EP1195845B1 - Antenne radioélectrique miniaturisée - Google Patents

Antenne radioélectrique miniaturisée Download PDF

Info

Publication number
EP1195845B1
EP1195845B1 EP01000519A EP01000519A EP1195845B1 EP 1195845 B1 EP1195845 B1 EP 1195845B1 EP 01000519 A EP01000519 A EP 01000519A EP 01000519 A EP01000519 A EP 01000519A EP 1195845 B1 EP1195845 B1 EP 1195845B1
Authority
EP
European Patent Office
Prior art keywords
antenna
metallization
substrate
conductor track
feed terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01000519A
Other languages
German (de)
English (en)
Other versions
EP1195845A2 (fr
EP1195845A3 (fr
Inventor
Achim c/o Philips Corporate Intellectual Hilgers
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Philips Intellectual Property and Standards GmbH
Koninklijke Philips NV
Original Assignee
Philips Intellectual Property and Standards GmbH
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Philips Intellectual Property and Standards GmbH, Koninklijke Philips Electronics NV filed Critical Philips Intellectual Property and Standards GmbH
Publication of EP1195845A2 publication Critical patent/EP1195845A2/fr
Publication of EP1195845A3 publication Critical patent/EP1195845A3/fr
Application granted granted Critical
Publication of EP1195845B1 publication Critical patent/EP1195845B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/08Radiating ends of two-conductor microwave transmission lines, e.g. of coaxial lines, of microstrip lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/30Combinations of separate antenna units operating in different wavebands and connected to a common feeder system
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/342Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes
    • H01Q5/357Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes using a single feed point
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/40Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/045Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means

