EP0065806B1 - Spannungsabhängiger Widerstand und Verfahren zu seiner Herstellung - Google Patents

Spannungsabhängiger Widerstand und Verfahren zu seiner Herstellung Download PDF

Info

Publication number
EP0065806B1
EP0065806B1 EP82200615A EP82200615A EP0065806B1 EP 0065806 B1 EP0065806 B1 EP 0065806B1 EP 82200615 A EP82200615 A EP 82200615A EP 82200615 A EP82200615 A EP 82200615A EP 0065806 B1 EP0065806 B1 EP 0065806B1
Authority
EP
European Patent Office
Prior art keywords
metal oxide
sintered body
voltage
metal
dependent resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP82200615A
Other languages
English (en)
French (fr)
Other versions
EP0065806A2 (de
EP0065806A3 (en
Inventor
Detlev Dr. Hennings
Axel Dr. Schnell
Herbert Schreinemacher
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Philips Intellectual Property and Standards GmbH
Koninklijke Philips NV
Original Assignee
Philips Patentverwaltung GmbH
Philips Gloeilampenfabrieken NV
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Philips Patentverwaltung GmbH, Philips Gloeilampenfabrieken NV, Koninklijke Philips Electronics NV filed Critical Philips Patentverwaltung GmbH
Publication of EP0065806A2 publication Critical patent/EP0065806A2/de
Publication of EP0065806A3 publication Critical patent/EP0065806A3/de
Application granted granted Critical
Publication of EP0065806B1 publication Critical patent/EP0065806B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/10Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material voltage responsive, i.e. varistors
    • H01C7/105Varistor cores
    • H01C7/108Metal oxide
    • H01C7/115Titanium dioxide- or titanate type

Definitions

  • the invention relates to a voltage-dependent resistor with a ceramic sintered body based on a polycrystalline, alkaline earth metal titanate doped with a small amount of a metal oxide to produce an N-type conductivity, with electrodes arranged on opposing surfaces, and a method for producing such a resistor.
  • a voltage-dependent resistor is known from German patent application P 30 19 969.0, which is based on N-doped strontium titanate, to which a small proportion of a lead germanate phase was added before sintering, which leads to the formation of insulating grain boundary layers in the polycrystalline structure of the sintered body.
  • This known resistance is because of its relatively high field strength - a current density z. B. of about 3 mAlcm 2 results only in fields of about 6 kV / cm - can only be used to a limited extent; he is e.g. B. Not suitable for modern semiconductor circuits that work with low voltages.
  • the invention has for its object to develop a voltage-dependent resistor according to the preamble of the claim and a method for its production such that a voltage-dependent resistor with a low field strength is obtained.
  • a method for producing a voltage-dependent resistor with a ceramic sintered body based on a polycrystalline, alkaline earth metal titanate doped with a small amount of a metal oxide to produce an N-type conductivity is characterized in that the sintered body with a perovskite structure is first produced in a reducing atmosphere by producing it Sintered body is then covered on its surface to form an insulating layer on the grain edge layers of the polycrystalline perovskite phase with a suspension containing at least one metal oxide or a metal oxide compound, the metal oxide or metal oxide compound having a lower melting point than the perovskite phase, the polycrystalline perovskite phase on the other Grain edge layers well wetted and showing reversible breakthrough phenomena during field strengths during operation of the component, after which the sintered body in an oxidizing atmosphere, preferably in air, b at a temperature which is above the melting point of the suspension component (s).
  • the alkaline earth metal titanate is reacted by reacting SrC0 3 with Ti0 2 in a molar ratio of 1: 1.001 to 1: 1.02 with the addition of the doping metals in the form of their oxides in an amount of 0.05 to a maximum of 60 mol% of the constituent to be substituted after grinding and presintering for 15 h at 1,150 ° C. in air.
  • this is made from 90 for 4 h at a temperature of 1,460 ° C. in a reducing atmosphere consisting of mixed gas saturated with water vapor Vol.% N 2 and 10 vol.% H 2 sintered.
  • La 2 0 3 , Nb 2 0 5 or W0 3 are used as the doping metal oxide and Bi 2 0 3 as the metal oxide to be diffused in, or lead germanate Pb 5 Ge 3 O 11 is used as the metal oxide compound to be diffused in.
  • La 3 + , Nb s + and W 6+ ions have proven to be particularly suitable for N doping.
  • other dopings are also conceivable, e.g. B. other rare earth metal ions such as Sm 3+ or Y 3+ ; instead of Nb 5+ , Ta 5+ , As 5+ or Sb 5+ and instead of W 6+ , Mo 6+ and U 6+ can be used.
  • the doping ions are installed either on Sr or Ti sites in the perovskite lattice.
  • a suspension with at least one metal oxide that melts relatively low with respect to the sintered body or at least one metal oxide compound that melts relatively low with respect to the sintered body e.g. B. Bi 2 0 3 or lead germanate Pb 5 Ge 3 O 11 , applied in an organic binder and baked under oxidizing conditions at temperatures around or above 900 ° C, the applied molten metal oxide or the metal oxide compound diffuses preferably along the grain boundaries into the semiconducting ceramic and creates highly insulating grain boundary layers there.
  • the voltage across a varistor of composition is Sr (Ti 0.996 W 0.004 ) O 3 .
  • 0.0TiO 2 with a diffused phase of Bi 2 O 3 at 1 mA and 30 mA depending on the temperature.
  • a liquid sintering phase is formed with the SrTi0 3 at a sintering above 1 400 ° C - it can be assumed that this is the eutectic SrTi0 3 -Ti0 2 occurring at ⁇ 1 440 ° C, which is caused by the addition of Dopants can also occur at lower temperatures.
  • a liquid sintering phase of this type promotes coarse grain growth, which, as already stated, is desirable.
  • the raw materials are weighed in an amount corresponding to the desired composition and 2 hours in a ball mill, e.g. B. agate, wet mixed. This is followed by presintering at 1,150 ° C for 15 h.
  • the pre-sintered powders are ground again wet (1 h in a ball mill, e.g. made of agate).
  • the millbase is then dried, and the powders thus obtained are then removed using a suitable binder, e.g. B. a 10% aqueous polyvinyl alcohol solution, granulated.
  • the granules are molded articles suitable for ceramic resistors, for. B.
  • sintering it is remarkable that coarse-grained structures preferably occur at sintering temperatures above 1,440 ° C.
  • the reducing sintering should take place in a tightly closing furnace, e.g. B. a tube furnace is suitable. Excess reducing gas should expediently flow out via a bubble counter in order to create a constant sintering atmosphere.
  • Sintered bodies produced in this way are semiconducting and no longer show open porosity.
  • the insulating grain edge layers are by diffusing at least one molten metal oxide or at least one metal oxide compound, for. B. Bi 2 0 3 or lead germanate Pb 5 Ge 3 O 11 , generated in air.
  • the metal oxide or the metal oxide compound is first suspended in a binder based on polyvinyl acetate and applied to the already sintered ceramic.
  • the suspended metal oxide or the suspended metal oxide compound is then baked into the sintered body by a tempering process at a temperature at which they are in the molten state.
  • the minimum annealing temperature was a temperature slightly above the melting point of the metal oxide used or the used metal oxide compound determined.
  • the amounts of the metal oxides or metal oxide compounds diffused into the sintered body were determined in parallel experiments by weighing the sintered bodies before applying the suspension, after burning out the binder in air at 600 ° C. and after tempering.
  • the heating-up and cooling-down times were uniformly 100 minutes for all tests.
  • electrodes made of suitable metals, preferably gold, e.g. B. by vapor deposition.
  • a suitable adhesive layer as an intermediate layer between the ceramic and the electrode metal on the ceramic sintered body; e.g. B. a Cr-Ni layer is suitable.
  • x results from the solubility limit of La in the perovskite phase.
  • Different operating voltages of the finished component can, however, be set by different thickness of the components.
  • the sintered bodies treated with a diffusion phase made of Bi 203 show the normal VDR dependence superimposed on a negative resistance range, ie, the voltage across the component decreases with increasing current, which can be advantageous in certain applications, since this is practically a value for the current index ⁇ ⁇ 0 corresponds (for this, reference is made to FIG. 2).
  • An overvoltage is thereby not only limited to a certain value, but additional energy is absorbed in the component as the current decreases as the current increases.
  • This property of the sintered body treated with Bi 2 0 3 is only partially caused by the heating and the associated decrease in resistance of the components. This is shown in FIG. 3, in which the voltage across the component was plotted at 1 mA and 30 mA as a function of the temperature. The 30 mA values were measured by short current pulses, so that self-heating by the measuring current is negligible.

