EP0992042B1 - Nichtlinearer widerstand mit varistorverhalten und verfahren zur herstellung dieses widerstands - Google Patents

Nichtlinearer widerstand mit varistorverhalten und verfahren zur herstellung dieses widerstands Download PDF

Info

Publication number
EP0992042B1
EP0992042B1 EP99915429A EP99915429A EP0992042B1 EP 0992042 B1 EP0992042 B1 EP 0992042B1 EP 99915429 A EP99915429 A EP 99915429A EP 99915429 A EP99915429 A EP 99915429A EP 0992042 B1 EP0992042 B1 EP 0992042B1
Authority
EP
European Patent Office
Prior art keywords
particles
varistor
electrically conductive
fraction
filler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99915429A
Other languages
English (en)
French (fr)
Other versions
EP0992042A1 (de
Inventor
Petra Kluge-Weiss
Felix Greuter
Ralf Struempler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Research Ltd Switzerland
ABB Research Ltd Sweden
Original Assignee
ABB Research Ltd Switzerland
ABB Research Ltd Sweden
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Research Ltd Switzerland, ABB Research Ltd Sweden filed Critical ABB Research Ltd Switzerland
Publication of EP0992042A1 publication Critical patent/EP0992042A1/de
Application granted granted Critical
Publication of EP0992042B1 publication Critical patent/EP0992042B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/10Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material voltage responsive, i.e. varistors
    • H01C7/12Overvoltage protection resistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/10Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material voltage responsive, i.e. varistors
    • H01C7/105Varistor cores
    • H01C7/108Metal oxide
    • H01C7/112ZnO type