Definitions

  • the invention relates to a miniaturized antenna having at least one ceramic substrate and a metallization, in particular for use in the high-frequency and Mikrowsllen Scheme.
  • the invention further relates to a circuit board and a mobile telecommunication device with such an antenna.
  • the antenna of such an electronic device such as a mobile phone
  • the antenna is a resonant component which has to be adapted to the respective application or operating frequency range.
  • wire antennas are used to convey the desired information. In order to achieve good radiation and reception properties with these antennas, certain physical lengths are absolutely necessary.
  • Optimal radiation conditions have so-called ⁇ / 2 dipole antennas whose length corresponds to half the wavelength ( ⁇ ) of the signal in free space.
  • the antenna is made up of two ⁇ / 4 long wires that are rotated by 180 degrees against each other. These dipole antennas are suitable for many applications, especially for the mobile Telecommunications are too large (in the GSM900 band, the wavelength is about 32 cm), is resorted to alternative antenna structures.
  • a widely used antenna, in particular for the field of mobile telecommunications, is the so-called ⁇ / 4 monopole. This consists of a wire with a length of one quarter of the wavelength. The radiation behavior of this antenna is acceptable with a simultaneously acceptable physical length (about 8 cm for the GSM band).
  • this type of antenna is characterized by a high impedance and radiation bandwidth, so that they are also used in systems that require a relatively high bandwidth.
  • this type of antennae chooses passive electrical matching. This usually consists of a combination of at least one coil and with a capacity which, with suitable dimensioning, adapts the input impedance of the ⁇ / 4 monopole, which is different from 50 Ohm, to the upstream 50 Ohm components.
  • the wire antennas are generally used as the extendable version in, for example, a cellular phone, the ⁇ / 4 monopoles can not be soldered directly to the circuit board. As a result, the information transfer between the circuit board and the antenna requires expensive contacts
  • Another disadvantage of this type of antenna is the mechanical instability of the antenna itself as well as the adaptation of the housing to the antenna required by this instability. For example, if a mobile phone falls on the ground, the antenna generally breaks down or the case is damaged at the point where the antenna can be pulled out.
  • EP 0 762 538 discloses chip antennas having a substrate and at least one conductor.
  • these antennas have the disadvantage that at least parts of the interconnects run within the substrate, and thus the substrate in several Layers and must be made with a certain minimum size, which can be relatively expensive.
  • this conductor track guide it is not possible with this conductor track guide to make an electrical adjustment of the conductors to a concrete installation situation in the finished state, since the conductor is no longer or only partially accessible.
  • EP 0 982 798 discloses an antenna comprising a substrate with a metallization.
  • the metallization is mounted on a first surface of the substrate and is formed by a metallization structure with a metallic signal feed line.
  • the antenna is mounted with its second surface opposite the first surface on a first surface of a base substrate having two separate electrodes on opposite sides of the base substrate. The distance between the first surface of the antenna and a non-antenna side of the base substrate determines the antenna gain.
  • This antenna has the disadvantage that parts of the metallization between the antenna and the base substrate run, and thus these parts are no longer accessible, so that a change in the antenna metallization in the installed state is no longer possible.
  • the base substrate with antenna metallised on both sides requires a considerable volume in a device which should have the smallest possible dimensions.
  • the invention is therefore based on the object to provide an antenna with at least one ceramic substrate and a metallization, in particular for use in the high-frequency and microwave range, which has a high mechanical stability and is particularly suitable for miniaturization.
  • an antenna is to be created in which can be at least largely dispensed with passive matching circuits and also for surface mounting with SMD (surface mounted device) technology on a Circuit board and for operation in the GSM or UMTS bands sufficiently high resonant frequency and impedance bandwidth is suitable.
  • SMD surface mounted device
  • an antenna is to be created in which the impedance matching in the installed state can be made.
  • a first metallization further comprises a first conductor portion which connects the at least first metallization plate to the conductor track, wherein the conductor track portion extends away from the first metallization plate in one direction from the feeder.
  • the antenna can be surface mounted (SMD) on a printed circuit board (along with the other components).
  • SMD surface mounted
  • the size of the antenna can be further reduced, and the antenna is mechanically much more stable and insensitive to external influences.
  • the embodiments according to claim 3 has the advantage that the production of the substrate and the surface metallization is technically relatively simple.
  • the embodiments described below have a substrate of a substantially block-shaped block whose height is about a factor of 3 to 10 smaller than its length or width.
  • the upper and lower (large) surfaces of the substrates in the representations of the figures are to be referred to as upper and lower end surfaces and the surfaces perpendicular thereto as side surfaces.
  • a cuboid substrate it is also possible, instead of a cuboid substrate, to select other geometric shapes, such as, for example, a cylindrical shape, to which a corresponding resonant strip conductor structure having, for example, a spiral shape is applied.
  • the substrates can be produced by embedding a ceramic powder in a polymer matrix and have a dielectric constant of ⁇ r > 1 and / or a permeability of ⁇ r > 1.
  • a first embodiment shown in Figure 1 includes a cuboid substrate 10 having a resonant wiring pattern 20, 30.
  • the substrate 10 is provided at the corners of its lower end face with a plurality of solder pads 11, with which it by surface mounting (SMD technique) on a circuit board can be soldered.
  • SMD technique surface mounting
  • a feed 12 in the form of a metallization which is soldered during assembly on a circuit board to a corresponding conductor region, via which the antenna is fed with radiated electromagnetic energy.
  • a first portion 21 of a conductor track 20 which then continues in a horizontal direction along the first side surface 13 to a second side surface 14.
  • the trace then continues in the horizontal direction along the second side surface 14 at about half its height as the second portion 22 and along one of the first side surface 13 opposite third side surface 15 at about half height as the third portion 23 in the region of the center of the third side surface 15th
  • the third conductor track section 23 then extends in the vertical direction as far as the end face in the illustration, where it is connected to a first conductor track section 31 of a (first) metallization structure 30 applied thereto.
  • the metallization structure 30 comprises the first conductor track section 31, which extends in the longitudinal direction of the substrate in the direction of the feed 12, and a substantially rectangular metallization plate 32, into which the first trace section 31 opens.
  • the effective length of the structure between the feed 12 and the metallization plate 32 corresponds to approximately half the wavelength of the signal to be radiated in the substrate.
  • this antenna combines several advantageous properties.
  • the antenna has a particularly high impedance bandwidth
