EP1156505A1 - Verfahren zur Herstellung einer elektrischen Lampe - Google Patents

Verfahren zur Herstellung einer elektrischen Lampe Download PDF

Info

Publication number
EP1156505A1
EP1156505A1 EP01111636A EP01111636A EP1156505A1 EP 1156505 A1 EP1156505 A1 EP 1156505A1 EP 01111636 A EP01111636 A EP 01111636A EP 01111636 A EP01111636 A EP 01111636A EP 1156505 A1 EP1156505 A1 EP 1156505A1
Authority
EP
European Patent Office
Prior art keywords
film
molybdenum
producing
agglomerates
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP01111636A
Other languages
English (en)
French (fr)
Other versions
EP1156505B1 (de
Inventor
Gerhard Dr. Leichtfried
Bernhard Retter
Manfred Sulik
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Plansee SE
Original Assignee
Plansee SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Plansee SE filed Critical Plansee SE
Publication of EP1156505A1 publication Critical patent/EP1156505A1/de
Application granted granted Critical
Publication of EP1156505B1 publication Critical patent/EP1156505B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01KELECTRIC INCANDESCENT LAMPS
    • H01K1/00Details
    • H01K1/02Incandescent bodies
    • H01K1/04Incandescent bodies characterised by the material thereof
    • H01K1/08Metallic bodies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/24Manufacture or joining of vessels, leading-in conductors or bases
    • H01J9/32Sealing leading-in conductors
    • H01J9/323Sealing leading-in conductors into a discharge lamp or a gas-filled discharge device
    • H01J9/326Sealing leading-in conductors into a discharge lamp or a gas-filled discharge device making pinched-stem or analogous seals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/36Seals between parts of vessels; Seals for leading-in conductors; Leading-in conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/36Seals between parts of vessels; Seals for leading-in conductors; Leading-in conductors
    • H01J61/366Seals for leading-in conductors
    • H01J61/368Pinched seals or analogous seals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/24Manufacture or joining of vessels, leading-in conductors or bases
    • H01J9/28Manufacture of leading-in conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01KELECTRIC INCANDESCENT LAMPS
    • H01K1/00Details
    • H01K1/40Leading-in conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01KELECTRIC INCANDESCENT LAMPS
    • H01K1/00Details
    • H01K1/18Mountings or supports for the incandescent body
    • H01K1/24Mounts for lamps with connections at opposite ends, e.g. for tubular lamp
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01KELECTRIC INCANDESCENT LAMPS
    • H01K3/00Apparatus or processes adapted to the manufacture, installing, removal, or maintenance of incandescent lamps or parts thereof
    • H01K3/06Attaching of incandescent bodies to mount