Definitions

  • the invention is based on a non-linear resistor Varistor behavior according to the preamble of claim 1.
  • This resistor contains a matrix and a powdery filler embedded in the matrix.
  • the filler contains a sintered varistor granules with predominantly spherical particles of doped metal oxide.
  • the particles are made of crystalline, constructed by grain boundaries separate grains.
  • Opposite Comparable acting resistors based on a sintered ceramic consuming sintering processes are much simpler, such Composite resistors made relatively simple and in great variety of shapes become.
  • the invention also relates to a method for producing this Resistance.
  • a resistor of the aforementioned type is described in R.Strümpler, P.Kluge-Weiss and F.Greuter "Smart Varistor Composites", Proceedings of the 8th CIMTECH World Ceramic Congress and Forum on New Materials, Symposium VI (Florence, June 29 - July 4, 1994).
  • This resistor consists of a polymer filled with a powder.
  • the powder used is a granulate which has been produced by sintering a spray-dried varistor powder on the basis of a zinc oxide doped with oxides of Bi, Sb, Mn, Co, Al and / or other metals.
  • This granule has ball-shaped spherical particles with varistor behavior, which are composed of crystalline grains separated by grain boundaries.
  • the diameters of these particles are up to 300 microns.
  • the electrical properties of the sintered granules such as the nonlinearity coefficient ⁇ B or the breakdown field strength U B [V / mm] can be adjusted over a wide range.
  • such a resistor has a higher nonlinearity coefficient and a higher breakdown field strength as the filler content decreases.
  • the capacity for energy is relatively low.
  • WO 97/26693 is a composite material based on a polymeric matrix and of a powder embedded in this matrix.
  • a powder is a Granules are also used, which also by sintering a spray-dried Varistor powder based on one with oxides of Bi, Sb, Mn, Co, Al and / or other metals doped zinc oxide was produced.
  • This granulate has Art a football shaped, spherical particles with varistor behavior, which composed of crystalline, separated by grain boundaries grains are. The particles have a diameter of at most 125 microns and have a Size distribution following a Gaussian distribution.
  • This material is in Cable connections and cable terminations used and forms there voltage-controlling layers.
  • US-A-5,669,381 describes a voltage limiting non-linear Resistance of a polymeric matrix 25 (according to Figure 2), in the three fractions of electrically conductive and / or semiconducting particles 21, 22, 23 with Diameters in the 100 ⁇ m range, in the ⁇ m range and in the submicron range and possibly also Isolierstoffteilchen 24 are embedded.
  • the Nonlinearity is achieved in this resistance by the matrix and the optionally provided Isolierstoffteilchen the electrically conductive and electrically semiconducting particles at low stress to form a high ohmic resistance separates from each other.
  • lines 6 ff achieved good electrical properties.
  • the object is underlying to provide a resistor of the type mentioned, which is despite a good non-linearity coefficient for a good protection characteristic characterized by a high power consumption, and at the same time a procedure too create, with such a resistance in a particularly advantageous manner can be produced.
  • the non-linear resistor according to the invention can advantageously be used as field-controlling Element in Kabetgamituren or as overvoltage protection element (varistor) be used. He can work in both the low and the medium and High voltage technology can be used and can because of its simple Manufacturing and further processing readily a complex geometry exhibit. If necessary, he can, for example as protection and / or Control element, by casting directly to an electrical apparatus, For example, a circuit breaker, be molded or as a thin Paint coating are applied. Furthermore, he can be screen printed in Hybrid methods are used for integrated circuits.
  • the addition of the varistor particles additionally provided in the filler electrically conductive particles before Merging of filler and matrix material with the varistor particles their surfaces connected When merging, the electric Conductive particles with great certainty not from the surfaces of Loosen varistor particles so that resistors produced by this method excellent electrical properties, in particular extremely stable current-voltage characteristics, exhibit.
  • the inventive method that the electric conductive particles evenly distributed over the surfaces of varistor particles and make an atomic bond with the varistor material.
  • the Contact effect of the filler is so much improved and it is enough a relatively small proportion of electrically conductive particles in the filler, around resistors with excellent electrical properties, such as especially a large current carrying capacity to get.
  • Non-linear resistors with varistor behavior formed as varistor composites were prepared by mixing polymeric material with a filler. Such mixing methods are well known in the art and need not be further explained.
  • the polymers may be thermosets, in particular epoxy or polyester resins, polyurethanes or silicones, or else thermoplastics, for example HDPE, PEEK or ETFE.
  • the polymer may also be a gel (eg silicone gel), a liquid (eg silicone oil, polybutane, ester oil, fats), a gas (air, nitrogen, SF 6 , ...), a gas mixture and / or a glass occur.
  • Thermoplastic samples were prepared by mixing the filler together with the polymer, e.g. ETFE, premixed and then at elevated temperature, for example, 280 ° C, at pressures of several, typically 5 to 50, bars into a mold pressed.
  • the polymer e.g. ETFE
  • the filler used here contained varistor particles of doped metal oxide having a predominantly spherical structure, wherein the particles of crystalline, by Grain boundaries of separate grains were constructed.
  • the filler was prepared as follows:
  • a varistor mixture consisting of commercially available ZnO doped with oxides of Bi, Sb, Mn and Co and with Ni, Al, Si and / or one or more further metals was added as an aqueous suspension or solution processed approximately spherical particles having granules.
  • the granules were sintered in a chamber furnace, for example on a ZnO-coated Al 2 O 3 plate, a Pt film or a ZnO ceramic, or optionally also in a rotary kiln.
  • the heating times during sintering were up to 300 ° / h, typically eg 50 ° C / h or 80 ° C / h.
  • the sintering temperature was between 900 ° C and 1320 ° C.
  • the holding times during sintering were between 3h and 72h.
  • the mixture was cooled at a rate between 50 ° C / h and 300 ° C / h.
  • the Varistorgranulat thus prepared was subsequently in a Vibrating device or separated by light mechanical rubbing. By Seven were from the separated granules then granule fractions with Particle sizes between 90 and 160 microns, 32 and 63 microns and less than 32 microns produced.
