EP1139857A2 - Anordnung und verfahren zur berührungslosen messung der achslänge und/oder der hornhautkrümmung und/oder der vorderkammertiefe des auges, vorzugsweise zur iol-berechnung - Google Patents

Anordnung und verfahren zur berührungslosen messung der achslänge und/oder der hornhautkrümmung und/oder der vorderkammertiefe des auges, vorzugsweise zur iol-berechnung

Info

Publication number
EP1139857A2
EP1139857A2 EP99963480A EP99963480A EP1139857A2 EP 1139857 A2 EP1139857 A2 EP 1139857A2 EP 99963480 A EP99963480 A EP 99963480A EP 99963480 A EP99963480 A EP 99963480A EP 1139857 A2 EP1139857 A2 EP 1139857A2
Authority
EP
European Patent Office
Prior art keywords
eye
arrangement
vkt
arrangement according
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP99963480A
Other languages
German (de)
English (en)
French (fr)
Inventor
Roland Barth
Roland Bergner
Lothar Müller
Dietmar Steinmetz
Siegfried Schubert
Klaus-Ditmar Voigt
Frank Behrendt
Burkhard Dietzel
Axel Doering
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jenoptik AG
Original Assignee
Carl Zeiss Jena GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE1998157000 external-priority patent/DE19857000A1/de
Priority claimed from DE1998157001 external-priority patent/DE19857001A1/de
Application filed by Carl Zeiss Jena GmbH filed Critical Carl Zeiss Jena GmbH
Publication of EP1139857A2 publication Critical patent/EP1139857A2/de
Ceased legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/1005Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for measuring distances inside the eye, e.g. thickness of the cornea
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/0008Apparatus for testing the eyes; Instruments for examining the eyes provided with illuminating means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/0016Operational features thereof
    • A61B3/0025Operational features thereof characterised by electronic signal processing, e.g. eye models
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/107Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for determining the shape or measuring the curvature of the cornea
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/117Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for examining the anterior chamber or the anterior chamber angle, e.g. gonioscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/14Arrangements specially adapted for eye photography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/14Arrangements specially adapted for eye photography
    • A61B3/15Arrangements specially adapted for eye photography with means for aligning, spacing or blocking spurious reflection ; with means for relaxing
    • A61B3/156Arrangements specially adapted for eye photography with means for aligning, spacing or blocking spurious reflection ; with means for relaxing for blocking
    • A61B3/158Arrangements specially adapted for eye photography with means for aligning, spacing or blocking spurious reflection ; with means for relaxing for blocking of corneal reflection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/10Eye inspection