Definitions

  • the invention relates to a method for producing an electric lamp with a lamp bulb made of SiO 2 or a glass containing a high amount of SiO 2 and a power supply which comprises a film made of molybdenum or a doped molybdenum alloy squeezed into the lamp bulb.
  • the foil In order to achieve a vacuum-tight squeezing or melting of the molybdenum foil in the glass, in particular in the case of silica glass or high SiO 2 -containing glasses and molybdenum in spite of the very different thermal expansion coefficients, the foil is very thin (typically 15 to 50 ⁇ m), with a high Widths to thickness ratio (typically> 50) and has tapered side edges.
  • the much thicker outer and inner conductor must be welded to this thin molybdenum foil, the inner conductor often consisting of tungsten. In the case of current conductors made of tungsten in particular, this is associated with very high welding temperatures, which can lead to embrittlement and subsequently to rupture of the molybdenum foil.
  • Film tears can also occur during the squeezing or melting process, on the one hand caused by the relative movement between the glass and the film, on the other hand by the build-up of tensile stresses during the cooling process, at temperatures which are below the relaxation temperature of the glass.
  • DE-C-29 47 230 describes a molybdenum foil in which 0.25 to 1% yttrium oxide particles are dispersed, with the advantage that this film has better welding behavior and due to the heat input during less brittle of welding.
  • An important reason for the top one 1% limit is the realization that foils with higher dispersoid contents only are formable to a limited extent and result in a too high film strength, which the Voltage reduction in the lamp base area during the cooling process negatively influenced during the crushing process and cracks in the quartz glass can lead.
  • EP-B-0 275 580 describes a molybdenum alloy especially for fusible links with 0.01 to 2% by weight of Y 2 O 3 and 0.01 to 0.8% by weight of molybdenum boride, which in comparison to fusible links consists of a K -Si-doped molybdenum alloy has improved recrystallization and manufacturing properties.
  • the molybdenum foil In addition to the mechanical properties of the molybdenum foil, it is also very important to improve the service life. This is determined on the one hand by the oxidation resistance of the molybdenum foil, and on the other hand by the adhesive strength between the molybdenum foil and the silica or high SiO 2 -containing glass.
  • EP-B-0 691 673 describes a band-shaped power supply Molybdenum-yttrium oxide base, which additionally contains 0.03 to 1% by weight of cerium oxide a ratio of cerium oxide to yttrium oxide of 0.1 to 1. A film with this Compared to a film doped with yttrium oxide a significantly improved oxidation behavior.
  • molybdenum materials doped with yttrium oxide show improved film adhesion, which can be attributed, among other things, to a surface reaction between Y 2 O 3 and SiO 2 to form an yttrium silicate.
  • Improved resistance to oxidation can also be achieved by metallic coating of the molybdenum foil with Ta, Nb, V, Cr, Zr, Ti, Y, La, Sc and Hf in accordance with DE-C-30 06 846, but with the connection of the above Metals to SiO 2 is a very bad one, so that with the exception of Cr layers, these coatings have not been used in practice.
  • EP-B-0 309 749 describes a fusion between molybdenum and a glass-like material, the part of the molybdenum which is exposed to the oxidizing environment being coated with alkali metal silicate. However, this does not favorably affect the connection between the molybdenum and the glass. Molybdenum nitride layers in accordance with EP-A-0 573 114, phosphide layers in accordance with EP-B-0 551 939, or SiO 2 layers in accordance with DE-A-20 58 213 have also become known for the external oxidation protection.
  • DE-A-196 03 300 describes a molybdenum film which contains 0.01 to 1% by weight of silicates and / or aluminates and / or aluminates rich in alkali and alkaline earth metals from one or more elements from groups IIIb and / or IVb of the periodic table. This doping prevents the occurrence of cracks in the pinch seal due to the high mechanical stresses in the molybdenum-quartz glass composite. However, an improvement in the film adhesion compared to films which are doped with Y 2 O 3 or Y mixed oxide is not achieved.
  • molybdenum foils which are doped with Y 2 O 3 or Y mixed oxide are most widespread for squeezed current leads in the lamp industry.
  • the Mo / SiO 2 adhesion is often not sufficient with these power supplies.
  • the object of the present invention is therefore a method for Production of an electric lamp with a glass lamp bulb and a squeezed power supply from a film made of molybdenum or to create a doped molybdenum alloy, in which the above described disadvantages are largely avoided.
  • this is achieved in that a conventional sintered metallurgical and forming process before the Squeezing in the glass flask is treated in such a way that 5 to 60 percent by area of the film surface essentially not contiguous island-like areas of material agglomerates with of the Raw film of different surface structure and / or Material composition made of molybdenum or its alloys Titanium, from silicon or from an oxide, a mixed oxide and / or one oxidic compound with a vapor pressure of less than 10 mbar each arise at 2,000 ° C.
  • Oxides such as Al 2 O 3 , ZrO 2 , Y 2 O 3 , TiO 2 , silicates, aluminates, but also Mo, Ti, Si or their alloys are suitable as materials for the material agglomerates.
  • the average size of the individual fabric agglomerates is advantageously less than 5 ⁇ m.
  • the material agglomerates of Yttrium oxide or yttrium mixed oxide exist.
  • the material agglomerates of Titanium oxide or titanium mixed oxide exist.
  • a slip consisting of 350 g of 99.7% titanium silicate powder with an average particle size of the primary particles of 630 nm, 50 g of nitrocellulose and 750 ml of alcohol-based solvent was prepared as described in Example 1 and applied to a pickled Mo-Y mixed oxide Foil measuring 2.5 mm ⁇ 0.025 mm (Y 2 O 3 content: 0.48% by weight, Ce 2 O 3 content: 0.07% by weight) was applied.
  • a slip consisting of 400 g of 99.2% pure yttrium silicate powder with an average grain size of the primary particles of 840 nm, 50 g of nitrocellulose and 750 ml of alcohol-based solvent was prepared as described in Example 1 and applied to a pickled Mo-Y mixed oxide Foil measuring 2.5 mm ⁇ 0.025 mm (Y 2 O 3 content: 0.48% by weight, Ce 2 O 3 content: 0.07% by weight) was applied. This was then annealed in a single pass at a temperature of 1,200 ° C in dry hydrogen. The area fraction of the yttrium silicate particles was 29%, with an average yttrium silicate agglomerate size of 3.2 ⁇ m.
  • a slip consisting of 250 g of 99.9% pure silicon powder with an average particle size of the primary particles of 210 nm, 50 g of nitrocellulose and 750 ml of alcohol-based solvent was prepared as described in Example 1 and applied to a pickled Mo-Y mixed oxide Foil measuring 2.5 mm ⁇ 0.025 mm (Y 2 O 3 content: 0.48% by weight, Ce 2 O 3 content: 0.07% by weight) was applied. This was then annealed in a single pass at a temperature of 950 ° C in dry hydrogen. The area fraction of the Si / MoSi 2 particles was 13%, with an average Si / MoSi 2 agglomerate size of 2.3 ⁇ m.
  • a slip consisting of 1,000 g of 99.98% pure molybdenum powder with an average particle size of the primary particles of 1.5 ⁇ m, 50 g of nitrocellulose and 750 ml of alcohol-based solvent was prepared as described in Example 1 and on a Mo-Y film (Y 2 O 3 content: 0.48% by weight, Ce 2 O 3 content: 0.07% by weight) of dimensions 2.5 mm x 0.025 mm, the side edges of which were shaped like knife-edge edges by mechanical deformation (edge angle 25 °) , applied. This was then annealed in dry hydrogen at a temperature of 1,400 ° C.
  • the area fraction of the Mo particles was approximately 50% with a medium one Mo agglomerate size of 2.9 ⁇ m.
  • the films according to the invention from Examples 1 to 5 were used for In the usual way, 20 MR 16 halogen lamps each.
  • 20 MR 16 halogen lamps each.
  • Standard Mo-Y mixed oxide foils such as they also for the production of the coated films according to the examples 2 to 4 were used in the uncoated state for the production of 20 MR 16 halogen lamps used.
  • 10 lamps were placed under each usual operating conditions at a base temperature of 400 ° C, the remaining 10 lamps under difficult operating conditions with a Base temperature of 450 ° C, operated until its failure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Vessels And Coating Films For Discharge Lamps (AREA)
  • Glass Compositions (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Herstellung einer elektrischen Lampe mit einem gläsernen Lampenkolben sowie einer im Lampenkolben eingequetschten Folie aus Molybdän oder einer dotierten Molybdänlegierung. Erfindungsgemäß wird dazu eine Rohfolie derart nachbehandelt, dass auf mindestens 5 Flächenprozent und maximal 60 Flächenprozent der Folienoberfläche im Wesentlichen nicht zusammenhängende, inselartige Bereiche von Stoffagglomeraten mit von der Rohfolie verschiedener Oberflächenstruktur und/oder Werkstoffzusammensetzung, aus Molybdän bzw. aus dessen Legierungen, aus Titan, aus Silizium oder aus einem Oxid, einem Mischoxid und/oder einer oxidischen Verbindung mit einem Dampfdruck von jeweils weniger als 10 mbar bei 2.000°C entstehen. Damit wird die Haftfestigkeit zwischen nachbehandelter Folie und Glas und damit auch das Standzeitverhalten der Lampe deutlich verbessert.

