EP1164274B1 - Fuel injection controlling system for a diesel engine - Google Patents

Fuel injection controlling system for a diesel engine

Info

Publication number
EP1164274B1
EP1164274B1 EP01114165A EP01114165A EP1164274B1 EP 1164274 B1 EP1164274 B1 EP 1164274B1 EP 01114165 A EP01114165 A EP 01114165A EP 01114165 A EP01114165 A EP 01114165A EP 1164274 B1 EP1164274 B1 EP 1164274B1
Authority
EP
European Patent Office
Prior art keywords
amount
engine
fuel
limitative
fuel injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01114165A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP1164274A2 (en
EP1164274A3 (en
Inventor
Hiroki Sakamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Publication of EP1164274A2 publication Critical patent/EP1164274A2/en
Publication of EP1164274A3 publication Critical patent/EP1164274A3/en
Application granted granted Critical
Publication of EP1164274B1 publication Critical patent/EP1164274B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/10Introducing corrections for particular operating conditions for acceleration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/12Introducing corrections for particular operating conditions for deceleration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/45Sensors specially adapted for EGR systems
    • F02M26/46Sensors specially adapted for EGR systems for determining the characteristics of gases, e.g. composition
    • F02M26/47Sensors specially adapted for EGR systems for determining the characteristics of gases, e.g. composition the characteristics being temperatures, pressures or flow rates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/38Control for minimising smoke emissions, e.g. by applying smoke limitations on the fuel injection amount
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/0065Specific aspects of external EGR control
    • F02D41/0072Estimating, calculating or determining the EGR rate, amount or flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/33Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage controlling the temperature of the recirculated gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/52Systems for actuating EGR valves
    • F02M26/55Systems for actuating EGR valves using vacuum actuators
    • F02M26/56Systems for actuating EGR valves using vacuum actuators having pressure modulation valves
    • F02M26/57Systems for actuating EGR valves using vacuum actuators having pressure modulation valves using electronic means, e.g. electromagnetic valves

