DE3206502C2 - - Google Patents

Info

Publication number
DE3206502C2
DE3206502C2 DE3206502A DE3206502A DE3206502C2 DE 3206502 C2 DE3206502 C2 DE 3206502C2 DE 3206502 A DE3206502 A DE 3206502A DE 3206502 A DE3206502 A DE 3206502A DE 3206502 C2 DE3206502 C2 DE 3206502C2
Authority
DE
Germany
Prior art keywords
dielectric
pbo
following formula
dielectric according
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
DE3206502A
Other languages
English (en)
Other versions
DE3206502A1 (de
Inventor
Karl-Heinz Dr. 5100 Aachen De Haerdtl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Philips Intellectual Property and Standards GmbH
Original Assignee
Philips Patentverwaltung GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Philips Patentverwaltung GmbH filed Critical Philips Patentverwaltung GmbH
Priority to DE19823206502 priority Critical patent/DE3206502A1/de
Priority to GB08304707A priority patent/GB2115400B/en
Priority to US06/468,818 priority patent/US4474894A/en
Priority to ES519987A priority patent/ES519987A0/es
Priority to FR8302956A priority patent/FR2522185A1/fr
Priority to JP58028654A priority patent/JPS58156576A/ja
Publication of DE3206502A1 publication Critical patent/DE3206502A1/de
Application granted granted Critical
Publication of DE3206502C2 publication Critical patent/DE3206502C2/de
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/472Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on lead titanates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1254Ceramic dielectrics characterised by the ceramic dielectric material based on niobium or tungsteen, tantalum oxides or niobates, tantalates
    • H01G4/1263Ceramic dielectrics characterised by the ceramic dielectric material based on niobium or tungsteen, tantalum oxides or niobates, tantalates containing also zirconium oxides or zirconates

Description

Die Erfindung bezieht sich auf ein Dielektrikum auf Basis von Bleititanaten, bei denen mindestens 50 Mol-% des Titans durch Magnesium und Wolfram substituiert sind. Die Erfindung bezieht sich weiter auf ein Verfahren zur Herstellung des Dielektrikums und auf seine Verwendung.
Dielektrika der genannten Art sind von Bedeutung für die Herstellung von Kondensatoren, insbesondere von Vielschichtkondensatoren.
Monolithische keramische Vielschichtkondensatoren ermöglichen bei großer Zuverlässigkeit sehr hohe Kapazitäten bei kleinem Volumen. Das keramische Ausgangsmaterial wird hierbei zur Herstellung von dünnen Folien mit einem Bindemittel verarbeitet. Auf solche keramische Folien wird anschließend eine Metallpaste aufgetragen, die die Elektroden bilden soll und anschließend werden die Folien so aufeinandergestapelt, daß Keramik- und Metallschichten wechselweise angeordnet sind.
Da die auf diese Weise hergestellte Schichtenfolge von Dielektrikum und Elektroden als Ganzes gesintert wird, müssen Elektrodenmaterialien und Sinterbedingungen derart gewählt werden, daß die Metallschichten dabei weder schmelzen noch oxidieren.
Es ist bekannt, Vielschichtkondensatoren herzustellen, wobei die Keramik an Luft bei Temperaturen oberhalb 1300°C dichtgesintert wird. Bei diesen Sintertemperaturen sind als Metalle für die Elektroden nur Edelmetalle mit einem sehr hohen Schmelzpunkt wie Palladium oder Platin zu verwenden.
