwischen diesen Substraten erzeugt werden.
  • Die Lage und der Abstand der Resonanzfrequenzen, bei denen es sich sowohl um die Grundmoden, als auch um die ersten Harmonischen der Resonanzfrequenzen handeln kann, können durch entsprechende Wahl der Abmessungen der Substrate sowie der resonanten Strukturen 20, 30,40 in gewünschter Weise eingestellt werden. Dies gilt auch für die Anpassung der Impedanz der Antenne an die Zuführung wobei auch hier durch eine entsprechende Änderung der mit einem variablen Schlitz 211 erzielten kapazitiven Kopplung zum Beispiel durch Verlägerung und /oder Verbreiterung des Schlitzes mit einem Laserstrahl (Lasertrimmung), eine Einstellung an eine konkrete Einbausituation möglich ist.
  • Ein weiterer Vorteil dieser Ausführungsform ergibt sich im Zusammenhang mit der Steilheit des Impedanzverlaufes im Bereich der Resonanzfrequenzen. In dem Fall, in dem die Antenne zum Beispiel für einen Duplex-Betrieb vorgesehen ist, bei dem nur zwei Resonanzfrequenzen (für die Sende- und Empfangsfrequenz) erforderlich sind, kann mit der Steilheit dieses Verlaufes eine Filterwirkung der Antenne zwischen Sende- und Empfangsfrequenz erzielt werden, die dazu genutzt werden kann, die Anforderungen an die vor- bzw. nachgeschalteten Filterschaltungen herabzusetzen oder auf diese sogar ganz zu verzichten. Für diese Anwendung sind für die erste und zweite Metallisierungsstruktur 30, 40 vorzugsweise jeweils gesonderte Zuführungen vorgesehen.
  • Auch bei dieser Ausführungsform ist es möglich, durch angepasste Formgebung des keramischen Substrates 10 sowie eine entsprechende Strukturierung der resonanten Leiterbahnstrukturen 20,30,40 eine weitere Miniaturisierung im Vergleich zu bekannten Drahtantennen herbeizuführen.
  • Bei einer für das GSM900-Band (etwa 890 bis 960 MHz) realisierten Ausführungsform betrugen die Abmessungen des keramischen Substrates etwa 17 x 11 x 4 mm3 und die Gesamtlänge der Leiterbahn 20 und der ersten Metallisierungsstruktur 30 bzw. der Leiterbahn 20 und der zweiten Metallisierungsstruktur 40 jeweils etwa 39 mm. Hierfür ergab sich der in Figur 5 dargestellte Verlauf des Impedanzspektrums, in dem die beiden Resonanzpeaks klar erkennbar sind.
  • Figur 6 zeigt schließlich schematisch eine gedruckte Schaltungsplatine (PCB) 100, auf die eine erfindungsgemäße Antenne 110 zusammen mit anderen Bauelementen in den Bereichen 120 und 130 der Platine 100 durch Oberflächenmontage (SMD) aufgebracht wurde. Dies geschieht durch flaches Auflöten in einem Wellenlötbad oder mit einem Reflowprozess, wodurch die Lötpunkte (Footprints) 11 sowie die Zuführung 12 mit entsprechenden Lötpunkten auf der Platine 100 verbunden werden. Unter anderem wird dadurch auch eine elektrische Verbindung zwischen der Zuführung 12 und einer Leiterbahn 111 auf der Platine 100 geschaffen, über die die abzustrahlende elektromagnetische Energie der Antenne zugeführt wird.
  • Die erfindungsgemäße Antenne kann bei entsprechender Dimensionierung auch im GSM1800 (DCS-) Band, im UMTS-Band und im Bluetooth-Band (BT-Band bei 2480 MHz) verwendet werden.
  • Die Antenne kann sich auch aus mehreren keramischen Substraten mit gleichen oder unterschiedlichen dielektrischen und /oder permeablen Eigenschaften mit jeweils einer Oberflächenmetallisierung zusammensetzen.