Description

Die Erfindung betrifft ein Verfahren zur Herstellung einer elektrischen Lampe mit einem Lampenkolben aus SiO2 oder einem hoch SiO2-haltigen Glas sowie einer Stromzuführung, welche eine im Lampenkolben eingequetschte Folie aus Molybdän oder einer dotierten Molybdänlegierung umfasst.
Bei elektrischen Lampen mit einem Lampenkolben aus Glas muss der für den Betrieb der Lampe benötigte Strom über spezielle Stromzuführungen in das Innere des Lampenkolbens geführt werden. Vor allem bei Lampen mit einem Lampenkolben aus Kiesel- oder einem hoch SiO2-hältigen Glas, wie z.B. bei Halogenglühlampen, Halogen-Metalldampflampen, Quecksilberdampf-Hochdrucklampen oder Xenon-Hochdrucklampen, besteht eine derartige Stromzuführung aus einem in das Glas eintretenden äußeren Stromleiter aus einer im Glas vakuumdicht eingequetschten bzw. eingeschmolzenen Molybdänfolie sowie aus einem inneren Stromleiter (z.B. Haltedraht, Filament, Elektrode).
Um trotz der stark unterschiedlichen, thermischen Ausdehnungskoeffizienten im Speziellen von Kieselglas oder hoch SiO2-haltigen Gläsern und Molybdän eine vakuumdichte Einquetschung bzw. Einschmelzung der Molybdänfolie im Glas zu erreichen, ist die Folie sehr dünn (typischerweise 15 bis 50 µm), mit einem hohen Breiten zu Stärkenverhältnis (typischerweise > 50) ausgeführt und besitzt messerschneidförmig zulaufende Seitenkanten.
An diese dünne Molybdänfolie müssen der wesentlich dickere äußere und innere Stromleiter angeschweißt werden, wobei der innere Stromleiter vielfach aus Wolfram besteht. Dies ist insbesondere bei Stromleitern aus Wolfram mit sehr hohen Schweißtemperaturen verbunden, was zu einer Versprödung und in weiterer Folge zum Bruch der Molybdänfolie führen kann. Folienrisse können auch beim Einquetsch- bzw. Einschmelzvorgang auftreten, zum einen verursacht durch die Relativbewegung zwischen dem Glas und der Folie, zum anderen durch einen Aufbau von Zugspannungen während des Abkühlprozesses, bei Temperaturen, die unter der Entspannungstemperatur des Glases liegen.
Um die mechanische Festigkeit der Molybdänfolie zu verbessern hat es sich bewährt, anstelle von reinem Molybdän dotierte Molybdänlegierungen zu verwenden.
In der DE-C-29 47 230 wird eine Molybdänfolie beschrieben, in der 0,25 bis 1 % Yttriumoxidteilchen dispergiert sind, mit dem Vorteil, dass diese Folie ein besseres Schweißverhalten aufweist und durch den Wärmeeintrag während des Schweißens weniger versprödet. Ein wichtiger Grund für die obere 1 %-Grenze ist die Erkenntnis, dass Folien mit höheren Dispersoidgehalten nur beschränkt umformbar sind und eine zu hohe Folienfestigkeit ergibt, was den Spannungsabbau im Lampensockelbereich während des Abkühlprozesses beim Einquetschprozess negativ beeinflusst und zu Rissen im Quarzglas führen kann.
In der EP-B-0 275 580 wird eine Molybdänlegierung speziell für Einschmelzdrähte beschrieben mit 0,01 bis 2 Gew.% Y2O3 und 0,01 bis 0,8 Gew.% Molybdänborid, welche im Vergleich zu Einschmelzdrähten aus einer K-Si-dotierten Molybdänlegierung verbesserte Rekristallisations- und Herstelleigenschaften aufweist.
Neben den mechanischen Eigenschaften der Molybdänfolie ist aber auch eine Verbesserung des Standzeitverhaltens von großer Wichtigkeit. Dieses wird zum einen von der Oxidationsbeständigkeit der Molybdänfolie, zum anderen durch die Haftfestigkeit zwischen der Molybdänfolie und dem Kiesel- bzw. hoch SiO2-haltigen Glas bestimmt.
Die EP-B-0 691 673 beschreibt eine bandförmige Stromzuführung auf Molybdän-Yttriumoxidbasis, die zusätzlich 0,03 bis 1 Gew.% Ceroxid enthält mit einem Verhältnis Ceroxid zu Yttriumoxid von 0,1 bis 1. Eine Folie mit dieser Zusammensetzung weist im Vergleich zu einer mit Yttriumoxid dotierten Folie ein deutlich verbessertes Oxidationsverhalten auf.
Gemeinsam zeigen alle mit Yttriumoxid dotierten Molybdän-Werkstoffe eine verbesserte Folienhaftung, die unter anderem auf eine oberflächliche Reaktion zwischen Y2O3 und SiO2 unter Bildung eines Yttriumsilikates zurückgeführt werden kann.
Eine verbesserte Oxidationsbeständigkeit kann auch durch eine metallische Umhüllung der Molybdänfolie mit Ta, Nb, V, Cr, Zr, Ti, Y, La, Sc und Hf entsprechend der DE-C-30 06 846 erreicht werden, wobei jedoch die Anbindung der oben genannten Metalle zu SiO2 eine sehr schlechte ist, so dass diese Umhüllungen mit Ausnahme von Cr-Schichten in der Praxis keinen Eingang gefunden haben.
Eine besondere Ausbildung von oxidationsbeständigen Schichten aus Chrom, Nickel, Nickel-Chromlegierungen oder Molybdänsilizid ist in der DE-B-21 52 349 beschrieben.