Da die Edelmetalle sehr teuer und zum Teil schwer zu beschaffen sind und darüberhinaus mit ihrem Preis in keinem Verhältnis mehr zu der Keramik stehen, denn durch den bereits erreichten hohen Mechanisierungsgrad bei der Herstellung von Vielschichtkondensatoren fallen die Materialkosten für Edelmetallelektroden sehr ins Gewicht, hat man diverse Anstrengungen unternommen, Keramik mit brauchbaren dielektrischen Werten aber drastisch erniedrigten Sintertemperaturen herzustellen, um auf die teueren Palladium- oder Platinelektroden verzichten zu können und stattdessen z. B. Silberelektroden einsetzen zu können. Aus der US-PS 40 63 341 ist ein keramisches Dielektrikum auf Basis des Systems PbTiO₃-Pb (Mg/1/2W1/2)O₃ bekannt, das bei Temperaturen von 950 bis 1000°C gesintert werden kann und das mit einer Dielektrizitätskonstanten ε < 1000 und Werten für den dielektrischen Verlustfaktor tanδ von 0,85 bis 4,2% brauchbare dielektrische Werte aufweist. Für die Herstellung von Vielschichtkondensatoren aus der aus der US- PS 40 63 341 bekannten Keramik soll Silber als Elektrodenmetall eingesetzt werden. Es hat sich nun erwiesen, daß mit dieser Keramik Vielschichtkondensatoren unter Verwendung von Silberelektroden nicht mit reproduzierbarer Qualität hergestellt werden können, da die Sintertemperaturen dieser Keramik zu dicht am Schmelzpunkt des Silbers liegen. Silber ist aufgrund seiner elektrischen Eigenschaften jedoch hervorragend als Elektrodenmetall geeignet und sollte nach Möglichkeit beibehalten werden.
Der Erfindung liegt daher die Aufgabe zugrunde, die Sintertemperaturen für die Keramik der eingangs genannten Art so abzusenken, daß sie deutlich unter dem Schmelzpunkt des Silbers liegen und die elektrischen Eigenschaften, insbesondere die Werte für die Dielektrizitätskonstante ε und den dielektrischen Verlustfaktor tanδ, aber auch für den spezifischen Widerstand und dessen Dauerstandsverhalten gegenüber der bekannten Keramik noch verbessert werden.
Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß die stöchiometrische Grundverbindung mit einer Zusammensetzung von
von Pb(Ti1-x-y Mg x W y )O₃
mit 0,25 ≦ x ≦ 0,35
und 0,25 ≦ y ≦ 0,35
einen Zusatz von 0,001 bis 0,006 (5 PbO + 1 WO₃) auf additiver molarer Basis enthält.
Durch den Zusatz des bei 720°C schmelzenden Eutektikums (5 PbO + 1 WO₃) können Sintertemperaturen im Bereich von 830 bis 1000°C, insbesondere von 830 bis 900°C, angewendet werden, wobei darüberhinaus verbesserte dielektrische Eigenschaften erreicht werden können. Die Werte für die Dielektrizitätskonstante ε liegen im Bereich von 1500 bis 5400, die Werte für den dielektrischen Verlustfaktor tanδ liegen bei 1 kHz im Bereich von 1,6 bis 3,1% und die Werte für den spezifischen Widerstand liegen im Bereich von 2 · 10¹¹ bis 1 · 10¹³ Ωcm bei 25°C.
Nach einer vorteilhaften Weiterbildung der Erfindung hat das Dielektrikum eine Zusammensetzung gemäß folgender Formel:
Pb(Ti1-x-y Mg x-z Me z W y )O₃ + 0,001 bis 0,006 (5 PbO + 1 WO₃)
mit
x = 0,288 bis 0,299
y = 0,3
z = 0,001 bis 0,012
Me = Übergangsmetall(e).
Wenn 0,1 bis 1,2 Mol% das Magnesiums durch mindestens ein Übergangsmetall wie Cr, Mn, Fe oder Co substituiert sind, ergibt sich eine deutliche Verbesserung der Werte für den spezifischen Widerstand neben den bereits erwähnten Vorteilen der günstigen dielektrischen Eigenschaften und der niedrigen Sintertemperaturen.
So hat eine Keramik auf Basis der genannten Zusammensetzung Werte für die Dielektrizitätskonstante ε im Bereich von 2300 bis 6100, für den dielektrischen Verlustfaktor tanδ bei 1 kHz im Bereich von 0,3 bis 3,1%, für den spezifischen Widerstand im Bereich von 8 · 10¹⁰ bis 2 · 10¹³ Ωcm bei 25°C. Die Sintertemperatur liegt im Bereich von 830 bis 1000°C, vorzugsweise im Bereich von 830 bis 900°C.