Definitions

  • a longitudinal section through the human eye is shown schematically.
  • the axis length AL of the human eye is usually measured using ultrasound using the contact method.
  • the curvature of the corneal radius HHR is determined using known keratometers / ophthalmometers (DD 251497, US 4572628, US 4660946, US 5212507, 5325134).
  • the anterior chamber depth VKT can be measured by means of ultrasound or by means of an additional unit for a slit lamp (anterior chamber depth meter, adjustment via the slit lamp image).
  • these parameters must be determined, which are also important for the selection of the IOL intraocular lens to be implanted.
  • these devices In clinical practice, it is common to use these devices at least with two devices (eg ultrasound a-scan and automatic keratometer) to be measured.
  • the measured variables are used in formulas which calculate the optical effect of the IOL.
  • the object of the invention is to reduce these device-dependent measurement errors to a minimum.
  • all the necessary parameters of the eye are advantageously determined by means of a device arrangement and corresponding measuring methods. Necessary settings that enable the device to be adjusted to the patient are also implemented in this arrangement.
  • the calculation of the IOL is also carried out using this device arrangement. This also eliminates data loss or data falsification when the measured values are transmitted from various devices to the computer which carries out the IOL calculation.
  • the invention and its advantages are explained below with reference to the schematic representations.
  • the light of a laser diode 1 is adjustable via a Michelson interferometer (3-5), consisting of a fixed reference arm R1 with a reflector 4, here a triple prism and one based on different positions of a further reflector 5 (triple prism) Reference arm R2, and a beam splitter cube 3 for superimposing the radiation components reflected in Rl and R2, a splitter cube 8 and a diffractive optical element DOE 9 are imaged on the patient's eye 14.
  • a diode 7 monitors the light output of the laser diode 1.
  • the axis length measurement is carried out according to known methods, for example described in US5673096.
  • part of the reflected light (light coming from the eye) is applied to a CCD using an achromatic lens 22 via mirror 20.
  • An aperture 21 is in the switched-off position.
  • the eye 14 is illuminated analogously to DD 251497 at an angle of approximately 18 ° to the optical axis AI by means of 6 preferably infrared LEDs ⁇ s 10, two of which are shown in FIG. 1 by way of example in the plane of the drawing are shown.
  • Pinhole diaphragms 10 a are arranged downstream of the LEDs for generating point-shaped lighting images.
  • the diode light To collimate the diode light, six lenses 11 are arranged downstream of the LEDs in the direction of illumination.
  • the images of these light sources created in the eye are imaged on the CCD camera via divider cubes 8 and 15 and achromats 18 and 19.
  • the DOE 9 is advantageously pivoted out here, but can also remain in the beam path.
  • the achromat 22 is pivoted out.
  • each eye is LED at an angle of approx. 33 °
  • slit diaphragm 12a and cylindrical lens 13 illuminated in the form of a slit.
  • Divider cubes 8 and 15 and achromats 18 and 19 are imaged on the CCD camera 23 with the DOE preferably pivoted out.
  • the achromat 22 is pivoted out.
  • FIG. 3 shows a front view of the device in the direction of the observation, with the illustration of a known slit lamp cross table for x y / z adjustment being dispensed with.
  • the DOE 9 at its center AI indicates the position of the optical axis in the device
  • the lenses 11 for the determination of the corneal curvature with an invisible LED 10 behind it
  • the cylindrical lenses 13 for the slit image for measuring the VKT and six IR diodes 24 for illuminating and adjusting the eye 14.
  • the measurement tasks are to be explained in more detail with the aid of the beam path A-D from the eye 14 to the CCD camera 23.
  • Beam path C adjustment of the device to the eye
  • the eye is at the focal length of Achromat 18, is imaged to infinity and is imaged via Achromat 22 in the plane of the CCD camera.
  • Achromat 19 is swung out here.
  • the patient is offered a fixation light by means of a laser diode (LD) or LED 1 so that he can align the eye pupil in the direction of the optical axis. It is necessary to image a larger section of the eye 14 (for example 15 mm) on the CCD camera.
  • DOE Due to its low efficiency (approx. 5% in the focusing part) DOE is for the
  • Image of the iris structures less suitable, so that an optical system with a fixed
  • Image scale consisting of achromats 18 and 22 realizes the image.
  • the DOE is preferably swung out.
  • the eye 14 is illuminated by means of IR diodes 24 (FIG. 2) (e.g. 880 nm), which are preferably characterized by a broad radiation characteristic (large half-value angle).
  • IR diodes 24 e.g. 880 nm
  • the device is adjusted to the patient via the well-known slit lamp cross table, which can be adjusted in the x, y, z direction.
  • VCM 3405 from Phillips can be used as the CCD camera.
  • Illumination of the eye is necessary in order to be able to adjust the patient to the device even in darker rooms.
  • This illumination should be as diffuse as possible for a field of 15 mm, but an image of the light source through the cornea cannot be avoided (since the cornea acts as a convex mirror).
  • the basic idea here is to advantageously use the means for lighting to adjust the patient's eye at the same time.
  • the patient's eye is shown live on an LC display or monitor;
  • a circle / crosshair is shown on the LCD / monitor for center marking.
  • the 6 points must be set centrally to the circle shown - this is done by moving the cross table; the patient is correctly adjusted in height / side / depth when the points can be seen in the center and in focus.
  • the patient himself looks into the device - from there an alignment laser 1 or LED la is projected, onto which the patient has to fixate.
  • the laser reflex can be seen in the middle of the pupil.
  • An additional setting aid should be shown on the LC display / monitor.
  • Photodiode APD provided.
  • the alignment laser 1 or LED 1a is reflected by the anterior surface of the cornea; the reflected light is reflected on the
  • APD pictured. This generates a DC voltage signal from the APD
  • (Relative) height represents a measure of the centering of the patient's eye.
  • This DC voltage signal is fed to the internal computer via an A / D converter and from there is displayed in a suitable form (eg a bar / circle) on the LCD.
  • a suitable form eg a bar / circle
  • the operator is thus provided with further information on the adjustment state of the patient's eye by the different size of the bar / circle.