In der EP-B-0 309 749 ist eine Einschmelzung zwischen Molybdän und einem glasartigen Material beschrieben, wobei der Teil des Molybdäns, der der oxidierenden Umgebung ausgesetzt ist, mit Alkalimetallsilikat überzogen ist. Dadurch wird jedoch nicht die Verbindung zwischen dem Molybdän und dem Glas günstig beeinflusst. Für den außenseitigen Oxidationsschutz sind auch Molybdännitridschichten entsprechend der EP-A-0 573 114, Phosphidschichten entsprechend der EP-B-0 551 939, oder SiO2-Schichten entsprechend der DE-A-20 58 213 bekannt geworden.
Es wurde auch versucht, eine Verbesserung der Oxidationsbeständigkeit durch lonenimplantieren entsprechend der US 5 021 711 zu erreichen. Dieser Prozess ist jedoch sehr aufwendig und führt zu keiner Verbesserung der Mo/SiO2-Haftung.
In der DE-A-196 03 300 ist eine Molybdänfolie beschrieben, welche mit 0,01 bis 1 Gew.% alkali- und erdalkalireichen Silikaten und/oder Aluminaten und/oder Boraten von einem oder mehreren Elementen aus den Gruppen IIIb und/oder IVb des Periodensystems, dotiert ist. Durch diese Dotierung wird das Auftreten von Rissen in der Quetschdichtung, bedingt durch die hohen mechanischen Spannungen im Molybdän-Quarzglasverbund, verhindert. Eine Verbesserung der Folienhaftung im Vergleich zu Folien, welche mit Y2O3- oder Y-Mischoxid dotiert sind, wird damit jedoch nicht erreicht.
Es wurde zudem auch versucht, die SiO2/Mo-Haftung durch ein Aufrauen der Folie beispielsweise durch Sandstrahlen entsprechend der EP-A-0 871 202 zu verbessern. Dieser Prozess ist jedoch sehr aufwendig und führt zum Einbau von inneren Spannungen in der Molybdän-Folie.
Insgesamt ist festzustellen, dass am weitesten verbreitet für eingequetschte Stromzuführungen in der Lampenindustrie Molybdänfolien sind, die mit Y2O3 oder Y-Mischoxid dotiert sind. Im Falle thermisch sehr hoch belasteter Lampen, wie z.B. bei sehr kompakten Halogen-Metalldampflampen, reicht jedoch bei diesen Stromzuführungen die Mo/SiO2-Haftung vielfach nicht aus.
Die Aufgabe der vorliegenden Erfindung ist es daher ein Verfahren zur Herstellung einer elektrischen Lampe mit einem gläsernen Lampenkolben sowie einer eingequetschten Stromzuführung aus einer Folie aus Molybdän oder einer dotierten Molybdänlegierung zu schaffen, bei dem die vorstehend beschriebenen Nachteile weitgehend vermieden werden.
Erfindungsgemäß wird dies dadurch erreicht, dass eine nach üblichen sintermetallurgischen und Umform-Verfahren hergestellte Rohfolie vor dem Einquetschen im Glaskolben derart nachbehandelt wird, dass auf 5 bis 60 Flächenprozent der Folienoberfläche im Wesentlichen nicht zusammenhängende inselartige Bereiche von Stoffagglomeraten mit von der Rohfolie verschiedener Oberflächenstruktur und/oder Werkstoffzusammensetzung aus Molybdän bzw. aus dessen Legierungen, aus Titan, aus Silizium oder aus einem Oxid, einem Mischoxid und/oder einer oxidischen Verbindung mit einem Dampfdruck von jeweils weniger als 10 mbar bei 2.000°C entstehen.
Auf diese Art und Weise wird erreicht, dass beim Einquetsch- bzw. Einschmelzvorgang eine große Oberfläche vorliegt, wodurch die Haftfestigkeit zwischen der Folie und dem Glas und damit auch das Standzeitverhalten der Lampe deutlich verbessert wird. Die Folienhaftung ist auch dann noch völlig überraschend verbessert, wenn die auf der Folie vor dem Einschmelzvorgang vorhandenen Stoffagglomerate beim Einquetsch- bzw. Einschmelzvorgang teilweise oder vollständig im Kieselglas oder hoch SiO2-hältigen Glas gelöst werden.
Als Material für die Stoffagglomerate kommen Oxide wie Al2O3, ZrO2, Y2O3, TiO2, Silikate, Aluminate, aber auch Mo, Ti, Si oder deren Legierungen in Frage.
Besonders bewährt hat es sich, wenn eine Folie verwendet wird, deren Oberfläche zu mindestens 5 Flächenprozent bis maximal 20 Flächenprozent aus nicht zusammenhängenden Stoffagglomeraten besteht.
Die mittlere Größe der einzelnen Stoffagglomerate liegt vorteilhafterweise unter 5 µm.
In einer besonders vorteilhaften Ausgestaltung der Erfindung hat es sich bewährt, wenn eine Folie verwendet wird, deren Stoffagglomerate aus Yttriumoxid oder Yttrium-Mischoxid bestehen.
In einer weiteren besonders vorteilhaften Ausgestaltung der Erfindung hat es sich bewährt, wenn eine Folie verwendet wird, deren Stoffagglomerate aus Titanoxid oder Titan-Mischoxid bestehen.
Für die Bildung der nicht zusammenhängenden Stoffagglomerate hat sich das Aufbringen eines Schlickers oder die Abscheidung aus der Gasphase bewährt, gefolgt von einer Glühbehandlung bei einer Temperatur zwischen 500°C und 1.400°C. Dadurch wird auf einfache Weise die Aufbringung von Stoffagglomeraten mit für die weitere Verarbeitung ausreichender Haftfestigkeit erreicht.