Definitions

  • the present invention relates to a fuel injection controlling device according to the preamble portion of claim 1 and to a method of controlling fuel injection for a diesel engine according to the preamble portion of claim 10. More particularly, it relates to a fuel injection controlling system for not exclusively but preferably a multi-cylinder type diesel engine having an exhaust gas recirculation system (an EGRsystem), i.e., a system used for recirculating a part of the exhaust gas into an intake passage of the multi-cylinder type diesel engine.
  • an EGRsystem exhaust gas recirculation system
  • the recirculated exhaust gas will be hereinafter referred to as EGR gas.
  • a limit to the increase in the amount of fuel injection is predetermined as a smoke-generating limit, and a controlling is conducted to prevent an amount of fuel injection from increasing beyond the smoke-generating limit.
  • an amount of fuel injection is always controlled lest it should exceed a limitative smoke generating fuel injection amount.
  • an amount of intake air Qac entering each cylinder (it will be hereinafter referred to as a cylinder intake air) with respect to an amount of air measured by an airflow meter is computed by using approximation of dynamics of air according to a distance from the air-flow meter to the cylinder, made by a primary delay.
  • a suction amount Qec of the ERG gas for each cylinder (it will be hereinafter referred to as a cylinder suction amount of ERG gas) is computed by using approximation of dynamics of air according to a distance from an ERG valve to the cylinder (this distance is smaller than the foregoing distance), made by a primary delay.
  • a diesel engine is constructed and operated so that supply of fuel by injection occurs ahead of supercharging of the air.
  • the rotating speed of the engine is increased in advance of an increase in the amount of the air due to the supercharging.
  • the total amount of the fresh air per each cylinder is reduced at an initial stage of the vehicle acceleration.
  • the airflow meter and the ERG valve are disposed at different positions with regard to the engine, a distance from each cylinder to the airflow meter is different from that from each cylinder to the ERG valve.
  • the suppressed limitative smoke-generating amount of the fuel injection must also change in such a manner that it is temporarily reduced after the fuel injection under a given limitative smoke generating amount of the fuel injection is once carried out, and thereafter it is increased. Therefore, the temporary reduction in the amount of fuel injection during engine acceleration will causes a change in a torque exhibited by the engine, and accordingly an accelerating drivability of a vehicle, especially a vehicle with a manual transmission is deteriorated.
  • a corresponding response occurs rather quickly in the cylinder suction ERG amount Qec by taking into account the dynamics of the air, and terminates at a time t5.
  • a response occurs at a later time t3 in the cylinder intake air amount Qac.
  • a difference in the starting times between the respective responses causes a temporary reduction in the total amount of the fresh air as per each cylinder as depicted by a fourth curve from the top in Fig. 22.
  • the limitative smoke-generating fuel injection amount QSMOKEN in proportion to the above total amount of the fresh air as per each cylinder is computed, a temporary reduction in the limitative smoke-generating fuel injection amount QSMOKEN occurs as depicted by a fifth curve in solid line from the top in Fig. 22. Therefore, if a requested amount of fuel injection (an objective fuel injection amount Qso11 indicated by a single dotted and dashed line) in compliance with an opening degree of an accelerator system of a vehicle is limited to the limitative smoke-generating fuel injection amount QSMOKEN, the limitative smoke-generating fuel injection amount QSMOKEN corresponds to an actual fuel amount injected into each cylinder.
  • the limitative smoke generating fuel injection amount QSMOKEN determines the upper limit of the fuel injection amount, but the fuel injection amount Qsol1 does not exceed the upper limit thereof during the deceleration of the diesel engine (a curve Qsol1 with a single dotted and dashed line in Fig. 23 should be referred to). Nevertheless, when the diesel engine is accelerated immediately after the decelerating operation, the limitative smoke generating fuel injection amount QSMOKEN indicates only a temporary increase due to a delay in an intake amount of the fresh air, while the fuel injection amount Qsol1 which is a map value according to the operating conditions of the diesel engine (i.e., an engine rotating speed and the opening degree of the accelerator system), indicates an immediate increase in response to the operating conditions of the diesel engine.
  • the upper limit of the fuel injection amount varies to become lower, namely, varies so as to suppress smoke generation from the diesel engine during the afore-mentioned accelerating stage
  • the upper limit of the fuel injection amount varies to become larger, namely, varies so as to degrade smoke generation from the diesel engine during the acceleration immediately after the deceleration to thereby cause not only occurrence of a torque shock but also degradation of the smoke generation due to a temporary increase in the amount of fuel injection
  • a fuel injection control system for a diesel engine having an exhaust gas recirculation device, a turbocharger, and a throttle valve disposed in the intake passage.
  • the intake air amount of the engine is adjusted by the opening degree of the throttle valve (based on the accelerator stroke and the engine speed).
  • the target fuel injection amount is determined based on the accelerator stroke and the engine speed.
  • the target value for the intake air amount is calculated based on said target fuel injection amount and on the present engine speed.
  • said target intake air amount represents the amount of intake air required for obtaining the target air fuel ratio.
  • the amount of recirculated exhaust gas is adjusted so that the actual intake air amount approaches the target intake air amount.
  • the maximum limit of the fuel injection amount is determined in accordance with the present intake air amount in order to maintain air/fuel-ratio in the cylinder of the engine within a range where no exhaust smoke is generated by the combustion at the present intake air amount. Further, the limit value for the fuel injection amount is determined in accordance with the present intake air amount, which is the intake air amount after adjusting the EGR control valve.
  • the method aspect is solved in an inventive manner by a method of controlling fuel injection having the feature combination of claim 10.
  • the fuel injection controlling device and method are able to store a first limitative smoke generating fuel injection amount at a given judging time during the accelerating operation of the diesel engine, to compare the stored limitative smoke generating fuel injection amount with respective first limitative smoke generating fuel injection amounts computed from time to time even after the given judging time to thereby determine a larger one as a computed second limitative smoke generating fuel injection amount after the given judging time, on the basis of the above comparison, and to regulate an objective amount of fuel injection from the given judging time so as not to exceed the computed second limitative smoke generation fuel injection amount.
  • the fuel injection controlling device and method are capable of preventing vehicle drivability and smoke generation from the engine from being degraded either when the engine mounted on a vehicle provided with a manual transmission is in another one of the transient operation stages, i.e., an accelerating operation stage immediately after the engine is decelerated or when the engine mounted on a vehicle provided with a torque converter with a lockup mechanism is accelerated immediately after it is decelerated under a lock-up condition.
  • the fuel injection controller for a diesel engine is able to store a first limitative smoke generating fuel injection amount at a given judging time during the decelerating operation of the diesel engine, to compare the stored limitative smoke generating fuel injection amount with respective first limitative smoke generating fuel injection amounts computed from time to time even after the given judging time during the decelerating operation to thereby determine a smaller one as a computed second limitative smoke generating fuel injection amount after the given judging time during the decelerating operation, on the basis of the above comparison, and to regulate an objective fuel injection amount at a time when an accelerating operation is conducted immediately after the given judging time during the decelerating operation so as not to exceed the computed second limitative smoke generating fuel injection amount from the given judging time during the decelerating operation of the diesel engine.