Description

  • Die Erfindung betrifft einen spannungsabhängigen Widerstand mit einem keramischen Sinterkörper auf Basis eines polykristallinen, mit einer geringen Menge eines Metalloxids zur Erzeugung einer N-Typ-Leitfähigkeit dotierten Erdalkalimetalltitanats mit auf einander gegenüberliegenden Flächen angebrachten Elektroden und ein Verfahren zur Herstellung eines solchen Widerstandes.
  • Aus der deutschen Patentanmeldung P 30 19 969.0 ist ein spannungsabhängiger Widerstand bekannt, der auf N-dotiertem Strontiumtitanat basiert, welchem vor dem Sintern eine geringer Anteil einer Bleigermanat-Phase zugesetzt wurde, die zur Ausbildung von isolierenden Korngrenzschichten im polykristallinen Gefüge des Sinterkörpers führt. Dieser bekannte Widerstand ist wegen seiner relativ hohen Einsatzfeidstärke - eine Stromdichte z. B. von etwa 3 mAlcm2 ergibt sich erst bei Feldem von etwa 6 kV/cm - nur begrenzt einsetzbar; er ist z. B. nicht geeignet für moderne Halbleiter-Schaltkreise, die mit niedrigen Spannungen arbeiten.
  • Der Erfindung liegt die Aufgabe zugrunde, einen spannungsabhängigen Widerstand nach dem Oberbegriff des Anspruches und ein Verfahren zu seiner Herstellung derart auszubilden, daß ein spannungsabhängiger Widerstand mit niedriger Einsatzfeldstärke erhalten wird.
  • Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß der Sinterkörper aus einem Erdalkalimetalltitanat mit Perowskitstruktur der allgemeinen Formel
    Figure imgb0001
    besteht, worin bedeuten :
    • A = Erdalkalimetall ;
    • SE = Seltenerdmetall;
    • Me = Metall mit einer Wertigkeit von 5 oder mehr;
    • 0.000 5 < x < Löslichkeitsgrenze in der Perowskitphase ;
    • y = 0,001 bis 0,02