  • Varistor granules of the various fractions were determined in certain Weight ratios mixed together. Some of these mixtures and some of the fractions became a metal powder with geometrically anisotropic, in particular flaky, electrically conductive particles with a thickness to length ratio of typically 1/5 to 1/100 mixed, z. B. Ni flakes whose length was on average less than 60 microns. The length the metal particle was chosen in each case to be smaller on average was the radius of an average sized particle of the coarse (90 - 160 ⁇ m) varistor granules. This and a small proportion, typically 0.05 to 5 volume percent of the varistor granules, was the formation of avoided metallic conductive percolation paths in the mixture.
  • the starting components of the filler generally became several Hours premixed in a turbo mixer.
  • a metallic filler are also fine platelets, easily deformable, soft Particles and / or short fibers conceivable.
  • An advantage is a metallic filler with Particles which are in the range of the highest processing temperatures melt, preferably in the contact points of the Varistorteilchen accumulate and lead there to an improved local contact.
  • a metallic filler and fine powder such as on the basis of Silver, copper, aluminum, gold, indium and their alloys, or conductive Oxides, borides, carbides with particle diameters preferably between 1 and 20 ⁇ m are used.
  • the particles of these powders can easily be formed spherical.
  • the matrix material and filler Before combining the matrix material and filler should be in the filler contained electrically conductive particles with the varistor particles at the Surfaces are connected. It can then be applied to a matrix material on the Base of a polymer, such as an epoxy resin, the content of conductive small particles and a lower value of 0.05 Percent by volume.
  • a polymer such as an epoxy resin
  • Such a surface connection may be advantageous by a heat treatment be achieved.
  • conductive particles adhere these particles well on the surfaces the varistor particle.
  • the Matrix material such as a polymer, a gel or an oil, such as on the base of a silicone
  • the electrically conductive particles partly on the Float matrix material and then the dielectric strength of a thus substantially impaired resistance.
  • the electrically conductive particles become solid with the Surface connected.
  • An advantageous surface coating is also by Reibtrust ist reached.
  • the varistor granules or at least a part thereof and / or the electrically conductive particles in a mixer friction body of the Material added to the electrically conductive particles and / or it contains the Lining of the mixer Material of electrically conductive particles.
  • the surface coating can also by introducing the Varistorgranulats and reaches the electrically conductive particle in a mechano-fusion system as described by Hosokawa Micron Europe B.V., 2003 RT Haarlem, Holland.
  • the matrix contains a silicone
  • the adhesion of the Filler in the matrix is then optimized.
  • adhesion agents are in the generally applied in the form of a thin layer on the filler.
  • Suitable adhesion promoters are, for example, silanes, titanates, zirconates, aluminates and / or chelates.
  • the electrically conductive particles can also be added to the bonding agent and thus in economically particular advantageously be used in the same order process.
  • Resistance bodies were produced from which trial resistances having a volume of a few mm 3 to several dm 3 were realized by sawing, grinding and attaching two electrodes, for example by coating with a metal such as gold or aluminum.
  • specimens were also produced in which the electrodes were cast directly when cast with a casting resin, such as an epoxy or a silicone.
  • the following table shows the compositions of four of these sample resistors, where D is the diameter of the particles of the varistor granules.
  • resistance polymer filler 1 50% by volume of epoxy 50% by volume varistor granules
  • D 90-160 ⁇ m 2 45% by volume of epoxy 48% by volume varistor granules
  • D 90 - 160 ⁇ m 7% by volume varistor granules
  • D 32-63 ⁇ m 3 50% by volume of epoxy 47.5% by volume varistor granulate
  • D 90 - 160 ⁇ m 2.5 vol% Ni flakes 4 45% by volume of epoxy 48% by volume varistor granules
  • D 90 - 160 ⁇ m 5.5% by volume varistor granulate
  • D 32-63 ⁇ m 1.5 vol% Ni flakes
  • the resistor 1 was state of the art.
  • the resistor 3 had a 5 vol% on the filler amount of electrically conductive Ni flakes.
  • the resistor 4 had both a about 10 vol% of the filler amount of the fine granular Varistorgranulats as well as about 3% by volume amount of electrically conductive Ni flakes.
  • the breakdown field strength U B [V / mm], the nonlinearity coefficient ⁇ B and the maximum absorbed power P [J / cm 3 ] were determined on these four resistors.
  • U B and ⁇ a variable DC voltage was applied to the resistors and the resistors were exposed to electric field strengths between about 5 and about 500 [V / mm]. Depending on the prevailing field strength, the current density J [A / cm 2 ] flowing in each of the resistors was determined. The determined values of U and J determined the current-voltage characteristics of the resistors. From each of the characteristic curves, the breakdown field strength U B of the assigned resistor was determined at a current density of 1.3 ⁇ 10 -4 [A / cm 2 ]. For each of the resistances, ⁇ B was taken from the slope of the tangent to the associated current-voltage characteristic twice logarithmically in the point determined by the breakdown field strength U B.
  • the resistors 2 to 4 are distinguished from the prior art resistor (resistor 1) both by a greater nonlinearity coefficient ⁇ B and by an increased power consumption P and this with simultaneously low breakdown field strength.
  • This is, on the one hand, a consequence of the improved contacting of the individual varistor particles with one another by the additionally electrically conductive particles contained in the mixture and, secondly, a consequence of a particularly high density of varistor particles.
  • This high density is caused by a varistor granules with two fractions of particles of different sizes, of which the particles of the first fraction have larger diameter than the particles of the second fraction and are arranged substantially in the form of a dense sphere packing and the particles of the second fraction fill in the gaps formed by the ball packing.
  • the diameters of the particles of the first fraction are preferably between about 40 and about 200 microns. To achieve a high density, it is particularly favorable when the diameter of the particles of the second fraction about 10 to about 50% of Diameter of the particles of the first fraction, and if the proportion of second fraction about 5 to about 30 percent by volume of the fraction of the first fraction is.
  • an improved energy intake is achieved when at least one further fraction of predominantly spherically formed Particles is provided whose diameter is about 10 to about 50% of the diameter the particles of the second fraction and, for example, particles smaller than 32 have ⁇ m.
  • the energy intake and / or other properties can additionally be improved by special stoichiometric Compositions and by certain structures of the individual fractions, by selecting suitable electrically conductive particles and by application predetermined conditions in the production of the fractions, in particular during sintering.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Thermistors And Varistors (AREA)
  • Adjustable Resistors (AREA)
  • Control Of Electric Motors In General (AREA)
  • Making Paper Articles (AREA)

