EP0992042B1 - Nichtlinearer widerstand mit varistorverhalten und verfahren zur herstellung dieses widerstands - Google Patents
Nichtlinearer widerstand mit varistorverhalten und verfahren zur herstellung dieses widerstands Download PDFInfo
- Publication number
- EP0992042B1 EP0992042B1 EP99915429A EP99915429A EP0992042B1 EP 0992042 B1 EP0992042 B1 EP 0992042B1 EP 99915429 A EP99915429 A EP 99915429A EP 99915429 A EP99915429 A EP 99915429A EP 0992042 B1 EP0992042 B1 EP 0992042B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- particles
- varistor
- electrically conductive
- fraction
- filler
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01C—RESISTORS
- H01C7/00—Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
- H01C7/10—Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material voltage responsive, i.e. varistors
- H01C7/12—Overvoltage protection resistors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01C—RESISTORS
- H01C7/00—Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
- H01C7/10—Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material voltage responsive, i.e. varistors
- H01C7/105—Varistor cores
- H01C7/108—Metal oxide
- H01C7/112—ZnO type
Definitions
- the invention is based on a non-linear resistor Varistor behavior according to the preamble of claim 1.
- This resistor contains a matrix and a powdery filler embedded in the matrix.
- the filler contains a sintered varistor granules with predominantly spherical particles of doped metal oxide.
- the particles are made of crystalline, constructed by grain boundaries separate grains.
- Opposite Comparable acting resistors based on a sintered ceramic consuming sintering processes are much simpler, such Composite resistors made relatively simple and in great variety of shapes become.
- the invention also relates to a method for producing this Resistance.
- a resistor of the aforementioned type is described in R.Strümpler, P.Kluge-Weiss and F.Greuter "Smart Varistor Composites", Proceedings of the 8th CIMTECH World Ceramic Congress and Forum on New Materials, Symposium VI (Florence, June 29 - July 4, 1994).
- This resistor consists of a polymer filled with a powder.
- the powder used is a granulate which has been produced by sintering a spray-dried varistor powder on the basis of a zinc oxide doped with oxides of Bi, Sb, Mn, Co, Al and / or other metals.
- This granule has ball-shaped spherical particles with varistor behavior, which are composed of crystalline grains separated by grain boundaries.
- the diameters of these particles are up to 300 microns.
- the electrical properties of the sintered granules such as the nonlinearity coefficient ⁇ B or the breakdown field strength U B [V / mm] can be adjusted over a wide range.
- such a resistor has a higher nonlinearity coefficient and a higher breakdown field strength as the filler content decreases.
- the capacity for energy is relatively low.
- WO 97/26693 is a composite material based on a polymeric matrix and of a powder embedded in this matrix.
- a powder is a Granules are also used, which also by sintering a spray-dried Varistor powder based on one with oxides of Bi, Sb, Mn, Co, Al and / or other metals doped zinc oxide was produced.
- This granulate has Art a football shaped, spherical particles with varistor behavior, which composed of crystalline, separated by grain boundaries grains are. The particles have a diameter of at most 125 microns and have a Size distribution following a Gaussian distribution.
- This material is in Cable connections and cable terminations used and forms there voltage-controlling layers.
- US-A-5,669,381 describes a voltage limiting non-linear Resistance of a polymeric matrix 25 (according to Figure 2), in the three fractions of electrically conductive and / or semiconducting particles 21, 22, 23 with Diameters in the 100 ⁇ m range, in the ⁇ m range and in the submicron range and possibly also Isolierstoffteilchen 24 are embedded.
- the Nonlinearity is achieved in this resistance by the matrix and the optionally provided Isolierstoffteilchen the electrically conductive and electrically semiconducting particles at low stress to form a high ohmic resistance separates from each other.
- lines 6 ff achieved good electrical properties.
- the object is underlying to provide a resistor of the type mentioned, which is despite a good non-linearity coefficient for a good protection characteristic characterized by a high power consumption, and at the same time a procedure too create, with such a resistance in a particularly advantageous manner can be produced.
- the non-linear resistor according to the invention can advantageously be used as field-controlling Element in Kabetgamituren or as overvoltage protection element (varistor) be used. He can work in both the low and the medium and High voltage technology can be used and can because of its simple Manufacturing and further processing readily a complex geometry exhibit. If necessary, he can, for example as protection and / or Control element, by casting directly to an electrical apparatus, For example, a circuit breaker, be molded or as a thin Paint coating are applied. Furthermore, he can be screen printed in Hybrid methods are used for integrated circuits.