Wenn so verfahren wird, daß nach dem Mischen bzw. Mahlen der die stöchiometrische Grundverbindung bildenden Verbindungen ein Calcinierungsprozeß im Bereich von 700 bis 750°C, also bei verhälnismäßig niedriger Temperatur durchgeführt wird, ergibt sich der Vorteil, daß ein Abdampfen von PbO weitgehend vermieden wird.
Die mit der Erfindung erzielten Vorteile bestehen insbesondere darin, daß keramische Dielektrika hergestellt werden können, die ihre optimalen keramischen, elektrischen und dielektrischen Eigenschaften bei so tiefen Sintertemperaturen erreichen, daß gut Vielschichtkondensatoren reproduzierbar erhalten werden können, selbst wenn das wegen seiner elektrischen Eigenschaften erwünschte Silber in reiner Form als Elektrodenmetall verwendet wird.
Ein weiterer Vorteil der Dielektrika gemäß der vorliegenden Erfindung ist, daß ihre Dielektrizitätskonstanten ε eine verhältnismäßig geringe Temperaturabhängigkeit aufweisen; für die Praxis erwünscht sind für den Temperaturbereich zwischen -55°C und + 125°C möglichst weniger als ± 15% Abweichung vom ε-Wert bei Raumtemperatur; brauchbar für die Praxis sind jedoch auch geringfügig größere Abweichungen.
Als weitere Vorteile der Dielektrika gemäß der Erfindung sind zu nennen:
Durch Zugabe von (5PbO + 1 WO₃)-Gemischen lassen sich die Sintertemperaturen um 100 bis 150°C gegenüber Zusammensetzungen des Standes der Technik absenken. Dies ist bei der Herstellung von keramischen Kondensatoren und besonders von Vielschichtkondensatoren von entscheidendem Vorteil, da die Bleiverdampfung abnimmt, und die Verwendung von billigen Silberelektroden mit reproduzierbar guter Ausbeute an z. B. Vielschichtkondensatoren möglich wird.
Durch Einbau von Übergangsmetallionen wie Mn, Cr, Fe und/oder Co erhöhen sich die Werte für den spezifischen Widerstand besonders bei 125°C. Erst dadurch erreichen diese Dielektrika einen für ihre Anwendung genügend hohen Isolationswert.
Der Einbau von Übergangsmetallionen (besonders Mn und Cr) verbessert die Lebensdauereigenschaften in entscheidender Weise, so daß dadurch die Materialien als Dielektrika für keramische Kondensatoren und besonders für Vielschichtkondensatoren optimal einsetzbar werden. Durch den Einbau von Mn lassen sich die Werte für den Verlustfaktor tanδ auf Werte deutlich unter 1% reduzieren.
Anhand der Zeichnung werden Ausführungsbeispiele der Erfindung beschrieben und ihre Wirkungsweise erläutert.
Es zeigt
Fig. 1 Beispiel des Schwindungsverhaltens für ein Dielektrikum gemäß der Erfindung,
Fig. 2 graphische Darstellung des Dauerstandsverhaltens des Dielektrikums gemäß US-PS 40 63 341 im Vergleich zu dem unterschiedlicher Dielektrika nach der Erfindung.
Um die Sintereigenschaften besser definieren zu können, wurde das Schwindungsverhalten bei Sintertemperaturen mit einem Dilatometerofen für alle Proben untersucht.
In Fig. 1 ist als charakteristisches Beispiel das Schwindungsverhalten für ein Dielektrikum gemäß der Zusammensetzung
Pb(Ti0,4Mg0,294Mn0,006W0,3)O₃ + 0,003 (5 PbO + 1 WO₃)
dargestellt. Bei konstanter Aufheizgeschwindigkeit erreichte der eingesetzte Dilatometerofen nach 300 min 1000°C, wurde 200 min auf dieser Temperatur gehalten und wurde mit gleicher Geschwindigkeit wie beim Aufheizen wieder abgekühlt.
Parallel zu diesem Temperaturverlauf wird die Schwindung der einzelnen keramischen Proben gemessen.