Claims (9)

  1. Antenne mit mindestens einem keramischen Substrat (10) und einer Metallisierung, wobei das Substrat (10) eine obere Stirnfläche, eine untere Stirnfläche und mindestens eine Seitenfläche hat, die Metallisierung eine Oberflächenmetallisierung ist, wobei sie
    - eine Zuführung (12) für abzustrahlende elektromagnetische Energie enthält, die sich auf der unteren Stirnfläche des Substrates befindet,
    - mindestens eine erste Metallisierungsstruktur (30) enthält, die sich auf der oberen Stirnfläche des Substrates befindet, und
    - eine entlang die mindestens eine Seitenfläche des Substrates (10) verlaufende Leiterbahn (20) enthält, die die Zuführung (12) mit der ersten Metallisierungsstruktur (30) elektrisch verbindet,
    und wobei die erste Metallisierungsstruktur (30) ein erstes Metallisierungsplättchen (32) umfasst,
    dadurch gekennzeichnet,
    dass die erste Metallisierungsstruktur (30) ferner einen ersten Leiterbahnabschnitt (31) umfasst, der das mindestens erste Metallisierungsplättchen (32) mit der Leiterbahn (20) verbindet, wobei der Leiterbahnabschnitt (31) sich von dem ersten Metallisierungsplättchen (32) in eine Richtung weg von der Zuführung erstreckt.
  2. Antenne nach Anspruch 1,
    dadurch gekennzeichnet,
    dass die Zuführung (12) im Bereich der Mitte einer ersten Seitenfläche (13) an der oberen Stirnfläche des Substrates (11) liegt und die Leiterbahn (20) mit einem ersten, zweiten bzw. dritten Abschnitt (21, 22, 23) entlang der ersten, einer zweiten und zumindest eines Teils einer dritten Seitenfläche (13, 14, 15) des Substrates (10) verläuft.
  3. Antenne nach Anspruch 1,
    dadurch gekennzeichnet,
    dass auf die untere Stirnfläche des Substrates (10) eine zweite Metallisierungsstruktur (40) aufgebracht ist, die mit der Leiterbahn (20) verbunden ist und einen ersten, sich von einer der Zuführung (12) gegenüberliegenden Seite des Substrates in Richtung auf die Zuführung erstreckenden Leiterbahnabschnitt (41) sowie ein zweites Metallisierungsplättchen (42) umfasst.
  4. Antenne nach Anspruch 3,
    dadurch gekennzeichnet,
    dass die erste und die zweite Metallisierungsstruktur (30, 40) jeweils einen zweiten Leiterbahnabschnitt (32; 42) umfassen, der sich jeweils entlang einer Kante zu der der Zuführung (12) gegenüberliegenden dritten Seitenfläche (15) des Substrates (10) erstreckt und jeweils mit den ersten Leiterbahnabschnitt (31; 41) fortsetzt.
  5. Antenne nach Anspruch 4,
    dadurch gekennzeichnet,
    dass sich der dritte Abschnitt (23) der Leiterbahn (20) bis zu einer Kante der dritten Seitenfläche (15) mit einer vierten Seitenfläche (16) des Substrates (10) erstreckt und an seinem Ende in ein T-ähnliches Endstück (231) übergeht, dessen freie Schenkel jeweils mit dem zweiten Leiterbahnabschnitt (32; 42) verbunden sind.
  6. Antenne nach Anspruch 1,
    dadurch gekennzeichnet,
    dass in die Leiterbahn (20) ein im wesentlichen quer zu dieser verlaufender Schlitz (211) eingebracht ist, dessen Länge und Breite so gewählt ist, dass eine Impedanzanpassung der Antenne an eine konkrete Einbausituation erzielt wird.
  7. Antenne nach dem Oberbegriff von Anspruch 1,
    dadurch gekennzeichnet,
    dass sie sich aus mehreren keramischen Substraten mit jeweils einer Oberflächenmetallisierung nach dem kennzeichnenden Teil des Anspruchs 1 zusammensetzt.
  8. Gedruckte Schaltungsplatine, insbesondere zur Oberflächenmontage von elektronischen Bauelementen,
    gekennzeichnet durch eine Antenne nach einem der vorhergehenden Ansprüche.
  9. Mobiles Telekommunikationsgerätes insbesondere für den GSM- oder UMTS-Bereich,
    gekennzeichnet durch eine Antenne nach einem der Ansprüche 1 bis 7.
EP01000519A 2000-10-09 2001-10-05 Miniaturisierte Mikrowellenantenne Expired - Lifetime EP1195845B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10049844 2000-10-09
DE10049844A DE10049844A1 (de) 2000-10-09 2000-10-09 Miniaturisierte Mikrowellenantenne