  • Figure 1 illustrates an entire system of a fuel injection controller, which controls an amount of fuel injection into a diesel engine, and the system is constructed so as to carry out a low-temperature premixed combustion in which a heat generation pattern takes a form of single stage combustion. It should be noted that the entire system per se of Fig. 1 is disclosed in which a heat generation pattern takes a form of single stage combustion. It should be noted that the entire system per se of Fig. 1 is disclosed in Japanese Laid-open Patent Publication No. 8-86251.
  • a diaphragm type ERG control valve 6 capable of operating so as to respond to a controlling vacuum pressure provided by a pressure control valve 5 is arranged in an ERG passage 4 which is disposed so as to fluidly connect an exhaust passage 2 to a collecting portion 3a of an intake passage 3.
  • the pressure control valve 5 is arranges so as to be operated by a duty control signal supplied by a control unit 41, and operates so as to obtain a predetermined ERG ratio in compliance with the operating conditions of the engine 1 mounted on a vehicle.
  • the ERG ratio is set at 100% at a low rotating speed and in a low load region, and the ERG ratio is gradually reduced in response to an increase in the rotating speed and load of the engine 1.
  • the temperature of the exhaust gas increases, and accordingly when a large amount of ERG gas is recirculated to the intake passage 3 of the engine 1, the temperature of the intake air increases to thereby reduce a lowering effect of the NOx as well as shorten a duration of ignition delay while making it unable to achieve the premixed combustion. Therefore, in the high load region, the ERG ratio is reduced step by step.
  • a cooling device 7 for cooling the ERG gas is arranged in the intermediate portion of the ERG passage 4.
  • the cooling device 7 includes a water jacket 8 formed around the ERG passage 4 to permit a part of engine cooling water (engine coolant) to flow in a circulation, and a flow control valve 9 arranged at an inlet port 7a for the engine coolant so as to regulate an amount of circulatory flow of the engine coolant.
  • the cooling device 7 operates in response to a command signal supplied by the control unit 41 so as to increase a cooling rate according to an increase in the recirculating amount of the ERG gas via the control valve 9.
  • a swirl control valve (not illustrated in Fig. 1) in the intake passage 3 at a position adjacent to the intake ports.
  • the swirl control valve is closed by a control signal supplied from the control unit 41 during a low rotating speed and in a low load region, the flow rate of the intake air entering the combustion chambers of the engine 1 increases to produce a swirling of the intake air.
  • the combustion chambers are formed in large-diameter toroidal chambers (not illustrated in Fig. 1) provided with piston cavities, respectively, each having the shape of a cylinder extending from a piston top end toward a piston bottom portion with an unchoked entrance.
  • Each of the toroidal combustion chambers has a bottom portion of which the central part is formed in a conical shape so as to prevent a swirling flow of the intake air, which rotatively enters therein from outside the piston cavity at the end of compression stroke of the piston, from being obstructed, and further to enhance mixing of the fuel with the intake air.
  • the cylindrical piston cavities having the unchoked entrances permit the swirling flow of the intake air, which is produced by the afore-mentioned swirl control valve and so on, to be diffused from the piston cavities toward the outside while the pistons are moving down during the combustion process, and also permit the diffused swirling flow to be maintained outside the piston cavities.
  • a variable displacement turbosupercharger is arranged in the exhaust passage 2 at a position downstream an opening of the ERG passage 4.
  • the turbosupercharger is constructed by a movable nozzle 53 disposed at a scrolling inlet port of an exhaust gas turbine 52 and driven by a stepping motor 54 of which the operation is controlled by the control unit 41. Namely, the movement of the movable nozzle 53 is regulated by the stepping motor 54 in response to the control signal of the control unit 41, so that a predetermined supercharging pressure can be obtained even when the engine 1 is in the low rotating speed region.
  • turbosupercharger might not be a variable displacement type turbosupercharger. Therefore, for the brevity sake, the description, will be provided hereinbelow with respect to an embodiment in which a non-variable displacement type turbosupercharger is employed.
  • the engine 1 is provided with a common-rail fuel injection device 10.
  • the latter mainly includes a fuel tank (not shown in Fig. 1), a fuel supply pump 14, a common rail (a pressure storage chamber) 16, and a plurality of fuel injection nozzles 17 each being provided for each of a plurality of cylinders of the engine 1.
  • the fuel at a high pressure pumped by the fuel supply pump 14 is discharged toward and stored in the common rail 16.
  • the fuel at a high pressure is further supplied to the fuel injection nozzle 17 which accommodates therein a three-way valve 25 capable of controlling the opening and closing movements of needles held in the fuel injection nozzle 17 and of freely regulating the timing of starting and stopping of the fuel injection.
  • the amount of fuel injection is determined by the duration from the starting of the injection to the stopping of the injection and a fuel pressure within the common rail 16.
  • a starting time of the fuel injection can be understood as fuel injection timing.
  • the fuel pressure within the common rail 16 is constantly controlled by a pressure sensor (not shown) and a discharge amount regulating mechanism (not shown) of the fuel supply pump 14 at an optimum pressure level required by the engine 1.
  • the control unit 41 includes therein at least an electronic computing unit such as a suitable ECU and a memory unit such as a random access memory (RAM) and a read only memory (ROM). Further, the control unit 41 is arranged to be supplied with various input signals from an accelerator opening degree sensor 33, a different sensor 34 detecting an engine rotating speed and a crank angle, a further sensor (not shown) for discriminating among cylinders, a water-temperature sensor 38, and an air-flow meter 39 arranged in an upstream position in the intake passage 3.
  • an electronic computing unit such as a suitable ECU and a memory unit such as a random access memory (RAM) and a read only memory (ROM).
  • RAM random access memory
  • ROM read only memory
  • the control unit 41 is arranged to be supplied with various input signals from an accelerator opening degree sensor 33, a different sensor 34 detecting an engine rotating speed and a crank angle, a further sensor (not shown) for discriminating among cylinders, a water-temperature sensor 38, and an air-flow meter 39
  • the control unit 41 computes an objective amount of fuel injection and objective fuel injection timing according to an engine rotating speed and an accelerator opening degree. Subsequently, the control unit 41 controls continuation of an ON time of the three-way valves 25 of the respective fuel injection nozzles 17 on the basis of the computed objective amount of fuel injection, and also controls timings to cause an ON condition of the respective three-way valves 25 on the basis of the computed objective fuel injection timing.
  • the position of the air-flow meter 39 in the intake passage 3 is arranged so that the distance of the air-flow meter 3 from the intake port side of the engine 1 is far larger than that from the same intake port side of the engine to the EGR control valve 6.
  • the control unit 41 controls the fuel injection timing (the starting time of the fuel injection) so as to be delayed to a time when each piston comes to its top dead center (TDC), in order to prolong the duration of an ignition delay of the injected fuel.
  • the delay of the fuel injection timing permits a temperature within each combustion chamber at a time of ignition to be maintained at a low temperature, and also permits a premixed combustion ratio to be increased. As a result, smoke generation in the region of a high ERG ratio can be suppressed.