In den nachfolgenden Tabellen 1 bis 8 sind die Temperaturen angegeben, bei welchen die Schwindung beginnt (T E; für die Probe gemäß Fig. 1 ist T E = 580°C) und bei der die Schwindung in der Längendimension 5% erreicht hat (T 5%; für die Probe gemäß Fig. 1 ist T 5% = 780°C). Der Schwindungswert von 5% bedeutet, daß die erreichte Dichte auf etwa dem halben Weg zwischen der Ausgangsdichte der grünen Keramik und der theoretisch möglichen Dichte liegt.
Der Kurve gemäß Fig. 1 ist zu entnehmen, daß die Probe bereits im Aufheizzyklus bei 900°C die hohe Enddichte erreicht hat und in der isothermen Phase bei 1000°C keine nennenswerte Schwindung mehr erfolgt.
Sintertemperaturen von 900°C sind danach für Dielektrika einer Zusammensetzung von
Pb(Ti1-x-y Mg x-z Me z W y) + 0,001 bis 0,006 (5 PbO + 1 WO₃)
mit
x = 0,288 bis 0,299
y = 0,3
z = 0,001 bis 0,012
Me = Übergangsmetall(e)
ausreichend.
In den nachfolgenden Tabellen 1 bis 8 ist außerdem die Summe der relativen Schwindungen
Σ S = Δ a/a + Δ b/b + Δ l/l
in % angegeben, wobei a, b und l die Kantenlängen der eingesetzten Probekörper bedeuten.
Zur Charakterisierung der Proben sind außerdem der Wert für die Dielektrizitätskonstante ε bei 25°C, die Temperaturen des ε-Maximums in °C, die Abweichung des e-Wertes vom ε-Wert bei 25°C bei -55°C, -30°C, +10°C, +85°C und +125°C in % sowie die Werte für den Verlustfaktor tanδ bei 25°C und 1 kHz in % angegeben.
Der Isolationswiderstand wurde bei 25°C und 125°C gemessen. Dabei wurde an 0,5 mm dicke Proben eine Gleichspannung von 240 V angelegt und der Strom 1 min nach Anlegen der Spannung bestimmt. Daraus ergibt sich der in den Tabellen angegebene Wert für den spezifischen Widerstand.
Bei einigen für die praktische Anwendung zur Herstellung von Vielschichtkondensatoren geeignet erscheinenden Zusammensetzungen wurde das Dauerstandsverhalten bei 125°C unter Anlegen einer Gleichfeldstärke von 4 V/µm = 2000 V/0,5 mm bestimmt. Gemessen wurde der durch die Probe in Abhängigkeit von der Zeit fließende Strom, woraus der spezifische Widerstand berechnet wurde.
Zu den Meßergebnissen der Tabellen 1 bis 8
1. Herabsetzung der Sintertemperatur durch den Zusatz von (5 PbO + 1 WO₃)
Die Probe Nr. 1 der Tabelle 1 stellt ein Dielektrikum nach dem Stand der Technik dar. Obwohl sich aus den Dilatometermessungen ein T 5%-Wert von 860°C ergibt, zeigte dieser Zusammensetzung nach einer zweistündigen Sinterung bei 900°C noch offene Porosität, ist damit also als Dielektrikum für Kondensatoren ungeeignet. Nach einer Sinterung bei 1000°C ergab sich eine Dichte von 8,25 g/cm³, was bei einer theoretischen Dichte von 8,73 g/cm³ bedeutet, daß noch eine Porosität von 5 bis 6% vorliegt. Damit ist zwar eine ausreichende Dichte für ein Kondensatordielektrikum erreicht, bei Werten für die Dichte von ≈ 8,25 g/cm³ sind aber noch nicht optimale Werte für die Dielektrizitätskonstante ε erreichbar, diese stellen sich erst ein bei Dichten besser als 8,4 bis 8,5 g/cm³ (Porosität < 3%). Da die optimale Dichte erst bei einer Sintertemperatur von < 1000°C erreichbar ist, ist diese Zusammensetzung als Dielektrikum zur gemeinsamen Sinterung mit Silberelektroden (Schmelzpunkt = 960,5°C) ungeeignet.