Publications (3)

Publication Number Publication Date
EP1195845A2 EP1195845A2 (de) 2002-04-10
EP1195845A3 EP1195845A3 (de) 2004-01-02
EP1195845B1 true EP1195845B1 (de) 2006-05-03

Family

ID=7659079

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01000519A Expired - Lifetime EP1195845B1 (de) 2000-10-09 2001-10-05 Miniaturisierte Mikrowellenantenne

Country Status (7)

Country Link
US (2) US6680700B2 (de)
EP (1) EP1195845B1 (de)
JP (1) JP4017852B2 (de)
KR (1) KR20020028800A (de)
CN (1) CN1349277A (de)
DE (2) DE10049844A1 (de)
TW (1) TW529206B (de)

Families Citing this family (122)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7277424B1 (en) 1998-07-21 2007-10-02 Dowling Eric M Method and apparatus for co-socket telephony
DE10049844A1 (de) * 2000-10-09 2002-04-11 Philips Corp Intellectual Pty Miniaturisierte Mikrowellenantenne
DE10049845A1 (de) * 2000-10-09 2002-04-11 Philips Corp Intellectual Pty Mehrband-Mikrowellenantenne
KR100444219B1 (ko) * 2001-09-25 2004-08-16 삼성전기주식회사 원형편파용 패치 안테나
DE10148370A1 (de) * 2001-09-29 2003-04-10 Philips Corp Intellectual Pty Miniaturisierte Richtantenne
US8749054B2 (en) 2010-06-24 2014-06-10 L. Pierre de Rochemont Semiconductor carrier with vertical power FET module
KR100524347B1 (ko) * 2002-05-31 2005-10-28 한국과학기술연구원 세라믹 칩 안테나
DE10226794A1 (de) * 2002-06-15 2004-01-08 Philips Intellectual Property & Standards Gmbh Miniaturisierte Mehrband-Antenne
US6956530B2 (en) * 2002-09-20 2005-10-18 Centurion Wireless Technologies, Inc. Compact, low profile, single feed, multi-band, printed antenna
DE10247297A1 (de) * 2002-10-10 2004-04-22 Philips Intellectual Property & Standards Gmbh Empfangsmodul
JP3739740B2 (ja) * 2002-11-28 2006-01-25 京セラ株式会社 表面実装型アンテナおよびアンテナ装置
WO2004051800A1 (ja) * 2002-11-29 2004-06-17 Tdk Corporation チップアンテナ、チップアンテナユニット及びこれらを用いた無線通信装置
JP2005020433A (ja) * 2003-06-26 2005-01-20 Kyocera Corp 表面実装型アンテナおよびアンテナ装置ならびに無線通信装置
KR20050010549A (ko) * 2003-07-21 2005-01-28 엘지전자 주식회사 Uwb 통신용 초소형 안테나
JP2005109602A (ja) * 2003-09-29 2005-04-21 Mitsumi Electric Co Ltd アンテナ装置
JP2005175757A (ja) * 2003-12-10 2005-06-30 Matsushita Electric Ind Co Ltd アンテナモジュール
KR20060123577A (ko) * 2004-02-25 2006-12-01 코닌클리즈케 필립스 일렉트로닉스 엔.브이. 유전체 안테나, 인쇄 회로 기판, 송수신 장치 및 그 제조방법
US20070188383A1 (en) * 2004-04-27 2007-08-16 Murata Manufacturing Co., Ltd. Antenna and portable radio communication apparatus
WO2006039699A2 (en) * 2004-10-01 2006-04-13 De Rochemont L Pierre Ceramic antenna module and methods of manufacture thereof
KR100707242B1 (ko) * 2005-02-25 2007-04-13 한국정보통신대학교 산학협력단 유전체 칩 안테나
US20060281763A1 (en) * 2005-03-25 2006-12-14 Axon Jonathan R Carboxamide inhibitors of TGFbeta
US7183983B2 (en) * 2005-04-26 2007-02-27 Nokia Corporation Dual-layer antenna and method
US8350657B2 (en) * 2005-06-30 2013-01-08 Derochemont L Pierre Power management module and method of manufacture
CN102255143B (zh) 2005-06-30 2014-08-20 L.皮尔·德罗什蒙 电子元件及制造方法
US8354294B2 (en) 2006-01-24 2013-01-15 De Rochemont L Pierre Liquid chemical deposition apparatus and process and products therefrom
JP4227141B2 (ja) 2006-02-10 2009-02-18 株式会社カシオ日立モバイルコミュニケーションズ アンテナ装置
JP5123493B2 (ja) * 2006-05-30 2013-01-23 新光電気工業株式会社 配線基板及び半導体装置
US7466268B2 (en) * 2006-07-06 2008-12-16 Inpaq Technology Co., Ltd. Frequency adjustable antenna apparatus and a manufacturing method thereof
JP4253359B2 (ja) * 2007-03-16 2009-04-08 アルプス電気株式会社 通信システム
KR101383465B1 (ko) * 2007-06-11 2014-04-10 삼성전자주식회사 휴대 단말기에 적용되는 다중대역 안테나
WO2008152731A1 (ja) * 2007-06-15 2008-12-18 Pioneer Corporation ダイポールアンテナ
EP2028717B1 (de) 2007-08-23 2011-11-16 Research In Motion Limited Mehrbandantennenanordnung angeordnet auf einem dreidimensionalen Substrat
US7800546B2 (en) * 2007-09-06 2010-09-21 Research In Motion Limited Mobile wireless communications device including multi-loop folded monopole antenna and related methods
EP2034555B1 (de) * 2007-09-06 2011-01-19 Research In Motion Limited Mobile drahtlose Kommunikationsvorrichtung mit mehrfach gewundener gefalteter Monopolantenne und entsprechende Verfahren