  • the reflections of the laser diode 1 are imaged on the CCD camera 23 via the DOE as a parallel beam path and the achromatic lens 22, an eye segment of approximately 5 mm being shown with the optics 18, 19 pivoted out for observation and reflex adjustment.
  • a large part, advantageously more than approx. 80-95% of the total energy is coupled out to the APD on the divider cube 15 shown in FIG. 2; only about 20 - 5% of the light falls on the CCD camera.
  • Beam path B keratometer
  • Illumination is preferably carried out analogously to DD 251497 by means of six IR diodes 10 (e.g. 880 nm) in order not to impede the fixation of the patient's eye 14 to the fixation light of the LD 1 or the LED 1a.
  • six IR diodes 10 e.g. 880 nm
  • the predetermined resolution of the CCD camera 23 requires the imaging of a field no larger than approx. 6 mm on the eye 14 in order to achieve a measuring accuracy of 0.05 mm.
  • the effect of the DOE is preferably switched off again by swiveling out and the achromats 18 and 19 realize the 6 corneal reflex images. Serve to increase a measuring accuracy largely independent of the distance between the patient's eye and the device
  • a telecentric aperture 21 which limits the aperture for the measurement to preferably less than 0.05 and
  • the LED light is advantageously imaged via a pinhole 10a, which enables an exact adjustment of the keratometer measurement points.
  • the focal length of the collimator should be more than 50 times the effective light source extension in order to achieve the desired measuring accuracy of the radius measurement regardless of the position.
  • Light source can be selected (e.g. 400 - 600nm).
  • a field no larger than approx. 6 mm is imaged on the eye 14 on the CCD camera 23.
  • Achromat 22 is swung out.
  • the telecentric aperture 21 pivoted or adjusted here must be larger
  • the subject's eye is illuminated laterally at a fixed angle through the bright light gap.
  • the resulting light cuts on the eye are visualized
  • FIG. 8a b schematically shows the arrangement for determining the VKT, in Fig. 8a
  • the light gap is formed by a row of bright LEDs 12, which have a defined one
  • the gap 12a illuminated in this way is imaged by a cylindrical lens 13 as a gap image S on the subject's eye.
  • the LEDs used typically have a lifespan of at least
  • the subject's eye is imaged with the relevant image sections via a schematically illustrated imaging optics 18, 19, preferably on a CCD sensor 23.
  • mapping is carried out telecentrically - telecentric aperture 21 to the influence of the
  • the video signal is on a monitor or LC
  • Display shown so that the operator can carry out the subject adjustment and measurement in a relaxed position.
  • the measuring method is not based on the measurable shift of partial images; the pupil division can thus be omitted.
  • the signal from the CCD camera 23 is stored in the memory of the
  • VKT accuracy 0.1 mm
  • An improvement in the relevant image content is achieved by switching the lighting LEDs on and off in a suitable form, synchronized with the video fields.
  • An achromatic lens with a defined focal length is sufficient to image the eye on the CCD camera.
  • the focal length is determined depending on the desired image section on the eye that is to be imaged.
  • the aperture 23, which fulfills the telecentric condition, is arranged in the image-side focal length of the achromatic lens.
  • This simple structure of the imaging system ensures that it can be easily integrated into other systems.
  • a fixation light 1.1a (LED) is faded in via beam splitter 8 in FIG. 8b.
  • a light source is integrated in the observation system (e.g. LED la or laser diode 1, on which the test subject is fixed.
  • the video signal from the camera is shown on a monitor or LC display.
  • the operator can convince himself that the test person is correctly fixed - and thus the measurement result is unadulterated.
  • the gap illuminated in this way is placed on the test person's eye through a cylindrical lens
  • the subject's eye is imaged with the relevant image sections via imaging optics 18, 19, preferably on a CCD sensor 8.
  • the imaging is carried out telecentrically in order to minimize the influence of subject adjustment.
  • the video signal is displayed on a monitor or LC display, so that the operator can carry out the subject adjustment and measurement in a relaxed position.
  • the signal from the CCD camera is e.g. into the memory of a
  • VKT accuracy 0.1 mm
  • An improvement in the relevant image content is achieved by synchronizing the lighting LED in a suitable form
  • Video fields are clocked on and off.
  • the image of the eye which is captured by the CCD camera, is shown with the reflection image FI of the adjustment laser or the fixing LED, and the scattered light SH of the cornea and the lens SL when the illumination 1 is switched on. Determination of the distance between the leading edges of the scatter images of the cornea and lens in digitized images
  • the starting point of the image processing is (n times) a pair of images taken immediately after one another: image 1 with the slit illumination switched on ("bright image"), image 2 without slit illumination with the image of the fixing lamp ("dark image”).
  • image 1 with the slit illumination switched on (“bright image")
  • image 2 without slit illumination with the image of the fixing lamp (“dark image”).
  • Detection of the pupil in the dark image histogram-based selection of a threshold value for binarization taking into account boundary conditions. Determination of an ellipse circumscribing the pupil by evaluating the covariance matrix of the binary image.
  • Detection of the fixation point in the pupil in the dark image determination of all connected regions whose gray values lie above the 0.9 quantile of the gray value distribution in the dark image. Determination of a probability measure for each region, which depends on the area, shape and distance from the center of the pupil. Selection of the focus of the most likely region as a fixed point.
  • Determination of the edge profile of the scatter images of the slit lighting in the difference image histogram-based selection of a threshold value for binarization taking into account boundary conditions. Rough detection of the edges as the location of the threshold value being exceeded in a predetermined area around the fixing point. Fine detection of the edges as the location of the turning point of the gray value curve in the line profile that is closest to the roughly detected position. Elimination of reflex edges by outlier detection in the edge course (removal of a predetermined proportion of points which is furthest from the middle edge course).
  • This formula applies exactly when the image of the fixing lamp is at the front edge of the lens scattering image, as shown in FIG. 7; otherwise the distance of the fixation lamp image from the front edge of the lens scatter image can be determined and from the amount of this "decentering" a correction value for the anterior chamber depth can be determined according to known imaging formulas.