Durch einen Zusatz von (5 PbO + 1 WO₃ ) im Bereich von 0,001 bis 0,006 auf additiver molarer Basis kann die Sintertemperatur der Grundverbindung einer Zusammensetzung von
Pb(Ti1-x-y Mg x W y )O₃
Pb(Ti1-x-y Mg x W y )O₃
mit 0,25 ≦ x ≦ 0,35 und 0,25 ≦ y ≦ 0,35
deutlich herabgesetzt werden.
Aus Tabelle 1 ist ersichtlich, daß der T 5%-Wert von 860°C für die Probe Nr. 1 (Zusammensetzung nach dem Stand der Technik) auf Werte bis 765°C für die Proben Nr. 2 bis Nr. 27 (Zusammensetzungen gemäß der Erfindung) abgesenkt werden kann.
Während die Probe Nr. 1 bei Sinterbedingungen von 2 h und 900°C noch offene Porosität aufweist, lassen sich die Proben mit Zusammensetzungen gemäß der Erfindung selbst bei 800°C noch dichtsintern. Mit steigendem (5 PbO + 1 WO₃)-Zusatz erhöht sich der ε-Wert und erreicht sein Maximum bei einem Zusatz von 0,002 bis 0,003 mit 5400 bzw. 5300.
2. Spezifischer Widerstand, dielektrische Verluste und ε (T)-Charakteristik durch Einbau von Übergangsmetallen
Der Einfluß des Einbaus von Übergangsmetallen (Cr, Mn, Fe und/oder Co in die Grundverbindung gemäß der Zusammensetzung
Pb(Ti1-x-y Mg x-z Me z W y )O₃ + 0,003 (5 PbO + 1 WO₃)
mit
x = 0,288 bis 0,299
y = 0,3
z = 0,001 bis 0,012
Me = Übergangsmetall(e)
Tabelle 2
Der Einbau von Mn verbessert die dielektrischen Eigenschaften der Keramik deutlich, ohne die guten Sintereigenschaften zu beeinflussen. Der spezifische Widerstand nimmt - besonders bei 125°C - bis zu 3 Zehnerpotenzen gegenüber der Probe Nr. 1, Tabelle 1 (Keramik nach dem Stand der Technik) zu. Die dielektrischen Verluste sinken unter 1% und auch die ε (T)- Charakteristik wird flacher.
Tabellen 3, 4 und 5
Auch mit einem Einbau von Cr, Fe und/oder Co in die Grundverbindung gemäß der Zusammensetzung
Pb(Ti1-x-y Mg x-z Me z W y )O₃ + 0,003 (5 PbO + 1 WO₃)
mit
x = 0,288 bis 0,299
y = 0,3
z = 0,001 bis 0,012
Me = Übergangsmetall(e)
stellen sich Verbesserungen der dielektrischen Eigenschaften gegenüber der Probe Nr. 1 in Tabelle 1 ein. Die Werte für die Dielektrizitätskonstante ε steigen auf 6000 (Probe Nr. 70) und auch der Wert für den spezifischen Widerstand ist bis zu 3 Größenordnungen verbessert.
In Tabelle 6 sind die Ergebnisse eines kombinierten Einbaus von 0,3 Mol% Mn und 0,3 Mol% Cr dargestellt.
Tabelle 7
Es wurden der konstanten Grundverbindung Pb(Ti0,4Mg0,294Mn0,006W0,3)O₃ unterschiedliche Zusätze von PbO + WO₃ zugegeben. Aus den Ergebnissen der Tabelle 7 sind folgende Schlüsse zu ziehen:
Die Zugabe des Zusatzes kann bereits vor der Calcinierung, also direkt bei der Einwaage der Ausgangssubstanzen, erfolgen (hierzu wird verwiesen auf die Proben Nr. 80 und 81 im Vergleich zu den Proben Nr. 33 und 34).