US7959598B2 (en) 2008-08-20 2011-06-14 Asante Solutions, Inc. Infusion pump systems and methods
US8922347B1 (en) 2009-06-17 2014-12-30 L. Pierre de Rochemont R.F. energy collection circuit for wireless devices
US8952858B2 (en) 2009-06-17 2015-02-10 L. Pierre de Rochemont Frequency-selective dipole antennas
KR101615760B1 (ko) * 2009-07-22 2016-04-27 삼성전자주식회사 이동통신 단말기의 안테나 장치 제조 방법
EP2323217B1 (de) * 2009-11-13 2014-04-30 BlackBerry Limited Antenne für eine Multimodus-MIMO-Kommunikation in tragbaren Vorrichtungen
JP4853569B2 (ja) * 2009-11-13 2012-01-11 パナソニック株式会社 アンテナモジュール
US8754814B2 (en) * 2009-11-13 2014-06-17 Blackberry Limited Antenna for multi mode MIMO communication in handheld devices
US8552708B2 (en) 2010-06-02 2013-10-08 L. Pierre de Rochemont Monolithic DC/DC power management module with surface FET
US9023493B2 (en) 2010-07-13 2015-05-05 L. Pierre de Rochemont Chemically complex ablative max-phase material and method of manufacture
KR101178852B1 (ko) 2010-07-13 2012-09-03 한밭대학교 산학협력단 이중대역 칩 안테나
JP5976648B2 (ja) 2010-08-23 2016-08-24 デ,ロシェモント,エル.,ピエール 共振トランジスタゲートを有するパワーfet
WO2012061656A2 (en) 2010-11-03 2012-05-10 De Rochemont L Pierre Semiconductor chip carriers with monolithically integrated quantum dot devices and method of manufacture thereof
WO2013044434A1 (en) * 2011-09-26 2013-04-04 Nokia Corporation An antenna apparatus and a method
TWI463490B (zh) * 2011-10-11 2014-12-01 Universal Scient Ind Shanghai 儲存元件收納裝置的蓋板
US12057715B2 (en) 2012-07-06 2024-08-06 Energous Corporation Systems and methods of wirelessly delivering power to a wireless-power receiver device in response to a change of orientation of the wireless-power receiver device
US10992185B2 (en) 2012-07-06 2021-04-27 Energous Corporation Systems and methods of using electromagnetic waves to wirelessly deliver power to game controllers
US10063105B2 (en) 2013-07-11 2018-08-28 Energous Corporation Proximity transmitters for wireless power charging systems
US9876394B1 (en) 2014-05-07 2018-01-23 Energous Corporation Boost-charger-boost system for enhanced power delivery
US10992187B2 (en) 2012-07-06 2021-04-27 Energous Corporation System and methods of using electromagnetic waves to wirelessly deliver power to electronic devices
US11502551B2 (en) 2012-07-06 2022-11-15 Energous Corporation Wirelessly charging multiple wireless-power receivers using different subsets of an antenna array to focus energy at different locations
US10965164B2 (en) 2012-07-06 2021-03-30 Energous Corporation Systems and methods of wirelessly delivering power to a receiver device
US10312715B2 (en) 2015-09-16 2019-06-04 Energous Corporation Systems and methods for wireless power charging
US9825674B1 (en) 2014-05-23 2017-11-21 Energous Corporation Enhanced transmitter that selects configurations of antenna elements for performing wireless power transmission and receiving functions
US10256657B2 (en) 2015-12-24 2019-04-09 Energous Corporation Antenna having coaxial structure for near field wireless power charging
US10439448B2 (en) 2014-08-21 2019-10-08 Energous Corporation Systems and methods for automatically testing the communication between wireless power transmitter and wireless power receiver
US9787103B1 (en) 2013-08-06 2017-10-10 Energous Corporation Systems and methods for wirelessly delivering power to electronic devices that are unable to communicate with a transmitter
US10381880B2 (en) 2014-07-21 2019-08-13 Energous Corporation Integrated antenna structure arrays for wireless power transmission
US9867062B1 (en) 2014-07-21 2018-01-09 Energous Corporation System and methods for using a remote server to authorize a receiving device that has requested wireless power and to determine whether another receiving device should request wireless power in a wireless power transmission system
US8970436B2 (en) * 2013-03-14 2015-03-03 Circomm Technology Corp. Surface mount device multi-frequency antenna module