Description

TECHNISCHES GEBIET
Bei der Erfindung wird ausgegangen von einem nichtlinearen Widerstand mit Varistorverhalten nach dem Oberbegriff von Patentanspruch 1. Dieser Widerstand enthält eine Matrix und einen in die Matrix eingebetteten, pulverförmigen Füllstoff. Der Füllstoff enthält ein gesintertes Varistorgranulat mit überwiegend kugelförmigenTeilchen aus dotiertem Metalloxid. Die Teilchen sind aus kristallinen, durch Korngrenzen voneinander getrennten Körner aufgebaut. Da gegenüber vergleichbar wirkenden Widerständen auf der Basis einer Sinterkeramik aufwendige Sinterprozesse wesentlich einfacher ausfallen, können derartige Kompositwiderstände relativ einfach und in grosser Formenvielfalt hergestellt werden. Die Erfindung betrifft zugleich auch ein Verfahren zur Herstellung dieses Widerstands.
STAND DER TECHNIK
Ein Widerstand der vorgenannten Art ist in R.Strümpler, P.Kluge-Weiss und F.Greuter "Smart Varistor Composites", Proceedings of the 8th CIMTECH-World Ceramic Congress and Forum on New Materials,Symposium VI (Florence, June 29 - July 4, 1994) beschrieben. Dieser Widerstand besteht aus einem mit einem Pulver gefüllten Polymer. Als Pulver wird ein Granulat verwendet, welches durch Sintern eines sprühgetrockneten Varistorpulvers auf der Basis eines mit Oxiden von Bi, Sb, Mn, Co, Al und/oder weiterer Metallen dotierten Zinkoxids erzeugt wurde. Dieses Granulat weist nach Art eines Fussballs geformte, kugelförmige Teilchen mit Varistorverhalten auf, welche aus kristallinen, durch Korngrenzen voneinander getrennten Körnern aufgebaut sind. Die Durchmesser dieser Teilchen betragen bis zu 300 µm. Durch Veränderung der Dotierstoffe und der Sinterbedingungen können die elektrischen Eigenschaften des Sintergranulats, wie der Nichtlinearitätskoeffizient αB oder die Durchbruchfeldstärke UB [V/mm] über einen grossen Bereich eingestellt werden. Bei gleichen Ausgangsstoffen weist ein solcher Widerstand einen höheren Nichtlinearitätskoeffizienten und eine höhere Durchbruchfeldstärke auf, wenn der Füllstoffanteil abnimmt. Es hat sich aber gezeigt, dass dann beim Begrenzen einer Spannung das Aufnahmevermögen für Energie relativ gering ist.
In WO 97/26693 ist ein Verbundmaterial auf der Basis einer polymeren Matrix und eines in diese Matrix eingebetteten Pulvers beschrieben. Als Pulver wird ein Granulat verwendet, welches ebenfalls durch Sintern eines sprühgetrockneten Varistorpulvers auf der Basis eines mit Oxiden von Bi, Sb, Mn, Co, Al und/oder weiterer Metalle dotierten Zinkoxids erzeugt wurde. Dieses Granulat weist nach Art eines Fussballs geformte, kugelförmige Teilchen mit Varistorverhalten auf, welche aus kristallinen, durch Korngrenzen voneinander getrennten Körnern aufgebaut sind. Die Teilchen haben Durchmesser bis höchstens 125 µm und weisen eine Grössenverteilung auf, welche einer Gaussverteilung folgt. Dieses Material wird in Kabelverbindungen und Kabelendverschlüssen eingesetzt und bildet dort spannungssteuemde Schichten.
In US 4,726,991, US 4,992,333, 5,068,634 und US 5,294,374 sind spannungsbegrenzende Widerstände aus einem Polymer und einem pulverförmigen Füllmaterial auf der Basis von leitenden und/oder halbleitenden Teilchen angegeben. Bei diesen Widerständen wird der Überpannungsschutz durch dielektrischen Durchbruch des Polymers erreicht. Da hierbei relativ hohe Temperaturen auftreten können, dürften der Überspannungsschutz nicht reversibel und das Energieaufnahmevermögen relativ gering sein.
US-A-5 669 381 beschreibt einen spannungsbegrenzenden nichtlinearen Widerstand aus einer polymeren Matrix 25 (gemäss Fig.2), in die drei Fraktionen von elektrisch leitenden und/oder halbleitenden Teilchen 21, 22, 23 mit Durchmessern im 100 µm-Bereich, in µm-Bereich und im Submikron-Bereich sowie gegebenenfalls auch Isolierstoffteilchen 24 eingebettet sind. Die Nichtlinearität wird bei diesem Widerstand dadurch erreicht, dass die Matrix und die gegebenenfalls vorgesehenen Isolierstoffteilchen die elektrisch leitenden und elektrisch halbleitenden Teilchen bei geringer Spannungsbelastung unter Bildung eines hohen ohmschen Widerstands voneinander trennt. Beim Auftreten eines Spannungsimpulses bricht die trennende Isolation zusammen und wird der Spannungsimpuls begrenzt. Dadurch, dass der Füllstoff dicht gepackt ist, werden gemäss Spalte 2, Zeilen 6 ff gute elektrische Eigenschaften erreicht.
DARSTELLUNG DER ERFINDUNG
Der Erfindung, wie sie in den Patentansprüchen angegeben ist, liegt die Aufgabe zugrunde, einen Widerstand der eingangs genannten Art anzugeben, welcher sich trotz eines für eine gute Schutzcharakteristik grossen Nichtlinearitätskoeffizienten durch eine hohe Leistungsaufnahme auszeichnet, und zugleich ein Verfahren zu schaffen, mit dem ein solcher Widerstand in besonders vorteilhafter Weise hergestellt werden kann.
Durch Auswahl eines geeigneten Füllstoffs werden beim Widerstand nach der Erfindung elektrische Eigenschaften erreicht, die einem Varistor auf der Basis einer Keramik relativ nahe kommen. Hierbei ist es wesentlich, dass entweder ein geeignet strukturierter leitfähiger Zusatzfüllstoff vorgesehen ist und/oder dass ein Varistorgranulat verwendet wird, welches eine besonders hohe Packungsdichte ermöglicht. Es können dann mit einer aus der Spritzguss-, der Extrusions- oder Giessharztechnik bekannten Technologie in vergleichsweise einfacher Weise Widerstände mir Varistorverhalten hergestellt werden, welche sich durch eine gute Schutzcharakteristik und eine hohe Leistungsaufnahme auszeichnen. Von besonderem Vorteil ist es hierbei, dass durch geeignete Wahl der Ausgangskomponenten und durch einfach einzustellende Verfahrensparameter Varistoren hergestellt werden können, welche hinsichtlich ihrer Formgebung und ihrer physikalischer Eigenschaften ein breit gefächertes Spektrum und insbesondere ein relativ hohes Energieaufnahme- bzw. Schaltvermögen aufweisen.
Der nichtlineare Widerstand nach der Erfindung kann mit Vorteil als feldsteuemdes Element in Kabetgamituren oder als Überspannungsschutzelement (Varistor) verwendet werden. Er kann sowohl in der Nieder- als auch in der Mittel- und Hochspannungstechnik eingesetzt werden und kann wegen seiner einfachen Herstell- und Weiterverarbeitbarkeit ohne weiteres eine komplexe Geometrie aufweisen. Gegebenenfalls kann er, beispielsweise als Schutz- und/oder Steuerelement, durch Vergiessen direkt an einen elektrischen Apparat, beispielsweise einen Leistungsschalter, angeformt werden oder als dünne Lackbeschichtung aufgetragen werden. Weiterhin kann er im Siebdruck im Hybridverfahren für integrierte Schaltungen verwendet werden.
Beim erfindungsgemässen Verfahren werden die neben den Varistorpartikeln zusätzlich im Füllstoff vorgesehenen elektrisch leitfähigen Teilchen vor dem Zusammenführen von Füllstoff und Matrixwerkstoff mit den Varistorpartikeln an deren Oberflächen verbunden. Beim Zusammenführen können sich die elektrisch leitfähigen Teilchen mit grosser Sicherheit nicht von den Oberflächen der Varistorpartikel lösen, so dass nach diesem Verfahren hergestellte Widerstände hervorragende elektrische Eigenschaften, insbesondere äusserst stabile Strom-Spannungs-Kennlinien, aufweisen.
Besonders gute elektrische Eigenschaften werden dann erreicht, wenn noch vorhandene, lose elektrisch leitfähige Teilchen vor dem vor allem durch Mischen und Infiltrieren bewirkten Zusammenführen mit dem Matrixwerkstoff, etwa durch Waschen, Sieben oder Windsichten, aus dem Füllstoff entfernt werden.