  • the antenna has a very uniform, quasi omnidirectional directivity.
  • the dimensions of the ceramic substrate were about 17 x 11 x 4 mm 3 and the total length of the resonator structure formed of the trace 20 and the metallization structure 30 was about 39 mm.
  • the input impedance of the antenna is approximately 50 ohms.
  • This antenna is thus ideally suited for use in a mobile device, especially since it can also be applied (together with the other components) by surface mounting (SMD technology) to a circuit board, whereby the production is considerably simplified.
  • SMD surface mounting
  • Another advantage of this antenna is that by introducing a slot 211 (air gap) between the feed 12 and the first section 21 of the track, the input impedance of the antenna can be influenced and adapted to a specific installation situation. This is possible in the installed state of the antenna, for example by a laser trimming, in which the width and / or the length of the slot (and thus the capacitive coupling between the feed 12 and the resonator structure 20, 30) is increased by a laser beam until a optimal adaptation is achieved.
  • the tuning is preferably performed so that the particularly large bandwidth of the first harmonic of the resonance frequency is used to cover the GSM bands.
  • the antenna can also be designed for use in the UMTS band (1970 to 2170 MHz).
  • FIG. 4 shows a second embodiment of the antenna.
  • This antenna is formed by a substrate 10 with a resonant metallic trace structure 20, 30, 40, which is composed essentially of three parts, namely a common trace 20 according to FIG. 4a, a first metallization structure 30 on the upper (first) end face of the substrate (FIG. 4b) and a second metallization structure 40 on the opposite lower (second) end face of the substrate (FIG. 4c), wherein these structures 30, 40 are fed through the conductor 20.
  • a resonant metallic trace structure 20, 30, 40 which is composed essentially of three parts, namely a common trace 20 according to FIG. 4a, a first metallization structure 30 on the upper (first) end face of the substrate (FIG. 4b) and a second metallization structure 40 on the opposite lower (second) end face of the substrate (FIG. 4c), wherein these structures 30, 40 are fed through the conductor 20.
  • a feed 12 in the form of a metallization piece is in turn arranged on the lower end face of the substrate 10 in the region of the center of a first side face 13, which is soldered in the surface mounting of the antenna to a conductor region, via which the antenna is fed with electromagnetic energy.
  • a first section 21 of the conductor track 20 at the first side face 13 initially extends vertically in the direction of the upper end face and then in the horizontal direction up to a second side face 14.
  • the trace 20 extends as a second section 22 further along the second side surface 14 and as a third portion 23 along one of the first side surface 13 opposite third side surface 15 at which the third portion ends with a along an edge to a fourth side surface 16 perpendicularly extending T-like end piece 231.
  • a first (upper) limb of the end piece 231 extending in the direction of the upper end face is connected to the first metallization structure 30, which comprises a first section 31 extending in the longitudinal direction of the substrate 10 in a manner similar to the first embodiment Direction extends to the feed 12 and finally into a first, substantially rectangular metallization plate 33 opens.
  • the first portion 31 is connected to the upper leg of the end piece 231 via a second track portion 32, which runs along the edge to the third side surface 15.
  • a lower limb of the end piece 231 extending in the direction of the lower end face is connected to the second metallization structure 40, which in a manner similar to the first metallization structure 30 is connected by a first Section 41 is formed, which extends in the longitudinal direction of the substrate in the direction of the feed 12 and finally in a second, substantially rectangular Metallmaschinesplättchen 43 opens.
  • a second section 42 extending along the edge to the third side face 15 is provided, which establishes a connection between the lower leg of the end piece 231 and the first section 41.
  • the effective length of the structures between the feed 12 and the first metallization plate 33 and between the feed 12 and the second metallization plate 43 again corresponds to approximately half the wavelength of the signal to be radiated in the substrate.
  • this second embodiment of the antenna can be mounted by surface mounting on a printed circuit board (SMD technique). Furthermore, a very uniform, quasi omnidirectional directional characteristic can be achieved both in the horizontal direction and in the direction perpendicular thereto.
  • SMD technique printed circuit board
  • the two metallization structures 30, 40 slightly different, that is, with different lengths or widths, with different coupling (for example, by a slot 211 variable width and / or length) to the common conductor track 20 or with different sizes of the first and second metallization plates 33, 43 are formed, two resonance frequencies are excited, which are shifted according to these deviations from each other.
  • the first metallization structure 30 generates a somewhat lower resonant frequency than the second metallization structure 40.
  • the number of these resonances can be increased by, for example, applying one or more further substrates with the same or similar resonant conductor track structures 20, 30, 40 to the substrate shown in FIG. This is relatively easy to manufacture, especially with the introduction of multilayer technology manufacturing technology. Furthermore, in the case of a layer structure comprising two substrates, a further resonance can be generated between these substrates.
  • the position and the spacing of the resonance frequencies can be adjusted as desired by appropriate choice of the dimensions of the substrates as well as of the resonant structures 20, 30, 40 , This also applies to the adaptation of the impedance of the antenna to the feeder wherein here by a corresponding change in the achieved with a variable slot 211 capacitive coupling, for example by Auslägerung and / or broadening of the slot with a laser beam (laser trimming), a setting on a concrete installation situation is possible.
  • Another advantage of this embodiment results in connection with the steepness of the impedance curve in the range of the resonance frequencies.
  • the steepness of this curve can provide a filtering effect of the antenna between the transmit and receive frequencies which can be used to reduce or even eliminate the requirements for the upstream and downstream filter circuits.
  • separate feeds are preferably provided for each of the first and second metallization structures 30, 40.
  • the dimensions of the ceramic substrate were about 17 x 11 x 4 mm 3 and the total length of the trace 20 and the first metallization structure 30 and the second metallization structure, respectively 40 each about 39 mm. This resulted in the course of the impedance spectrum shown in FIG. 5, in which the two resonance peaks are clearly recognizable.
  • FIG. 6 schematically shows a printed circuit board (PCB) 100 to which an antenna 110 according to the invention has been applied together with other components in the areas 120 and 130 of the circuit board 100 by surface mounting (SMD).
  • SMD surface mounting
  • the antenna according to the invention can also be used in the GSM1800 (DCS) band, in the UMTS band and in the Bluetooth band (BT band at 2480 MHz) with appropriate dimensioning.
  • DCS GSM1800
  • UMTS UMTS
  • Bluetooth band BT band at 2480 MHz
  • the antenna can also be composed of a plurality of ceramic substrates with the same or different dielectric and / or permeable properties, each with a surface metallization.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Details Of Aerials (AREA)
  • Waveguide Aerials (AREA)
  • Constitution Of High-Frequency Heating (AREA)
  • Support Of Aerials (AREA)