US9893427B2 (en) 2013-03-14 2018-02-13 Ethertronics, Inc. Antenna-like matching component
US9561324B2 (en) 2013-07-19 2017-02-07 Bigfoot Biomedical, Inc. Infusion pump system and method
US10158257B2 (en) 2014-05-01 2018-12-18 Energous Corporation System and methods for using sound waves to wirelessly deliver power to electronic devices
US10068703B1 (en) 2014-07-21 2018-09-04 Energous Corporation Integrated miniature PIFA with artificial magnetic conductor metamaterials
US9936337B2 (en) 2015-05-23 2018-04-03 Square, Inc. Tuning a NFC antenna of a device
US11023878B1 (en) 2015-06-05 2021-06-01 Square, Inc. Apparatuses, methods, and systems for transmitting payment proxy information
US10523033B2 (en) 2015-09-15 2019-12-31 Energous Corporation Receiver devices configured to determine location within a transmission field
US11710321B2 (en) 2015-09-16 2023-07-25 Energous Corporation Systems and methods of object detection in wireless power charging systems
US10778041B2 (en) 2015-09-16 2020-09-15 Energous Corporation Systems and methods for generating power waves in a wireless power transmission system
US10482440B1 (en) 2015-09-18 2019-11-19 Square, Inc. Simulating NFC experience
US10861003B1 (en) 2015-09-24 2020-12-08 Square, Inc. Near field communication device coupling system
US10734717B2 (en) 2015-10-13 2020-08-04 Energous Corporation 3D ceramic mold antenna
US10027180B1 (en) 2015-11-02 2018-07-17 Energous Corporation 3D triple linear antenna that acts as heat sink
US10063108B1 (en) 2015-11-02 2018-08-28 Energous Corporation Stamped three-dimensional antenna
US10038332B1 (en) 2015-12-24 2018-07-31 Energous Corporation Systems and methods of wireless power charging through multiple receiving devices
US10027159B2 (en) * 2015-12-24 2018-07-17 Energous Corporation Antenna for transmitting wireless power signals
US11863001B2 (en) 2015-12-24 2024-01-02 Energous Corporation Near-field antenna for wireless power transmission with antenna elements that follow meandering patterns
US10079515B2 (en) 2016-12-12 2018-09-18 Energous Corporation Near-field RF charging pad with multi-band antenna element with adaptive loading to efficiently charge an electronic device at any position on the pad
US10275573B2 (en) 2016-01-13 2019-04-30 Bigfoot Biomedical, Inc. User interface for diabetes management system
US10610643B2 (en) 2016-01-14 2020-04-07 Bigfoot Biomedical, Inc. Occlusion resolution in medication delivery devices, systems, and methods
CA3009351A1 (en) 2016-01-14 2017-07-20 Bigfoot Biomedical, Inc. Adjusting insulin delivery rates
US10923954B2 (en) 2016-11-03 2021-02-16 Energous Corporation Wireless power receiver with a synchronous rectifier
KR102349607B1 (ko) 2016-12-12 2022-01-12 에너저스 코포레이션 전달되는 무선 전력을 최대화하기 위한 근접장 충전 패드의 안테나 존들을 선택적으로 활성화시키는 방법
WO2018111928A1 (en) 2016-12-12 2018-06-21 Mazlish Bryan Alarms and alerts for medication delivery devices and related systems and methods
US10439442B2 (en) 2017-01-24 2019-10-08 Energous Corporation Microstrip antennas for wireless power transmitters
US10680319B2 (en) 2017-01-06 2020-06-09 Energous Corporation Devices and methods for reducing mutual coupling effects in wireless power transmission systems
US11033682B2 (en) 2017-01-13 2021-06-15 Bigfoot Biomedical, Inc. Insulin delivery methods, systems and devices
US10881792B2 (en) 2017-01-13 2021-01-05 Bigfoot Biomedical, Inc. System and method for adjusting insulin delivery
CN106960882B (zh) * 2017-03-20 2018-06-15 河北盛平电子科技有限公司 一种表面金属化陶瓷立方体和制作方法
US11011942B2 (en) 2017-03-30 2021-05-18 Energous Corporation Flat antennas having two or more resonant frequencies for use in wireless power transmission systems
US10511097B2 (en) 2017-05-12 2019-12-17 Energous Corporation Near-field antennas for accumulating energy at a near-field distance with minimal far-field gain
US11462949B2 (en) 2017-05-16 2022-10-04 Wireless electrical Grid LAN, WiGL Inc Wireless charging method and system