Es ist nicht unbedingt notwendig, PbO und WO₃ in Form von (5 PbO + 1WO₃), was der eutektischen Zusammensetzung entspricht, zuzusetzen. Wesentlich ist jedoch ein PbO-Überschuß von ca. 1 Mol%.
Proben mit einem Zusatz von ausschließlich WO₃ (vergleiche Probe Nr. 82) zeigen bei einer Sintertemperatur von 900°C nur Dichten von 8,33 g/cm³. Die PbO-Überschußmenge ist relativ unkritisch; es wird jedoch ein Zusatz von 0,003 (5 PbO + 1 WO₃) als optimal empfohlen.
Eine wichtige Eigenschaft von Materialien für keramische Kondensatoren ist ihr Dauerstandsverhalten. Dies bedeutet, daß die Kondensatoren ihre elektrischen Eigenschaften, insbesondere ihre Werte für den spezifischen Widerstand auch nach 1000-stündiger Belastung mit hohen Gleichfeldstärken (4 V/µm) bei erhöhten Temperaturen (125°C für Spezifikation X7R, 85°C für Spezifikation Z5U) behalten müssen.
In Fig. 2 sind die Ergebnisse von Dauerzustandsmessungen bei 125°C dargestellt. Während die Zusammensetzung nach dem Stand der Technik (Probe Nr. 1 in Tabelle 1) bereits nach 1 h einen wesentlich niedrigeren spezifischen Widerstand zeigt und nach 10 h zum elektrischen Durchschlag übergeht, zeigen besonders die Proben mit geringem Mn- oder Cr-Einbau (Proben Nr. 28, 30) einen mit der Zeit steigenden spezifischen Widerstand, der bis über 10¹⁴Ωcm zunimmt.
Proben mit hohem Mn-Gehalt (Proben Nr. 36, 38) sowie Proben mit einem Co-Gehalt von 0,3 Mol% (Probe Nr. 58) zeigen einen zeitunabhängigen spezifischen Widerstand.
Als Rohmaterialien für die perowskitische Grundverbindung dienen PbO, MgO, WO₃, TiO₂, Mn-Acetat, Co-Oxalat, Fe-Oxalat und Cr₂O₃ in hochreiner Qualität. Die Ausgangssubstanzen werden entsprechend den in den Tabellen angegebenen molaren Mengen eingewogen; anstelle der Oxalate oder Acetate können prinzipiell auch Carbonate oder andere bei Calcinierungstemperatur zur Zersetzung fähige Verbindungen Verwendung finden. Die pulverigen Ausgangssubstanzen werden 3 h trocken vermahlen, anschließend bei Temperaturen zwischen 700 und 750°C 15 h vorgesintert und dann wiederum 1 h trocken vermahlen. Aus den Pulvern werden prismatische Körper einer Kantenlänge von etwa 6 × 6 × 18 mm geformt. Die prismatischen Körper werden isostatisch mit einem Druck von 4 bar verpreßt und dann in einer O₂-Atmosphäre über 2 h bei den in den Tabellen angegebenen Temperaturen gesintert. Die Dichte der gesinterten prismatischen Körper wird nach dem archimedischen Prinzip durch Eintauchen in destilliertes Wasser bestimmt.
Aus den prismatischen Körpern werden rechteckförmige Scheiben von etwa 5,5 × 5,5 × 0,5 mm gesägt, und deren Oberfläche wird nach Läppen mit aufgedampften Goldelektroden versehen.
Die Messung der Werte für die Dielektrizitätskonstante ε (T) und den Verlustfaktor tanδ erfolgt bei 1 kHz im Temperaturbereich zwischen -55 und +125°C bei einer Meßspannung von <1 V. Die Aufheizgeschwindigkeit betrug 10°C/min.
Durch die niedrige Sintertemperatur der vorliegenden Zusammensetzungen ist eine Herstellung von Vielschichtkondensatoren mit Silberelektroden möglich. Es folgt als Beispiel die Herstellung von Vielschichtkondensatoren mit einer Keramik der Zusammensetzung
Pb(Ti0,4Mg0,294Mn0,006W0,3)O₃ + 0,003 (5 PbO + 1 WO₃);
der Zusatz von 0,003 (5 PbO + 1 WO₃) wird nach dem Calcinieren des Materials der Grundverbindung zugefügt.