  • a control is conducted so as to advance the fuel injection timing for each cylinder. More specifically, even if the duration of the ignition delay is kept constant, a crank angle of the ignition delay, i.e., an angular value obtained by converting the duration of the ignition delay to a corresponding crank angle is increased in proportion to an increase in the engine rotating speed. Therefore, the fuel injection timing is advanced so that the time of ignition in each combustion chamber may be set at a predetermined time under a low ERG ratio.
  • the control unit 41 further conducts a feedback control of a fuel pressure prevailing in the common rail 16 via the discharge amount regulating mechanism of the fuel supply pump 14 so that the pressure in the common rail 16 detected by a pressure sensor (not shown in Fig. 1) may coincide with an objective pressure.
  • the control unit 41 determines a given amount of fuel injection by which the smoke generation begins as a limitative smoke generating fuel injection amount, and controls a fuel injection amount injected into each combustion chamber so that it is prevented from exceeding the limitative smoke generating fuel injection amount.
  • the determination of the limitative smoke generating fuel injection amount by the control unit 41 is performed by computation while taking into account the residual fresh intake air within the ERG gas.
  • the control unit 41 computes a cylinder intake air amount Qac by approximating, by the primary delay, the dynamics of the air according to a distance between the airflow meter 39 and each cylinder with respect to the amount of air measured by the airflow meter 39, and also computes a cylinder suction ERG gas amount Qec by approximating, by the primary delay, the dynamics of the air according to a distance between the ERG control valve 6 and each cylinder (note: the latter distance is smaller than the above-mentioned distance) with respect to the amount of air measured by the airflow meter 39.
  • the control unit 41 further computes a total amount of fresh intake air as per a cylinder by assuming that the residual fresh intake air remaining in the computed cylinder suction ERG gas amount Qec and the afore mentioned cylinder intake air amount Qac are again used for the combustion in each cylinder. Then, the control unit 41 further computes the limitative smoke generating fuel injection amount from a fuel injection amount at which a required amount of intake air relative to the limitative excess coefficient can be obtained by the computed total amount of fresh intake air.
  • a limitative smoke generating fuel injection amount at a time a judgment is conducted as to whether or not a vehicle mounting thereon the engine 1 is in an accelerated operation is stored in a memory of the control unit 41, and the stored limitative smoke generating fuel injection amount is compared with each of respective limitative smoke generating fuel injection amounts computed at every cyclic computing time since the above-mentioned time of judgment of the vehicle accelerating operation to thereby determine the larger one as a limitative smoke generating fuel injection amount since the time of judgment of the vehicle accelerating operation on the basis of the above comparison.
  • control unit 41 further conducts a controlling operation to prevent an objective fuel injection amount since the time of judgment of the vehicle accelerating operation from exceeding the above-mentioned limitative smoke generating fuel injection amount since the time of judgment of the vehicle accelerating operation in order to prevent the accelerating drivability of a vehicle from being deteriorated either when the vehicle is provided with a manual transmission and accelerated or when the vehicle is provided with a torque converter with a lockup mechanism and is accelerated under the locking-up condition.
  • FIG. 2 illustrates a computing routine to compute an objective fuel injection amount Qsol1, and this computation procedure is conducted every time when a reference signal REF indicative of a reference position signal of a crank angle which is issued at every 180 degrees in the case of a four-cylinder engine, and is issued at every 120 degrees in the case of a six-cylinder engine is inputted into the control unit 41.
  • step 3 searching of the map illustrated in Fig. 3 is conducted on the basis of the Ne and C1 read in step 1 and 2 to thereby compute an accelerator-requiring fuel injection amount Mqdrv.
  • step 4 correction by fuel addition is conducted to correct the accelerator -requiring fuel injection amount Mqdrv in view of various operating conditions such as the temperature of engine coolant and so forth.
  • the corrected fuel injection amount is set as an objective fuel injection amount Qso11.
  • the flowchart in Fig. 4 illustrates a routine to compute a cylinder intake air amount Qac.
  • step 1 of Fig. 4 an engine rotating speed Ne is read.
  • step 2 of Fig. 4 a computation by an equation (1) below is carried out to obtain an intake air amount Qaco per each cylinder.
  • Q a c 0 ( Q a s o / N e ) ⁇ K CON # where KCON# is a constant.
  • the above-mentioned airflow meter 39 (see Fig. 1) is arranged in the intake air passage 3 at a position upstream the air compressor. Thus, there occurs a conveying delay in the flow of the intake air due to a distance between the airflow meter 39 and the collecting portion 3a. Thus, in order to compensate for the conveying delay of the intake air in step 3, the value of intake air amount Qac0, which was obtained by computation L times ago (L: constant) is employed as an intake air amount Qacn per a cylinder at an entrance position of the collecting portion 3a of the intake passage 3.
  • step 4 a computation on the basis of the employed intake air amount Qacn is carried out according to an equation (2) below (an equation with a primary delay), to obtain an intake air amount per a cylinder, i.e., the cylinder intake air amount Qac.
  • Q a c Q a c n ⁇ 1 ⁇ ( 1 ⁇ K IN ⁇ K VOL ) + Q a c n ⁇ K IN ⁇ K VOL
  • KIN is a value corresponding to a volumetric efficiency
  • KVOL is VE/NC/VM
  • VE is an amount of an exhaust gas from the engine
  • NC is a number of cylinders of the engine
  • VM is a volume of the entire intake system
  • Qacn-1 is the Qac of the preceding time.
  • the resultant Qac can be considered as being appropriately compensated for with respect to the dynamics of air existing between the entrance position of the collecting portion 3a and a position of each suction valve.
  • step 1 of Fig. 5 an electric output voltage Us of the airflow meter 39 is read into the control unit 41.
  • a computation of an intake air amount Qas0_d is conducted by, e.g., searching of the conversion table in Fig. 6 indicative of a relationship between the electric output voltage of the airflow meter and the intake air flow rate on the basis of the electric voltage Us of step 1.
  • step 3 a weight-averaging process is applied to the computed intake air amount Qas0 _ d, and the resultant weight-averaged value is set as the intake air amount Qas0.
  • FIG. 7 illustrates a computing routine to compute a cylinder suction ERG gas amount Qec.
  • an intake air amount Qacn per a cylinder at the entrance position of the collecting portion 3a (the Qacn has been already computed in step 3 of the flowchart of Fig. 4) and an objective ERG ratio Megr are read by the control unit 41.
  • step 2 an ERG gas amount Qec per a cylinder at the entrance position of the collecting portion 3a is computed from the afore-mentioned Qacn and Megr according to an equation (3) below.
  • Q e c 0 Q a c n ⁇ M e g r
  • the computed Qec0 is used in step 3 to conduct a computation according to an equation (4) below to thereby obtain a suction ERG gas amount per a cylinder at the position of each intake valve, i.e., a cylinder suction ERG gas amount Qec.
  • Q e c Q e c n ⁇ 1 ⁇ ( 1 ⁇ K IN ⁇ K VOL ) + Q e c 0 ⁇ K IN ⁇ K VOL
  • KIN is a value corresponding to a volumetric
  • KVOL is VE/NC/VM
  • VE is an amount of exhaust gas from the engine
  • NC is a number of cylinders of the engine
  • VM is a volume of the entire intake system
  • Qecu-1 is the Qec of the preceding time.
  • the flowchart of Fig. 10 illustrates a computing routine for computing a basic limitative smoke generating injection fuel amount QSMOKEN which might correspond to the limitative smoke generating fuel injection amount according to the prior art fuel injection controller.