US12074460B2 (en) 2017-05-16 2024-08-27 Wireless Electrical Grid Lan, Wigl Inc. Rechargeable wireless power bank and method of using
US12074452B2 (en) 2017-05-16 2024-08-27 Wireless Electrical Grid Lan, Wigl Inc. Networked wireless charging system
USD874471S1 (en) 2017-06-08 2020-02-04 Insulet Corporation Display screen with a graphical user interface
US10848853B2 (en) 2017-06-23 2020-11-24 Energous Corporation Systems, methods, and devices for utilizing a wire of a sound-producing device as an antenna for receipt of wirelessly delivered power
US10430784B1 (en) * 2017-08-31 2019-10-01 Square, Inc. Multi-layer antenna
US11342798B2 (en) 2017-10-30 2022-05-24 Energous Corporation Systems and methods for managing coexistence of wireless-power signals and data signals operating in a same frequency band
CN108073971A (zh) * 2017-12-25 2018-05-25 上海数斐信息科技有限公司 一种小型化双谐振抗金属rfid标签
US10615647B2 (en) 2018-02-02 2020-04-07 Energous Corporation Systems and methods for detecting wireless power receivers and other objects at a near-field charging pad
US11159057B2 (en) 2018-03-14 2021-10-26 Energous Corporation Loop antennas with selectively-activated feeds to control propagation patterns of wireless power signals
USD928199S1 (en) 2018-04-02 2021-08-17 Bigfoot Biomedical, Inc. Medication delivery device with icons
US11515732B2 (en) 2018-06-25 2022-11-29 Energous Corporation Power wave transmission techniques to focus wirelessly delivered power at a receiving device
US11437735B2 (en) 2018-11-14 2022-09-06 Energous Corporation Systems for receiving electromagnetic energy using antennas that are minimally affected by the presence of the human body
US11182770B1 (en) 2018-12-12 2021-11-23 Square, Inc. Systems and methods for sensing locations of near field communication devices
USD920343S1 (en) 2019-01-09 2021-05-25 Bigfoot Biomedical, Inc. Display screen or portion thereof with graphical user interface associated with insulin delivery
KR20210117283A (ko) 2019-01-28 2021-09-28 에너저스 코포레이션 무선 전력 전송을 위한 소형 안테나에 대한 시스템들 및 방법들
EP3921945A1 (de) 2019-02-06 2021-12-15 Energous Corporation Systeme und verfahren zur schätzung der optimalen phasen zur verwendung für einzelne antennen in einer antennenanordnung
US11381118B2 (en) 2019-09-20 2022-07-05 Energous Corporation Systems and methods for machine learning based foreign object detection for wireless power transmission
US11139699B2 (en) 2019-09-20 2021-10-05 Energous Corporation Classifying and detecting foreign objects using a power amplifier controller integrated circuit in wireless power transmission systems
CN115104234A (zh) 2019-09-20 2022-09-23 艾诺格思公司 使用多个整流器保护无线电力接收器以及使用多个整流器建立带内通信的系统和方法
WO2021055898A1 (en) 2019-09-20 2021-03-25 Energous Corporation Systems and methods for machine learning based foreign object detection for wireless power transmission
EP4073905A4 (de) 2019-12-13 2024-01-03 Energous Corporation Ladepad mit führungskonturen zum ausrichten einer elektronischen vorrichtung auf dem ladepad und zur effizienten übertragung von nahfeld-hochfrequenzenergie auf die elektronische vorrichtung
US10985617B1 (en) 2019-12-31 2021-04-20 Energous Corporation System for wirelessly transmitting energy at a near-field distance without using beam-forming control
US11799324B2 (en) 2020-04-13 2023-10-24 Energous Corporation Wireless-power transmitting device for creating a uniform near-field charging area
USD977502S1 (en) 2020-06-09 2023-02-07 Insulet Corporation Display screen with graphical user interface
US11916398B2 (en) 2021-12-29 2024-02-27 Energous Corporation Small form-factor devices with integrated and modular harvesting receivers, and shelving-mounted wireless-power transmitters for use therewith
CN114628892B (zh) * 2022-04-07 2024-09-03 展讯通信(上海)有限公司 Pcb天线及电子设备
WO2024147928A1 (en) 2023-01-06 2024-07-11 Insulet Corporation Automatically or manually initiated meal bolus delivery with subsequent automatic safety constraint relaxation