Zugleich wird durch das erfindungsgemässe Verfahren erreicht, dass die elektrisch leitfähigen Teilchen gleichmässig über die Oberflächen der Varistorpartikel verteilt sind und mit dem Varistormaterial eine atomare Bindung eingehen. Die Kontaktwirkung des Füllstoffs wird so ganz wesentlich verbessert und es genügt ein verhältnismässig kleiner Anteil an elektrisch leitfähigen Teilchen im Füllstoff, um Widerstände mit hervorragenden elektrischen Eigenschaften, wie insbesondere einer grossen Stromtragfähigkeit, zu bekommen.
WEG ZUR AUSFÜHRUNG DER ERFINDUNG
Es wurden als Varistorkomposite ausgebildete nichtlineare Widerstände mit Varistorverhalten durch Mischen von polymerem Werkstoff mit einem Füllstoff hergestellt. Solche Mischverfahren sind aus dem Stand der Technik wohlbekannt und brauchen nicht näher erläutert zu werden. Die Polymere können Duromere, wie insbesondere Epoxid- oder Polyesterharze, Polyurethane oder Silikone oder aber Thermoplaste, beispielsweise HDPE, PEEK oder ETFE, sein. Anstelle des Polymers können auch ein Gel (z.B. Silikongel), eine Flüssigkeit (z.B. Silikonöl, Polybutan, Esteröl, Fette), ein Gas (Luft, Stickstoff, SF6,...), ein Gasgemisch und/oder ein Glas treten.
Alle Polymere aus Flüssigkomponenten, beispielsweise Epoxidharze, wurden vorgemischt und in Vakuum über den Füllstoff gegossen, so dass eine Infiltration stattfand. Die infiltrierten Proben wurden teilweise danach geschleudert, z.B. in einer Zentrifuge für 1/2 - 1 h bei 2000 Umdrehungen. Es konnten so erwünscht hohe Füllgrade von bis zu 60% erreicht werden.
Thermoplastische Proben wurden durch Mischen des Füllstoffs zusammen mit dem Polymer, z.B. ETFE, vorgemischt und dann bei erhöhter Temperatur, z.B.280°C, bei Drücken von von mehreren, typischerweise 5 - 50, bar in eine Form gepresst.
Der hierbei verwendete Füllstoff enthielt Varistorteilchen aus dotiertem Metalloxid mit überwiegend kugelförmiger Struktur, wobei die Teilchen aus kristallinen, durch Korngrenzen voneinander getrennten Körnern aufgebaut waren. Der Füllstoff wurde wie folgt hergestellt:
In einem konventionellen Sprühtrocknungsprozess wurde eine als wässrige Suspension oder Lösung vorliegende Varistormischung aus kommerziell erhältlichem ZnO, dotiert mit Oxiden von Bi, Sb, Mn und Co sowie mit Ni, Al, Si und/oder einem oder mehreren weiteren Metall(en), zu einem annähernd kugelförmige Teilchen aufweisenden Granulat verarbeitet. Das Granulat wurde in einem Kammerofen, z.B. auf einer mit ZnO beschichteten Al2O3-Platte, einer Pt-Folie oder einer ZnO-Keramik, oder gegebenenfalls auch in einem Drehrohrofen, gesintert. Die Aufheizzeiten beim Sintern betrugen bis zu 300°/h, typischerweise z.B. 50°C/h oder 80°C/h. Die Sintertemperatur lag zwischen 900°C und 1320°C. Die Haltezeiten beim Sintern lagen zwischen 3h bis 72h. Nach dem Sintern wurde mit einer zwischen 50°C/h und 300°C/h betragenden Rate abgekühlt.
Das solchermassen hergestellte Varistorgranulat wurde nachfolgend in einer Rüttelvorrichtung oder durch leichtes mechanisches Reiben getrennt. Durch Sieben wurden aus dem getrennten Granulat sodann Granulatfraktionen mit Teilchengrössen zwischen 90 und 160 µm, 32 und 63 µm und kleiner 32 µm hergestellt.
Varistorgranulate der verschiedenen Fraktionen wurden in bestimmten Gewichtsverhältnissen miteinander vermischt. Einigen dieser Mischungen und einigen der Fraktionen wurde ein Metallpulver mit geometrisch anisotropen, insbesondere schuppenförmig ausgebildeten, elektrisch leitfähigen Teilchen mit einem Dicken- zu Längenverhältnis von typischerweise 1/5 bis 1/100 zugemischt, z. B. Ni-flakes, deren Länge im Durchschnitt weniger als 60 µm betrug. Die Länge der Metallteilchen war in jedem Fall so gewählt, dass sie im Durchschnitt kleiner war als der Radius eines durchschnittlich grossen Teilchens des groben (90 - 160 µm) Varistorgranulats. Hierdurch und durch einen geringen Anteil, typischerweise 0,05 bis 5 Volumenprozent des Varistorgranulats, wurde die Ausbildung von metallisch leitenden Perkolationspfaden in der Mischung vermieden.
Die Ausgangskomponenten des Füllstoffs wurden im allgemeinen mehrere Stunden in einem Turbolamischer vorgemischt. War eine der Ausgangskomponenten das Metallpulver, so legten sich dessen Teilchen an die Oberflächen der kugelförmigen Varistorteilchen an, so dass besonders niederohmige Kontakte zwischen den einzelnen Varistorteilchen geschaffen wurden. Ausserdem fallen kleinere Teilchen ins Innere der zu einem kleinen Prozentsatz als Hohlkugel ausgebildeten Varistorteilchen und helfen so Stromführungsengpässe zu vermindern.
Als metallischer Füllstoff sind auch feine Plättchen, leicht deformierbare, weiche Partikel und/oder Kurzfasem denkbar. Von Vorteil ist ein metallischer Füllstoff mit Teilchen, welche im Bereich der höchsten Verarbeitungstemperaturen aufschmelzen, sich bevorzugt in den Kontaktpunkten der Varistorteilchen ansammeln und dort zu einer verbesserten lokalen Kontaktierung führen.
Ferner können als metallischer Füllstoff auch feine Pulver, etwa auf der Basis von Silber, Kupfer, Aluminium, Gold, Indium und deren Legierungen, oder leitfähige Oxide, Boride, Carbide mit Partikeldurchmessem vorzugsweise zwischen 1 und 20 µm verwendet werden. Die Teilchen dieser Pulver können ohne weiteres kugelförmig ausgebildet sein.
Vor dem Zusammenführen von Matrixwerkstoff und Füllstoff sollten die im Füllstoff enthaltenen elektrisch leitfähigen Teilchen mit den Varistorpartikeln an deren Oberflächen verbunden werden. Es kann dann bei einem Matrixwerkstoff auf der Basis eines Polymers, wie etwa eines Epoxidharzes, der Gehalt an leitfähigen elektrischen Teilchen gering sein und einen unteren Wert von 0,05 Volumenprozent aufweisen.
Eine solche Oberflächenverbindung kann mit Vorteil durch eine Wärmehandlung erreicht werden. Nach dem Mischen der Varistorpartikel und der elektrisch leitfähigen Teilchen haften diese Teilchen zwar zunächst gut an den Oberflächen der Varistorpartikel. Es hat sich aber gezeigt, dass beim nachfolgenden Zusammenführen, vorzugsweise Vermischen und Infiltrieren, mit dem Matrixwerkstoff, beispielsweise einem Polymer, einem Gel oder einem Öl, etwa auf der Basis eines Silikons, die elektrisch leitfähigen Teilchen zum Teil auf dem Matrixwerkstoff aufschwimmen und dann die dielektrische Festigkeit eines solchermassen hergestellen Widerstands ganz wesentlich beeinträchtigen. Durch mit der Wärmebehandlung eingeleitete Prozesse, insbesondere Diffusionsprozesse, werden die elektrisch leitfähigen Teilchen jedoch fest mit der Oberfläche verbunden. Beim nachfolgenden Zusammenführen (Vermischen, Infiltrieren) mit Matrixwerkstoffs wird ein Aufschwimmen der elektrisch leitfähigen Teilchen auf dem Matrixwerkstoff vermieden. Auch bei weiteren Misch- und Kompoundierschritten kann es nicht zu einer Umverteilung der elektrisch leitfähigen Teilchen kommen. Gegebenenfalls im wärmebehandelten Füllstoff vorhandene lose Teilchen können vor dem Zusammenführen mit dem Matrixwerkstoff vorzugsweise durch Waschen, Sieben oder Windsichten entfernt werden. Die für die Wärmebehandlung erforderlichen Temperaturen werden im wesentlichen durch den Werkstoff der elektrisch leitfähigen Teilchen bestimmt. Für Silber hat sich bei einer Behandlungszeit von ca. 3 h eine Wärmebehandlungstemperatur von ca. 400°C als ausreichend erwiesen. Höhere Temperaturen (bis 900°C) sind möglich, allerdings muss dann darauf geachtet werden, dass sich die elektrischen Eigenschaften der Varistorpartikel nicht zu stark ändern. Solche Änderungen könnten beispielsweise durch eine Reaktion des Werkstoffs der elektrisch leitfähigen Teilchen mit der Wismutphase der Varistorpartikel auftreten.
Besonders geringe schädliche Reaktionen treten dann auf, wenn als elektrisch leitfähige Teilchen niedrigschmelzende feine Lotpartikel verwendet werden, und wenn die hierbei durch Adhäsion erzeugte Oberflächenverbindung gegebenenfalls noch bei niedrigen Temperaturen getempert wird.