Claims (9)

  1. Antenne avec au moins un substrat céramique (10) et une métallisation, le substrat (10) présentant une surface d'about supérieure, une surface d'about inférieure et au moins une surface latérale et la métallisation étant une métallisation de surface, laquelle
    - contient une alimentation (12) pour l'énergie électromagnétique à rayonner qui se trouve sur la surface d'about inférieure du substrat,
    - contient au moins une première structure de métallisation (30) qui se trouve sur la surface d'about supérieure du substrat, et
    - contient une piste conductrice (20) s'étendant le long d'une surface latérale au moins du substrat (10), qui relie électriquement l'alimentation (12) avec la première structure de métallisation (30),
    et dans laquelle la première structure de métallisation (30) comprend une première plaquette de métallisation (32),
    caractérisée en ce
    que la première structure de métallisation (30) comprend par ailleurs un premier segment de piste conductrice (31) qui relie la première plaquette de métallisation (32) au moins avec la piste conductrice (20), le segment de la piste conductrice (31) s'étendant de la première plaquette de métallisation (32) dans une direction opposée à l'alimentation.
  2. Antenne selon la revendication 1,
    caractérisée en ce
    que l'alimentation (12) se trouve dans la région du milieu d'une première surface latérale (13) sur la surface d'about supérieure du substrat (11) et la piste conductrice (20) s'étend avec des premier, deuxième ou troisième (21, 22, 23) segments le long de la première, de la deuxième et d'au moins une partie de la troisième surface latérale (13, 14, 15) du substrat (10).
  3. Antenne selon la revendication 1,
    caractérisée en ce
    qu'une deuxième structure de métallisation (40) est appliquée sur la surface d'about inférieure du substrat (10) et est reliée avec la piste conductrice (20) et comprend un premier segment de piste conductrice (41) s'étendant depuis un côté du substrat opposé à l'alimentation (12) dans la direction de l'alimentation ainsi qu'une deuxième plaquette de métallisation (42).
  4. Antenne selon la revendication 3,
    caractérisée en ce
    que les première et deuxième structures de métallisation (30, 40) comprennent chacune un deuxième segment de piste conductrice (32 ; 42) qui s'étend respectivement le long d'un côté vers la troisième surface latérale (15) du substrat (10) opposée à l'alimentation (12) et se prolonge respectivement par le premier segment de piste conductrice (31 ; 41).
  5. Antenne selon la revendication 4,
    caractérisée en ce
    que le troisième segment (23) de la piste conductrice (20) s'étend jusqu'à un bord de la troisième surface latérale (15) avec une quatrième surface latérale (16) du substrat (10) et évolue à son extrémité en une pièce d'extrémité (231) semblable à un T dont les bords libres sont à chaque fois reliés avec le deuxième segment de la piste conductrice (32 ; 42).
  6. Antenne selon la revendication 1,
    caractérisée en ce
    que, dans la piste conductrice (20), est ménagée une fente (211) s'étendant dans une direction essentiellement perpendiculaire à celle-ci dont la longueur et la largeur sont choisies de telle sorte qu'une adaptation d'impédance de l'antenne à une situation d'intégration concrète est atteinte.
  7. Antenne selon le préambule de la revendication 1,
    caractérisée en ce
    qu'elle se compose de plusieurs substrats céramiques avec, à chaque fois, une métallisation de surface selon la partie caractérisante de la revendication 1.
  8. Carte à circuits imprimés, en particulier pour le montage en surface de composants électroniques,
    caractérisée par une antenne selon l'une des revendications précédentes.
  9. Appareil de télécommunication mobile, en particulier pour la gamme GSM ou UMTS,
    caractérisé par une antenne selon l'une des revendications 1 à 7.
EP01000519A 2000-10-09 2001-10-05 Antenne radioélectrique miniaturisée Expired - Lifetime EP1195845B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10049844A DE10049844A1 (de) 2000-10-09 2000-10-09 Miniaturisierte Mikrowellenantenne
DE10049844 2000-10-09

Publications (3)

Publication Number Publication Date
EP1195845A2 EP1195845A2 (fr) 2002-04-10
EP1195845A3 EP1195845A3 (fr) 2004-01-02
EP1195845B1 true EP1195845B1 (fr) 2006-05-03

Family

ID=7659079

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01000519A Expired - Lifetime EP1195845B1 (fr) 2000-10-09 2001-10-05 Antenne radioélectrique miniaturisée

Country Status (7)

Country Link
US (2) US6680700B2 (fr)
EP (1) EP1195845B1 (fr)
JP (1) JP4017852B2 (fr)
KR (1) KR20020028800A (fr)
CN (1) CN1349277A (fr)
DE (2) DE10049844A1 (fr)
TW (1) TW529206B (fr)