  • the corneal radius is preferably measured using the keratometer device described above.
  • Wavelength IR e.g. 880nm
  • 780nm e.g. 880nm
  • VIS e.g. 400-600nm
  • the divider cubes 8 and 15 come here are of great importance because the lighting, observation and measuring beam paths are separated from each other at these points.
  • the laser light coming from the interferometer should be reflected at most in the direction of eye 14; the laser light coming from the eye 14 should have maximum transmission.
  • LD 1 for example LT 023 Sharp
  • a dielectric multilayer with a polarizing effect can preferably be used
  • the vertically polarized light coming from 1 (s-pol, 780 nm) is reflected as far as possible (approx. 98%).
  • Circularly polarized light is generated by the Lamba / 4 plate.
  • the light reflected by the eye 14 is thus linearly polarized again after passing through the lambda / 4 plate; however, the direction of polarization is rotated by 90 ° (parallel polarized, p-pol).
  • the dividing layer exhibits approximately 100% transmission in the direction of vibration.
  • the IR and VIS LEDs emit unpolarized light.
  • Wavelength range from 420 to 580 nm and in the range from 870 to 1000 nm greater than 90% for unpolarized light.
  • this pole dividing cube fulfills the additional requirements of high transmission in the visual wavelength range (420 ... 560nm) and in the near infrared range (870 .... 1000nm).
  • the layer design meets these requirements for a narrow angle of incidence around 46 °.
  • L n 1.48
  • the design consists of 17 alternating layers H L.
  • HFO2 is H
  • SIO2 is L.
  • suitable dividers can be produced by a suitable choice of the refractive indices of the substrate and coating substances and the angle of incidence.
  • the laser light coming from divider cube 8 should be reflected to approx. 80-95% with approximately 20-5% transmission.
  • the divider layer should have max.
  • This layer is also implemented by means of a pole divider, the properties of which approximate the divider layer in FIG. 8.
  • the lambda / 2 plate arranged on divider cubes 15 rotates the polarization direction of the incoming light by 90 °, so that the s-pol component falls again on divider cubes 15.
  • the transmission is greater than 90% for unpolarized light in the IR and VIS range.
  • This divider cube fulfills the requirements of the reflection s-pol of 80 ... 95% at one
  • the layer design meets these requirements for a narrow angle of incidence around 46 °.
  • the materials used are in terms of refractive index substrate, putty index and
  • L n 1.48
  • the design consists of 13 alternating layers H L.
  • suitable dividers can be produced by a suitable choice of the refractive indices of the substrate and coating substances and the angle of incidence.
  • a central control is provided according to FIG. 5 for setting and controlling all adjustable units and optical elements such as optics 18, 19, 22, aperture 21, etc.
  • the various imaging scales taking into account the effect of the DOE, require switching processes in the device. These are preferably motorized and program-controlled.
  • a compact device was implemented in which the essential electronic components are integrated.
  • the centerpiece is an embedded Pentium Controller C, to which a display D (display of the examined eye 14 and menu navigation for the operator), keyboard, mouse, foot switch and printer are connected as peripheral devices.
  • a display D display of the examined eye 14 and menu navigation for the operator
  • keyboard mouse
  • foot switch printer
  • the control of the laser diode 1 and the interferometer slide IS takes place via the controller C.
  • a short measuring time (less than 0.5 sec) must be implemented.
  • the signal generated by the APD 17 arrives in a signal processing unit SE Dependence of the signal size amplified, then frequency-selective amplification and with a
  • Sampling frequency which corresponds to about 4 times the frequency of the useful signal, converted from analog to digital.
  • the digital samples are taken from the high-speed port HS of the Pentium platform.
  • the signal is shown on the display; the measuring system provides the associated
  • the controller C is connected to the control of the CCD camera 23 and the diodes 10.
  • the diodes 10 are preferably operated in the continuous light mode in order to flicker those shown on the LCD
  • these diodes are switched on and off picture-wise;
  • Controller C the diodes 10 in synchronism with the image pulse of the CCD camera 23, i.e. the
  • Diodes are on for one picture and off for the next.
  • the reflex images created on the camera 23 are digitized using the frame grabber FG and stored in the RAM of the Pentium platform (
  • the controller C is still connected to the diodes 12.
  • the diodes 12 are preferably operated in continuous light mode, similar to the keratometer.
  • the lighting diodes for the left and right eyes are optionally clocked by the controller (analogous to keratometers)
  • the device is moved to the left or right and adjusted to the center of the eye using ...
  • the edge position of the scatter images is determined by means of image processing
  • the VKT is calculated from the distance between the corneal and lens scattering images, as already described.
  • the controller C is connected to the diodes 24.
  • the IR diodes 24 for illuminating the eye can be switched on at any time
  • Controllers can be switched on (controlled within the program or controlled by the operator)
  • the controller is still (not shown) with the controls for the input and
  • the IOL is calculated using the internationally customary calculation formulas, which are stored in the device memory and can be called up, from the measured values AL, HHR, VKT and are printed out on a printer.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Ophthalmology & Optometry (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Signal Processing (AREA)
  • Eye Examination Apparatus (AREA)
  • Prostheses (AREA)
EP99963480A 1998-12-10 1999-12-10 Anordnung und verfahren zur berührungslosen messung der achslänge und/oder der hornhautkrümmung und/oder der vorderkammertiefe des auges, vorzugsweise zur iol-berechnung Ceased EP1139857A2 (de)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE19857001 1998-12-10
DE1998157000 DE19857000A1 (de) 1998-12-10 1998-12-10 Anordnung und Verfahren zur Vermessung von Teilabschnitten des Auges, insbesondere der Vorderkammertiefe
DE1998157001 DE19857001A1 (de) 1998-12-10 1998-12-10 Anordnung und Verfahren zur berührungslosen Messung der Achslänge, der Hornhautkrümmung und/oder der Vorderkammertiefe des Auges
DE19857000 1998-12-10
PCT/EP1999/009766 WO2000033729A2 (de) 1998-12-10 1999-12-10 Anordnung und verfahren zur berührungslosen messung der achslänge und/oder der hornhautkrümmung und/oder der vorderkammertiefe des auges, vorzugsweise zur iol-berechnung