Gute Oberflächenverbindungen werden auch dadurch erhalten, dass Varistorpartikel enthaltendes Pulver in einer metallhaltigen Lösung oder Dispersion dispergiert wird, und dass durch nasschemische Fällung der dispersen Lösung oder Dispersion oder durch elektrochemische oder galvanische Abscheidung die Oberflächenverbindung erzeugt wird. Durch nachfolgende Wärmebehandlung kann diese Verbindung noch gefestigt werden.
Auch durch Dispersion eines Varistorpartikel enthaltendes Pulvers in einer metallhaltigen Lösung oder Dispersion, und durch nachfolgende reaktive Sprühtrocknung oder Sprühpyrolyse der dispersen Lösung oder Dispersion können feste Oberflächenverbindungen zwischen den Varistorpartikeln und den elektrisch leitfähigen Teilchen hergestellt werden. Ebenso ist eine Oberflächenbeschichtung aus der Gasphase möglich, wie dies mit Vorteil durch Sputtern, Aufdampfen oder Besprühen, etwa im Wirbelbett oder in einem varistorgranulat- und gashaltigen Pulverstrom, erreicht wird.
Eine vorteilhafte Oberflächenbeschichtung wird auch durch Reibkontaktierung erreicht. Hierbei werden dem Varistorgranulat oder zumindest einem Teil davon und/oder der elektrisch leitfähigen Teilchen in einem Mischer Reibkörper aus dem Material den elektrisch leitfähigen Teilchen beigegeben und/oder es enthält die Auskleidung des Mischers Material der elektrisch leitfähigen Teilchen. Alternativ kann die Oberflächenbeschichtung auch durch Einbringen des Varistorgranulats und der elektrisch leitfähigen Teilchen in ein Mechano-Fusion-System erreicht werden, wie dies etwa von der Firma Hosokawa Micron Europe B.V., 2003 RT Haarlem, Holland vertreiben wird.
Gegebenenfalls, beispielsweise wenn die Matrix ein Silikon enthält, ist es von Vorteil, zumindest einen Teil des Varistorgranulats und/oder der elektrisch leitfähigen Teilchen mit einem Haftvermittler zu versehen. Die Haftfestigkeit des Füllstoffs in der Matrix ist dann optimiert. Solche Haftvermittler werden im allgemeinen in Form einer dünnen Schicht auf den Füllstoff aufgetragen. Geeignete Haftvermittler sind beispielsweise Silane, Titanate, Zirkonate, Aluminate und/oder Chelate. In diesem Fall können die elektrisch leitfähigen Teilchen auch dem Haftvermittler beigegeben werden und somit in wirtschaftlich besonders vorteilhafter Weise im selben Auftragsprozess mitverwendet werden.
Es wurden Widerstandskörper gefertigt, aus denen durch Sägen, Schleifen und Anbringen zweier Elektroden, etwa durch Beschichten mit einem Metall wie Gold oder Aluminium, Probewiderstände mit einem Volumen von einigen mm3 bis zu einigen dm3 realisiert wurden. Es wurden ferner auch Probekörper gefertigt, bei denen die Elektroden beim Vergiessen mit einem Giessharz, wie etwa einem Epoxy oder einem Silikon, direkt mitvergossen wurden.
In der nachfolgenden Tabelle sind die Zusammensetzungen von vier dieser Probewiderstände angegeben, wobei D den Durchmesser der Teilchen des Varistorgranulats bedeutet.
Widerstand Polymer Füllstoff
1 50 Vol% Epoxy 50 Vol% Varistorgranulat, D = 90 - 160 µm
2 45 Vol% Epoxy 48 Vol% Varistorgranulat, D = 90 - 160 µm
7 Vol% Varistorgranulat, D = 32 - 63 µm
3 50 Vol% Epoxy 47,5 Vol% Varistorgranulat, D = 90 - 160 µm
2,5 Vol % Ni-flakes
4 45 Vol% Epoxy 48 Vol% Varistorgranulat, D = 90 - 160 µm
5,5 Vol% Varistorgranulat, D = 32 - 63 µm
1,5 Vol % Ni-flakes
Alle diese Widerstände wurden aus dem gleichen Ausgangspolymer und dem gleichen groben Ausgangsgranulat (D = 90 - 160 µm) gefertigt.
Der Widerstand 1 war Stand der Technik.
Im Unterschied zum Widerstand 1 wies der Widerstand 2 eine höhere Füllstoffdichte sowie zusätzlich noch einen ca. 15 Vol% des groben Ausgangsgranulats betragenden Anteil des zuvor beschriebenen, feinkömigen Varistorgranulats (D = 32 - 63 µm) auf.
Im Unterschied zu den Widerständen 1 und 2 wies der Widerstand 3 einen 5 Vol% am Füllstoff betragenden Anteil an elektrisch leitenden Ni-flakes auf.
Im Unterschied zu den Widerständen 1 bis 3 wies der Widerstand 4 sowohl einen ca. 10 Vol% des Füllstoffs betragenden Anteil des feinkömigen Varistorgranulats als auch einen ca 3 Vol% betragenden Anteil an elektrisch leitenden Ni-flakes auf.
An diesen vier Widerständen wurden - wie aus der nachfolgenden Tabelle entnommen werden kann - die Durchbruchfeldstärke UB [V/mm], der Nichtlinearitätskoefflzient αB und die maximal aufgenommene Leistung P [J/cm3], ermittelt.
Zur Bestimmung von UB und α wurde an die Widerstände eine variable Gleichspannung angelegt und wurden die Widerstände so elektrischen Feldstärken zwischen ca 5 und ca 500 [V/mm] ausgesetzt. In Abhängigkeit von der herrschenden Feldstärke wurde die in jedem der Widerstände fliessende Stromdichte J [A/cm2] ermittelt. Die so ermittelten Werte von U und J bestimmten die Strom-Spannungs-Kennlinien der Widerstände. Aus jeder der Kennlinien wurde die Durchbruchfeldstärke UB des zugeordneten Widerstandes bei einer Stromdichte von 1,3x10-4 [A/cm2] ermittelt. αB wurde für jeden der Widerstände aus der Steigung der Tangente an die zugeordnete Strom-Spannungs-Kennlinie doppelt-logarithmisch in dem durch die Durchbruchfeldstärke UB bestimmten Punkt entnommen.
P wurde aus Stromimpulsversuchen ermittelt, bei denen die Widerstände in einer Prüfvorrichtung mehreren 8/20 µs Stromimpulsen mit Stromdichteamplituden bis zu 1 [kA/cm2] bei elektrischen Feldstärken bis zu 800 [V/mm] ausgesetzt waren.
Probe UB[V/mm] αB P [J/cm3]
1 321 16,7 23,8
2 239 28,8 38,2
3 150,8 24,7 74,6
4 176,1 20,6 109,6
Aus dieser Tabelle ist ersichtlich, dass sich die Widerstände 2 bis 4 gegenüber dem Widerstand nach dem Stand der Technik (Widerstand 1) sowohl durch einen grösseren Nichtlinearitätskoeffizienten αB als auch durch eine erhöhte Leistungsaufnahme P auszeichnen und dies bei gleichzeitig niedriger Durchbruchfeldstärke. Dies ist zum einen eine Folge der verbesserten Kontaktierung der einzelnen Varistorpartikel untereinander durch die zusätzlich in der Mischung enthaltenen elektrisch leitfähigen Teilchen und zum anderen eine Folge einer besonders hohen Dichte an Varistorpartikeln. Diese hohe Dichte ist durch ein Varistorgranulat entstanden mit zwei Fraktionen von Teilchen mit unterschiedlichen Grössen, von denen die Teilchen der ersten Fraktion grössere Durchmesser als die Teilchen der zweiten Fraktion aufweisen und im wesentlichen in Form einer dichten Kugelpackung angeordnet sind und die Teilchen der zweiten Fraktion die von der Kugelpackung gebildeten Lücken ausfüllen.
Die Durchmesser der Teilchen der ersten Fraktion liegen vorzugsweise zwischen ca. 40 und ca. 200 µm. Zur Erzielung einer hohen Dichte ist es besonders günstig, wenn die Durchmesser der Teilchen der zweiten Fraktion ca. 10 bis ca. 50% der Durchmesser der Teilchen der ersten Fraktion betragen, und wenn der Anteil der zweiten Fraktion ca. 5 bis ca. 30 Volumenprozent des Anteils der ersten Fraktion beträgt.
Es hat sich gezeigt, dass eine verbesserte Energieaufnahme erreicht wird, wenn mindestens eine weitere Fraktion von überwiegend kugelförmig ausgebildeten Teilchen vorgesehen ist, deren Durchmesser ca. 10 bis ca. 50% der Durchmesser der Teilchen der zweiten Fraktion betragen und beispielsweise Teilchen kleiner 32 µm aufweisen. Die Energieaufnahme und/oder andere Eigenschaften können zusätzlich verbessert werden durch spezielle stöchiometrische Zusammensetzungen und durch bestimmte Strukturen der einzelnen Fraktionen, durch Auswahl geeigneter elektrisch leitfähiger Teilchen und durch Anwendung vorbestimmter Bedingungen bei der Herstellung der Fraktionen, wie insbesondere beim Sintern.