- the addition of the varistor particles additionally provided in the filler electrically conductive particles before Merging of filler and matrix material with the varistor particles their surfaces connected When merging, the electric Conductive particles with great certainty not from the surfaces of Loosen varistor particles so that resistors produced by this method excellent electrical properties, in particular extremely stable current-voltage characteristics, exhibit.
- the inventive method that the electric conductive particles evenly distributed over the surfaces of varistor particles and make an atomic bond with the varistor material.
- the Contact effect of the filler is so much improved and it is enough a relatively small proportion of electrically conductive particles in the filler, around resistors with excellent electrical properties, such as especially a large current carrying capacity to get.
- Non-linear resistors with varistor behavior formed as varistor composites were prepared by mixing polymeric material with a filler. Such mixing methods are well known in the art and need not be further explained.
- the polymers may be thermosets, in particular epoxy or polyester resins, polyurethanes or silicones, or else thermoplastics, for example HDPE, PEEK or ETFE.
- the polymer may also be a gel (eg silicone gel), a liquid (eg silicone oil, polybutane, ester oil, fats), a gas (air, nitrogen, SF 6 , ...), a gas mixture and / or a glass occur.
- Thermoplastic samples were prepared by mixing the filler together with the polymer, e.g. ETFE, premixed and then at elevated temperature, for example, 280 ° C, at pressures of several, typically 5 to 50, bars into a mold pressed.
- the polymer e.g. ETFE
- the filler used here contained varistor particles of doped metal oxide having a predominantly spherical structure, wherein the particles of crystalline, by Grain boundaries of separate grains were constructed.
- the filler was prepared as follows:
- a varistor mixture consisting of commercially available ZnO doped with oxides of Bi, Sb, Mn and Co and with Ni, Al, Si and / or one or more further metals was added as an aqueous suspension or solution processed approximately spherical particles having granules.
- the granules were sintered in a chamber furnace, for example on a ZnO-coated Al 2 O 3 plate, a Pt film or a ZnO ceramic, or optionally also in a rotary kiln.
- the heating times during sintering were up to 300 ° / h, typically eg 50 ° C / h or 80 ° C / h.
- the sintering temperature was between 900 ° C and 1320 ° C.
- the holding times during sintering were between 3h and 72h.
- the mixture was cooled at a rate between 50 ° C / h and 300 ° C / h.
- the Varistorgranulat thus prepared was subsequently in a Vibrating device or separated by light mechanical rubbing. By Seven were from the separated granules then granule fractions with Particle sizes between 90 and 160 microns, 32 and 63 microns and less than 32 microns produced.
- Varistor granules of the various fractions were determined in certain Weight ratios mixed together. Some of these mixtures and some of the fractions became a metal powder with geometrically anisotropic, in particular flaky, electrically conductive particles with a thickness to length ratio of typically 1/5 to 1/100 mixed, z. B. Ni flakes whose length was on average less than 60 microns. The length the metal particle was chosen in each case to be smaller on average was the radius of an average sized particle of the coarse (90 - 160 ⁇ m) varistor granules. This and a small proportion, typically 0.05 to 5 volume percent of the varistor granules, was the formation of avoided metallic conductive percolation paths in the mixture.
- the starting components of the filler generally became several Hours premixed in a turbo mixer.
- a metallic filler are also fine platelets, easily deformable, soft Particles and / or short fibers conceivable.
- An advantage is a metallic filler with Particles which are in the range of the highest processing temperatures melt, preferably in the contact points of the Varistorteilchen accumulate and lead there to an improved local contact.
- a metallic filler and fine powder such as on the basis of Silver, copper, aluminum, gold, indium and their alloys, or conductive Oxides, borides, carbides with particle diameters preferably between 1 and 20 ⁇ m are used.
- the particles of these powders can easily be formed spherical.
- the matrix material and filler Before combining the matrix material and filler should be in the filler contained electrically conductive particles with the varistor particles at the Surfaces are connected. It can then be applied to a matrix material on the Base of a polymer, such as an epoxy resin, the content of conductive small particles and a lower value of 0.05 Percent by volume.
- a polymer such as an epoxy resin
- Such a surface connection may be advantageous by a heat treatment be achieved.
- conductive particles adhere these particles well on the surfaces the varistor particle.