    und daß der Sinterkörper an seinen Korngrenzen durch Eindiffusion eines Metalloxids oder mindestens einer Metalloxid-Verbindung gebildete Isolierschichten enthält, wobei das Metalloxid oder die Metalloxid-Verbindung einen niedrigeren Schmelzpunkt hat als die Perowskitphase, die polykristalline Perowskitphase an deren Kornrandschichten gut benetzt und bei bei Betrieb des Bauelementes auftretenden Feldstärken reversible Durchbruchserscheinungen zeigt.
  • Ein Verfahren zur Herstellung eines spannungsabhängigen Widerstandes mit einem keramischen Sinterkörper auf Basis eines polykristallinen, mit einer geringen Menge eines Metalloxids zur Erzeugung einer N-Typ-Leitfähigkeit dotierten ErdalkaLimetalftitanats ist dadurch gekennzeichnet, daß zunächst der Sinterkörper mit Perowskitstruktur in reduzierender Atmosphäre hergestellt wird, daß dieser Sinterkörper anschließend an seiner Oberfläche zur Bildung einer Isolierschicht an den Kornrandschichten der polykristallinen Perowskitphase mit einer mindestens ein Metalloxid oder eine Metalloxid-Verbindung enthaltenden Suspension bedeckt wird, wobei das Metalloxid oder Metalloxid-Verbindung einen niedrigeren Schmelzpunkt hat als die Perowskitphase, die polykristalline Perowskitphase an deren Kornrandschichten gut benetzt und bei bei Betrieb des Bauelementes auftretenden Feldstärken reversible Durchbruchserscheinungen zeigt, wonach der Sinterkörper in oxidierender Atmosphäre, vorzugsweise in Luft, bei einer Temperatur, die über dem Schmelzpunkt der Suspensionskomponente(n) liegt, getempert wird.
  • Der spannungsabhängige Widerstand gemäß der Erfindung zeichnet sich durch eine um den Faktor 10 niedrigere Einsatzfeldstärke gegenüber dem bekannten spannungsabhängigen Widerstand aus. Hierfür sind mehrere Faktoren von Bedeutung : einmal, daß der Sinterkörper unter Einfluß eines geringen Ti02-Überschusses hergestellt wird und zum anderen, daß er durch Eindiffusion eines in bezug auf den Sinterkörper relativ niedrig schmelzenden Metalloxids oder einer in bezug auf den Sinterkörper relativ niedrig schmelzenden Metalloxid-Verbindung gebildete Isolierschichten hat. Diese Isolierschichten können von der Randzone des Sinterkörpers über die Dicke des Sinterkörpers einen Gradienten aufweisen. Der Ti02-Überschuß des Ausgangsmaterials für den Sinterkörper führt neben den Sinterbedingungen, im wesentlichen ist hier an die Sintertemperatur zu denken, und neben der Konzentration der Dotierung zu einem Kornwachstum. Die Korngröße der polykristallinen Struktur hat einen entscheidenden Einfluß auf die Einsatzfeldstärke des spannungsabhängigen Widerstandes (im folgenden Varistor genannt). Je geringer die Korngröße, desto höher ist im allgemeinen die Einsatzfeldstärke. Hierin liegt ein entscheidender Vorteil gegenüber dem bekannten spannungsabhängigen Widerstand, bei dem ein nur geringes Kornwachstum möglich ist. Es ist jedoch darauf hinzuweisen, daß bei zu niedriger Einsatzspannung der Stromindex β des Varistors immer ungünstigere Werte annimmt. Der Stromindex β ergibt sich aus der Formel U = C . Iß, worin bedeuten :
    • I = Strom durch den Varistor in Ampere; U = Spannungsabfall am Varistor in Volt; C = geometrieabhängige Konstante ; sie gibt die Spannung an bei I = 1 A (in praktischen Fällen kann sie Werte zwischen 15 und einigen tausend annehmen) ; ß = Stromindex, Nichtlinearitätskoeffizient oder Regelfaktor. Er ist materialabhängig und ist ein Maß für die Steilheit der Strom-Spannungs-Kennlinie. Vorzugsweise soll der β-Wert so klein wie möglich sein, weil bei einem kleinen Wert für β starke Stromänderungen nur zu kleinen Spannungsänderungen am Varistor führen.
  • Nach einer vorteilhaften Weiterbildung der Erfindung wird das Erdalkalimetalltitanat durch Umsetzung von SrC03 mit Ti02 im molaren Verhältnis 1 : 1,001 bis 1 : 1,02 unter Zusatz der dotierenden Metalle in Form ihrer Oxide in einer Menge von 0,05 bis maximal 60 Mol% des zu substituierenden Bestandteiles nach Aufmahlen und Vorsintern 15 h bei 1 150 °C in Luft gebildet.
  • Nach Mahlen und Granulieren dieses Sintergutes und anschließendem Verpressen des Mahlgutes zu einem für einen Widerstand geeigneten Formkörper wird dieser nach einer weiteren vorteilhaften Ausgestaltung der Erfindung 4 h bei einer Temperatur von 1. 460 °C in einer reduzierenden Atmosphäre bestehend aus mit Wasserdampf gesättigtem Mischgas aus 90 Vol.% N2 und 10 Vol.% H2 gesintert.