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02150101A (ja) * 1988-12-01 1990-06-08 Seiko Instr Inc 超小型平面パッチアンテナ
JPH0974307A (ja) 1995-09-05 1997-03-18 Murata Mfg Co Ltd チップアンテナ
JPH10145125A (ja) * 1996-09-10 1998-05-29 Murata Mfg Co Ltd アンテナ装置
US5945951A (en) * 1997-09-03 1999-08-31 Andrew Corporation High isolation dual polarized antenna system with microstrip-fed aperture coupled patches
US6028567A (en) * 1997-12-10 2000-02-22 Nokia Mobile Phones, Ltd. Antenna for a mobile station operating in two frequency ranges
JP3738577B2 (ja) * 1998-02-13 2006-01-25 株式会社村田製作所 アンテナ装置及び移動体通信機器
JPH11345518A (ja) * 1998-06-01 1999-12-14 Murata Mfg Co Ltd 複合誘電体材及びこの複合誘電体材を用いた誘電体アンテナ
JP3286916B2 (ja) * 1998-08-25 2002-05-27 株式会社村田製作所 アンテナ装置およびそれを用いた通信機
JP3554960B2 (ja) * 1999-06-25 2004-08-18 株式会社村田製作所 アンテナ装置およびそれを用いた通信装置
DE10114012B4 (de) * 2000-05-11 2011-02-24 Amtran Technology Co., Ltd., Chung Ho Chipantenne
DE10049843A1 (de) * 2000-10-09 2002-04-11 Philips Corp Intellectual Pty Fleckenmusterantenne für den Mikrowellenbereich
DE10049844A1 (de) * 2000-10-09 2002-04-11 Philips Corp Intellectual Pty Miniaturisierte Mikrowellenantenne
KR100856597B1 (ko) * 2000-10-12 2008-09-03 후루까와덴끼고오교 가부시끼가이샤 소형안테나