- the Matrix material such as a polymer, a gel or an oil, such as on the base of a silicone
- the electrically conductive particles partly on the Float matrix material and then the dielectric strength of a thus substantially impaired resistance.
- the electrically conductive particles become solid with the Surface connected.
- An advantageous surface coating is also by Reibtrust ist reached.
- the varistor granules or at least a part thereof and / or the electrically conductive particles in a mixer friction body of the Material added to the electrically conductive particles and / or it contains the Lining of the mixer Material of electrically conductive particles.
- the surface coating can also by introducing the Varistorgranulats and reaches the electrically conductive particle in a mechano-fusion system as described by Hosokawa Micron Europe B.V., 2003 RT Haarlem, Holland.
- the matrix contains a silicone
- the adhesion of the Filler in the matrix is then optimized.
- adhesion agents are in the generally applied in the form of a thin layer on the filler.
- Suitable adhesion promoters are, for example, silanes, titanates, zirconates, aluminates and / or chelates.
- the electrically conductive particles can also be added to the bonding agent and thus in economically particular advantageously be used in the same order process.
- Resistance bodies were produced from which trial resistances having a volume of a few mm 3 to several dm 3 were realized by sawing, grinding and attaching two electrodes, for example by coating with a metal such as gold or aluminum.
- specimens were also produced in which the electrodes were cast directly when cast with a casting resin, such as an epoxy or a silicone.
- the following table shows the compositions of four of these sample resistors, where D is the diameter of the particles of the varistor granules.
- resistance polymer filler 1 50% by volume of epoxy 50% by volume varistor granules
- D 90-160 ⁇ m 2 45% by volume of epoxy 48% by volume varistor granules
- D 90 - 160 ⁇ m 7% by volume varistor granules
- D 32-63 ⁇ m 3 50% by volume of epoxy 47.5% by volume varistor granulate
- D 90 - 160 ⁇ m 2.5 vol% Ni flakes 4 45% by volume of epoxy 48% by volume varistor granules
- D 90 - 160 ⁇ m 5.5% by volume varistor granulate
- D 32-63 ⁇ m 1.5 vol% Ni flakes
- the resistor 1 was state of the art.
- the resistor 3 had a 5 vol% on the filler amount of electrically conductive Ni flakes.
- the resistor 4 had both a about 10 vol% of the filler amount of the fine granular Varistorgranulats as well as about 3% by volume amount of electrically conductive Ni flakes.
- the breakdown field strength U B [V / mm], the nonlinearity coefficient ⁇ B and the maximum absorbed power P [J / cm 3 ] were determined on these four resistors.
- U B and ⁇ a variable DC voltage was applied to the resistors and the resistors were exposed to electric field strengths between about 5 and about 500 [V / mm]. Depending on the prevailing field strength, the current density J [A / cm 2 ] flowing in each of the resistors was determined. The determined values of U and J determined the current-voltage characteristics of the resistors. From each of the characteristic curves, the breakdown field strength U B of the assigned resistor was determined at a current density of 1.3 ⁇ 10 -4 [A / cm 2 ]. For each of the resistances, ⁇ B was taken from the slope of the tangent to the associated current-voltage characteristic twice logarithmically in the point determined by the breakdown field strength U B.
- the resistors 2 to 4 are distinguished from the prior art resistor (resistor 1) both by a greater nonlinearity coefficient ⁇ B and by an increased power consumption P and this with simultaneously low breakdown field strength.
- This is, on the one hand, a consequence of the improved contacting of the individual varistor particles with one another by the additionally electrically conductive particles contained in the mixture and, secondly, a consequence of a particularly high density of varistor particles.
- This high density is caused by a varistor granules with two fractions of particles of different sizes, of which the particles of the first fraction have larger diameter than the particles of the second fraction and are arranged substantially in the form of a dense sphere packing and the particles of the second fraction fill in the gaps formed by the ball packing.
- the diameters of the particles of the first fraction are preferably between about 40 and about 200 microns. To achieve a high density, it is particularly favorable when the diameter of the particles of the second fraction about 10 to about 50% of Diameter of the particles of the first fraction, and if the proportion of second fraction about 5 to about 30 percent by volume of the fraction of the first fraction is.
- an improved energy intake is achieved when at least one further fraction of predominantly spherically formed Particles is provided whose diameter is about 10 to about 50% of the diameter the particles of the second fraction and, for example, particles smaller than 32 have ⁇ m.