  • Nach weiteren vorteilhaften Ausgestaltungen der Erfindung werden als dotierendes Metalloxid La203, Nb205 oder W03 und als einzudiffundierendes Metalloxid Bi203 oder als einzudiffundierende Metalloxid-Verbindung Bleigermanat Pb5Ge3O11 eingesetzt.
  • La3+-, Nbs+- und W6+-lonen haben sich als besonders geeignet erwiesen für die N-Dotierung. Es sind jedoch auch andere Dotierungen denkbar, z. B. andere Seltenerdmetallionen wie Sm3+ oder aber auch Y3+ ; anstelle von Nb5+ sind Ta5+, As5+ oder Sb5+ und anstelle von W6+ sind Mo6+ und U6+ einsetzbar.
  • Je nach ihrem lonenradius werden die Dotierungsionen entweder auf Sr- oder Ti-Plätzen im Perowskitgitter eingebaut. Durch einschlägige Untersuchungen wurde nachgewiesen, daß sich das Große La3+-lon (rLa3+= 0,122 nm) auf einem Sr-Platz (rsr2+ = 0,127 nm) einbaut. Durch analoge Studien mit PbTi03 konnte nachgewiesen werden, daß sich das kleinere Nb5+-lon (rNb5+. = 0,069 nm) auf Ti-Plätzen (rr4+ = 0,064 nm) einbaut. Beim W6+-lon (rw., = 0,062 nm) kann man entsprechend annehmen, daß es sich ebenfalls auf Ti-Plätzen einbaut.
  • Nur wenn die Sinterung des Sinterkörpers in einer reduzierenden Atmosphäre erfolgt, tragen die Donatorladungen direkt zur Leitfähigkeit bei. Dieser Zustand wird als Elektronenkompensation bezeichnet. Die chemische Charakterisierung derartig elektronenkompensierter, halbleitender Perowskitproben mit N-Dotierung lautet für die Dotierungen der vorliegenden Keramik
    Figure imgb0002
  • (. = Symbol für Donatorelektron). Wird auf die Sinterkörper nach der Sinterung eine Suspension mit mindestens einem, in bezug auf den Sinterkörper relativ niedrig schmelzenden Metalloxid oder mindestens einer, in bezug auf den Sinterkörper relativ niedrig schmelzenden Metalloxid-Verbindung, z. B. Bi203 oder Bleigermanat Pb5Ge3O11, in einem organischen Bindemittel aufgebracht und unter oxidierenden Bedingungen bei Temperaturen um oder oberhalb 900 °C eingebrannt, so diffundiert das aufgebrachte, geschmolzene Metalloxid oder die Metalloxid-Verbindung vorzugsweise entlang den Korngrenzen in die halbleitende Keramik ein und erzeugt dort hochisolierende Kornrandschichten.
  • Anhand der Zeichnung werden Ausführungsbeispiele der Erfindung beschrieben und in ihrer Wirkungsweise erläutert. Es zeigen :
    • Figuren 1 und 2 Strom-Spannungs-Kennlinien von unterschiedlichen Varistoren gemäß der Erfindung ;
    • Figur 3 Kurve der Temperaturabhängigkeit der Spannung über einem Varistor gemäß der Erfindung bei 1 mA und 30 mA.
  • In Fig. 1 ist die Strom-Spannungs-Kennlinie eines Varistors der Zusammensetzung Sr(Ti0,996W0,004)O3.0.01TiO2 und einer eindiffundierten Phase aus Pb5Ge3O11 dargestellt. Aufgetragen ist die Stromdichte in mA/cm2 gegen die Feldstärke über dem Bauelement in kV/cm (Dicke des Sinterkörpers 400 µm ; Durchmesser des Sinterkörpers 5 mm = 0,196 cm2). Aus Fig. 1 geht hervor, daß sich bereits bei relativ niedrigen Feldern von ca. 0,7 kV/cm eine Stromdichte von ca. 3 mA/cm2 ergibt. Der gefundene Varistor zeichnet sich daher im Vergleich zum bekannten Varistor durch eine um einen Faktor > 10 niedrigere Einsatzfeldstärke aus. Damit wird der vorliegende Varistor einsatzfähig besonders für moderne Halbleiterschaltkreise, die mit niedrigen Spannungen arbeiten. Ein vergleichbares Verhalten findet sich auch bei Nb- und La-dotierten SrTi03-Varistoren gemäß der Erfindung.
  • Fig. 2 zeigt die Strom-Spannungs-Kennlinie eines Varistors der Zusammensetzung Sr(Ti0,996W0,004)O3 . 0,01TiO2 mit einer eindiffundierten Phase aus Bi2O3. Aufgetragen ist der Strom in mA gegen die Spannung in Volt. Der negative Kennlinienbereich beginnt ab etwa 17 mA.
  • In Fig. 3 ist die Spannung über einem Varistor der Zusammensetzung Sr(Ti0,996W0,004)O3 . 0,0TiO2 mit einer eindiffundierten Phase aus Bi2O3 bei 1 mA und 30 mA in Abhängigkeit von der Temperatur dargestellt. Der Sinterkörper dieses Varistors hatte eine Dicke von 400 µm und einen Durchmesser von 5 mm = 0,196 cm2.
  • Im folgenden wird die Herstellung von spannungsabhängigen Widerständen gemäß der Erfindung beschrieben :
  • 1. Herstellung der keramischen Sinterkörper :