Im folgenden wird die Erfindung an Hand von Herstellungsbeispielen und durch Vergleichsmessungen näher erläutert.
Beispiel 1
500 g Yttriumoxidpulver der Reinheit 99,5 % mit einer mittleren Korngröße der Primärteilchen von 230 nm wurden in 50 g Nitrozellulose und 750 ml Lösungsmittel auf Alkoholbasis dispergiert. Der so hergestellte Schlicker wurde mittels Tauchtechnik auf eine gebeizte Molybdän-Folie der Dimension 2,5 mm x 0,025 mm aufgebracht. Diese wurde danach im Durchlauf bei einer Temperatur von 1200°C in trockenem Wasserstoff geglüht. Der Flächenanteil Y2O3 betrug 12 %, bei einer mittleren Y2O3-Agglomeratgröße von 1,5 µm.
Beispiel 2
Ein Schlicker bestehend aus 350 g Titansilikatpulver der Reinheit 99,7 % mit einer mittleren Korngröße der Primärteilchen von 630 nm, 50 g Nitrozellulose und 750 ml Lösungsmittel auf Alkoholbasis wurde wie in Beispiel 1 beschrieben, hergestellt und auf eine gebeizte Mo-Y-Mischoxid-Folie der Dimension 2,5 mm x 0,025 mm (Y2O3 Gehalt: 0,48 Gew.%, Ce2O3 Gehalt: 0,07 Gew.%) aufgebracht.
Diese wurde danach im Durchlauf bei einer Temperatur von 1200°C in trockenem Wasserstoff geglüht. Die Folienoberfläche wurde durch REM/Bildanalyse charakterisiert, wobei der Flächenanteil an Titansilikatteilchen 17 % betrug, bei einer mittleren Titansilikat-Agglomeratgröße von 1,1 µm.
Beispiel 3
Ein Schlicker bestehend aus 400 g Yttriumsilikatpulver der Reinheit 99,2 % mit einer mittleren Korngröße der Primärteilchen von 840 nm, 50 g Nitrozellulose und 750 ml Lösungsmittel auf Alkoholbasis wurde wie in Beispiel 1 beschrieben, hergestellt und auf eine gebeizte Mo-Y-Mischoxid-Folie der Dimension 2,5 mm x 0,025 mm (Y2O3 Gehalt: 0,48 Gew.%, Ce2O3 Gehalt: 0,07 Gew.%) aufgebracht. Diese wurde danach im Durchlauf bei einer Temperatur von 1.200°C in trockenem Wasserstoff geglüht. Der Flächenanteil der Yttriumsilikat-Teilchen betrug 29 %, bei einer mittleren Yttriumsilikat-Agglomeratgröße von 3,2 µm.
Beispiel 4
Ein Schlicker bestehend aus 250 g Siliziumpulver der Reinheit 99,9 % mit einer mittleren Korngröße der Primärteilchen von 210 nm, 50 g Nitrozellulose und 750 ml Lösungsmittel auf Alkoholbasis wurde wie in Beispiel 1 beschrieben, hergestellt und auf eine gebeizte Mo-Y-Mischoxid-Folie der Dimension 2,5 mm x 0,025 mm (Y2O3 Gehalt: 0,48 Gew.%, Ce2O3 Gehalt: 0,07 Gew.%) aufgebracht. Diese wurde danach im Durchlauf bei einer Temperatur von 950°C in trockenem Wasserstoff geglüht. Der Flächenanteil der Si/MoSi2-Teilchen betrug 13 %, bei einer mittleren Si/MoSi2 Agglomeratgröße von 2,3 µm.
Beispiel 5
Ein Schlicker bestehend aus 1.000 g Molybdänpulver der Reinheit 99,98 % mit einer mittleren Korngröße der Primärteilchen von 1,5 µm, 50 g Nitrozellulose und 750 ml Lösungsmittel auf Alkoholbasis wurde wie in Beispiel 1 beschrieben, hergestellt und auf eine Mo-Y-Folie (Y2O3 Gehalt: 0,48 Gew.%, Ce2O3 Gehalt: 0,07 Gew.%) der Dimension 2,5 mm x 0,025 mm, deren Seitenkanten durch mechanische Verformung messerschneidkantenartig ausgeformt wurden (Kantenwinkel 25°), aufgebracht. Diese wurde danach im Durchlauf bei einer Temperatur von 1.400°C in trockenem Wasserstoff geglüht.
Der Flächenanteil der Mo-Teilchen betrug ca. 50 % bei einer mittleren Mo-Agglomeratgröße von 2,9 µm.
Aus den erfindungsgemäßen Folien nach den Beispielen 1 bis 5 wurden auf übliche Weise jeweils 20 MR 16 Halogenlampen gefertigt. Für Vergleichszwecke wurden standardmäßig gebeizte Mo-Y-Mischoxidfolien wie sie auch zur Herstellung der beschichteten Folien entsprechend den Beispielen 2 bis 4 verwendet wurden in unbeschichtetem Zustand zur Herstellung von 20 MR 16 Halogenlampen verwendet. Jeweils 10 Lampen wurden unter üblichen Betriebsbedingungen bei einer Sockeltemperatur von 400°C, die restlichen 10 Lampen unter erschwerten Betriebsbedingungen mit einer Sockeltemperatur von 450°C, bis zu ihrem Ausfall betrieben.
Die erreichten Standzeiten sind in Tabelle 1 wiedergegeben.
Aus der Tabelle ist klar ersichtlich, dass die erfindungsgemäßen Lampen mit den beschichteten Molybdänfolien im Vergleich zu den Lampen nach dem Stand der Technik mit den unbeschichteten Molybdänfolien eine um bis zu 35 % erhöhte Standzeit aufweisen.
Folie Standzeit bei 400°C Sockeltemperatur [h] Standzeit* bei 450°C Sockeltemperatur [h]
Mo-0, 48 Gew.% Y2O3 0,07 Gew.% Ce2O3 760 380
gemäß Beispiel 1 980 510
gemäß Beispiel 2 990 500
gemäß Beispiel 3 1.010 490
gemäß Beispiel 4 820 450
gemäß Beispiel 5 790 440