- the energy intake and / or other properties can additionally be improved by special stoichiometric Compositions and by certain structures of the individual fractions, by selecting suitable electrically conductive particles and by application predetermined conditions in the production of the fractions, in particular during sintering.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Thermistors And Varistors (AREA)
- Adjustable Resistors (AREA)
- Control Of Electric Motors In General (AREA)
- Making Paper Articles (AREA)
Description
Widerstand | Polymer | Füllstoff |
1 | 50 Vol% Epoxy | 50 Vol% Varistorgranulat, D = 90 - 160 µm |
2 | 45 Vol% Epoxy | 48 Vol% Varistorgranulat, D = 90 - 160 µm |
7 Vol% Varistorgranulat, D = 32 - 63 µm | ||
3 | 50 Vol% Epoxy | 47,5 Vol% Varistorgranulat, D = 90 - 160 µm |
2,5 Vol % Ni-flakes | ||
4 | 45 Vol% Epoxy | 48 Vol% Varistorgranulat, D = 90 - 160 µm |
5,5 Vol% Varistorgranulat, D = 32 - 63 µm | ||
1,5 Vol % Ni-flakes |
Probe | UB[V/mm] | αB | P [J/cm3] |
1 | 321 | 16,7 | 23,8 |
2 | 239 | 28,8 | 38,2 |
3 | 150,8 | 24,7 | 74,6 |
4 | 176,1 | 20,6 | 109,6 |
Claims (19)
- Nichtlinearer Widerstand mit Varistorverhalten, enthaltend eine Matrix und einen in die Matrix eingebetteten, pulverförmigen Füllstoff, bei dem der Füllstoff ein gesintertes Varistorgranulat mit überwiegend kugelförmigen Teilchen aus dotiertem Metalloxid aufweist, welche Teilchen aus kristallinen, durch Korngrenzen voneinander getrennten Körnern aufgebaut sind, dadurch gekennzeichnet, dass der Füllstoff zusätzlich elektrisch leitfähige Teilchen umfasst, welche höchstens einen Teil der Oberflächen der kugelförmigen Teilchen bedecken.
- Widerstand nach Anspruch 1, dadurch gekennzeichnet, dass die im Füllstoff vorgesehenen, elektrisch leitfähigen Teilchen ca. 0,05 bis ca. 5 Volumenprozent des Füllstoffes ausmachen.
- Widerstand nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass die elektrisch leitfähigen Teilchen geometrisch anisotrop ausgebildet sind.
- Widerstand nach Anspruch 3, dadurch gekennzeichnet, dass zumindest ein Teil der elektrisch leitfähigen Teilchen plättchen- und/oder schuppenförmig ausgebildet ist und diese Plättchen und/oder Schuppen ein Dicken- zu Höhenverhältnis von ca. 1/5 bis 1/100 aufweisen.
- Widerstand nach Anspruch 4, dadurch gekennzeichnet, dass die Länge der Plättchen und/oder Schuppen durchschnittlich kleiner als der Radius der Teilchen der ersten Fraktion des Varistorgranulats ist.
- Widerstand nach Anspruch 3, dadurch gekennzeichnet, dass zumindest ein Teil der elektrisch leitfähigen Teilchen als Kurzfasern ausgebildet ist.
- Widerstand nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass zumindest ein Teil des Varistorgranulats und/oder der elektrisch leitfähigen Teilchen mit einem Haftvermittler versehen ist.
- Widerstand nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass das Varistorgranulat mindestens zwei Fraktionen von Teilchen mit unterschiedlichen Grössen enthält, von denen die Teilchen der ersten Fraktion grössere Durchmesser als die Teilchen der zweiten Fraktion aufweisen und im wesentlichen in Form einer dichten Kugelpackung angeordnet sind und die Teilchen der zweiten Fraktion die von der Kugelpackung gebildeten Lücken ausfüllen.
- Widerstand nach Anspruch 8, dadurch gekennzeichnet, dass die Durchmesser der Teilchen der zweiten Fraktion ca. 10 bis ca. 50% der Durchmesser der Teilchen der ersten Fraktion betragen.
- Widerstand nach Anspruch 9, dadurch gekennzeichnet, dass die Durchmesser der Teilchen der ersten Fraktion ca. 40 bis ca. 200 µm betragen.