Families Citing this family (113)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7277424B1 (en) * 1998-07-21 2007-10-02 Dowling Eric M Method and apparatus for co-socket telephony
DE10049844A1 (de) * 2000-10-09 2002-04-11 Philips Corp Intellectual Pty Miniaturisierte Mikrowellenantenne
DE10049845A1 (de) * 2000-10-09 2002-04-11 Philips Corp Intellectual Pty Mehrband-Mikrowellenantenne
KR100444219B1 (ko) * 2001-09-25 2004-08-16 삼성전기주식회사 원형편파용 패치 안테나
DE10148370A1 (de) * 2001-09-29 2003-04-10 Philips Corp Intellectual Pty Miniaturisierte Richtantenne
US8749054B2 (en) 2010-06-24 2014-06-10 L. Pierre de Rochemont Semiconductor carrier with vertical power FET module
KR100524347B1 (ko) * 2002-05-31 2005-10-28 한국과학기술연구원 세라믹 칩 안테나
DE10226794A1 (de) * 2002-06-15 2004-01-08 Philips Intellectual Property & Standards Gmbh Miniaturisierte Mehrband-Antenne
US6956530B2 (en) * 2002-09-20 2005-10-18 Centurion Wireless Technologies, Inc. Compact, low profile, single feed, multi-band, printed antenna
DE10247297A1 (de) * 2002-10-10 2004-04-22 Philips Intellectual Property & Standards Gmbh Empfangsmodul
JP3739740B2 (ja) * 2002-11-28 2006-01-25 京セラ株式会社 表面実装型アンテナおよびアンテナ装置
WO2004051800A1 (fr) * 2002-11-29 2004-06-17 Tdk Corporation Antenne pastille, unite d'antenne pastille et dispositif de communication radio les utilisant
JP2005020433A (ja) * 2003-06-26 2005-01-20 Kyocera Corp 表面実装型アンテナおよびアンテナ装置ならびに無線通信装置
KR20050010549A (ko) * 2003-07-21 2005-01-28 엘지전자 주식회사 Uwb 통신용 초소형 안테나
JP2005109602A (ja) * 2003-09-29 2005-04-21 Mitsumi Electric Co Ltd アンテナ装置
JP2005175757A (ja) * 2003-12-10 2005-06-30 Matsushita Electric Ind Co Ltd アンテナモジュール
WO2005086280A1 (fr) * 2004-02-25 2005-09-15 Philips Intellectual Property & Standards Gmbh Reseau d'antennes
CN1914767A (zh) * 2004-04-27 2007-02-14 株式会社村田制作所 天线和便携式无线电通信设备
EP2426785A2 (fr) * 2004-10-01 2012-03-07 L. Pierre De Rochemont Module d'antenne en céramique et ses procédés de fabrication
KR100707242B1 (ko) * 2005-02-25 2007-04-13 한국정보통신대학교 산학협력단 유전체 칩 안테나
US20060281763A1 (en) * 2005-03-25 2006-12-14 Axon Jonathan R Carboxamide inhibitors of TGFbeta
US7183983B2 (en) * 2005-04-26 2007-02-27 Nokia Corporation Dual-layer antenna and method
WO2007005642A2 (fr) 2005-06-30 2007-01-11 Derochemont L Pierre Composants electriques et leur procede de fabrication
US8350657B2 (en) * 2005-06-30 2013-01-08 Derochemont L Pierre Power management module and method of manufacture
US8354294B2 (en) 2006-01-24 2013-01-15 De Rochemont L Pierre Liquid chemical deposition apparatus and process and products therefrom
JP4227141B2 (ja) 2006-02-10 2009-02-18 株式会社カシオ日立モバイルコミュニケーションズ アンテナ装置
JP5123493B2 (ja) * 2006-05-30 2013-01-23 新光電気工業株式会社 配線基板及び半導体装置
US7466268B2 (en) * 2006-07-06 2008-12-16 Inpaq Technology Co., Ltd. Frequency adjustable antenna apparatus and a manufacturing method thereof
KR101039597B1 (ko) * 2007-03-16 2011-06-09 알프스 덴키 가부시키가이샤 통신시스템
KR101383465B1 (ko) * 2007-06-11 2014-04-10 삼성전자주식회사 휴대 단말기에 적용되는 다중대역 안테나
JPWO2008152731A1 (ja) * 2007-06-15 2010-08-26 パイオニア株式会社 ダイポールアンテナ
EP2028717B1 (fr) 2007-08-23 2011-11-16 Research In Motion Limited Antenne multibande déposée sûr un substrat trois dimensionel
US7800546B2 (en) * 2007-09-06 2010-09-21 Research In Motion Limited Mobile wireless communications device including multi-loop folded monopole antenna and related methods
EP2034555B1 (fr) * 2007-09-06 2011-01-19 Research In Motion Limited Dispositif de communication mobile sans fil incluant une antenne unipolaire repliée à spires multiples et procédés associés
US7959598B2 (en) 2008-08-20 2011-06-14 Asante Solutions, Inc. Infusion pump systems and methods
US8922347B1 (en) 2009-06-17 2014-12-30 L. Pierre de Rochemont R.F. energy collection circuit for wireless devices
US8952858B2 (en) 2009-06-17 2015-02-10 L. Pierre de Rochemont Frequency-selective dipole antennas
KR101615760B1 (ko) 2009-07-22 2016-04-27 삼성전자주식회사 이동통신 단말기의 안테나 장치 제조 방법
US8754814B2 (en) * 2009-11-13 2014-06-17 Blackberry Limited Antenna for multi mode MIMO communication in handheld devices
JP4853569B2 (ja) * 2009-11-13 2012-01-11 パナソニック株式会社 アンテナモジュール
EP2323217B1 (fr) * 2009-11-13 2014-04-30 BlackBerry Limited Antenne pour communication mimo multimodale dans des dispositifs portables
US8552708B2 (en) 2010-06-02 2013-10-08 L. Pierre de Rochemont Monolithic DC/DC power management module with surface FET
US9023493B2 (en) 2010-07-13 2015-05-05 L. Pierre de Rochemont Chemically complex ablative max-phase material and method of manufacture
KR101178852B1 (ko) 2010-07-13 2012-09-03 한밭대학교 산학협력단 이중대역 칩 안테나
CN109148425B (zh) 2010-08-23 2022-10-04 L·皮尔·德罗什蒙 具有谐振晶体管栅极的功率场效应晶体管
JP6223828B2 (ja) 2010-11-03 2017-11-01 デ,ロシェモント,エル.,ピエール モノリシックに集積した量子ドット装置を有する半導体チップキャリア及びその製造方法
WO2013044434A1 (fr) * 2011-09-26 2013-04-04 Nokia Corporation Appareil d'antenne et procédé
TWI463490B (zh) * 2011-10-11 2014-12-01 Universal Scient Ind Shanghai 儲存元件收納裝置的蓋板
US10965164B2 (en) 2012-07-06 2021-03-30 Energous Corporation Systems and methods of wirelessly delivering power to a receiver device
US9867062B1 (en) 2014-07-21 2018-01-09 Energous Corporation System and methods for using a remote server to authorize a receiving device that has requested wireless power and to determine whether another receiving device should request wireless power in a wireless power transmission system
US11502551B2 (en) 2012-07-06 2022-11-15 Energous Corporation Wirelessly charging multiple wireless-power receivers using different subsets of an antenna array to focus energy at different locations
US10992187B2 (en) 2012-07-06 2021-04-27 Energous Corporation System and methods of using electromagnetic waves to wirelessly deliver power to electronic devices
US9825674B1 (en) 2014-05-23 2017-11-21 Energous Corporation Enhanced transmitter that selects configurations of antenna elements for performing wireless power transmission and receiving functions
US9787103B1 (en) 2013-08-06 2017-10-10 Energous Corporation Systems and methods for wirelessly delivering power to electronic devices that are unable to communicate with a transmitter
US10992185B2 (en) 2012-07-06 2021-04-27 Energous Corporation Systems and methods of using electromagnetic waves to wirelessly deliver power to game controllers
US10256657B2 (en) 2015-12-24 2019-04-09 Energous Corporation Antenna having coaxial structure for near field wireless power charging
US9876394B1 (en) 2014-05-07 2018-01-23 Energous Corporation Boost-charger-boost system for enhanced power delivery
US10439448B2 (en) 2014-08-21 2019-10-08 Energous Corporation Systems and methods for automatically testing the communication between wireless power transmitter and wireless power receiver
US10381880B2 (en) 2014-07-21 2019-08-13 Energous Corporation Integrated antenna structure arrays for wireless power transmission
US10312715B2 (en) 2015-09-16 2019-06-04 Energous Corporation Systems and methods for wireless power charging
US10063105B2 (en) 2013-07-11 2018-08-28 Energous Corporation Proximity transmitters for wireless power charging systems