  • Als Ausgangsmaterialien für den keramischen Sinterkörper wurden SrC03, Ti02 und als dotierende Metalloxide La2O3 oder Nb2O5 oder W03 verwendet. Bei der Präparation der keramischen Masse gemäß den Zusammensetzungen (Sr1_xLax)TiO3 . yTiO2' Sr(T1-XNbX)O3 . yTi02 oder Sr(T1-XWX)O3 . yTiO2 mit 0,000 5 < x < Löslichkeitsgrenze in der Perowskitphase und y = 0,001 bis 0,02 ist darauf zu achten, daß der Ti02-Überschuß mit 0,001 bis 0,02 deshalb gewählt ist, um stets einen geringen Überschuß von Ti4+-lonen zu haben. Hierdurch wird bei einer Sinterung oberhalb von 1 400 °C eine flüssige Sinterphase mit dem SrTi03 gebildet - es ist anzunehmen, daß es sich hierbei um das bei ≈ 1 440 °C auftretende Eutektikum SrTi03-Ti02 handelt, das durch den Zusatz von Dotierstoffen auch bei niedrigeren Temperaturen auftreten kann. Eine flüssige Sinterphase dieser Art begünstigt ein grobkörniges Kornwachstum, was, wie bereits dargelegt, erwünscht ist.
  • Die Rohstoffe werden in einer Menge, die der gewünschten Zusammensetzung entspricht, eingewogen und 2 h in einer Kugelmühle, z. B. aus Achat, naß gemischt. Anschließend erfolgt eine Vorsinterung 15 h bei 1 150 °C. Die vorgesinterten Pulver werden abermals naß aufgemahlen (1 h in einer Kugelmühle, z. B. aus Achat). Anschließend wird das Mahlgut getrocknet, und die so erhaltenen Pulver werden dann mit Hilfe eines geeigneten Bindemittels, z. B. eine 10 %ige wässerige Polyvinylalkohollösung, granuliert. Das Granulat wird zu für keramische Widerstände geeigneten Formkörpern, z. B. zu Scheiben eines Durchmessers von - 6 mm und einer Dicke von 0,50 mm auf eine grüne Dichte (Rohdichte) von ca. 55 bis 60 % der theoretischen Dichte verpreßt. Anschließend folgt die Sinterung der Preßlinge bei einer Temperatur von 1 460 °C über eine Dauer von 4 h in einer reduzierenden Atmosphäre. Die Atmosphäre kann z. B. aus mit Wasserdampf gesättigtem Mischgas aus 90 Vol.% N2 und 10 Vol.% H2 bestehen. Da der Sauerstoffpartialdruck des Mischgases bestimmt wird durch das Verhältnis der beiden partialdrucke pH2/pHO, wurde das Mischgas mit H2O bei = 25 °C gesättigt, um eine stets vergleichbare Reduktionsatmosphäre zu schaffen.
  • In bezug auf die Sinterung ist beachtlich, daß grobkörnige Gefüge vorzugsweise bei Sintertemperaturen oberhalb 1 440 °C auftreten. Die reduzierende Sinterung soll in einem dichtschließenden Ofen erfolgen, z. B. ist ein Rohrofen geeignet. Überschüssiges Reduziergas soll zweckmäßigerweise über einen Blasenzähler abströmen, um eine stets gleichbleibende Sinteratmosphäre zu schaffen.
  • Auf diese Weise hergestellte Sinterkörper sind halbleitend und zeigen keine offene Porosität mehr.
  • 2. Herstellung der Isolierschichten an den Kornrandbereichen der polykristallinen Perowskitphase :
  • Die isolierenden Kornrandschichten werden durch Eindiffundieren mindestens eines geschmolzenen Metalloxids oder mindestens einer Metalloxid-Verbindung, z. B. Bi203 oder Bleigermanat Pb5Ge3O11, an Luft erzeugt. Das Metalloxid oder die Metalloxid-Verbindung wird zunächst in einem Binder auf der Basis von Polyvinylacetat suspendiert und auf die bereits gesinterte keramik aufgebracht. Anschließend wird das suspendierte Metalloxid oder die suspendierte Metalloxid-Verbindung bei einer Temperatur, bei der diese in geschmolzenem Zustand vorliegen, in den Sinterkörper durch einen Temperprozeß eingebrannt. Bei dem verwendeten Metalloxid Bi203 (Schmelzpunkt : ≈ 825 °C) oder der Metalloxid-Verbindung PbsGe3011 (Schmelzpunkt : ≈ 710°C) wurde als minimale Tempertemperatur eine Temperatur geringfügig oberhalb des Schmelzpunktes des verwendeten Metalloxids oder der verwendeten Metalloxid-Verbindung ermittelt. Die Mengen der in den Sinterkörper eindiffundierten Metalloxide oder Metalloxid-Verbindungen wurden jeweils in Parallelversuchen durch Wägung der Sinterkörper vor dem Aufbringen der Suspension, nach dem Ausbrennen des Binders an Luft bei 600 °C und nach dem Tempern bestimmt.
  • Das Tempern wurde auf unterschiedliche Weise ausgeführt :
    • a) bei einer festen Temperzeit von 120 min wurden jeweils unterschiedliche Sinterkörper auf Temperaturen von 900 °C, 1 000 °C, 1 100 °C, 1 200 °C und 1 300 °C erhitzt ;
    • b) bei einer festgelegten Temperatur von 1100 °C wurden jeweils unterschiedliche Sinterkörper über eine Dauer von 5 min, 30 min, 60 min, 120 min und 240 min getempert ;
    • c) die Sinterkörper wurden über eine Temperdauer von 120 min bei einer Tempertemperatur von 1 200 °C erhitzt (Standardbedingungen).
  • Für alle Versuche betrugen die Aufheiz- und Abkühlzeiten einheitlich 100 min.
  • 3. Herstellung von spannungsabhängigen Widerständen :
  • Auf wie oben beschrieben präparierte Sinterkörper wurden zur Bildung eines Widerstandsbauelementes Elektroden aus geeigneten Metallen, vorzugsweise aus Gold, z. B. durch Aufdampfen, angebracht. Zur besseren Haftung des Elektrodenmetalls empfiehlt es sich, auf den keramischen Sinterkörper zunächst eine geeignete Haftschicht als Zwischenschicht zwischen Keramik und Elektrodenmetall aufzubringen ; z. B. ist eine Cr-Ni-Schicht geeignet.