- Widerstand nach einem der Ansprüche 8 bis 10, dadurch gekennzeichnet, dass der Anteil der zweiten Fraktion ca. 5 bis ca. 30 Volumenprozent des Anteils der ersten Fraktion beträgt.
- Widerstand nach einem der Ansprüche 8 bis 11, dadurch gekennzeichnet, dass mindestens eine weitere Fraktion von überwiegend kugelförmig ausgebildeten Teilchen vorgesehen ist, deren Durchmesser ca. 10 bis ca. 50% der Durchmesser der Teilchen der zweiten Fraktion betragen.
- Verfahren zur Herstellung eines Widerstands nach Anspruch 1, bei dem der Varistorpartikel und elektrisch leitfähige Teilchen enthaltende pulverförmige Füllstoff mit einem die Matrix bildenden Werkstoff zusammengeführt wird, dadurch gekennzeichnet, dass vor dem Zusammenführen die im Füllstoff enthaltenen elektrisch leitfähigen Teilchen mit den Varistorpartikeln an deren Oberflächen verbunden werden.
- Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass die elektrisch leitfähigen Teilchen mit einem die Varistorpartikel enthaltenden Pulver durch Mischen zusammengeführt werden, und dass die hierbei gebildete Mischung bei Temperaturen wärmebehandelt wird, bei denen sich die Oberflächenverbindung bildet.
- Verfahren nach Anspruch 14, dadurch gekennzeichnet, dass als elektrisch leitfähige Teilchen Lotpartikel verwendet werden.
- Verfahren nach Anspruch 14 oder 15, dadurch gekennzeichnet, dass nicht oberflächenverbundene, elektrisch leitfähige Teilchen vorzugsweise durch Waschen, Sieben oder Windsichten aus der wärmebehandelten Mischung entfernt werden.
- Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass ein Varistorpartikel enthaltendes Pulver in einer metallhaltigen Lösung oder Dispersion dispergiert wird, und dass durch nasschemische Fällung der dispersen Lösung oder Dispersion oder durch galvanische oder elektrochemische Abscheidung die mit den Oberflächen der Varistorpartikel verbundenen elektrisch leitfähigen Teilchen als Fällungs- oder Abscheidungsprodukt hergestellt werden.
- Verfahren nach Anspruch 17, dadurch gekennzeichnet, dass das Fällungsprodukt wärmebehandelt wird.
- Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass ein Varistorpartikel enthaltendes Pulver in einer metallhaltigen Lösung oder Dispersion dispergiert wird, und dass durch reaktive Sprühtrocknung oder Sprühpyrolyse der dispersen Lösung oder Dispersion die mit den Oberflächen der Varistorpartikel verbundenen, elektrisch leitfähigen Teilchen hergestellt werden.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19824104 | 1998-04-27 | ||
DE19824104A DE19824104B4 (de) | 1998-04-27 | 1998-04-27 | Nichtlinearer Widerstand mit Varistorverhalten |
PCT/CH1999/000165 WO1999056290A1 (de) | 1998-04-27 | 1999-04-23 | Nichtlinearer widerstand mit varistorverhalten und verfahren zur herstellung dieses widerstands |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0992042A1 EP0992042A1 (de) | 2000-04-12 |
EP0992042B1 true EP0992042B1 (de) | 2005-08-31 |
Family
ID=7869336
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP99915429A Expired - Lifetime EP0992042B1 (de) | 1998-04-27 | 1999-04-23 | Nichtlinearer widerstand mit varistorverhalten und verfahren zur herstellung dieses widerstands |
Country Status (9)
Country | Link |
---|---|
US (1) | US6469611B1 (de) |
EP (1) | EP0992042B1 (de) |
JP (1) | JP4921623B2 (de) |
CN (1) | CN1145981C (de) |
AT (1) | ATE303652T1 (de) |
AU (1) | AU751978B2 (de) |
DE (2) | DE19824104B4 (de) |
PL (1) | PL190068B1 (de) |
WO (1) | WO1999056290A1 (de) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006136040A1 (en) * | 2005-06-21 | 2006-12-28 | Abb Research Ltd | Varistor-based field control tape |
WO2008040130A1 (en) * | 2006-10-06 | 2008-04-10 | Abb Research Ltd | Microvaristor-based powder overvoltage protection devices |