Claims (19)

  1. Nichtlinearer Widerstand mit Varistorverhalten, enthaltend eine Matrix und einen in die Matrix eingebetteten, pulverförmigen Füllstoff, bei dem der Füllstoff ein gesintertes Varistorgranulat mit überwiegend kugelförmigen Teilchen aus dotiertem Metalloxid aufweist, welche Teilchen aus kristallinen, durch Korngrenzen voneinander getrennten Körnern aufgebaut sind, dadurch gekennzeichnet, dass der Füllstoff zusätzlich elektrisch leitfähige Teilchen umfasst, welche höchstens einen Teil der Oberflächen der kugelförmigen Teilchen bedecken.
  2. Widerstand nach Anspruch 1, dadurch gekennzeichnet, dass die im Füllstoff vorgesehenen, elektrisch leitfähigen Teilchen ca. 0,05 bis ca. 5 Volumenprozent des Füllstoffes ausmachen.
  3. Widerstand nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass die elektrisch leitfähigen Teilchen geometrisch anisotrop ausgebildet sind.
  4. Widerstand nach Anspruch 3, dadurch gekennzeichnet, dass zumindest ein Teil der elektrisch leitfähigen Teilchen plättchen- und/oder schuppenförmig ausgebildet ist und diese Plättchen und/oder Schuppen ein Dicken- zu Höhenverhältnis von ca. 1/5 bis 1/100 aufweisen.
  5. Widerstand nach Anspruch 4, dadurch gekennzeichnet, dass die Länge der Plättchen und/oder Schuppen durchschnittlich kleiner als der Radius der Teilchen der ersten Fraktion des Varistorgranulats ist.
  6. Widerstand nach Anspruch 3, dadurch gekennzeichnet, dass zumindest ein Teil der elektrisch leitfähigen Teilchen als Kurzfasern ausgebildet ist.
  7. Widerstand nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass zumindest ein Teil des Varistorgranulats und/oder der elektrisch leitfähigen Teilchen mit einem Haftvermittler versehen ist.
  8. Widerstand nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass das Varistorgranulat mindestens zwei Fraktionen von Teilchen mit unterschiedlichen Grössen enthält, von denen die Teilchen der ersten Fraktion grössere Durchmesser als die Teilchen der zweiten Fraktion aufweisen und im wesentlichen in Form einer dichten Kugelpackung angeordnet sind und die Teilchen der zweiten Fraktion die von der Kugelpackung gebildeten Lücken ausfüllen.
  9. Widerstand nach Anspruch 8, dadurch gekennzeichnet, dass die Durchmesser der Teilchen der zweiten Fraktion ca. 10 bis ca. 50% der Durchmesser der Teilchen der ersten Fraktion betragen.
  10. Widerstand nach Anspruch 9, dadurch gekennzeichnet, dass die Durchmesser der Teilchen der ersten Fraktion ca. 40 bis ca. 200 µm betragen.
  11. Widerstand nach einem der Ansprüche 8 bis 10, dadurch gekennzeichnet, dass der Anteil der zweiten Fraktion ca. 5 bis ca. 30 Volumenprozent des Anteils der ersten Fraktion beträgt.
  12. Widerstand nach einem der Ansprüche 8 bis 11, dadurch gekennzeichnet, dass mindestens eine weitere Fraktion von überwiegend kugelförmig ausgebildeten Teilchen vorgesehen ist, deren Durchmesser ca. 10 bis ca. 50% der Durchmesser der Teilchen der zweiten Fraktion betragen.
  13. Verfahren zur Herstellung eines Widerstands nach Anspruch 1, bei dem der Varistorpartikel und elektrisch leitfähige Teilchen enthaltende pulverförmige Füllstoff mit einem die Matrix bildenden Werkstoff zusammengeführt wird, dadurch gekennzeichnet, dass vor dem Zusammenführen die im Füllstoff enthaltenen elektrisch leitfähigen Teilchen mit den Varistorpartikeln an deren Oberflächen verbunden werden.
  14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass die elektrisch leitfähigen Teilchen mit einem die Varistorpartikel enthaltenden Pulver durch Mischen zusammengeführt werden, und dass die hierbei gebildete Mischung bei Temperaturen wärmebehandelt wird, bei denen sich die Oberflächenverbindung bildet.
  15. Verfahren nach Anspruch 14, dadurch gekennzeichnet, dass als elektrisch leitfähige Teilchen Lotpartikel verwendet werden.
  16. Verfahren nach Anspruch 14 oder 15, dadurch gekennzeichnet, dass nicht oberflächenverbundene, elektrisch leitfähige Teilchen vorzugsweise durch Waschen, Sieben oder Windsichten aus der wärmebehandelten Mischung entfernt werden.
  17. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass ein Varistorpartikel enthaltendes Pulver in einer metallhaltigen Lösung oder Dispersion dispergiert wird, und dass durch nasschemische Fällung der dispersen Lösung oder Dispersion oder durch galvanische oder elektrochemische Abscheidung die mit den Oberflächen der Varistorpartikel verbundenen elektrisch leitfähigen Teilchen als Fällungs- oder Abscheidungsprodukt hergestellt werden.
  18. Verfahren nach Anspruch 17, dadurch gekennzeichnet, dass das Fällungsprodukt wärmebehandelt wird.
  19. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass ein Varistorpartikel enthaltendes Pulver in einer metallhaltigen Lösung oder Dispersion dispergiert wird, und dass durch reaktive Sprühtrocknung oder Sprühpyrolyse der dispersen Lösung oder Dispersion die mit den Oberflächen der Varistorpartikel verbundenen, elektrisch leitfähigen Teilchen hergestellt werden.
EP99915429A 1998-04-27 1999-04-23 Nichtlinearer widerstand mit varistorverhalten und verfahren zur herstellung dieses widerstands Expired - Lifetime EP0992042B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19824104 1998-04-27
DE19824104A DE19824104B4 (de) 1998-04-27 1998-04-27 Nichtlinearer Widerstand mit Varistorverhalten
PCT/CH1999/000165 WO1999056290A1 (de) 1998-04-27 1999-04-23 Nichtlinearer widerstand mit varistorverhalten und verfahren zur herstellung dieses widerstands