Publications (1)

Publication Number Publication Date
EP1139857A2 true EP1139857A2 (de) 2001-10-10

Family

ID=26050675

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99963480A Ceased EP1139857A2 (de) 1998-12-10 1999-12-10 Anordnung und verfahren zur berührungslosen messung der achslänge und/oder der hornhautkrümmung und/oder der vorderkammertiefe des auges, vorzugsweise zur iol-berechnung

Country Status (8)

Country Link
US (5) US6779891B1 (ja)
EP (1) EP1139857A2 (ja)
JP (3) JP4769923B2 (ja)
CN (2) CN100502762C (ja)
CA (2) CA2353921C (ja)
EA (1) EA004236B1 (ja)
HK (1) HK1043031B (ja)
WO (1) WO2000033729A2 (ja)

Families Citing this family (105)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050043808A1 (en) * 1994-05-06 2005-02-24 Advanced Bio Surfaces, Inc. Knee joint prosthesis
CA2353921C (en) * 1998-12-10 2009-03-10 Carl Zeiss Jena Gmbh System and method for the non-contacting measurement of the axis length and/or cornea curvature and/or anterior chamber depth of the eye, preferably for intraocular lens calculation
DE29913603U1 (de) 1999-08-04 1999-11-25 Oculus Optikgeräte GmbH, 35582 Wetzlar Spaltprojektor
DE10042751A1 (de) * 2000-08-31 2002-03-14 Thomas Hellmuth System zur berührungslosen Vermessung der optischen Abbildungsqualität eines Auges
DE10108797A1 (de) 2001-02-21 2002-09-05 Zeiss Carl Jena Gmbh Verfahren zur Ermittlung von Abständen am vorderen Augenabschnitt
DE10307741A1 (de) * 2003-02-24 2004-09-02 Carl Zeiss Meditec Ag Anordnung zur Bildfeldverbesserung bei ophthalmologischen Geräten
DE10323920A1 (de) * 2003-05-22 2004-12-16 Carl Zeiss Meditec Ag Verfahren und Anordnung zum Vermessen des vorderen Augenabschnitts
DE20313745U1 (de) * 2003-09-02 2003-11-20 Oculus Optikgeräte GmbH, 35582 Wetzlar Ophthalmologisches Analysesystem
DE10349230A1 (de) * 2003-10-23 2005-07-07 Carl Zeiss Meditec Ag Gerät zur interferometrischen Augenlängenmessung mit erhöhter Empfindlichkeit
US20050241653A1 (en) 2004-04-20 2005-11-03 Wavetec Vision Systems, Inc. Integrated surgical microscope and wavefront sensor
BRPI0401628B1 (pt) * 2004-04-22 2017-04-11 Fundação De Amparo À Pesquisa Do Estado de São Paulo mira luminosa de projeção para medidas de precisão de raios de curvatura de superfícies refletoras esféricas e não esféricas
EP2417903A1 (en) * 2005-01-21 2012-02-15 Massachusetts Institute of Technology Methods and apparatus for optical coherence tomography scanning
DE502006007689D1 (de) * 2005-02-25 2010-09-30 Acri Tec Gmbh Einrichtung und vorrichtung zum ausgleich einer lokalen verformung der hornhaut eines auges
US7347554B2 (en) * 2005-03-15 2008-03-25 Carl Zeiss Meditec, Inc. Determining criteria for phakic intraocular lens implant procedures
DE102005059923A1 (de) * 2005-12-13 2007-06-14 Oculus Optikgeräte GmbH Verfahren und Vorrichtung zur Bestimmung des Abstandes zu einem Messpunkt auf einer Gewebefläche des Auges
US9545338B2 (en) 2006-01-20 2017-01-17 Lensar, Llc. System and method for improving the accommodative amplitude and increasing the refractive power of the human lens with a laser
US10842675B2 (en) 2006-01-20 2020-11-24 Lensar, Inc. System and method for treating the structure of the human lens with a laser
US9889043B2 (en) 2006-01-20 2018-02-13 Lensar, Inc. System and apparatus for delivering a laser beam to the lens of an eye
US8262646B2 (en) * 2006-01-20 2012-09-11 Lensar, Inc. System and method for providing the shaped structural weakening of the human lens with a laser
JP4907227B2 (ja) * 2006-05-29 2012-03-28 株式会社ニデック 眼内寸法測定装置
DE102006054774A1 (de) * 2006-11-17 2008-05-21 Carl Zeiss Meditec Ag Ophthalmologisches Untersuchungsgerät
JP5172141B2 (ja) * 2006-12-26 2013-03-27 株式会社ニデック 眼軸長測定装置
US20080218692A1 (en) * 2007-03-06 2008-09-11 Hopler Mark D Reflectometry/Interferometry System and Method for Corneal Plane Positioning
DE102007017599A1 (de) 2007-04-13 2008-10-16 Carl Zeiss Meditec Ag Vorrichtung und Verfahren zur Achslängenmessung mit erweiterter Messfunktion im vorderen Augenabschnitt
DE102007027683A1 (de) * 2007-06-15 2008-12-18 Carl Zeiss Meditec Ag Vorrichtung und Verfahren zur Bestimmung von Vorderkammertiefe und Augenlänge eines Auges
EP2020205B1 (de) 2007-07-24 2016-04-13 SIS AG, Surgical Instrument Systems Ophthalmologische Messvorrichtung und Messverfahren
US8727532B2 (en) 2007-07-24 2014-05-20 Sis Ag, Surgical Instrument Systems Ophthalmological measurement apparatus and measurement method
US7594729B2 (en) 2007-10-31 2009-09-29 Wf Systems, Llc Wavefront sensor
US7800759B2 (en) * 2007-12-11 2010-09-21 Bausch & Lomb Incorporated Eye length measurement apparatus
US9186059B2 (en) * 2007-12-21 2015-11-17 Bausch & Lomb Incorporated Ophthalmic instrument alignment apparatus and method of using same
WO2010064150A2 (en) * 2008-04-04 2010-06-10 Amo Regional Holdings Systems and methods for determing intraocular lens power
US8295903B2 (en) * 2008-05-25 2012-10-23 Auraprobe, Inc. Electron avalanche putative energy field analyzer
TR201802998T4 (tr) * 2008-06-30 2018-03-21 Wavelight Gmbh Oftalmolojik, özellikle refraktif lazer cerrahisine yönelik cihaz.
US8500723B2 (en) 2008-07-25 2013-08-06 Lensar, Inc. Liquid filled index matching device for ophthalmic laser procedures
US8480659B2 (en) 2008-07-25 2013-07-09 Lensar, Inc. Method and system for removal and replacement of lens material from the lens of an eye
WO2010017954A2 (de) * 2008-08-12 2010-02-18 Carl Zeiss Meditec Ag Tiefenauflösende optische kohärenzreflektrometrie
DE102008051147A1 (de) * 2008-10-10 2010-04-15 Carl Zeiss Meditec Ag Anordnung und Verfahren zur Aufnahme und Auswertung von Spaltbildern überwiegend transparenter Medien, insbesondere im Auge
DE102008055755A1 (de) 2008-11-04 2010-05-06 Carl Zeiss Meditec Ag Ophthalmologisches Messsystem, insbesondere zur Gewinnung der biometrischen Daten
EP2364105B1 (de) 2008-11-04 2018-03-14 Carl Zeiss Meditec AG Ophthalmologisches messsystem und verfahren zu dessen kalibrierung und/oder justierung
US8294971B2 (en) * 2008-12-18 2012-10-23 Bausch • Lomb Incorporated Apparatus comprising an optical path delay scanner
DE102008063225A1 (de) * 2008-12-23 2010-07-01 Carl Zeiss Meditec Ag Vorrichtung zur Swept Source Optical Coherence Domain Reflectometry
JP5232038B2 (ja) * 2009-02-12 2013-07-10 株式会社ニデック 眼寸法測定装置
US8529060B2 (en) * 2009-02-19 2013-09-10 Alcon Research, Ltd. Intraocular lens alignment using corneal center
DE102009022958A1 (de) 2009-05-28 2010-12-02 Carl Zeiss Meditec Ag Vorrichtung und Verfahren zur optischen Messung von Relativabständen
JP5545618B2 (ja) * 2009-07-06 2014-07-09 株式会社ニデック 眼寸法測定装置
CN104367299B (zh) * 2009-07-14 2017-09-15 波技术视觉系统公司 眼科手术测量系统
US8617146B2 (en) 2009-07-24 2013-12-31 Lensar, Inc. Laser system and method for correction of induced astigmatism