  • the table indicated in Fig. 11 is searched on the basis of the Ne read in step 1 to conduct computation of a limitative excess coefficient Klambn upon no supercharging, subsequently the table indicated in Fig. 12 is searched on the basis of the Pm read in step 1 to conduct computation of supercharging pressure correction factor Klambp to be applied to the limitative excess coefficient, and further the table indicated in Fig. 13 is searched on the basis of the C1 read in step 1 to conduct computation of accelerator opening degree correction factor Klamtv to be applied to the limitative excess coefficient.
  • step 5 a limitative excess coefficient Klamb upon no supercharging as well as supercharging is computed according to an equation (5) below, by using the above computed Klambn, Klambp and Klamtv.
  • K lamb K lamb n ⁇ K lamb p ⁇ K l a m t v
  • the limitative excess coefficient Klambn upon no supercharging corresponds to an excess coefficient which determines a smoke generating limit upon no supercharging, and indicates an increase in its value when the engine rotating speed Ne is in a high speed region.
  • the supercharging pressure correction factor Klambp is employed to make a correction such that the excess coefficient of the air is increased in response to a rise in the supercharging pressure Pm.
  • a requested value for the limitative excess coefficient upon evaluating an exhaust emission is always different from a requested value for the limitative excess coefficient in view of a drivability of a vehicle, i.e., an accelerating performance of the vehicle, and the former requested value is larger than the latter requested value.
  • the accelerator opening degree correction factor Klamtv is newly introduced and employed to appropriately deal with the above difference in the required values for the limitative excess coefficient. Namely, as will be understood from the graph of Fig. 13, the accelerator opening degree correction factor Klamtv is employed so as to increase the limitative excess coefficient when the exhaust emission is evaluated where the accelerator opening degree is rather small. The accelerator opening degree correction factor Klamtv is also employed so as to reduce the limitative excess coefficient when the accelerator opening degree is large due to accelerating of the vehicle and so forth.
  • step 6 of the flowchart of Fig. 10 the computed limitative excess coefficient Klamb upon no supercharging as well as supercharging, the cylinder intake air amount Qac, and the cylinder suction ERG gas amount Qec are used for computing a basic limitative smoke generating fuel injection amount QSMOKEN from a limitative smoke generating fuel injection amount upon both no supercharging and supercharging according to an equation (6) below.
  • Q SMOKEN ⁇ ( Q a c + Q e c ⁇ K OR ) / K lamb ⁇ / 14.7 where KOR is a residual fresh intake air ratio (constant).
  • the (Qec x KOR) on the right side of the equation (6) indicates an amount of fresh intake air remaining in ERG gas.
  • the (Qac + Qec x KOR) of the equation (6) indicates a total amount of the fresh intake amount per a cylinder, and the basic limitative smoke generating fuel injection amount QSMOKEN is computed as an amount in proportion to the total amount of the fresh intake air.
  • the flowchart of Fig. 14 illustrates a computing routine for computing the smoke generating fuel injection amount QSMOKE upon accelerating of a vehicle in addition to the supercharging operation of the vehicle, and the computing routine is repeatedly conducted every predetermined time, for example, every 10 milliseconds. It should be understood that since the computing routine upon decelerating of a vehicle is substantially the same as that upon accelerating of the vehicle, the description is provided below with respect to only the case of accelerating of the vehicle.
  • step 1 of the flowchart in Fig. 14 reading of the accelerator opening degree C1, the basic limitative smoke generating fuel injection amount QSMOKEN, and the objective fuel injection amount Qsol1 is conducted by the control unit 41.
  • the computed change ⁇ C1 is compared with a predetermined value (a predetermined positive value) in step 3.
  • a predetermined value a predetermined positive value
  • an acceleration judging flag FACC is set at 1.
  • the computing routine is advanced to step 5 where the acceleration judging flag FACC is set at 0.
  • the above memory is identified as QSMOKE1
  • the information or content stored in the memory QSMOKE1 is set as a limitative smoke generating injection fuel amount QSMOKE during the vehicle driving operation including the accelerating operation stage in step 11.
  • step 12 computing of a restricting time is conducted.
  • the computing routine of the restricting time is clearly shown in the flowchart of Fig. 15 as a sub routine of the step 12 of Fig. 14.
  • step 1 of the flowchart of Fig. 15 reading of an engine rotating speed Ne and ERG ratio Megrd is conducted.
  • computation of the actual ERG ratio Megrd is conducted according to a computing routine shown in the flowchart of Fig. 16.
  • an objective ERG ratio Megr is read in step 1, and computation of ERG ratio Megrd at the position of an intake valve is conducted in step 2 according to an equation (7) below.
  • the computation of step 2 is performed to simultaneously apply a delay processing and a unit converting processing (processing for converting an amount as per a cylinder to another amount as per a unit time) to the Megr in step 1.
  • KIN is a value corresponding to a volumetric efficiency
  • KVOL is VE/NC/VM
  • VE is an amount of an exhaust gas from the engine
  • NC is a number of cylinders of the engine
  • VM is a volume of the entire intake system
  • KE2# is a constant
  • Megrdn-1 is the Megrd at the preceding time.
  • the portion (Ne x KE2#) on the right side of the equation (7) is an item to apply the unit converting processing.
  • the Megrd is a value responding to the objective ERG ratio Megr with a primary delay, and accordingly the Megrd can be understood as a real ERG ratio.
  • the table of Fig. 17 indicates such characteristic that the restriction time becomes long in response to an increase in the actual ERG ratio Megrd.
  • This characteristic is selected by taking into consideration the fact that a time for which a temporary reduction in the total fresh intake air amount per a cylinder (Qac + Qec x KOR) occurs during the accelerating operation of the vehicle becomes long in response to an increase in ERG ratio.
  • the former controlling characteristic is selected to be in harmony with the latter controlling characteristic.
  • table characteristic of Fig. 18 is applied to a vehicle provided with a manual transmission and the table characteristic of Fig. 19 is applied to a vehicle provided with a torque converter with a lockup mechanism.
  • the rotating speed correction factor takes a maximum value of "1" when the vehicle engine is operated at an idling speed, and is gradually reduced in relation to an increase in the engine rotating speed Ne. This means that the engine rotating speed correction factor is effective for correcting the restriction time in a manner such that the latter time is shortened in relation to an increase in the engine rotating speed Ne.
  • the cylinder intake air amount Qac and the cylinder suction ERG gas amount Qec have a quick response property, respectively, in relation to an increase in the engine rotating speed Ne.
  • the rotating speed correction factor is provided with such a property that it is reduced in relation to an increase in the engine rotating speed Ne.
  • the curve shown by a dot and dashed line in Fig. 18 indicates a characteristic table for the case where the vehicle is decelerated. It will be understood from Fig. 18 that the engine rotating speed correction factor during the deceleration of the vehicle is selected to be smaller than that during the acceleration of the vehicle.
  • the curve in dot and dashed line lies below the curve in solid line.
  • This fact can be explained as follows. Namely, since a reduction in the supercharging pressure during the decelerating of the vehicle occurs quickly more than an increase in the supercharging pressure during the accelerating of the vehicle, the restriction time during the decelerating of the vehicle can be shortened.
  • the two curves of Fig. 18 indicate characteristics in a case where the vehicle engine is provided with a turbosupercharger, when the vehicle engine is operated by a natural aspiration, the characteristics of the accelerating and decelerating of the natural aspiration vehicle might be equal to one another. To the contrary, it may be possible that these two characteristics of the natural aspiration vehicle are the same as those shown in Fig. 18.
  • the characteristic curve during the locking-up condition of the torque converter (the automatic transmission) is similar to the characteristic curve in solid line of Fig. 18, i.e., the curve during the accelerating operation.