Publications (2)

Publication Number Publication Date
EP0992042A1 EP0992042A1 (de) 2000-04-12
EP0992042B1 true EP0992042B1 (de) 2005-08-31

Family

ID=7869336

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99915429A Expired - Lifetime EP0992042B1 (de) 1998-04-27 1999-04-23 Nichtlinearer widerstand mit varistorverhalten und verfahren zur herstellung dieses widerstands

Country Status (9)

Country Link
US (1) US6469611B1 (de)
EP (1) EP0992042B1 (de)
JP (1) JP4921623B2 (de)
CN (1) CN1145981C (de)
AT (1) ATE303652T1 (de)
AU (1) AU751978B2 (de)
DE (2) DE19824104B4 (de)
PL (1) PL190068B1 (de)
WO (1) WO1999056290A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006136040A1 (en) * 2005-06-21 2006-12-28 Abb Research Ltd Varistor-based field control tape
WO2008040130A1 (en) * 2006-10-06 2008-04-10 Abb Research Ltd Microvaristor-based powder overvoltage protection devices

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19926950A1 (de) * 1999-06-14 2000-12-21 Abb Research Ltd Kabelendgarnitur
US6645393B2 (en) * 2001-03-19 2003-11-11 Inpaq Technology Co., Ltd. Material compositions for transient voltage suppressors
DE50115800D1 (de) * 2001-07-02 2011-04-07 Abb Schweiz Ag Polymercompound mit nichtlinearer Strom-Spannungs-Kennlinie und Verfahren zur Herstellung eines Polymercompounds
EP1355327B1 (de) * 2002-04-18 2006-09-27 Abb Research Ltd. Überspannungsableiter und Verfahren zur Herstellung eines solchen Überspannungsableiters
DE602004015567D1 (de) * 2004-04-06 2008-09-18 Abb Research Ltd Elektrisches nichtlineares Material für Anwendungen mit hoher und mittlerer Spannung
CN101427326B (zh) 2006-04-24 2013-03-27 Abb研究有限公司 基于微变阻器的过电压保护的装置和方法
GB0700079D0 (en) * 2007-01-04 2007-02-07 Boardman Jeffrey A method of producing electrical resistance elements whihc have self-regulating power output characteristics by virtue of their configuration and the material
DE102007025230A1 (de) * 2007-05-31 2008-12-04 Robert Bosch Gmbh Verfahren zum Ableiten eines elektrischen Überspannungspotentials
DE102008024480A1 (de) * 2008-05-21 2009-12-03 Epcos Ag Elektrische Bauelementanordnung
GB2460833B (en) * 2008-06-09 2011-05-18 2D Heat Ltd A self-regulating electrical resistance heating element
TWI402864B (zh) * 2008-07-11 2013-07-21 Sfi Electronics Technology Inc 一種氧化鋅變阻器的製法
US20100159259A1 (en) * 2008-12-19 2010-06-24 Lex Kosowsky Voltage switchable dielectric material incorporating p and n type material
US8399092B2 (en) 2009-10-07 2013-03-19 Sakai Chemical Industry Co., Ltd. Zinc oxide particle having high bulk density, method for producing it, exoergic filler, exoergic resin composition, exoergic grease and exoergic coating composition
MY149016A (en) * 2009-10-07 2013-06-28 Sakai Chemical Industry Co Zinc oxide particle, method for producing it, exoergic filler, exoergic resin composition, exoergic grease and exoergic coating composition
US20140184380A1 (en) * 2010-11-26 2014-07-03 Varun Aggarwal Multi-state memory resistor device and methods for making thereof
JP5269064B2 (ja) * 2010-12-28 2013-08-21 株式会社東芝 非直線抵抗材料
DE102012207772A1 (de) * 2012-05-10 2013-11-14 Osram Opto Semiconductors Gmbh Varistorpaste, elektronische bauelementevorrichtung, verfahren zum herstellen einer elektronischen bauelementevorrichtung und verfahren zum herstellen eines geometrisch flexiblen varistors
US9138381B2 (en) * 2013-02-08 2015-09-22 Basf Se Production of inorganic-organic composite materials by reactive spray-drying
WO2015046125A1 (ja) 2013-09-26 2015-04-02 音羽電機工業株式会社 非オーム性を有する樹脂材料及びその製造方法、並びに該樹脂材料を用いた非オーム性抵抗体
JP6355492B2 (ja) * 2013-10-03 2018-07-11 アルパッド株式会社 複合樹脂及び電子デバイス
DE102013224899A1 (de) * 2013-12-04 2015-06-11 Osram Opto Semiconductors Gmbh Varistorpaste, optoelektronisches Bauelement, Verfahren zum Herstellen einer Varistorpaste und Verfahren zum Herstellen eines Varistorelements
DE102014203744A1 (de) 2014-02-28 2015-09-03 Siemens Aktiengesellschaft Leitfähiges Glimmschutzpapier, insbesondere für den Außenglimmschutz
DE102014203740A1 (de) 2014-02-28 2015-09-03 Siemens Aktiengesellschaft Glimmschutzsystem, insbesondere Außenglimmschutzsystem für eine elektrische Maschine
CN107393669B (zh) * 2017-06-27 2019-03-08 应城和天电子科技有限公司 一种陶瓷电阻碳化工艺
WO2020073325A1 (en) * 2018-10-12 2020-04-16 Dongguan Littelfuse Electronics Company Limited Polymer Voltage-Dependent Resistor
US11417442B2 (en) 2019-11-01 2022-08-16 Hamilton Sundstrand Corporation Field grading members, cables having field grading members, and methods of making field grading members
CN112125660B (zh) * 2020-08-31 2021-12-28 西安交通大学 一种氧化锌聚醚醚酮压敏电阻及其制备方法
WO2023140034A1 (ja) * 2022-01-24 2023-07-27 三菱電機株式会社 非線形抵抗樹脂材料、非線形抵抗体、過電圧保護装置および非線形抵抗樹脂材料の製造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2363172C3 (de) * 1973-12-14 1978-08-03 Siemens Ag, 1000 Berlin Und 8000 Muenchen Spannungsabhängiger Widerstand
AU497337B2 (en) * 1976-11-19 1978-12-07 Matsushita Electric Industrial Co., Ltd. Voltage-dependent resistor
US4285839A (en) * 1978-02-03 1981-08-25 General Electric Company Varistors with upturn at high current level
US4726991A (en) 1986-07-10 1988-02-23 Eos Technologies Inc. Electrical overstress protection material and process
US5068634A (en) 1988-01-11 1991-11-26 Electromer Corporation Overvoltage protection device and material
US4992333A (en) 1988-11-18 1991-02-12 G&H Technology, Inc. Electrical overstress pulse protection
EP0502483A3 (en) * 1991-03-05 1993-01-20 Matsushita Electric Industrial Co., Ltd. Static dissipative resin composition
US5294374A (en) * 1992-03-20 1994-03-15 Leviton Manufacturing Co., Inc. Electrical overstress materials and method of manufacture
DE4221309A1 (de) * 1992-06-29 1994-01-05 Abb Research Ltd Strombegrenzendes Element
AU6627394A (en) 1993-04-28 1994-11-21 Mark Mitchnick Conductive polymers
US5751902A (en) * 1993-05-05 1998-05-12 U.S. Philips Corporation Adaptive prediction filter using block floating point format and minimal recursive recomputations
DE4427161A1 (de) * 1994-08-01 1996-02-08 Abb Research Ltd Verfahren zur Herstellung eines PTC-Widerstandes und danach hergestellter Widerstand
DE19509075C2 (de) * 1995-03-14 1998-07-16 Daimler Benz Ag Schutzelement für einen elektrochemischen Speicher sowie Verfahren zu dessen Herstellung
US5742223A (en) * 1995-12-07 1998-04-21 Raychem Corporation Laminar non-linear device with magnetically aligned particles
GB9600819D0 (en) * 1996-01-16 1996-03-20 Raychem Gmbh Electrical stress control

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006136040A1 (en) * 2005-06-21 2006-12-28 Abb Research Ltd Varistor-based field control tape
WO2008040130A1 (en) * 2006-10-06 2008-04-10 Abb Research Ltd Microvaristor-based powder overvoltage protection devices
US8097186B2 (en) 2006-10-06 2012-01-17 Abb Research Ltd Microvaristor-based overvoltage protection

Also Published As

Publication number Publication date
PL337696A1 (en) 2000-08-28
DE19824104B4 (de) 2009-12-24
CN1266534A (zh) 2000-09-13
JP2002506578A (ja) 2002-02-26
AU751978B2 (en) 2002-09-05
ATE303652T1 (de) 2005-09-15
CN1145981C (zh) 2004-04-14
PL190068B1 (pl) 2005-10-31
EP0992042A1 (de) 2000-04-12
AU3404399A (en) 1999-11-16
JP4921623B2 (ja) 2012-04-25
WO1999056290A1 (de) 1999-11-04
US6469611B1 (en) 2002-10-22
DE59912488D1 (de) 2005-10-06
DE19824104A1 (de) 1999-10-28

Similar Documents

Publication Publication Date Title
EP0992042B1 (de) Nichtlinearer widerstand mit varistorverhalten und verfahren zur herstellung dieses widerstands
DE3414065C2 (de)
DE102005045767B4 (de) Verfahren zur Herstellung eines Halbleiterbauteils mit Kunststoffgehäusemasse
EP1274102B1 (de) Polymercompound mit nichtlinearer Strom-Spannungs-Kennlinie und Verfahren zur Herstellung eines Polymercompounds
DE69823042T2 (de) Varistoren auf basis von durch mechanische zerkleinerung hergestellten nanokristallpulvern
EP0351004B1 (de) Nichtlinearer spannungsabhängiger Widerstand
EP0649150B1 (de) Verbundwerkstoff
DE69015491T2 (de) Wärmeleitpaste mit Flüssigmetallmatrix.
JPH02152204A (ja) 電気的オーバーストレス・パルス保護用組成
DE19502129A1 (de) Verfahren zur Herstellung eines elektrisch leitenden Cermets
DE2450108C3 (de) Verfahren zur Herstellung in sich selbst spannungsabhängiger Widerstände
EP0118717B1 (de) Sinterverbundwerkstoff für elektrische Kontakte und Verfahren zu seiner Herstellung
EP0170812B1 (de) Verfahren zur Herstellung von Sinterkontaktwerkstoffen
DE2944029C2 (de)
EP1355327B1 (de) Überspannungsableiter und Verfahren zur Herstellung eines solchen Überspannungsableiters
DE10049023A1 (de) Nichtlinearer Widerstand und Verfahren zur Herstellung desselben
DE102005017816A1 (de) Elektrokeramisches Bauelement und Verfahren zu dessen Herstellung
DE19919652A1 (de) Nichtlinearer Widerstand mit Varistorverhalten und Verfahren zur Herstellung dieses Widerstands
EP0065806B1 (de) Spannungsabhängiger Widerstand und Verfahren zu seiner Herstellung
DE19821239C2 (de) Verbundwerkstoff zur Ableitung von Überspannungsimpulsen und Verfahren zu seiner Herstellung
DE102012107536B4 (de) Verfahren zur Regenerierung eines Varistors
DE3704372C2 (de)
DE69119451T2 (de) Elektrischer Widerstand
EP0674802B1 (de) Widerstandsmaterial und daraus hergestellter widerstand
DE2627912C3 (de) Poröser Hochtemperatur-Konstruktionswerkstoff

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19991202

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT DE FR GB IT

17Q First examination report despatched

Effective date: 20040609

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59912488

Country of ref document: DE

Date of ref document: 20051006

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060601

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20150430

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160423

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170419

Year of fee payment: 19

Ref country code: FR

Payment date: 20170419

Year of fee payment: 19

Ref country code: GB

Payment date: 20170419

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20170420

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59912488

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 303652

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180423

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180423

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430