AU2010275380A1 (en) 2009-07-24 2012-02-16 Lensar, Inc. System and method for performing ladar assisted procedures on the lens of an eye
US8382745B2 (en) 2009-07-24 2013-02-26 Lensar, Inc. Laser system and method for astigmatic corrections in association with cataract treatment
US8758332B2 (en) 2009-07-24 2014-06-24 Lensar, Inc. Laser system and method for performing and sealing corneal incisions in the eye
WO2011011727A1 (en) 2009-07-24 2011-01-27 Lensar, Inc. System and method for providing laser shot patterns to the lens of an eye
US8210683B2 (en) * 2009-08-27 2012-07-03 Virginia Mason Medical Center No-history method for intraocular lens power adjustment after excimer laser refractive surgery
DE102009041995A1 (de) * 2009-09-18 2011-03-24 Carl Zeiss Meditec Ag Optische Ablenkeinheit für scannende, ophthalmologische Mess- und Therapiesysteme
JP5426339B2 (ja) * 2009-12-02 2014-02-26 株式会社ニデック 眼寸法測定装置
JP5410954B2 (ja) * 2009-12-29 2014-02-05 株式会社ニデック 眼軸長測定装置
EP2531089B1 (en) 2010-02-01 2023-04-05 LENSAR, Inc. Purkinjie image-based alignment of suction ring in ophthalmic applications
JP5484157B2 (ja) * 2010-03-30 2014-05-07 株式会社ニデック 眼科装置
DE102010014114B4 (de) 2010-04-07 2024-03-07 Carl Zeiss Meditec Ag Ophthalmologisches Gerät mit Abbildungsmodi für Justier- und Messaufgaben
DE102010019657A1 (de) 2010-05-03 2011-11-03 Carl Zeiss Meditec Ag Anordnung zur verbesserten Abbildung von Augenstrukturen
DE102010047053A1 (de) * 2010-09-29 2012-03-29 Carl Zeiss Meditec Ag Verfahren und Vorrichtung zur interferometrischen Bestimmung verschiedener biometrischer Parameter eines Auges
DE102010047010B4 (de) * 2010-09-30 2017-03-09 Carl Zeiss Meditec Ag Steuerungsvorrichtung für ein ophthalmochirurgisches System
USD694890S1 (en) 2010-10-15 2013-12-03 Lensar, Inc. Laser system for treatment of the eye
USD695408S1 (en) 2010-10-15 2013-12-10 Lensar, Inc. Laser system for treatment of the eye
ES2937241T3 (es) 2010-10-15 2023-03-27 Lensar Inc Sistema y método de iluminación controlada por barrido de estructuras dentro de un ojo
JP6007466B2 (ja) * 2010-12-27 2016-10-12 株式会社ニデック 角膜形状測定装置
US20140088573A1 (en) * 2011-03-04 2014-03-27 Eyesight & Vision Gmbh Projector device, and medical device comprising the projector device
ES2701608T3 (es) * 2011-03-25 2019-02-25 Novartis Ag Aparato y procedimiento para modelar estructuras oculares
US10463541B2 (en) 2011-03-25 2019-11-05 Lensar, Inc. System and method for correcting astigmatism using multiple paired arcuate laser generated corneal incisions
CN103501686B (zh) * 2011-03-25 2017-02-08 雷萨公司 利用激光产生的角膜切口测量和校正散光的系统和方法
DE102011106288A1 (de) 2011-07-01 2013-01-03 Carl Zeiss Meditec Ag Gerät zur berührungslosen Messung von Augenparametern
DE102011082500A1 (de) * 2011-08-26 2013-02-28 Oculus Optikgeräte GmbH Ophthalmologisches Analysegerät und Verfahren
EP2765901A1 (en) 2011-10-14 2014-08-20 Amo Groningen B.V. Apparatus, system and method to account for spherical aberration at the iris plane in the design of an intraocular lens
US8556421B2 (en) * 2011-10-19 2013-10-15 Novartis Ag Calculating an intraocular lens (IOL) power according to a directly determined IOL location
CN103654710B (zh) * 2012-09-03 2015-10-28 华晶科技股份有限公司 图像检测装置及图像检测方法
US9072462B2 (en) 2012-09-27 2015-07-07 Wavetec Vision Systems, Inc. Geometric optical power measurement device
DE102012019469A1 (de) 2012-09-28 2014-04-03 Carl Zeiss Meditec Ag Verfahren zur Realisierung von OCT- und sonstigen Bildaufnahmen eines Auges
DE102012019474A1 (de) * 2012-09-28 2014-04-03 Carl Zeiss Meditec Ag Vorrichtung zur verlässlichen Bestimmung biometrischer Messgrößen des gesamten Auges
DE102012022059A1 (de) 2012-11-08 2014-05-08 Carl Zeiss Meditec Ag Verfahren zur Bestimmung der Gesamtbrechkraft der Hornhaut eines Auges
US9622659B2 (en) 2012-11-08 2017-04-18 Carl Zeiss Meditec Ag Method for determining the total refractive power of the cornea of an eye
DE102013002828A1 (de) 2013-02-15 2014-08-21 Carl Zeiss Meditec Ag Verfahren zur Bestimmung der Gesamtbrechkraft der Hornhaut eines Auges
EP2962627A4 (en) * 2013-02-28 2016-04-06 Tecnología Pro Informática S L SYSTEM FOR OBTAINING PARAMETERS FOR ADJUSTING FRAMES WITH LENSES FOR A USER
US10117572B2 (en) * 2013-04-26 2018-11-06 Carl Zeiss Meditec Ag Method, ophthalmic measuring system and computer-readable storage medium for selecting an intraocular lens
JP5650810B2 (ja) * 2013-06-24 2015-01-07 株式会社ニデック 眼軸長測定装置
DE102014210786A1 (de) 2014-06-05 2015-12-17 Carl Zeiss Meditec Ag Topographiemodul für ophthalmologische Geräte mit entfernungsunabhängiger Keratometrie-Messeinrichtung und Verfahren zu dessen Anwendung
DE102014210787A1 (de) 2014-06-05 2015-12-17 Carl Zeiss Meditec Ag Entfernungskompensierte Messeinrichtung für topographische und keratometrische Messungen am Auge
CN104116494B (zh) * 2014-08-21 2016-08-24 太原中北新缘科技中心 基于远心光路系统的角膜曲率测量装置
JP5958635B2 (ja) * 2014-11-26 2016-08-02 富士ゼロックス株式会社 眼球の光計測装置
JP5958525B2 (ja) * 2014-11-26 2016-08-02 富士ゼロックス株式会社 眼球の光計測装置
WO2017079342A1 (en) * 2015-11-02 2017-05-11 Focure, Inc. Continuous autofocusing eyewear
CN105640486B (zh) * 2015-12-16 2018-01-12 上海杰视医疗科技有限公司 一种确定眼前房容积的方法及装置
CN109414162A (zh) * 2016-05-13 2019-03-01 洛桑联邦理工学院 用于倾斜照明下视网膜吸收相以及暗场成像的系统、方法和装置
US10591648B2 (en) * 2016-06-01 2020-03-17 Arlo Technologies, Inc. Camera with polygonal lens
EP3478152A4 (en) 2016-07-01 2020-04-01 Cylite Pty Ltd CONFOCAL MICROSCOPY APPARATUS AND METHOD USING DISPERSED STRUCTURED LIGHTING
CA3029876A1 (en) 2016-07-06 2018-01-11 Amo Wavefront Sciences, Llc Retinal imaging for reference during laser eye surgery
DE102016216615A1 (de) * 2016-09-02 2018-03-08 Carl Zeiss Meditec Ag Beleuchtungssystem für die Bestimmung der Topografie der Kornea eines Auges
WO2018047832A1 (en) * 2016-09-06 2018-03-15 Nikon Corporation Catadioptric unit-magnification afocal pupil relay and optical imaging system employing the same
US11064184B2 (en) * 2017-08-25 2021-07-13 Aurora Flight Sciences Corporation Aerial vehicle imaging and targeting system
US10495421B2 (en) 2017-08-25 2019-12-03 Aurora Flight Sciences Corporation Aerial vehicle interception system
AU2018330603B2 (en) 2017-09-11 2024-07-18 Amo Groningen B.V. Intraocular lenses with customized add power
US10864075B2 (en) * 2017-12-31 2020-12-15 Rxsight, Inc. Intraocular lens visualization and tracking system
KR102140486B1 (ko) * 2018-03-27 2020-08-03 (주)위키옵틱스 망막 관찰용 조명장치 및 이를 가지는 안저 카메라
DE102018216674A1 (de) 2018-09-28 2020-04-02 Carl Zeiss Meditec Ag Verfahren zur biometrischen Vermessung eines Auges
CN116744837A (zh) * 2020-12-23 2023-09-12 依视路国际公司 评估近视控制方案的效力的方法
CN112945131B (zh) * 2021-02-09 2022-12-09 中国商用飞机有限责任公司 一种划痕深度测量装置及方法
CN114129125B (zh) * 2021-12-02 2024-07-26 广西秒看科技有限公司 一种用于计算不同看近距离所需屈光度数的智能换算系统