Families Citing this family (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19926950A1 (de) * | 1999-06-14 | 2000-12-21 | Abb Research Ltd | Kabelendgarnitur |
US6645393B2 (en) * | 2001-03-19 | 2003-11-11 | Inpaq Technology Co., Ltd. | Material compositions for transient voltage suppressors |
DE50115800D1 (de) * | 2001-07-02 | 2011-04-07 | Abb Schweiz Ag | Polymercompound mit nichtlinearer Strom-Spannungs-Kennlinie und Verfahren zur Herstellung eines Polymercompounds |
EP1355327B1 (de) * | 2002-04-18 | 2006-09-27 | Abb Research Ltd. | Überspannungsableiter und Verfahren zur Herstellung eines solchen Überspannungsableiters |
DE602004015567D1 (de) * | 2004-04-06 | 2008-09-18 | Abb Research Ltd | Elektrisches nichtlineares Material für Anwendungen mit hoher und mittlerer Spannung |
CN101427326B (zh) | 2006-04-24 | 2013-03-27 | Abb研究有限公司 | 基于微变阻器的过电压保护的装置和方法 |
GB0700079D0 (en) * | 2007-01-04 | 2007-02-07 | Boardman Jeffrey | A method of producing electrical resistance elements whihc have self-regulating power output characteristics by virtue of their configuration and the material |
DE102007025230A1 (de) * | 2007-05-31 | 2008-12-04 | Robert Bosch Gmbh | Verfahren zum Ableiten eines elektrischen Überspannungspotentials |
DE102008024480A1 (de) * | 2008-05-21 | 2009-12-03 | Epcos Ag | Elektrische Bauelementanordnung |
GB2460833B (en) * | 2008-06-09 | 2011-05-18 | 2D Heat Ltd | A self-regulating electrical resistance heating element |
TWI402864B (zh) * | 2008-07-11 | 2013-07-21 | Sfi Electronics Technology Inc | 一種氧化鋅變阻器的製法 |
US20100159259A1 (en) * | 2008-12-19 | 2010-06-24 | Lex Kosowsky | Voltage switchable dielectric material incorporating p and n type material |
US8399092B2 (en) | 2009-10-07 | 2013-03-19 | Sakai Chemical Industry Co., Ltd. | Zinc oxide particle having high bulk density, method for producing it, exoergic filler, exoergic resin composition, exoergic grease and exoergic coating composition |
MY149016A (en) * | 2009-10-07 | 2013-06-28 | Sakai Chemical Industry Co | Zinc oxide particle, method for producing it, exoergic filler, exoergic resin composition, exoergic grease and exoergic coating composition |
US20140184380A1 (en) * | 2010-11-26 | 2014-07-03 | Varun Aggarwal | Multi-state memory resistor device and methods for making thereof |
JP5269064B2 (ja) * | 2010-12-28 | 2013-08-21 | 株式会社東芝 | 非直線抵抗材料 |
DE102012207772A1 (de) * | 2012-05-10 | 2013-11-14 | Osram Opto Semiconductors Gmbh | Varistorpaste, elektronische bauelementevorrichtung, verfahren zum herstellen einer elektronischen bauelementevorrichtung und verfahren zum herstellen eines geometrisch flexiblen varistors |
US9138381B2 (en) * | 2013-02-08 | 2015-09-22 | Basf Se | Production of inorganic-organic composite materials by reactive spray-drying |
WO2015046125A1 (ja) | 2013-09-26 | 2015-04-02 | 音羽電機工業株式会社 | 非オーム性を有する樹脂材料及びその製造方法、並びに該樹脂材料を用いた非オーム性抵抗体 |
JP6355492B2 (ja) * | 2013-10-03 | 2018-07-11 | アルパッド株式会社 | 複合樹脂及び電子デバイス |
DE102013224899A1 (de) * | 2013-12-04 | 2015-06-11 | Osram Opto Semiconductors Gmbh | Varistorpaste, optoelektronisches Bauelement, Verfahren zum Herstellen einer Varistorpaste und Verfahren zum Herstellen eines Varistorelements |
DE102014203744A1 (de) | 2014-02-28 | 2015-09-03 | Siemens Aktiengesellschaft | Leitfähiges Glimmschutzpapier, insbesondere für den Außenglimmschutz |
DE102014203740A1 (de) | 2014-02-28 | 2015-09-03 | Siemens Aktiengesellschaft | Glimmschutzsystem, insbesondere Außenglimmschutzsystem für eine elektrische Maschine |
CN107393669B (zh) * | 2017-06-27 | 2019-03-08 | 应城和天电子科技有限公司 | 一种陶瓷电阻碳化工艺 |
WO2020073325A1 (en) * | 2018-10-12 | 2020-04-16 | Dongguan Littelfuse Electronics Company Limited | Polymer Voltage-Dependent Resistor |
US11417442B2 (en) | 2019-11-01 | 2022-08-16 | Hamilton Sundstrand Corporation | Field grading members, cables having field grading members, and methods of making field grading members |