Claims (7)

  1. Verfahren zur Herstellung einer elektrischen Lampe mit einem Lampenkolben aus SiO2 oder einem hoch SiO2-haltigen Glas und einer Stromzuführung, welche eine im Lampenkolben eingequetschte Folie aus Molybdän oder einer dotierten Molybdänlegierung umfasst,
    dadurch gekennzeichnet, dass eine nach üblichen sintermetallurgischen und Umform-Verfahren hergestellte Rohfolie vor dem Einquetschen im Glaskolben derart nachbehandelt wird, dass auf 5 bis 60 Flächenprozent der Folienoberfläche im Wesentlichen nicht zusammenhängende, inselartige Bereiche von Stoffagglomeraten mit von der Rohfolie verschiedener Oberflächenstruktur und/oder Werkstoffzusammensetzung, aus Molybdän bzw. aus dessen Legierungen, aus Titan, aus Silizium oder aus einem Oxid, einem Mischoxid und/oder einer oxidischen Verbindung mit einem Dampfdruck von jeweils weniger als 10 mbar bei 2.000°C entstehen.
  2. Verfahren zur Herstellung einer elektrischen Lampe nach Anspruch 1,
    dadurch gekennzeichnet, dass zum Einquetschen eine Folie verwendet wird, deren Oberfläche zu mindestens 5 Flächenprozent bis maximal 20 Flächenprozent aus nicht zusammenhängenden Stoffagglomeraten besteht.
  3. Verfahren zur Herstellung einer elektrischen Lampe nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass zum Einquetschen eine Folie verwendet wird, bei der die mittlere Größe der einzelnen Stoffagglomerate weniger als 5 µm beträgt.
  4. Verfahren zur Herstellung einer elektrischen Lampe nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Stoffagglomerate aus Yttriumoxid oder Yttrium-Mischoxid bestehen.
  5. Verfahren zur Herstellung einer elektrischen Lampe nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Stoffagglomerate aus Titanoxid oder Titan-Mischoxid bestehen.
  6. Verfahren zur Herstellung einer elektrischen Lampe nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass zum Einquetschen eine Folie verwendet wird, bei der die nicht zusammenhängenden Stoffagglomerate durch Aufbringen eines Schlickers oder Abscheidung aus der Gasphase und anschließendes Glühen bei einer Temperatur zwischen 500°C und 1.400°C ausgebildet werden.
  7. Molybdänfolie nach einem der Ansprüche 1 bis 6 in nachbehandelter Ausführung zur Verwendung in elektrischen Lampen.
EP01111636A 2000-05-18 2001-05-14 Folie zur Verwendung in elektrischen Lampen Expired - Lifetime EP1156505B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT0036300U AT4408U1 (de) 2000-05-18 2000-05-18 Verfahren zur herstellung einer elektrischen lampe
AT3632000 2000-05-18

Publications (2)

Publication Number Publication Date
EP1156505A1 true EP1156505A1 (de) 2001-11-21
EP1156505B1 EP1156505B1 (de) 2009-04-15

Family

ID=3488605

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01111636A Expired - Lifetime EP1156505B1 (de) 2000-05-18 2001-05-14 Folie zur Verwendung in elektrischen Lampen

Country Status (6)

Country Link
US (1) US6753650B2 (de)
EP (1) EP1156505B1 (de)
JP (1) JP4782307B2 (de)
KR (1) KR100859235B1 (de)
AT (1) AT4408U1 (de)
DE (1) DE50114832D1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003056607A1 (en) * 2002-01-02 2003-07-10 Philips Intellectual Property & Standards Gmbh METHOD OF MANUFACTURING A FOIL OF MOLYBDENUM AND TITANIUM OXIDE (TiO2) FOR SEALING INTO A GLASS BULB
EP1538658A3 (de) * 2003-10-16 2006-11-22 A.L.M.T. Corp. Legierung für ein Anschlussglied einer elektrischen Lampe, Elektrodenstruktur zur Verwendung in einer elektrischen Lampe und Lichtbirne für Fahrzeuge damit
WO2008132123A2 (de) 2007-04-27 2008-11-06 Osram Gesellschaft mit beschränkter Haftung Verfahren zur herstellung einer molybdänfolie für den lampenbau und molybdänfolie sowie lampe mit molybdänfolie
WO2010057239A1 (de) 2008-11-21 2010-05-27 Plansee Metall Gmbh Dichtungsfolie
US7733026B2 (en) 2004-07-06 2010-06-08 Koninklijke Philips Electronics N.V. Lamp with an improved lamp behaviour