Also Published As

Publication number Publication date
DE50109679D1 (de) 2006-06-08
EP1195845A3 (de) 2004-01-02
US20020067312A1 (en) 2002-06-06
DE10049844A1 (de) 2002-04-11
JP4017852B2 (ja) 2007-12-05
US6680700B2 (en) 2004-01-20
CN1349277A (zh) 2002-05-15
US20040130495A1 (en) 2004-07-08
JP2002185231A (ja) 2002-06-28
EP1195845A2 (de) 2002-04-10
TW529206B (en) 2003-04-21
KR20020028800A (ko) 2002-04-17

Similar Documents

Publication Publication Date Title
EP1195845B1 (de) Miniaturisierte Mikrowellenantenne
EP1204160B1 (de) Mehrband-Mikrowellenantenne
EP0982799B1 (de) Dielektrische Resonatorantenne
DE602005006417T2 (de) Chipantenne
DE102005040499B4 (de) Oberflächenmontierte Antenne und diese verwendende Antennenvorrichtung sowie Drahtloskommunikationsvorrichtung
DE102005015561A1 (de) Interne Breitbandantenne
DE10215762B4 (de) Antennenvorrichtung
DE60309994T2 (de) Interne Antenne
DE60211889T2 (de) Breitbandantenne für die drahtlose kommunikation
EP1289053A2 (de) Schaltungsplatine und SMD-Antenne hierfür
EP1829158B1 (de) Disc-monopol-antennenstruktur
EP1250723B1 (de) Antenne für ein kommunikationsendgerät
DE102008007258A1 (de) Mehrband-Antenne sowie mobiles Kommunikationsendgerät, welches diese aufweist
DE60301841T2 (de) Antennenanordnung und damit ausgestattetes Kommunikationsgerät
DE10347722A1 (de) Drahtlose LAN-Antenne und zugehörige drahtlose LAN-Karte
DE102004029215B4 (de) Mehrband-Mehrschicht-Chipantenne
DE19713929A1 (de) Sende-Empfangs-Einrichtung
DE10205358A1 (de) Mäanderförmige Dualband-Antenne
DE102007056258A1 (de) Chipantenne sowie mobiles Telekommunikationsendgerät, welches diese aufweist
EP1298760A1 (de) Miniaturisierte Richtantenne
EP1195846A2 (de) Fleckenmusterantenne für den Mikrowellenbereich
DE69811966T2 (de) Antennenvorrichtung
DE10113349A1 (de) Antenne mit Substrat und Leiterbahnstruktur
DE60313588T2 (de) Mikrowellenantenne
DE60122698T2 (de) Mehrbandantenne

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: KONINKLIJKE PHILIPS ELECTRONICS N.V.

Owner name: PHILIPS CORPORATE INTELLECTUAL PROPERTY GMBH

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: PHILIPS INTELLECTUAL PROPERTY & STANDARDS GMBH

Owner name: KONINKLIJKE PHILIPS ELECTRONICS N.V.

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20040702

AKX Designation fees paid

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 20040910

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20060503

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50109679

Country of ref document: DE

Date of ref document: 20060608

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060815

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20061227

Year of fee payment: 6

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070206

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20070925

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20071030

Year of fee payment: 7

Ref country code: GB

Payment date: 20071214

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080501

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20081005

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20090630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081005

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081005