CN112125660B (zh) * | 2020-08-31 | 2021-12-28 | 西安交通大学 | 一种氧化锌聚醚醚酮压敏电阻及其制备方法 |
WO2023140034A1 (ja) * | 2022-01-24 | 2023-07-27 | 三菱電機株式会社 | 非線形抵抗樹脂材料、非線形抵抗体、過電圧保護装置および非線形抵抗樹脂材料の製造方法 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2363172C3 (de) * | 1973-12-14 | 1978-08-03 | Siemens Ag, 1000 Berlin Und 8000 Muenchen | Spannungsabhängiger Widerstand |
AU497337B2 (en) * | 1976-11-19 | 1978-12-07 | Matsushita Electric Industrial Co., Ltd. | Voltage-dependent resistor |
US4285839A (en) * | 1978-02-03 | 1981-08-25 | General Electric Company | Varistors with upturn at high current level |
US4726991A (en) | 1986-07-10 | 1988-02-23 | Eos Technologies Inc. | Electrical overstress protection material and process |
US5068634A (en) | 1988-01-11 | 1991-11-26 | Electromer Corporation | Overvoltage protection device and material |
US4992333A (en) | 1988-11-18 | 1991-02-12 | G&H Technology, Inc. | Electrical overstress pulse protection |
EP0502483A3 (en) * | 1991-03-05 | 1993-01-20 | Matsushita Electric Industrial Co., Ltd. | Static dissipative resin composition |
US5294374A (en) * | 1992-03-20 | 1994-03-15 | Leviton Manufacturing Co., Inc. | Electrical overstress materials and method of manufacture |
DE4221309A1 (de) * | 1992-06-29 | 1994-01-05 | Abb Research Ltd | Strombegrenzendes Element |
AU6627394A (en) | 1993-04-28 | 1994-11-21 | Mark Mitchnick | Conductive polymers |
US5751902A (en) * | 1993-05-05 | 1998-05-12 | U.S. Philips Corporation | Adaptive prediction filter using block floating point format and minimal recursive recomputations |
DE4427161A1 (de) * | 1994-08-01 | 1996-02-08 | Abb Research Ltd | Verfahren zur Herstellung eines PTC-Widerstandes und danach hergestellter Widerstand |
DE19509075C2 (de) * | 1995-03-14 | 1998-07-16 | Daimler Benz Ag | Schutzelement für einen elektrochemischen Speicher sowie Verfahren zu dessen Herstellung |
US5742223A (en) * | 1995-12-07 | 1998-04-21 | Raychem Corporation | Laminar non-linear device with magnetically aligned particles |
GB9600819D0 (en) * | 1996-01-16 | 1996-03-20 | Raychem Gmbh | Electrical stress control |
-
1998
- 1998-04-27 DE DE19824104A patent/DE19824104B4/de not_active Expired - Lifetime
-
1999
- 1999-04-23 DE DE59912488T patent/DE59912488D1/de not_active Expired - Lifetime
- 1999-04-23 WO PCT/CH1999/000165 patent/WO1999056290A1/de active IP Right Grant
- 1999-04-23 CN CNB99800605XA patent/CN1145981C/zh not_active Expired - Fee Related
- 1999-04-23 JP JP55346399A patent/JP4921623B2/ja not_active Expired - Fee Related
- 1999-04-23 US US09/445,572 patent/US6469611B1/en not_active Expired - Lifetime
- 1999-04-23 AU AU34043/99A patent/AU751978B2/en not_active Ceased
- 1999-04-23 AT AT99915429T patent/ATE303652T1/de active
- 1999-04-23 PL PL99337696A patent/PL190068B1/pl not_active IP Right Cessation
- 1999-04-23 EP EP99915429A patent/EP0992042B1/de not_active Expired - Lifetime
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006136040A1 (en) * | 2005-06-21 | 2006-12-28 | Abb Research Ltd | Varistor-based field control tape |
WO2008040130A1 (en) * | 2006-10-06 | 2008-04-10 | Abb Research Ltd | Microvaristor-based powder overvoltage protection devices |
US8097186B2 (en) | 2006-10-06 | 2012-01-17 | Abb Research Ltd | Microvaristor-based overvoltage protection |
Also Published As
Publication number | Publication date |
---|---|
PL337696A1 (en) | 2000-08-28 |
DE19824104B4 (de) | 2009-12-24 |
CN1266534A (zh) | 2000-09-13 |
JP2002506578A (ja) | 2002-02-26 |
AU751978B2 (en) | 2002-09-05 |
ATE303652T1 (de) | 2005-09-15 |
CN1145981C (zh) | 2004-04-14 |
PL190068B1 (pl) | 2005-10-31 |
EP0992042A1 (de) | 2000-04-12 |
AU3404399A (en) | 1999-11-16 |
JP4921623B2 (ja) | 2012-04-25 |