Family Cites Families (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE251497C (ja)
US3785723A (en) * 1973-02-27 1974-01-15 D Guyton Method and apparatus for locating a principal meridian of an astigmatic optical system
US4019813A (en) 1976-01-19 1977-04-26 Baylor College Of Medicine Optical apparatus for obtaining measurements of portions of the eye
US4420228A (en) * 1980-06-12 1983-12-13 Humphrey Instruments, Inc. Method and apparatus for analysis of corneal shape
US4572628A (en) 1981-05-29 1986-02-25 Nippon Kogaku K.K. Method of and apparatus for measuring radius
US4660946A (en) 1981-09-21 1987-04-28 Canon Kabushiki Kaisha Cornea shape measuring method and apparatus
DE3150124C2 (de) * 1981-12-18 1985-01-31 Fa. Carl Zeiss, 7920 Heidenheim Vorrichtung zur Untersuchung der vorderen Augenabschnitte
DE3201801A1 (de) 1982-01-21 1983-09-08 Adolf Friedrich Prof. Dr.-Phys. 4300 Essen Fercher Verfahren und anordnung zur messung der teilstrecken des lebenden auges
US4533221A (en) * 1983-01-25 1985-08-06 Trachtman Joseph N Methods and apparatus for accommodation training
US4711541A (en) * 1984-02-02 1987-12-08 Tokyo Kogaku Kikai Kabushiki Kaisha Slit lamp and accessory device thereof
US4582404A (en) * 1984-07-16 1986-04-15 Hamilton C B Sagometer
US4764006A (en) * 1985-09-13 1988-08-16 Canon Kabushiki Kaisha Ophthalmic measuring apparatus
DD251497A1 (de) * 1986-07-31 1987-11-18 Zeiss Jena Veb Carl Geraet zur messung der kruemmung torischer reflektierender flaechen, insbesondere der augenhornhaut
JPS6357045A (ja) * 1986-08-26 1988-03-11 ドナルド・プレジヤ− 眼内レンズ装置、近視処置方法、レンズ滑り、および眼内レンズ装置挿入方法
US5325135A (en) * 1987-03-06 1994-06-28 Canon Kabushiki Kaisha Ophthalmologic apparatus having two measuring systems
US4930512A (en) * 1988-06-16 1990-06-05 Sonomed, Inc. Hand held spring-loaded ultrasonic probe
US5092880A (en) * 1988-10-21 1992-03-03 Genjiro Ohmi Method of determining the astigmatic power and the power for an intraocular lens, for a toric intraocular lens
JPH02295537A (ja) * 1989-05-09 1990-12-06 Topcon Corp 生体眼の前後径距離測定装置
US5042938A (en) 1989-05-09 1991-08-27 Kabushiki Kaisha Topcon Apparatus for measuring length of visual line length, depth of anterior chamber, thickness of crystal lens, etc.
JP2763584B2 (ja) * 1989-05-09 1998-06-11 株式会社トプコン 生体眼の前後径距離測定装置
JPH0779797B2 (ja) 1989-07-28 1995-08-30 キヤノン株式会社 ケラトメータ
JP3042851B2 (ja) 1990-01-29 2000-05-22 株式会社ニデック 角膜形状測定装置
US5139022A (en) * 1990-10-26 1992-08-18 Philip Lempert Method and apparatus for imaging and analysis of ocular tissue
US5094521A (en) * 1990-11-07 1992-03-10 Vision Research Laboratories Apparatus for evaluating eye alignment
US5386258A (en) * 1991-01-17 1995-01-31 Canon Kabushiki Kaisha Optical apparatus having a visual axis direction detecting device
EP0509903B1 (en) * 1991-04-15 1996-09-18 Kabushiki Kaisha TOPCON Process and apparatus for measuring axial eye length
JPH0531073A (ja) * 1991-07-25 1993-02-09 Canon Inc 眼科測定装置
US5280313A (en) * 1991-07-25 1994-01-18 Canon Kabushiki Kaisha Ophthalmic measuring apparatus
JPH05199993A (ja) * 1992-01-29 1993-08-10 Canon Inc 検眼装置
DE4210384A1 (de) 1992-03-30 1993-10-07 Stiller Henning Vorrichtung und Verfahren zum Untersuchen des Auges
JPH05277075A (ja) * 1992-04-03 1993-10-26 Topcon Corp 眼軸長測定装置
JP3221733B2 (ja) 1992-06-30 2001-10-22 株式会社ニデック レンズ測定装置
US5463430A (en) 1992-07-31 1995-10-31 Nidek Co., Ltd. Examination apparatus for examining an object having a spheroidal reflective surface
US5282852A (en) * 1992-09-02 1994-02-01 Alcon Surgical, Inc. Method of calculating the required power of an intraocular lens
JPH06137841A (ja) 1992-10-29 1994-05-20 Nikon Corp 眼科測定装置
JPH06205739A (ja) * 1993-01-11 1994-07-26 Topcon Corp 生体眼計測装置
US5331962A (en) * 1993-04-16 1994-07-26 Cornell Research Foundation Inc. Ultrasound system for corneal biometry
AU716040B2 (en) * 1993-06-24 2000-02-17 Bausch & Lomb Incorporated Ophthalmic pachymeter and method of making ophthalmic determinations
JP3423030B2 (ja) * 1993-06-29 2003-07-07 株式会社トプコン 眼科装置
JP3408297B2 (ja) 1993-10-29 2003-05-19 株式会社ニデック 眼科装置
US5493109A (en) 1994-08-18 1996-02-20 Carl Zeiss, Inc. Optical coherence tomography assisted ophthalmologic surgical microscope
US5491524A (en) * 1994-10-05 1996-02-13 Carl Zeiss, Inc. Optical coherence tomography corneal mapping apparatus
DE4446183B4 (de) 1994-12-23 2005-06-02 Carl Zeiss Jena Gmbh Anordnung zur Messung intraokularer Distanzen
JP3347514B2 (ja) * 1995-03-31 2002-11-20 ホーヤ株式会社 眼光学系のシミュレーション装置
US5745176A (en) * 1995-10-12 1998-04-28 Ppt Vision, Inc. Machine-vision illumination system and method for delineating a lighted volume from an unlighted volume
JP3592416B2 (ja) 1995-10-31 2004-11-24 晃敏 吉田 眼内物質の測定装置
US5784146A (en) 1995-12-28 1998-07-21 Nidek Co., Ltd Ophthalmic measurement apparatus
US5828489A (en) * 1996-04-12 1998-10-27 Rockwell International Corporation Narrow wavelength polarizing beamsplitter
JP3615871B2 (ja) * 1996-05-31 2005-02-02 株式会社ニデック 前眼部断面撮影装置
US5735283A (en) 1996-10-09 1998-04-07 Snook; Richard Kieth Surgical keratometer system for measuring surface topography of a cornea during surgery
US6015435A (en) * 1996-10-24 2000-01-18 International Vision, Inc. Self-centering phakic intraocular lens
US5777719A (en) * 1996-12-23 1998-07-07 University Of Rochester Method and apparatus for improving vision and the resolution of retinal images
US6079831A (en) * 1997-04-24 2000-06-27 Orbtek, Inc. Device and method for mapping the topography of an eye using elevation measurements in combination with slope measurements
ES2183447T3 (es) * 1998-03-09 2003-03-16 Medizinisches Laserzentrum Lub Procedimiento y dispositivo destinados a examinar un segmento ocular.
GB2336657B (en) * 1998-04-09 2001-01-24 Iain Sinclair Improvements in or relating to electric lights
US6404984B1 (en) * 1998-11-19 2002-06-11 Sony Corporation Lighted camera for dental examinations and method of using the same
CA2353921C (en) * 1998-12-10 2009-03-10 Carl Zeiss Jena Gmbh System and method for the non-contacting measurement of the axis length and/or cornea curvature and/or anterior chamber depth of the eye, preferably for intraocular lens calculation
DE10042751A1 (de) * 2000-08-31 2002-03-14 Thomas Hellmuth System zur berührungslosen Vermessung der optischen Abbildungsqualität eines Auges