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3687582B2 (ja) 2001-09-12 2005-08-24 ウシオ電機株式会社 放電ランプ
EP1527472A2 (de) * 2002-06-07 2005-05-04 Koninklijke Philips Electronics N.V. Elekrische lampe mit oxidationsresistenten eingangsleitern
AU2003290669A1 (en) 2002-11-07 2004-06-03 Advanced Lighting Technologies, Inc. Oxidation-protected metallic foil and methods
EP1797443B1 (de) * 2004-09-29 2016-11-16 Nxp B.V. Ladeverfahren und schaltung unter verwendung indirekter strommessung
US7888872B2 (en) * 2004-09-30 2011-02-15 Koninklijke Philips Electronics N.V. Electric lamp
EP1886337A2 (de) * 2005-05-19 2008-02-13 Koninklijke Philips Electronics N.V. Lampe mit komponenten aus molybdänlegierung
US7759871B2 (en) * 2005-12-16 2010-07-20 General Electric Company High temperature seal for electric lamp
US7863818B2 (en) * 2007-08-01 2011-01-04 General Electric Company Coil/foil-electrode assembly to sustain high operating temperature and reduce shaling
JP2010073330A (ja) 2008-09-16 2010-04-02 Koito Mfg Co Ltd 放電ランプ装置用水銀フリーアークチューブおよび同アークチューブの製造方法
JP5495381B2 (ja) * 2010-04-15 2014-05-21 株式会社小糸製作所 放電バルブ用アークチューブ
US9992917B2 (en) 2014-03-10 2018-06-05 Vulcan GMS 3-D printing method for producing tungsten-based shielding parts
AT17485U1 (de) * 2020-12-15 2022-05-15 Plansee Se Yttriumoxid beschichtetes bauteil aus refraktärmetall

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB780614A (en) * 1955-02-23 1957-08-07 British Thomson Houston Co Ltd Quartz-to-metal seals
JPS5964548A (ja) * 1982-09-30 1984-04-12 Toshiba Corp 封着部材
DE19603300A1 (de) * 1996-01-30 1997-07-31 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Elektrische Lampe mit Molybdänfoliendurchführungen für ein Lampengefäß aus Quarzglas
EP0871202A2 (de) * 1997-04-11 1998-10-14 Stanley Electric Co., Ltd. Metallhalogenid-Entladungslampe
US5962976A (en) * 1997-08-21 1999-10-05 Koito Manufacturing Co., Ltd. Molybdenum foils with yttrium oxide and recrystallization grains no more than 50 microns within the pinch seals of a metallic halide lamp

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3420944A (en) * 1966-09-02 1969-01-07 Gen Electric Lead-in conductor for electrical devices
JPS4844351B1 (de) * 1967-05-02 1973-12-24
JPS4818055Y1 (de) * 1969-02-05 1973-05-23
NL6918746A (de) 1969-12-13 1971-06-15
NL178041C (nl) * 1978-11-29 1986-01-02 Philips Nv Elektrische lamp.
NL183794B (nl) 1979-02-26 Philips Nv Hogedrukkwikontladingslamp.
USRE31519E (en) * 1982-11-12 1984-02-07 General Electric Company Lead-in seal and lamp utilizing same
GB8429740D0 (en) * 1984-11-24 1985-01-03 Emi Plc Thorn Lead wires in pinch seals
US4737685A (en) * 1986-11-17 1988-04-12 General Electric Company Seal glass composition
US4755712A (en) * 1986-12-09 1988-07-05 North American Philips Corp. Molybdenum base alloy and lead-in wire made therefrom
AT386612B (de) 1987-01-28 1988-09-26 Plansee Metallwerk Kriechfeste legierung aus hochschmelzendem metall und verfahren zu ihrer herstellung
US4835439A (en) 1987-09-29 1989-05-30 General Electric Company Increasing the oxidation resistance of molybdenum and its use for lamp seals
JPH03105849A (ja) * 1989-09-20 1991-05-02 Hitachi Ltd ランプ
US5021711A (en) * 1990-10-29 1991-06-04 Gte Products Corporation Quartz lamp envelope with molybdenum foil having oxidation-resistant surface formed by ion implantation
US5387840A (en) 1992-01-17 1995-02-07 U.S. Philips Corporation Electric lamp having current conductors with a metal phosphide coating only on exposed portions thereof
DE69307595T2 (de) 1992-06-05 1997-07-24 Philips Electronics Nv Elektrische Lampe
AT401124B (de) 1994-07-05 1996-06-25 Plansee Ag Elektrischer leiter in lampen
US5578892A (en) * 1995-03-13 1996-11-26 General Electric Company Bug free linear quartz halogen lamp
US5877590A (en) * 1996-07-12 1999-03-02 Koito Manufacturing Co., Ltd. Discharge lamp arc tube and method of producing the same
JP2000011955A (ja) 1998-06-26 2000-01-14 Koito Mfg Co Ltd アークチューブおよびその製造方法
JP4388699B2 (ja) * 1998-08-13 2009-12-24 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ コーティングされた外部電流導体を有する電気ランプ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB780614A (en) * 1955-02-23 1957-08-07 British Thomson Houston Co Ltd Quartz-to-metal seals
JPS5964548A (ja) * 1982-09-30 1984-04-12 Toshiba Corp 封着部材
DE19603300A1 (de) * 1996-01-30 1997-07-31 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Elektrische Lampe mit Molybdänfoliendurchführungen für ein Lampengefäß aus Quarzglas
EP0871202A2 (de) * 1997-04-11 1998-10-14 Stanley Electric Co., Ltd. Metallhalogenid-Entladungslampe
US5962976A (en) * 1997-08-21 1999-10-05 Koito Manufacturing Co., Ltd. Molybdenum foils with yttrium oxide and recrystallization grains no more than 50 microns within the pinch seals of a metallic halide lamp