WO1999056290A1 (de) | 1999-11-04 |
US6469611B1 (en) | 2002-10-22 |
DE59912488D1 (de) | 2005-10-06 |
DE19824104A1 (de) | 1999-10-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0992042B1 (de) | Nichtlinearer widerstand mit varistorverhalten und verfahren zur herstellung dieses widerstands | |
DE3414065C2 (de) | ||
DE102005045767B4 (de) | Verfahren zur Herstellung eines Halbleiterbauteils mit Kunststoffgehäusemasse | |
EP1274102B1 (de) | Polymercompound mit nichtlinearer Strom-Spannungs-Kennlinie und Verfahren zur Herstellung eines Polymercompounds | |
DE69823042T2 (de) | Varistoren auf basis von durch mechanische zerkleinerung hergestellten nanokristallpulvern | |
EP0351004B1 (de) | Nichtlinearer spannungsabhängiger Widerstand | |
EP0649150B1 (de) | Verbundwerkstoff | |
DE69015491T2 (de) | Wärmeleitpaste mit Flüssigmetallmatrix. | |
JPH02152204A (ja) | 電気的オーバーストレス・パルス保護用組成 | |
DE19502129A1 (de) | Verfahren zur Herstellung eines elektrisch leitenden Cermets | |
DE2450108C3 (de) | Verfahren zur Herstellung in sich selbst spannungsabhängiger Widerstände | |
EP0118717B1 (de) | Sinterverbundwerkstoff für elektrische Kontakte und Verfahren zu seiner Herstellung | |
EP0170812B1 (de) | Verfahren zur Herstellung von Sinterkontaktwerkstoffen | |
DE2944029C2 (de) | ||
EP1355327B1 (de) | Überspannungsableiter und Verfahren zur Herstellung eines solchen Überspannungsableiters | |
DE10049023A1 (de) | Nichtlinearer Widerstand und Verfahren zur Herstellung desselben | |
DE102005017816A1 (de) | Elektrokeramisches Bauelement und Verfahren zu dessen Herstellung | |
DE19919652A1 (de) | Nichtlinearer Widerstand mit Varistorverhalten und Verfahren zur Herstellung dieses Widerstands | |
EP0065806B1 (de) | Spannungsabhängiger Widerstand und Verfahren zu seiner Herstellung | |
DE19821239C2 (de) | Verbundwerkstoff zur Ableitung von Überspannungsimpulsen und Verfahren zu seiner Herstellung | |
DE102012107536B4 (de) | Verfahren zur Regenerierung eines Varistors | |
DE3704372C2 (de) | ||
DE69119451T2 (de) | Elektrischer Widerstand | |
EP0674802B1 (de) | Widerstandsmaterial und daraus hergestellter widerstand | |
DE2627912C3 (de) | Poröser Hochtemperatur-Konstruktionswerkstoff |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19991202 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT DE FR GB IT |
|
17Q | First examination report despatched |
Effective date: 20040609 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT DE FR GB IT |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REF | Corresponds to: |
Ref document number: 59912488 Country of ref document: DE Date of ref document: 20051006 Kind code of ref document: P |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) | ||
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20060601 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20150430 Year of fee payment: 17 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 18 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160423 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20170419 Year of fee payment: 19 Ref country code: FR Payment date: 20170419 Year of fee payment: 19 Ref country code: GB Payment date: 20170419 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20170420 Year of fee payment: 19 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 59912488 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 303652 Country of ref document: AT Kind code of ref document: T Effective date: 20180423 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20180423 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180423 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181101 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180423 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180430 |