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0033729A2 *

Also Published As

Publication number Publication date
CA2648334C (en) 2016-02-02
JP4769923B2 (ja) 2011-09-07
US20080111972A1 (en) 2008-05-15
EA004236B1 (ru) 2004-02-26
US20050018137A1 (en) 2005-01-27
CA2353921C (en) 2009-03-10
WO2000033729A2 (de) 2000-06-15
US9504381B2 (en) 2016-11-29
JP5417507B2 (ja) 2014-02-19
US7322699B2 (en) 2008-01-29
CN101596096B (zh) 2015-11-25
HK1043031B (zh) 2010-03-12
EA200100626A1 (ru) 2002-06-27
JP2002531205A (ja) 2002-09-24
US8764195B2 (en) 2014-07-01
US20140375951A1 (en) 2014-12-25
CN101596096A (zh) 2009-12-09
CN1330524A (zh) 2002-01-09
JP2011098220A (ja) 2011-05-19
CN100502762C (zh) 2009-06-24
CA2353921A1 (en) 2000-06-15
CA2648334A1 (en) 2000-06-15
WO2000033729A3 (de) 2000-10-26
US20120287399A1 (en) 2012-11-15
US6779891B1 (en) 2004-08-24
JP5184662B2 (ja) 2013-04-17
HK1043031A1 (en) 2002-09-06
JP2013006068A (ja) 2013-01-10

Similar Documents

Publication Publication Date Title
EP1139857A2 (de) Anordnung und verfahren zur berührungslosen messung der achslänge und/oder der hornhautkrümmung und/oder der vorderkammertiefe des auges, vorzugsweise zur iol-berechnung
DE19857001A1 (de) Anordnung und Verfahren zur berührungslosen Messung der Achslänge, der Hornhautkrümmung und/oder der Vorderkammertiefe des Auges
DE69420196T2 (de) Ophtalmologische Vorrichtung für den vorderen Augenbereich
EP2134247B1 (de) Verfahren zur achslängenmessung mit erweiterter messfunktion im vorderen augenabschnitt
DE69528024T2 (de) Mit optischer Kohärenz-Tomographie gesteuerter chirurgischer Apparat
DE60121123T2 (de) Verfahren und vorrichtung zur messung von refraktiven fehlern eines auges
DE60038008T2 (de) Vorrichtung zur bilderzeugung von augengewebe
DE60105874T2 (de) Ophthalmisches Gerät
WO2005045362A1 (de) Gerät zur interferometrischen augenlängenmessung mit erhöhter empfindlichkeit
DE69931419T2 (de) Ophthalmologisches Gerät
DE69020411T2 (de) Verfahren und Gerät für augenoptische Messungen.
DE2654608C3 (de) Refraktometer zur selbsttätigen objektiven Ermittlung des Refraktionszustandes eines Auges
DE10108797A1 (de) Verfahren zur Ermittlung von Abständen am vorderen Augenabschnitt
DE68911975T2 (de) Ophthalmoskopisches Diagnoseverfahren und Gerät.
DE60206510T2 (de) System zur berechnung des durchmessers der vorderkammer aus messungen des limbusringes
DE102010008146A1 (de) Messsystem und Verfahren zum Ermitteln der Refraktion eines Auges, des Krümmungsradius der Hornhaut oder des Innendrucks eines Auges
DE69020410T2 (de) Verfahren und Gerät für augenoptische Messungen.
EP3313262B1 (de) Purkinjemeter und verfahren zur automatischen auswertung
EP1308128A2 (de) Vorrichtung und Verfahren zur Messung der Refraktion eines Auges
EP2465412B1 (de) Verfahren zum Vermessen des vorderen Augenabschnitts
AT518602A1 (de) Ophthalmologische Längenmessung mittels Doppelstrahl Raum-Zeit-Domäne Wavelength Tuning Kurzkohärenz-Interferometrie
EP0979634B1 (de) Vorrichtung zur konfokalen Messung der Lichtreflexion eines Bereichs eines Körpers
AT511014B1 (de) Optischer adapter für ein doppelstrahl kurzkohärenz-interferometrie verfahren und anordnung zur intraokulären distanzmessung
WO1998013665A1 (de) Vorrichtung zum vermessen der erhebung einer oberfläche, insbesonder der netzhaut
DE3831461A1 (de) Verfahren und anordnung zum vergleich von objekten im reflektierten licht

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010608

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20080415

APBK Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNE

APBN Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2E

APBR Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3E

APAF Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNE

APBT Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9E

REG Reference to a national code

Ref country code: DE

Ref legal event code: R003

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20200203