US8970436B2 (en) * 2013-03-14 2015-03-03 Circomm Technology Corp. Surface mount device multi-frequency antenna module
US9893427B2 (en) 2013-03-14 2018-02-13 Ethertronics, Inc. Antenna-like matching component
US10158257B2 (en) 2014-05-01 2018-12-18 Energous Corporation System and methods for using sound waves to wirelessly deliver power to electronic devices
US10068703B1 (en) 2014-07-21 2018-09-04 Energous Corporation Integrated miniature PIFA with artificial magnetic conductor metamaterials
US9936337B2 (en) 2015-05-23 2018-04-03 Square, Inc. Tuning a NFC antenna of a device
US11023878B1 (en) 2015-06-05 2021-06-01 Square, Inc. Apparatuses, methods, and systems for transmitting payment proxy information
US10523033B2 (en) 2015-09-15 2019-12-31 Energous Corporation Receiver devices configured to determine location within a transmission field
US10778041B2 (en) 2015-09-16 2020-09-15 Energous Corporation Systems and methods for generating power waves in a wireless power transmission system
US11710321B2 (en) 2015-09-16 2023-07-25 Energous Corporation Systems and methods of object detection in wireless power charging systems
US10482440B1 (en) 2015-09-18 2019-11-19 Square, Inc. Simulating NFC experience
US10861003B1 (en) 2015-09-24 2020-12-08 Square, Inc. Near field communication device coupling system
US10734717B2 (en) 2015-10-13 2020-08-04 Energous Corporation 3D ceramic mold antenna
US10063108B1 (en) 2015-11-02 2018-08-28 Energous Corporation Stamped three-dimensional antenna
US10027180B1 (en) 2015-11-02 2018-07-17 Energous Corporation 3D triple linear antenna that acts as heat sink
US10079515B2 (en) 2016-12-12 2018-09-18 Energous Corporation Near-field RF charging pad with multi-band antenna element with adaptive loading to efficiently charge an electronic device at any position on the pad
US10038332B1 (en) 2015-12-24 2018-07-31 Energous Corporation Systems and methods of wireless power charging through multiple receiving devices
US10027159B2 (en) * 2015-12-24 2018-07-17 Energous Corporation Antenna for transmitting wireless power signals
US11863001B2 (en) 2015-12-24 2024-01-02 Energous Corporation Near-field antenna for wireless power transmission with antenna elements that follow meandering patterns
WO2017123525A1 (fr) 2016-01-13 2017-07-20 Bigfoot Biomedical, Inc. Interface utilisateur pour système de gestion du diabète
AU2017207484B2 (en) 2016-01-14 2021-05-13 Bigfoot Biomedical, Inc. Adjusting insulin delivery rates
US10923954B2 (en) 2016-11-03 2021-02-16 Energous Corporation Wireless power receiver with a synchronous rectifier
KR102226403B1 (ko) 2016-12-12 2021-03-12 에너저스 코포레이션 전달되는 무선 전력을 최대화하기 위한 근접장 충전 패드의 안테나 존들을 선택적으로 활성화시키는 방법
US10680319B2 (en) 2017-01-06 2020-06-09 Energous Corporation Devices and methods for reducing mutual coupling effects in wireless power transmission systems
US10439442B2 (en) 2017-01-24 2019-10-08 Energous Corporation Microstrip antennas for wireless power transmitters
US11033682B2 (en) 2017-01-13 2021-06-15 Bigfoot Biomedical, Inc. Insulin delivery methods, systems and devices
CN106960882B (zh) * 2017-03-20 2018-06-15 河北盛平电子科技有限公司 一种表面金属化陶瓷立方体和制作方法
US11011942B2 (en) 2017-03-30 2021-05-18 Energous Corporation Flat antennas having two or more resonant frequencies for use in wireless power transmission systems
US10511097B2 (en) 2017-05-12 2019-12-17 Energous Corporation Near-field antennas for accumulating energy at a near-field distance with minimal far-field gain
US11462949B2 (en) 2017-05-16 2022-10-04 Wireless electrical Grid LAN, WiGL Inc Wireless charging method and system
USD874471S1 (en) 2017-06-08 2020-02-04 Insulet Corporation Display screen with a graphical user interface
US10848853B2 (en) 2017-06-23 2020-11-24 Energous Corporation Systems, methods, and devices for utilizing a wire of a sound-producing device as an antenna for receipt of wirelessly delivered power
US10430784B1 (en) * 2017-08-31 2019-10-01 Square, Inc. Multi-layer antenna
US11342798B2 (en) 2017-10-30 2022-05-24 Energous Corporation Systems and methods for managing coexistence of wireless-power signals and data signals operating in a same frequency band
CN108073971A (zh) * 2017-12-25 2018-05-25 上海数斐信息科技有限公司 一种小型化双谐振抗金属rfid标签
US10615647B2 (en) 2018-02-02 2020-04-07 Energous Corporation Systems and methods for detecting wireless power receivers and other objects at a near-field charging pad
US11159057B2 (en) 2018-03-14 2021-10-26 Energous Corporation Loop antennas with selectively-activated feeds to control propagation patterns of wireless power signals
USD928199S1 (en) 2018-04-02 2021-08-17 Bigfoot Biomedical, Inc. Medication delivery device with icons
US11515732B2 (en) 2018-06-25 2022-11-29 Energous Corporation Power wave transmission techniques to focus wirelessly delivered power at a receiving device
US11437735B2 (en) 2018-11-14 2022-09-06 Energous Corporation Systems for receiving electromagnetic energy using antennas that are minimally affected by the presence of the human body
US11182770B1 (en) 2018-12-12 2021-11-23 Square, Inc. Systems and methods for sensing locations of near field communication devices
USD920343S1 (en) 2019-01-09 2021-05-25 Bigfoot Biomedical, Inc. Display screen or portion thereof with graphical user interface associated with insulin delivery
US11539243B2 (en) 2019-01-28 2022-12-27 Energous Corporation Systems and methods for miniaturized antenna for wireless power transmissions
WO2020163574A1 (fr) 2019-02-06 2020-08-13 Energous Corporation Systèmes et procédés d'estimation de phases optimales à utiliser pour des antennes individuelles dans un réseau d'antennes
CN114731061A (zh) 2019-09-20 2022-07-08 艾诺格思公司 使用无线功率发射系统中的功率放大器控制器集成电路来分类和检测异物
CN115104234A (zh) 2019-09-20 2022-09-23 艾诺格思公司 使用多个整流器保护无线电力接收器以及使用多个整流器建立带内通信的系统和方法
US11381118B2 (en) 2019-09-20 2022-07-05 Energous Corporation Systems and methods for machine learning based foreign object detection for wireless power transmission
WO2021055898A1 (fr) 2019-09-20 2021-03-25 Energous Corporation Systèmes et procédés de détection d'objet étranger basée sur l'apprentissage automatique pour transmission de puissance sans fil
US11355966B2 (en) 2019-12-13 2022-06-07 Energous Corporation Charging pad with guiding contours to align an electronic device on the charging pad and efficiently transfer near-field radio-frequency energy to the electronic device
US10985617B1 (en) 2019-12-31 2021-04-20 Energous Corporation System for wirelessly transmitting energy at a near-field distance without using beam-forming control
US11799324B2 (en) 2020-04-13 2023-10-24 Energous Corporation Wireless-power transmitting device for creating a uniform near-field charging area
USD977502S1 (en) 2020-06-09 2023-02-07 Insulet Corporation Display screen with graphical user interface
US11916398B2 (en) 2021-12-29 2024-02-27 Energous Corporation Small form-factor devices with integrated and modular harvesting receivers, and shelving-mounted wireless-power transmitters for use therewith