  • Anmerkungen zu speziellen Zusammensetzungen :
    • (Sr1-XLaX)TiO3 · yTiO2 (0,000 5 < x < Löslichkeitsgrenze des La in der Perowskitphase ; y = 0,001 bis 0,02) : wird x < 0,000 5, oxidieren die zu sinternden Körper zu schnell, die Reproduzierbarkeit der Resultate ist nicht mehr gewährleistet.
  • Die Obergrenze von x ergibt sich aus der Löslichkeitsgrenze des La in der Perowskitphase. Optimale Ergebnisse wurden erreicht mit Sinterkörpern, die ein Gefüge mit Körnern eines Durchmessers von 80 bis 120 µm hatten mit x = 0,01 und y = 0,01 bei einer Sinterptemperatur von 1 460 °C in reduzierender Atmosphäre.
  • Sr(Ti1-XNbX)O3 · yTiO2 (0,000 5 < x < Löslichkeitsgrenze des Nb in der Perowskitphase ; y = 0,001 bis 0,02) :
    • für die Untergrenze von x gilt das gleiche, wie oben zu den La-Dotierungen ausgeführt ; ab x = 0,03 und mehr wurden homogene Mikrostrukturen nicht mehr reproduzierbar beobachtet. Optimale Ergebnisse wurden erreicht mit Sinterkörpern, die ein Gefüge mit Körnern eines Durchmessers von 60 bis 80 µm hatten mit x = 0,01 und y = 0,01 bei einer Sintertemperatur von 1 460 °C in reduzierender Atmosphäre.
  • Sr(Ti1-XW)O3 · yTiO2 (0,000 5 < x < Löslichkeitsgrenze des W in der Perowskitphase ; y = 0,001 bis 0,02) :
    • für die Untergrenze von x gilt das gleiche, wie oben zu den La-Dotierungen ausgeführt ; ab x ≈ 0,01 wurden überwiegend feinkörnigere Mikrostrukturen beobachtet, ab x ≈ 0,06 und mehr tritt zunehmend eine Ausscheidung von Fremdphasen in der Mikrostruktur auf, die aus SrW04 und TiO2 besteht. Optimale Ergebnisse wurden erreicht mit Sinterkörpern, die ein Gefüge mit Körnern eines Durchmessers von 60 bis 80 µm hatten mit x = 0,004 und y = 0,01 bei einer Sintertemperatur von 1 460 °C in reduzierender Atmosphäre.
    4. Ergebnisse
  • Ergebnisse der Eindiffusionsversuche :
    • Die nachfolgenden Tabellen 1 bis 3 zeigen die Ergebnisse der Eindiffusionsversuche mit aufgebrachten Suspensionen aus Bi203 und Pb5Ge3O11. Die für die Eindiffusionsversuche verwendeten Sinterkörper hatten einen Durchmesser von 5 mm und eine Dicke von ca. 400 µm. Bei einer relativen Dichte der Sinterkörper von 97 bis 99 % der theoretischen Dichte betrug das durchschnittliche Gewicht eines Sinterkörpers 0,04 g. Die Menge des auf die Sinterkörper aufgebrachten Metalloxids oder der Metalloxid-Verbindung in Gew.%, bezogen auf das Gewicht des Sinterkörpers, wird als m1 und die nach dem Tempern in der Keramik vorhandene Menge als m2 bezeichnet.
  • Ergebnisse der elektrischen Messungen :
    • Die Tabellen 1 bis 3 zeigen, daß alle Materialien, die eine Diffusionsphase aus Pb5Ge3O11 hatten, brauchbare VDR-Effekte (VDR = voltage dependent resistor) zeigen, die sich gegenüber den Parametern der bekannten Varistoren um eine um einen Faktor > 10 niedrigere Einsatzfeldstärke bei in etwa gleichem Wert für den Stromindex β auszeichnen. Die'Tabelle 2 zeigt, daß Änderungen der Temperdauer und der Tempertemperatur keinen systematischen Einfluß auf die Werte für die Einsatzspannung und den Stromindex haben.
  • Unterschiedliche Einsatzspannungen des fertigen Bauelementes lassen sich jedoch durch unterschiedliche Dicke der Bauelemente einstellen.
  • Die mit einer Diffusionsphase aus Bi203 behandelten Sinterkörper zeigen der normalen VDR-Abhängigkeit überlagert einen negativen Widerstandsbereich, d. h., mit zunehmendem Strom nimmt die Spannung über dem Bauelement ab, was bei bestimmten Anwendungsfällen vorteilhaft sein kann, da dies praktisch einem Wert für den Stromindex β < 0 entspricht (hierzu wird auf Fig. 2 verwiesen). Eine Überspannung wird dadurch nicht nur auf einen bestimmten Wert begrenzt, sondern es wird durch die Abnahme der Spannung über dem Bauelement mit steigendem Strom zusätzlich Energie im Bauelement absorbiert. Diese Eigenschaft der mit Bi203 behandelten Sinterkörper ist nur zum Teil durch die Erwärmung und die damit verbundene Widerstandsabnahme der Bauelemente hervorgerufen. Dies zeigt die Fig. 3, bei der die Spannung über dem Bauelement bei 1 mA und 30 mA in Abhängigkeit von der Temperatur aufgetragen wurde. Die 30 mA-Werte wurden durch kurze Stromimpulse gemessen, so daß eine Eigenerwärmung durch den Meßstrom vernachlässigbar ist.
  • (Siehe Tabellen Seite 6 ff.)
  • Figure imgb0003
    Figure imgb0004
    Figure imgb0005