  • Figure 19 also illustrates a characteristic curve during the unlocking condition of the automatic transmission.
  • Fig. 19 may be applied to the fuel injection controlling operation according to the present invention, irrespective of provision of a turbosupercharger to the engine and further can be applied during the vehicle deceleration in addition to the vehicle acceleration.
  • the computation routine is returned to Fig. 14 so as to allow the computing routine of the limitative smoke generating fuel injection amount to be ended at the present time.
  • the measurement of the time lapse after the setting "1" of the restriction flag is conducted by a timer unit arranged in the control unit 41 (Fig. 1).
  • step 14 When the time lapse after switching of the restriction flag to "1" is less than the restriction time, the routine of Fig. 14 is forwarded to step 14 to compare a value in the memory QSMOKE1 with the value of the basic limitative smoke generating fuel injection amount QSMOKEN at that time. As a result of the comparison, the larger value is selected as the limitative smoke generating fuel injection amount QSMOKE.
  • the operation of step 14 lasts until a time immediately before the elapse of the restriction time.
  • the routine is forwarded from step 13 to steps 15, 16 and 17 in Fig. 14, so as to reset both the restriction flag and the restriction time "0", and to set the basic limitative smoke generating fuel injection amount QSMOKEN as the limitative smoke generating fuel injection amount QSMOKE without any change.
  • the value of the memory QSMOKE1 is set as the limitative smoke generating fuel injection amount QSMOKE instead of the basic limitative smoke generating fuel injection amount QSMOKEN.
  • Figure 21 illustrates a flowchart of a computation routine for computing and setting a final fuel injection amount Qsol.
  • step 1 the limitative smoke generating fuel injection amount QSMOKE and the objective fuel injection amount Qsol1 obtained by the afore-mentioned computation routine are read by the control unit 41.
  • the read information of the QSMOKE and Qsol1 are subsequently compared with one another in step 2.
  • the routine is forwarded to step 3 where the limitative smoke generating fuel injection amount QSMOKE is set as a final fuel injection amount Qsol.
  • the objective fuel injection amount sol1 is a map value which is basically determined depending on the engine rotating speed Ne and the accelerator opening degree C1, and even when this map value is larger than the limitative smoke generating fuel injection amount QSMOKE at that time, if the objective fuel injection amount Qsol1 is directly charged into the engine, generation of smoke will surely occurs.
  • the limitative smoke generating fuel injection amount QSMOKE is employed as a limiting value to determine an upper limit of the fuel injection amount.
  • the objective fuel injection amount QsoI1 is a map value, which is basically predetermined by the engine rotating speed and the accelerator opening degree.
  • the objective fuel injection amount Qsol1 greatly goes up while exceeding the limitative smoke generating fuel injection amount due to the acceleration of the vehicle, as shown by the characteristic curve in dot and dashed line in Fig. 22.
  • the limitative smoke generating fuel injection amount is employed as the final fuel injection amount Qsol that is an actual amount of fuel charged by injection to the engine.
  • the acceleration judging flag FACC will be switched from “0" to "1" at the time t2.
  • the value of the basic limitative smoke generating fuel injection amount QSMOKEN at the time t2 (the value "A” in Fig. 22) will be stored in the memory QSMOKEN1, and also the restriction flag will be switched from “0" to "1".
  • the time t2 a larger one of the value "A” stored in the memory QSMOKEN1 and the basic limitative smoke generating fuel injection amount QSMOKEN is selected as the limitative smoke generating fuel injection amount QSMOKE.
  • the fuel injection to the engine is carried out by the QSMOKE for a time period during which the restriction flag is maintained at "1".
  • the value of the memory QSMOKE1 is constantly held as the limitative smoke generating fuel injection amount QSMOKE as indicated by the curve shown by a dot and dashed line in Fig. 22. Accordingly, during acceleration, no temporary reduction in the amount of fuel injection occurs so that the engine operation can afford to avoid any unfavorable torque variation.
  • the basic limitative fuel injection amount QSMOKEN which corresponds to the limitative smoke generating fuel injection amount employed by the prior art fuel injection controller is set as the final injection amount Qsol1 which indicates an actual amount of fuel supplied by injection to respective engine cylinders.
  • the operation of the fuel injection controller according to the present embodiment under a condition where the ERG operation is stopped will be described as follows. Namely, when the ERG operation is stopped, ERG ratio is "0" in the characteristic curve of Fig. 17. Accordingly, the basic restriction time is also "0". This means that the left side of the equation (8), i.e., the restriction time becomes "0". Therefore, when the vehicle is accelerated during stopping of the ERG operation, the computation of the limitative smoke generating fuel injection amount results in that the limitative smoke generating fuel injection amount should be set as the basic limitative fuel injection amount QSMOKEN corresponding to the limitative smoke generating fuel injection amount of the prior art fuel injection controller (see the computation routine in Fig. 14).
  • the basic limitative fuel injection amount QSMOKEN has a characteristic such that a temporary increase appears as clearly understood by a fifth solid line curve from the top. Nevertheless, the objective fuel injection amount Qsol1 during the deceleration shown by a dot and dashed line curve lies far below the basic limitative smoke generating fuel injection amount QSMOKEN, and accordingly the objective fuel injection amount Qsol1 during the deceleration is not limited by the QSMOKEN that defines an upper limiting value of the amount of fuel injection.
  • the curve of the objective fuel injection amount Qsol1 that is a map value according to the operating conditions of the vehicle such as the engine rotating speed, the accelerator opening degree, and so forth, exhibits a characteristic such that the Qsol1 immediately increases in response to the acceleration immediately after deceleration. Therefore, the objective fuel injection amount Qsol1 might exceed the basic limitative smoke generating fuel injection amount QSMOKEN. Then, the basic limitative fuel injection amount QSMOKEN per se is employed as the limitative smoke generating fuel injection amount to be used as an actual amount of fuel supplied by injection to the respective cylinders of the engine.
  • the upper limit of the fuel injection amount changes so as to be gradually reduced while suppressing smoke generation.
  • the upper limit of the amount of fuel injection changes so as to be gradually increased while failing in suppression of smoke generation.
  • torque shock occurs to be sensed by the vehicle operator.
  • unfavorable smoke generation due to a temporary increase in the fuel injection amount occurs.
  • the present embodiment of the present invention implements a novel fuel injection controlling as described below when the vehicle is subjected to acceleration immediately after deceleration with reference to the graphical illustration of Fig. 23.
  • the basic limitative smoke generating fuel injection amount QSMOKEN (a value at the timing Shown by "B” in Fig. 23) at the specified time is stored in the memory QSMOKE1, and the restriction flag is switched from "0" to "1".
  • the smaller one of the value "B” stored in the memory QSMOKE1 and the basic limitative smoke generating fuel injection amount QSMOKEN is selected as the limitative smoke generating fuel injection amount QSMOKE, and this selection lasts for a time period during which the restriction flag maintains "1".
  • the limitative smoke generating fuel injection amount QSMOKE is constantly held at the value of the memory QSMOKE1 from the time of the judgment of deceleration.
  • any increase in the fuel injection amount does not occur while surely avoiding a change in the engine output torque.
  • the basic restriction time is set according to an actual ERG ratio Megrd.
  • an objective ERG ratio Megr in place of the Megrd may be employed.
EP01114165A 2000-06-12 2001-06-11 Fuel injection controlling system for a diesel engine Expired - Lifetime EP1164274B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000174945 2000-06-12
JP2000174945A JP3864671B2 (ja) 2000-06-12 2000-06-12 ディーゼルエンジンの燃料噴射制御装置