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02150101A (ja) * 1988-12-01 1990-06-08 Seiko Instr Inc 超小型平面パッチアンテナ
JPH0974307A (ja) 1995-09-05 1997-03-18 Murata Mfg Co Ltd チップアンテナ
JPH10145125A (ja) * 1996-09-10 1998-05-29 Murata Mfg Co Ltd アンテナ装置
US5945951A (en) * 1997-09-03 1999-08-31 Andrew Corporation High isolation dual polarized antenna system with microstrip-fed aperture coupled patches
US6028567A (en) * 1997-12-10 2000-02-22 Nokia Mobile Phones, Ltd. Antenna for a mobile station operating in two frequency ranges
JP3738577B2 (ja) * 1998-02-13 2006-01-25 株式会社村田製作所 アンテナ装置及び移動体通信機器
JPH11345518A (ja) * 1998-06-01 1999-12-14 Murata Mfg Co Ltd 複合誘電体材及びこの複合誘電体材を用いた誘電体アンテナ
JP3286916B2 (ja) * 1998-08-25 2002-05-27 株式会社村田製作所 アンテナ装置およびそれを用いた通信機
JP3554960B2 (ja) * 1999-06-25 2004-08-18 株式会社村田製作所 アンテナ装置およびそれを用いた通信装置
DE10114012B4 (de) * 2000-05-11 2011-02-24 Amtran Technology Co., Ltd., Chung Ho Chipantenne
DE10049844A1 (de) * 2000-10-09 2002-04-11 Philips Corp Intellectual Pty Miniaturisierte Mikrowellenantenne
DE10049843A1 (de) * 2000-10-09 2002-04-11 Philips Corp Intellectual Pty Fleckenmusterantenne für den Mikrowellenbereich
DE60120069T2 (de) * 2000-10-12 2006-12-21 The Furukawa Electric Co., Ltd. Miniaturisierte Antenne