Claims (18)

1. Spannungsabhängiger Widerstand mit einem keramischen Sinterkörper auf Basis eines polykristallinen, mit einer geringen Menge eines Metalloxids zur Erzeugung einer N-Typ-Leitfähigkeit dotierten Erdalkalimetalltitanats mit auf einander gegenüberliegenden Flächen angebrachten Elektroden, dadurch gekennzeichnet, daß der Sinterkörper aus einem Erdalkalimetalltitanat mit Perowskitstruktur der allgemeinen Formel
Figure imgb0006
besteht, worin bedeuten :
A = Erdalkalimetall
SE = Seltenerdmetall
Me = Metall mit einer Wertigkeit von 5 oder mehr
0,000 5 < x < Löslichkeitsgrenze in der Perowskitphase
y = 0,001 bis 0,02
und daß der Sinterkörper an seinen Korngrenzen durch Eindiffusion mindestens eines Metalloxids oder mindestens einer Metalloxid-Verbindung gebildete Isolierschichten enthält, wobei das Metalloxid oder die Metalloxid-Verbindung einen niedrigeren Schmelzpunkt hat als die Perowskitphase, die polykristalline Perowskitphase an deren Kornrandschichten gut benetzt und bei bei Betrieb des Bauelementes auftretenden Feldstärken reversible Durchbruchserscheinungen zeigt.
2. Spannungsabhängiger Widerstand nach Anspruch 1, dadurch gekennzeichnet, daß als Erdalkalimetall Strontium gewählt ist.
3. Spannungsabhängiger Widerstand nach Anspruch 1, dadurch gekennzeichnet, daß als Seltenerdmetall Lanthan gewählt ist.
4. Spannungsabhängiger Widerstand nach Anspruch 1, dadurch gekennzeichnet, daß als Metall mit der Wertigkeit 5 Niob gewählt ist.
5. Spannungsabhängiger Widerstand nach Anspruch 1, dadurch gekennzeichnet, daß als Metall mit der Wertigkeit > 5 Wolfram gewählt ist.
6. Spannungsabhängiger Widerstand nach Anspruch 1, dadurch gekennzeichnet, daß als einzudiffundierendes Metalloxid Bi203 gewählt ist.
7. Spannungsabhängiger Widerstand nach Anspruch 1, dadurch gekennzeichnet, daß als einzudiffundierende Metalloxid-Verbindung Bleigermanat PbsGe3011 gewählt ist.
8. Verfahren zur Herstellung eines spannungsabhängigen Widerstandes mit einem keramischen Sinterkörper auf Basis eines polykristallinen, mit einer geringen Menge eines Metalloxids zur Erzeugung einer N-Typ-Leitfähigkeit dotierten Erdalkalimetalltitanats nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß zunächst der Sinterkörper mit Perowskitstruktur in reduzierender Atmosphäre hergestellt wird, daß dieser Sinterkörper anschließend an seiner Oberfläche zur Bildung einer Isolierschicht an den Kornrandschichten der polykristallinen Perowskitphase mit einer mindestens ein Metalloxid oder eine Metalloxid-Verbindung enthaltenden Suspension bedeckt wird, wobei das Metalloxid oder die Metalloxid-Verbindung einen niedrigeren Schmelzpunkt hat als die Perowskitphase, die polykristalline Perowskitphase an deren Kornrandschichten gut benetzt und bei bei Betrieb des Bauelementes auftretenden Feldstärken reversible Durchbruchserscheinungen zeigt, wonach der Sinterkörper in oxidierender Atmosphäre, vorzugsweise in Luft, bei einer Temperatur, die über dem Schmelzpunkt der Suspensionskomponente(n) liegt, getempert wird.
9. Verfahren nach Anspruch 8, gekennzeichnet durch folgende Verfahrensschritte :
a) Mahlen eines Gemisches der Ausgangssubstanzen für ein Erdalkalimetalltitanat mit Perowskitstruktur mit einem dotierend wirkenden Zusatz eines Metalloxids zur Erzeugung einer N-Typ-Leitfähigkeit nach den Formeln
Figure imgb0007
worin bedeuten :
A = Erdalkalimetall
SE = Seltenerdmetall
Me = Metall mit einer Wertigkeit von 5 oder mehr
0,000 5 < x < Löslichkeitsgrenze in der Perowskitphase
y = 0,001 bis 0,02 ;
b) Vorsintern des Mahlgutes gemäß Schritt a) 2 bis 20 h im Temperaturbereich von 1 050 bis 1 350 °C in Luft;
c) Mahlen und Granulieren des Sintergutes gemäß Schritt b) mit einem geeigneten Bindemittel ;
d) Verpressen des Mahlgutes nach Schritt c) zu einem für einen Widerstand geeigneten Formkörper ;
e) Sintern des Formkörpers gemäß Schritt d) 1 bis 10 h bei einer Temperatur im Bereich von 1 400 bis 1 500 °C in reduzierender Atmosphäre ;
f) Aufbringen der das (die) Metalloxid(e) oder die Metalloxid-Verbindung(en) enthaltenden Suspension auf die Oberfläche des Sinterkörpers gemäß
g) Eindiffundieren der Suspensionskomponente(n) gemäß Schritt f) in den Sinterkörper bei Temperaturen oberhalb der Schmelztemperatur der jeweiligen Suspensionskomponente(n) in oxidierender Atmosphäre, vorzugsweise in Luft ;
h) Aufbringen von Metallelektroden auf einander gegenüberliegenden Flächen des Sinterkörpers gemäß Schritt g).
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß das Erdalkalimetalltitanat durch Umsetzung von SrC03 mit TiO2 im molaren Verhältnis 1 : 1,001 bis 1 : 1,02 unter Zusatz der dotierenden Metalle in Form ihrer Oxide in einer Menge von 0,05 bis maximal 60 Mol% des zu substituierenden Bestandteils nach Aufmahlen und Vorsintern 15 h bei 1 150 °C in Luft gebildet wird.
11. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß als dotierendes Metalloxid La203 eingesetzt wird.
12. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß als dotierendes Metalloxid Nb2O5 eingesetzt wird.
13. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß als dotierendes Metalloxid W03 eingesetzt wird.
14. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß als Bindemittel eine 10 %ige wässerige Polyvinylalkohollösung eingesetzt wird.
15. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß der Formkörper gemäß Schritt d) 4 h bei einer Temperatur von 1 460 °C in einer reduzierenden Atmosphäre bestehend aus mit Wasserdampf gesättigtem Mischgas aus 90 Vol.% N2 und 10 Vol.% H2 gesintert wird.
16. Verfahren nach Anspruch 15, dadurch gekennzeichnet, daß das Mischgas mit H20 bei ≈ 25 °C gesättigt wird.
17. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß als einzudiffundierendes Metalloxid gemäß Schritt f) Bi203, suspendiert in Polyvinylacetatlösung, eingesetzt wird.
18. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß als einzudiffundierende Metalloxid-Verbindung gemäß Schritt f) Bleigermanat PbsGe3011, suspendiert in Polyvinylacetatlösung, eingesetzt wird.
EP82200615A 1981-05-29 1982-05-19 Spannungsabhängiger Widerstand und Verfahren zu seiner Herstellung Expired EP0065806B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19813121289 DE3121289A1 (de) 1981-05-29 1981-05-29 Spannungsabhaengiger widerstand und verfahren zu seiner herstellung
DE3121289 1981-05-29