Publications (3)

Publication Number Publication Date
EP1164274A2 EP1164274A2 (en) 2001-12-19
EP1164274A3 EP1164274A3 (en) 2003-10-01
EP1164274B1 true EP1164274B1 (en) 2006-08-16

Family

ID=18676896

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01114165A Expired - Lifetime EP1164274B1 (en) 2000-06-12 2001-06-11 Fuel injection controlling system for a diesel engine

Country Status (4)

Country Link
US (1) US6612291B2 (ja)
EP (1) EP1164274B1 (ja)
JP (1) JP3864671B2 (ja)
DE (1) DE60122240T2 (ja)

Families Citing this family (89)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3823643B2 (ja) * 1999-12-03 2006-09-20 いすゞ自動車株式会社 エンジンの燃料噴射制御装置
JP3991600B2 (ja) * 2001-03-01 2007-10-17 日産自動車株式会社 ディーゼルエンジンの燃料噴射量制御装置
JP4416647B2 (ja) * 2002-05-14 2010-02-17 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 内燃機関を制御する方法および装置
JP2003343324A (ja) * 2002-05-29 2003-12-03 Toyota Motor Corp ディーゼルエンジン制御方法及び装置
ITTO20020929A1 (it) * 2002-10-25 2004-04-26 Iveco Motorenforschung Ag Metodo di controllo dei fumi neri per un motore diesel.
JP4135539B2 (ja) * 2003-03-17 2008-08-20 トヨタ自動車株式会社 排気再循環式内燃機関の燃料噴射量制御装置
DE10317648A1 (de) * 2003-04-17 2004-11-25 Robert Bosch Gmbh Verfahren und Vorrichtung zum sicheren Betreiben eines Verbrennunsmotors im Schiebebetrieb
AT500540B8 (de) * 2003-10-23 2007-02-15 Avl List Gmbh Diesel-brennkraftmaschine
US7661411B2 (en) * 2004-07-12 2010-02-16 Yanmar Co., Ltd. Multi-cylinder engine fuel control method, engine fuel injection amount control method and engine operation state discrimination method using the same, propulsion apparatus for multiple engines, and fuel injection control method during crash astern in marine engine with reduction and reversal device
JP4701683B2 (ja) * 2004-11-12 2011-06-15 トヨタ自動車株式会社 車両のトルク制御装置
JP2006299833A (ja) * 2005-04-15 2006-11-02 Toyota Industries Corp ディーゼルエンジンにおける燃料噴射量制御装置
US7063076B1 (en) * 2005-05-16 2006-06-20 Detroit Diesel Corporation Method of smoke limiting engine
JP2007198366A (ja) * 2005-12-26 2007-08-09 Denso Corp 内燃機関の制御システム及びタイミングロータ
JP4692353B2 (ja) * 2006-03-30 2011-06-01 トヨタ自動車株式会社 内燃機関のトルク制御装置
US7650224B2 (en) * 2008-02-25 2010-01-19 Cummins, Inc Apparatus, system, and method for reducing nitrogen oxide emissions in a combustion engine
CN104098070B (zh) 2008-03-28 2016-04-13 埃克森美孚上游研究公司 低排放发电和烃采收系统及方法
CN101981272B (zh) 2008-03-28 2014-06-11 埃克森美孚上游研究公司 低排放发电和烃采收系统及方法
EA026915B1 (ru) 2008-10-14 2017-05-31 Эксонмобил Апстрим Рисерч Компани Способы и системы для регулирования продуктов горения
JP5087524B2 (ja) 2008-11-19 2012-12-05 ヤンマー株式会社 電子制御式ディーゼルエンジン
FR2946392B1 (fr) * 2009-06-04 2015-11-13 Peugeot Citroen Automobiles Sa Procede et dispositif de controle moteur, vehicule equipe de ce dispositif, support d'enregistrement
US8370044B2 (en) * 2009-06-26 2013-02-05 General Electric Company NOX compliant peak for gas turbine
EP2499332B1 (en) 2009-11-12 2017-05-24 Exxonmobil Upstream Research Company Integrated system for power generation and method for low emission hydrocarbon recovery with power generation
US9732673B2 (en) 2010-07-02 2017-08-15 Exxonmobil Upstream Research Company Stoichiometric combustion with exhaust gas recirculation and direct contact cooler
US9732675B2 (en) 2010-07-02 2017-08-15 Exxonmobil Upstream Research Company Low emission power generation systems and methods
CN102959203B (zh) 2010-07-02 2018-10-09 埃克森美孚上游研究公司 通过排气再循环的浓缩空气的化学计量燃烧
TWI564475B (zh) 2010-07-02 2017-01-01 艾克頌美孚上游研究公司 低排放之三循環動力產生系統和方法
DE102010045083A1 (de) * 2010-09-13 2012-03-15 Volkswagen Ag Verfahren und Vorrichtung zur Steuerung eines Verbrennungsmotors
TWI564474B (zh) 2011-03-22 2017-01-01 艾克頌美孚上游研究公司 於渦輪系統中控制化學計量燃燒的整合系統和使用彼之產生動力的方法
TWI563166B (en) 2011-03-22 2016-12-21 Exxonmobil Upstream Res Co Integrated generation systems and methods for generating power
TWI563165B (en) 2011-03-22 2016-12-21 Exxonmobil Upstream Res Co Power generation system and method for generating power
TWI593872B (zh) 2011-03-22 2017-08-01 艾克頌美孚上游研究公司 整合系統及產生動力之方法
US9140206B2 (en) * 2011-05-31 2015-09-22 Mike M. Mc Donald Torque control systems and methods
US9810050B2 (en) 2011-12-20 2017-11-07 Exxonmobil Upstream Research Company Enhanced coal-bed methane production
US9353682B2 (en) 2012-04-12 2016-05-31 General Electric Company Methods, systems and apparatus relating to combustion turbine power plants with exhaust gas recirculation
US9784185B2 (en) 2012-04-26 2017-10-10 General Electric Company System and method for cooling a gas turbine with an exhaust gas provided by the gas turbine
US10273880B2 (en) 2012-04-26 2019-04-30 General Electric Company System and method of recirculating exhaust gas for use in a plurality of flow paths in a gas turbine engine
SE538206C2 (sv) 2012-07-05 2016-04-05 Scania Cv Ab Förfarande och system vid framförande av fordon, där luft/bränsleförhållandet styrs
US9869279B2 (en) 2012-11-02 2018-01-16 General Electric Company System and method for a multi-wall turbine combustor
US9574496B2 (en) 2012-12-28 2017-02-21 General Electric Company System and method for a turbine combustor
US10215412B2 (en) 2012-11-02 2019-02-26 General Electric Company System and method for load control with diffusion combustion in a stoichiometric exhaust gas recirculation gas turbine system
US9803865B2 (en) 2012-12-28 2017-10-31 General Electric Company System and method for a turbine combustor
US9611756B2 (en) 2012-11-02 2017-04-04 General Electric Company System and method for protecting components in a gas turbine engine with exhaust gas recirculation
US10107495B2 (en) 2012-11-02 2018-10-23 General Electric Company Gas turbine combustor control system for stoichiometric combustion in the presence of a diluent
US10161312B2 (en) 2012-11-02 2018-12-25 General Electric Company System and method for diffusion combustion with fuel-diluent mixing in a stoichiometric exhaust gas recirculation gas turbine system
US9599070B2 (en) 2012-11-02 2017-03-21 General Electric Company System and method for oxidant compression in a stoichiometric exhaust gas recirculation gas turbine system
US9631815B2 (en) 2012-12-28 2017-04-25 General Electric Company System and method for a turbine combustor
US9708977B2 (en) 2012-12-28 2017-07-18 General Electric Company System and method for reheat in gas turbine with exhaust gas recirculation
US10208677B2 (en) 2012-12-31 2019-02-19 General Electric Company Gas turbine load control system
US9581081B2 (en) 2013-01-13 2017-02-28 General Electric Company System and method for protecting components in a gas turbine engine with exhaust gas recirculation
US9512759B2 (en) 2013-02-06 2016-12-06 General Electric Company System and method for catalyst heat utilization for gas turbine with exhaust gas recirculation
TW201502356A (zh) 2013-02-21 2015-01-16 Exxonmobil Upstream Res Co 氣渦輪機排氣中氧之減少
US9938861B2 (en) 2013-02-21 2018-04-10 Exxonmobil Upstream Research Company Fuel combusting method
WO2014133406A1 (en) 2013-02-28 2014-09-04 General Electric Company System and method for a turbine combustor
TW201500635A (zh) 2013-03-08 2015-01-01 Exxonmobil Upstream Res Co 處理廢氣以供用於提高油回收
US9618261B2 (en) 2013-03-08 2017-04-11 Exxonmobil Upstream Research Company Power generation and LNG production
CN105008499A (zh) 2013-03-08 2015-10-28 埃克森美孚上游研究公司 发电和从甲烷水合物中回收甲烷
US20140250945A1 (en) 2013-03-08 2014-09-11 Richard A. Huntington Carbon Dioxide Recovery
US9631542B2 (en) 2013-06-28 2017-04-25 General Electric Company System and method for exhausting combustion gases from gas turbine engines
US9617914B2 (en) 2013-06-28 2017-04-11 General Electric Company Systems and methods for monitoring gas turbine systems having exhaust gas recirculation
TWI654368B (zh) 2013-06-28 2019-03-21 美商艾克頌美孚上游研究公司 用於控制在廢氣再循環氣渦輪機系統中的廢氣流之系統、方法與媒體
US9835089B2 (en) 2013-06-28 2017-12-05 General Electric Company System and method for a fuel nozzle
US9903588B2 (en) 2013-07-30 2018-02-27 General Electric Company System and method for barrier in passage of combustor of gas turbine engine with exhaust gas recirculation
US9587510B2 (en) 2013-07-30 2017-03-07 General Electric Company System and method for a gas turbine engine sensor
US9951658B2 (en) 2013-07-31 2018-04-24 General Electric Company System and method for an oxidant heating system
US10030588B2 (en) 2013-12-04 2018-07-24 General Electric Company Gas turbine combustor diagnostic system and method
US9752458B2 (en) 2013-12-04 2017-09-05 General Electric Company System and method for a gas turbine engine
US10227920B2 (en) 2014-01-15 2019-03-12 General Electric Company Gas turbine oxidant separation system
US9915200B2 (en) 2014-01-21 2018-03-13 General Electric Company System and method for controlling the combustion process in a gas turbine operating with exhaust gas recirculation
US9863267B2 (en) 2014-01-21 2018-01-09 General Electric Company System and method of control for a gas turbine engine
US10079564B2 (en) 2014-01-27 2018-09-18 General Electric Company System and method for a stoichiometric exhaust gas recirculation gas turbine system
US10047633B2 (en) 2014-05-16 2018-08-14 General Electric Company Bearing housing
US10060359B2 (en) 2014-06-30 2018-08-28 General Electric Company Method and system for combustion control for gas turbine system with exhaust gas recirculation
US10655542B2 (en) 2014-06-30 2020-05-19 General Electric Company Method and system for startup of gas turbine system drive trains with exhaust gas recirculation
US9885290B2 (en) 2014-06-30 2018-02-06 General Electric Company Erosion suppression system and method in an exhaust gas recirculation gas turbine system
JP6098836B2 (ja) * 2014-09-25 2017-03-22 マツダ株式会社 エンジンの排気制御装置
US9819292B2 (en) 2014-12-31 2017-11-14 General Electric Company Systems and methods to respond to grid overfrequency events for a stoichiometric exhaust recirculation gas turbine
US9869247B2 (en) 2014-12-31 2018-01-16 General Electric Company Systems and methods of estimating a combustion equivalence ratio in a gas turbine with exhaust gas recirculation
US10788212B2 (en) 2015-01-12 2020-09-29 General Electric Company System and method for an oxidant passageway in a gas turbine system with exhaust gas recirculation
US10253690B2 (en) 2015-02-04 2019-04-09 General Electric Company Turbine system with exhaust gas recirculation, separation and extraction
US10316746B2 (en) 2015-02-04 2019-06-11 General Electric Company Turbine system with exhaust gas recirculation, separation and extraction
US10094566B2 (en) 2015-02-04 2018-10-09 General Electric Company Systems and methods for high volumetric oxidant flow in gas turbine engine with exhaust gas recirculation
US10267270B2 (en) 2015-02-06 2019-04-23 General Electric Company Systems and methods for carbon black production with a gas turbine engine having exhaust gas recirculation
US10145269B2 (en) 2015-03-04 2018-12-04 General Electric Company System and method for cooling discharge flow
US10480792B2 (en) 2015-03-06 2019-11-19 General Electric Company Fuel staging in a gas turbine engine
US9957901B2 (en) * 2016-01-15 2018-05-01 Achates Power, Inc. Fuel limiter for a uniflow-scavenged, two-stroke cycle, opposed-piston engine
RU2626190C1 (ru) * 2016-04-25 2017-07-24 Александр Васильевич Шаталов Способ формирования топливовоздушной смеси для двигателя внутреннего сгорания
GB2579345B (en) 2018-11-09 2020-12-16 Perkins Engines Co Ltd Method for operating an internal combustion engine in a transition operating mode
JP7205503B2 (ja) * 2020-01-22 2023-01-17 トヨタ自動車株式会社 内燃機関の制御装置
CN117418953B (zh) * 2023-12-18 2024-04-16 潍柴动力股份有限公司 一种喷油控制方法、装置、电子设备和存储介质