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 008, no. 162 (C - 235) 26 July 1984 (1984-07-26) *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003056607A1 (en) * 2002-01-02 2003-07-10 Philips Intellectual Property & Standards Gmbh METHOD OF MANUFACTURING A FOIL OF MOLYBDENUM AND TITANIUM OXIDE (TiO2) FOR SEALING INTO A GLASS BULB
EP1538658A3 (de) * 2003-10-16 2006-11-22 A.L.M.T. Corp. Legierung für ein Anschlussglied einer elektrischen Lampe, Elektrodenstruktur zur Verwendung in einer elektrischen Lampe und Lichtbirne für Fahrzeuge damit
US7345426B2 (en) 2003-10-16 2008-03-18 A.L.M.T. Corporation Alloy for a lead member of an electric lamp and electrode structure of the electric lamp
US7733026B2 (en) 2004-07-06 2010-06-08 Koninklijke Philips Electronics N.V. Lamp with an improved lamp behaviour
WO2008132123A2 (de) 2007-04-27 2008-11-06 Osram Gesellschaft mit beschränkter Haftung Verfahren zur herstellung einer molybdänfolie für den lampenbau und molybdänfolie sowie lampe mit molybdänfolie
DE102007020067A1 (de) 2007-04-27 2008-11-06 Osram Gesellschaft mit beschränkter Haftung Verfahren zur Herstellung einer Molybdänfolie für den Lampenbau und Molybdänfolie sowie Lampe mit Molybdänfolie
DE102007020067B4 (de) * 2007-04-27 2013-07-18 Osram Gmbh Verfahren zur Herstellung einer Molybdänfolie für den Lampenbau und Molybdänfolie sowie Lampe mit Molybdänfolie
WO2010057239A1 (de) 2008-11-21 2010-05-27 Plansee Metall Gmbh Dichtungsfolie

Also Published As

Publication number Publication date
KR100859235B1 (ko) 2008-09-18
EP1156505B1 (de) 2009-04-15
KR20010105247A (ko) 2001-11-28
DE50114832D1 (de) 2009-05-28
AT4408U1 (de) 2001-06-25
US20020008477A1 (en) 2002-01-24
JP2002033079A (ja) 2002-01-31
JP4782307B2 (ja) 2011-09-28
US6753650B2 (en) 2004-06-22

Similar Documents

Publication Publication Date Title
EP1156505B1 (de) Folie zur Verwendung in elektrischen Lampen
DE3807579C2 (de)
DE3122188A1 (de) Gettermaterial und -struktur zum vorzugsweisen gebrauch bei niederen temperaturen und daraus hergestellte gettervorrichtungen fuer vakuum- oder edelgas-gefuellte behaelter
EP0691673B1 (de) Elektrischer Leiter in Lampen
DE112007002726T5 (de) Elektrodenbauteil für eine Kaltkathoden-Fluoreszenzlampe
AT6924U1 (de) Kaltkathoden-fluoreszenzlampe mit molybdän-stromdurchführungen
DE2947230A1 (de) Elektrische lampe
DE60127201T2 (de) Hochdruckentladungslampe
DE2501432A1 (de) Vakuumdichte elektrode und rohrabschliesskappe sowie verfahren zu deren herstellung
EP0512632B1 (de) Stromzuführung
EP0421521B1 (de) Röntgenröhrenanode mit Oxidbeschichtung
DE2655726C2 (de)
AT394642B (de) Roentgenroehrenanode mit oxidbeschichtung
DE10245922A1 (de) Hochdruckgasentladungslampe
EP2143131B1 (de) Verfahren zur herstellung einer molybdänfolie für den lampenbau
DE10214998B4 (de) Verfahren zur Herstellung einer Hochdruck-Entladungslampe
EP2188828A1 (de) Hochdruckentladungslampe
DE4105507A1 (de) Verfahren zur herstellung von weichmagnetischen legierungen auf fe-ni-basis
DE2849606C3 (de) Basismetallplattenmaterial für direkt erhitzte Oxidkathoden
DE19935271C2 (de) Matrixmaterial für Brennstoffzellen sowie Verfahren zu seiner Herstellung und seine Verwendung
DE4437363A1 (de) Elektroden-Zuleitungen aus einer Molybdän/Wolfram-Legierung und solche Zuleitungen aufweisende Lampe
DE10038841C1 (de) SiO¶2¶-Glaskolben mit mindestens einer Stromdurchführung, Verfahren zur Herstellung einer gasdichten Verbindung zwischen beiden sowie ihre Verwendung in einer Gasentladungslampe
AT4809U1 (de) Stromzuführung für elektrische lampen
AT11175U1 (de) Dichtungsfolie
WO2009030264A1 (de) Verfahren zur herstellung eines einschmelzbereichs, und damit hergestellte entladungslampe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010914

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

Kind code of ref document: A1

Designated state(s): BE DE FR GB IT NL

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

AKX Designation fees paid

Free format text: BE DE FR GB IT NL

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: PLANSEE GMBH

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: PLANSEE SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: PLANSEE SE

17Q First examination report despatched

Effective date: 20061114

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RTI1 Title (correction)

Free format text: FOIL FOR USE IN ELECTRICAL LAMPS

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB IT NL

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50114832

Country of ref document: DE

Date of ref document: 20090528

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20100118

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20120601

Year of fee payment: 12

Ref country code: GB

Payment date: 20120522

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20120528

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20130522

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20130521

Year of fee payment: 13

Ref country code: NL

Payment date: 20130521

Year of fee payment: 13

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130514

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130514

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130514

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130531

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50114832

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20141201

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50114832

Country of ref document: DE

Effective date: 20141202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140531