Also Published As

Publication number Publication date
TW529206B (en) 2003-04-21
JP2002185231A (ja) 2002-06-28
US20040130495A1 (en) 2004-07-08
US6680700B2 (en) 2004-01-20
US20020067312A1 (en) 2002-06-06
JP4017852B2 (ja) 2007-12-05
KR20020028800A (ko) 2002-04-17
EP1195845A2 (fr) 2002-04-10
DE10049844A1 (de) 2002-04-11
DE50109679D1 (de) 2006-06-08
EP1195845A3 (fr) 2004-01-02
CN1349277A (zh) 2002-05-15

Similar Documents

Publication Publication Date Title
EP1195845B1 (fr) Antenne radioélectrique miniaturisée
EP1204160B1 (fr) Antenne hyperfréquence multibandes
EP0982799B1 (fr) Antenne diélectrique à résonateur
DE602005006417T2 (de) Chipantenne
DE102005040499B4 (de) Oberflächenmontierte Antenne und diese verwendende Antennenvorrichtung sowie Drahtloskommunikationsvorrichtung
DE102005015561A1 (de) Interne Breitbandantenne
DE10215762B4 (de) Antennenvorrichtung
DE60309994T2 (de) Interne Antenne
DE60211889T2 (de) Breitbandantenne für die drahtlose kommunikation
DE60033275T2 (de) Oberflächenmontierbare antenne und kommunikationsgerät mit einer derartigen antenne
EP1289053A2 (fr) Platine de circuit et antenne pour montage en surface (SMD) correspondante
EP1829158B1 (fr) Structure d'antenne disque unipolaire
EP1250723B1 (fr) Antenne destinee a un terminal de communication
DE102008007258A1 (de) Mehrband-Antenne sowie mobiles Kommunikationsendgerät, welches diese aufweist
DE60301841T2 (de) Antennenanordnung und damit ausgestattetes Kommunikationsgerät
DE10347722A1 (de) Drahtlose LAN-Antenne und zugehörige drahtlose LAN-Karte
DE102004029215B4 (de) Mehrband-Mehrschicht-Chipantenne
DE19713929A1 (de) Sende-Empfangs-Einrichtung
DE10205358A1 (de) Mäanderförmige Dualband-Antenne
DE102007056258A1 (de) Chipantenne sowie mobiles Telekommunikationsendgerät, welches diese aufweist
EP1298760A1 (fr) Antenne directionnelle miniaturisée
EP1195846A2 (fr) Antenne à plaque pour la bande des micro-ondes
DE10113349A1 (de) Antenne mit Substrat und Leiterbahnstruktur
DE60313588T2 (de) Mikrowellenantenne
DE60122698T2 (de) Mehrbandantenne

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: KONINKLIJKE PHILIPS ELECTRONICS N.V.

Owner name: PHILIPS CORPORATE INTELLECTUAL PROPERTY GMBH

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: PHILIPS INTELLECTUAL PROPERTY & STANDARDS GMBH

Owner name: KONINKLIJKE PHILIPS ELECTRONICS N.V.

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20040702

AKX Designation fees paid

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 20040910

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20060503

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50109679

Country of ref document: DE

Date of ref document: 20060608

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060815

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20061227

Year of fee payment: 6

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070206

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20070925

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20071030

Year of fee payment: 7

Ref country code: GB

Payment date: 20071214

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080501

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20081005

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20090630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081005

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081005