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4502437A (en) * 1981-11-02 1985-03-05 Ambac Industries, Incorporated Electrical fuel control system and method for diesel engines
JPH06264786A (ja) * 1993-03-11 1994-09-20 Nissan Motor Co Ltd 内燃機関の制御装置
JP3339197B2 (ja) 1994-09-19 2002-10-28 日産自動車株式会社 ディーゼルエンジン
JP3724017B2 (ja) 1995-09-22 2005-12-07 日産自動車株式会社 ディーゼルエンジンの燃料噴射制御装置
JP3539045B2 (ja) 1996-03-01 2004-06-14 日産自動車株式会社 内燃機関の燃料噴射制御装置
JP3562137B2 (ja) * 1996-06-03 2004-09-08 日産自動車株式会社 内燃機関の制御装置
GB2313927B (en) * 1996-06-03 1999-06-23 Nissan Motor EGR control apparatus for internal combustion engine
DE19637395C1 (de) * 1996-09-13 1998-04-16 Siemens Ag Verfahren und Einrichtung zur Steuerung der einer Brennkraftmaschine zuzuführenden Kraftstoffmenge
JP4013290B2 (ja) * 1997-07-17 2007-11-28 マツダ株式会社 ターボ過給機付直噴式エンジンの排気還流制御装置
JPH1136962A (ja) * 1997-07-18 1999-02-09 Toyota Motor Corp ディーゼルエンジンの燃料噴射量制御装置
JP3704914B2 (ja) 1997-11-04 2005-10-12 日産自動車株式会社 Egr制御装置付ディーゼルエンジンのトルク制御装置
JPH11200924A (ja) * 1998-01-14 1999-07-27 Toyota Motor Corp 内燃機関の燃料噴射量制御装置
JP3642171B2 (ja) 1998-02-13 2005-04-27 日産自動車株式会社 ディーゼルエンジンの排気浄化装置
JPH11315737A (ja) * 1998-04-30 1999-11-16 Nissan Motor Co Ltd エンジンの制御装置
US6209515B1 (en) * 1998-07-15 2001-04-03 Toyota Jidosha Kabushiki Kaisha Internal combustion engine, controller and method
JP3633343B2 (ja) 1999-02-23 2005-03-30 日産自動車株式会社 ディーゼルエンジンの制御装置
US6279551B1 (en) * 1999-04-05 2001-08-28 Nissan Motor Co., Ltd. Apparatus for controlling internal combustion engine with supercharging device
JP2000345885A (ja) * 1999-05-31 2000-12-12 Isuzu Motors Ltd ディーゼルエンジンの燃料噴射制御装置

Also Published As

Publication number Publication date
DE60122240D1 (de) 2006-09-28
EP1164274A2 (en) 2001-12-19
JP2001355493A (ja) 2001-12-26
US20020020396A1 (en) 2002-02-21
DE60122240T2 (de) 2006-12-07
EP1164274A3 (en) 2003-10-01
US6612291B2 (en) 2003-09-02
JP3864671B2 (ja) 2007-01-10

Similar Documents

Publication Publication Date Title
EP1164274B1 (en) Fuel injection controlling system for a diesel engine
US6910458B2 (en) Fuel injection amount control apparatus for internal combustion engine
US6729303B2 (en) Diesel engine control
US6612292B2 (en) Fuel injection control for diesel engine
US6247311B1 (en) Diesel engine controller
US6606981B2 (en) Diesel engine control
US6234139B1 (en) Control system for an engine
EP1375888B1 (en) Fuel injection quantity control system for engine
US5704340A (en) Excess air rate detecting apparatus and an excess air rate control apparatus for an engine
US6178943B1 (en) Control system for an engine
US5950595A (en) Method and apparatus for controlling vacuum pressure in internal combustion engine
US6502563B2 (en) Diesel engine control
EP0849461B1 (en) Combustion controller for internal combustion engines
US6658847B2 (en) Control of supercharger
EP0893590B1 (en) Air intake control system for engine equipped with exhaust gas recirculation feature
US7290521B2 (en) Control system for compression-ignition engine
US6625985B2 (en) Control of turbocharger
US6142117A (en) Combustion changeover control for engine
JP4023122B2 (ja) ディーゼルエンジンの制御装置
US6510692B2 (en) Control of supercharger
EP0849452B1 (en) Apparatus and method for controlling fuel injection in internal combustion engine
US6176220B1 (en) Combustion control device for internal combustion engine
JP3089135B2 (ja) 内燃機関の燃料噴射量制御装置
JP3307306B2 (ja) 内燃機関の燃焼方式制御装置
JPH0571385A (ja) デイーゼル機関の燃料噴射量制御装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20040324

AKX Designation fees paid

Designated state(s): DE FR GB

17Q First examination report despatched

Effective date: 20040629

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 60122240

Country of ref document: DE

Date of ref document: 20060928

Kind code of ref document: P

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070518

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20110621

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20110608

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20110608

Year of fee payment: 11

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120611

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20130228

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60122240

Country of ref document: DE

Effective date: 20130101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120702

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130101

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120611