Publications (3)

Publication Number Publication Date
EP0065806A2 EP0065806A2 (de) 1982-12-01
EP0065806A3 EP0065806A3 (en) 1983-05-04
EP0065806B1 true EP0065806B1 (de) 1985-11-21

Family

ID=6133437

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82200615A Expired EP0065806B1 (de) 1981-05-29 1982-05-19 Spannungsabhängiger Widerstand und Verfahren zu seiner Herstellung

Country Status (4)

Country Link
US (2) US4581159A (de)
EP (1) EP0065806B1 (de)
JP (1) JPS57199202A (de)
DE (2) DE3121289A1 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59188103A (ja) * 1983-04-08 1984-10-25 株式会社村田製作所 電圧非直線抵抗体用磁器組成物
DE3523681A1 (de) * 1985-07-03 1987-01-08 Philips Patentverwaltung Verfahren zur herstellung keramischer sinterkoerper
JPH0670884B2 (ja) * 1986-12-27 1994-09-07 株式会社住友金属セラミックス マイクロ波用誘電体磁器組成物
US5225126A (en) * 1991-10-03 1993-07-06 Alfred University Piezoresistive sensor
DE10026258B4 (de) * 2000-05-26 2004-03-25 Epcos Ag Keramisches Material, keramisches Bauelement mit dem keramischen Material und Verwendung des keramischen Bauelements
DE102007010239A1 (de) * 2007-03-02 2008-09-04 Epcos Ag Piezoelektrisches Material, Vielschicht-Aktuator und Verfahren zur Herstellung eines piezoelektrischen Bauelements
DE102009058795A1 (de) * 2009-12-18 2011-06-22 Epcos Ag, 81669 Piezoelektrisches Keramikmaterial, Verfahren zur Herstellung des piezoelektrischen Keramikmaterials, piezoelektrisches Vielschichtbauelement und Verfahren zur Herstellung des piezoelektrischen Vielschichtbauelements
KR102499735B1 (ko) 2017-12-01 2023-02-15 교세라 에이브이엑스 컴포넌츠 코포레이션 낮은 종횡비 배리스터

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL301822A (de) * 1963-12-13
US3561106A (en) * 1968-07-03 1971-02-09 Univ Iowa State Res Found Inc Barrier layer circuit element and method of forming
US3933668A (en) * 1973-07-16 1976-01-20 Sony Corporation Intergranular insulation type polycrystalline ceramic semiconductive composition
GB1556638A (en) * 1977-02-09 1979-11-28 Matsushita Electric Ind Co Ltd Method for manufacturing a ceramic electronic component
US4237084A (en) * 1979-03-26 1980-12-02 University Of Illinois Foundation Method of producing internal boundary layer ceramic compositions
JPS56169316A (en) * 1980-05-30 1981-12-26 Matsushita Electric Ind Co Ltd Composition functional element and method of producing same
JPS5735303A (en) * 1980-07-30 1982-02-25 Taiyo Yuden Kk Voltage vs current characteristic nonlinear semiconductor porcelain composition and method of producing same
US4347167A (en) * 1980-10-01 1982-08-31 University Of Illinois Foundation Fine-grain semiconducting ceramic compositions
US4419310A (en) * 1981-05-06 1983-12-06 Sprague Electric Company SrTiO3 barrier layer capacitor
JPS58103116A (ja) * 1981-12-16 1983-06-20 太陽誘電株式会社 コンデンサ用半導体磁器
JPS5891602A (ja) * 1981-11-26 1983-05-31 太陽誘電株式会社 電圧非直線磁器組成物
US4436650A (en) * 1982-07-14 1984-03-13 Gte Laboratories Incorporated Low voltage ceramic varistor

Also Published As

Publication number Publication date
US4581159A (en) 1986-04-08
EP0065806A2 (de) 1982-12-01
US4692289A (en) 1987-09-08
JPS57199202A (en) 1982-12-07
JPH0236041B2 (de) 1990-08-15
EP0065806A3 (en) 1983-05-04
DE3121289A1 (de) 1982-12-23
DE3267542D1 (en) 1986-01-02

Similar Documents

Publication Publication Date Title
EP0351004B1 (de) Nichtlinearer spannungsabhängiger Widerstand
DE2450108C3 (de) Verfahren zur Herstellung in sich selbst spannungsabhängiger Widerstände
DE2308073B2 (de) Keramischer elektrischer widerstandskoerper mit positivem temperaturkoeffizienten des elektrischen widerstandswertes und verfahren zu seiner herstellung
DE3732054C2 (de)
EP3504169A1 (de) Keramikmaterial, bauelement und verfahren zur herstellung des bauelements
EP0065806B1 (de) Spannungsabhängiger Widerstand und Verfahren zu seiner Herstellung
DE2021983B2 (de) Spannungsabhaengiger widerstand
EP0040881B1 (de) Spannungsabhängiger Widerstand und Verfahren zu seiner Herstellung
EP0106401B1 (de) Keramisches Dielektrikum auf Basis von Wismut enthaltendem BaTi03
EP0066333B1 (de) Nichtlinearer Widerstand und Verfahren zu seiner Herstellung
DE1646987C3 (de) Verfahren zum Herstellen polykristalliner scheiben-, stabrohr- oder folienförmiger keramischer Kaltleiter-, bzw. Dielektrikums- bzw. Heißleiterkörper
DE1956817B2 (de) Mangan-modifizierte spannungsabhaengige zinkoxid-widerstandskeramikmasse
DE102008046858A1 (de) Keramikmaterial, Verfahren zur Herstellung eines Keramikmaterials, elektrokeramisches Bauelement umfassend das Keramikmaterial
DE2914130C2 (de)
DE102007012468A1 (de) Keramikmaterial und elektrokeramisches Bauelement mit dem Keramikmaterial
DE2752150A1 (de) Spannungsabhaengiger widerstand und verfahren zu dessen herstellung
DE3206502C2 (de)
DE2225431C2 (de) Metalloxid-Varistor mit einem Gehalt an ZnO
DE102009023846A1 (de) Varistorkeramik, Vielschichtbauelement umfassend die Varistorkeramik, Herstellungsverfahren für die Varistorkeramik
DE1765097B2 (de) Spannungsabhaengiger widerstand aus einer gesinterten scheibe aus zinkoxid
EP0357113B1 (de) Verfahren zur Herstellung eines nichtlinearen spannungsabhängigen Widerstandes
DE2106498C3 (de) Spannungsabhängiges Widerstandselement
DE2525053C2 (de) Nichtlinearer Widerstandskörper aus Zinkoxid(Varistor)
DE1514012B2 (de) Verfahren zur Herstellung eines Dünnschichtkondensators
DD271769A1 (de) Verfahren zur herstellung von zinkoxid-niederspannungsvaristoren

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19820519

AK Designated contracting states

Designated state(s): BE DE FR GB NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): BE DE FR GB NL

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE DE FR GB NL

REF Corresponds to:

Ref document number: 3267542

Country of ref document: DE

Date of ref document: 19860102

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19870531

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19890519

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19890531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19891201

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19900131

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19950724

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19970201