Als Ausgangsmaterialien für die perowskitische Grundverbindung dienen PbO, TiO₂, MgO, WO₃ und Mn-Acetat in hochreiner Qualität. Diese Pulver werden entsprechend ihrer molaren Zusammensetzung eingewogen und 3 h trocken vermahlen sowie anschließend bei 700°C 15 h calciniert. Die auf diese Weise erhaltenen Pulver werden in Wasser aufgeschlämmt und unter Zusatz eines geeigneten Bindemittels, z. B. Polyvinylalkohol, gemischt. Aus diesem Schlicker werden 50 µm dicke Folien gegossen, die nach dem Trocknen mit einer Silberpaste zur Ausbildung von Elektrodenbelägen bedruckt werden. Zur Herstellung einer Sandwich-Struktur werden jeweils 4 mit Elektrodenpaste versehene Folien und eine Folie ohne Elektrodenpaste aufeinandergestapelt und verpreßt. Die Bindemittel der Elektrodenpaste und der grünen Keramik werden anschließend innerhalb 24 h durch langsames Aufheizen auf 400°C in Luft ausgebrannt. Die Sinterung erfolgt in Luft während 2 h bei 850, 900 und 930°C. Nach dem Sintern betrug die Dicke der dielektrischen Schichten noch 30 µm. Die elektrischen Eigenschaften solcherart hergestellter Vielschichtkondensatoren sind in Tabelle 8 zusammengestellt. Ein Vergleich dieser an Vielschichtkondensatoren erhaltenen Werte mit den an Scheibenkondensatoren gemessenen Werte zeigt gute Übereinstimmung, so daß die Vielzahl der an Scheibenkondensatoren bestimmten Daten (Tabellen 1 bis 7) sich auf Vielschichtkondensatoren (Tabelle 8) übertragen lassen.

Claims (20)

  1. Dielektrikum auf der Basis von Bleititanaten, bei denen mindestens 50 Mol% des Titans durch Magnesium und Wolfram substituiert sind, dadurch gekennzeichnet, daß die stöchiometrische Grundverbindung mit einer Zusammensetzung von Pb(Ti1-x-y Mg x W y )O₃mit 0,25 ≦ x ≦ 0,35 und 0,25 ≦ y ≦ 0,35
    einen Zusatz von 0,001 bis 0,006 (5 PbO + 1 WO₃) auf additiver molarer Basis enthält.
  2. 2. Dielektrikum nach Anspruch 1, dadurch gekennzeichnet, daß es eine Zusammensetzung gemäß folgender Formel hat: Pb(Ti0,4Mg0,3W0,3)O₃ + 0,001 bis 0,006 (5 PbO + 1 WO₃).
  3. 3. Dielektrikum nach Anspruch 2, dadurch gekennzeichnet, daß es eine Zusammensetzung gemäß folgender Formel hat: Pb(Ti0,4Mg0,3W0,3)O₃ + 0,003 (5 PbO + 1 WO₃).
  4. 4. Dielektrikum nach Anspruch 1, dadurch gekennzeichnet, daß es eine Zusammensetzung gemäß folgender Formel hat: Pb(Ti1-x-y Mg x-z Me z W y )O₃ + 0,001 bis 0,006 (5 PbO + 1 WO₃)mit
    x = 0,288 bis 0,299
    y = 0,3
    z = 0,001 bis 0,012
    Me = Übergangsmetall(e).
  5. 5. Dielektrikum nach Anspruch 4, dadurch gekennzeichnet, daß es eine Zusammensetzung gemäß folgender Formel hat: Pb(Ti0,4Mg0,294Me0,006W0,3)O₃ + 0,003 (5 PbO + 1 WO₃)Me = Übergangsmetall(e).
  6. 6. Dielektrikum nach Anspruch 4, dadurch gekennzeichnet, daß als Übergangsmetall(e) Cr, Mn, Fe oder Co eingesetzt ist (sind).
  7. 7. Dielektrikum nach den Ansprüchen 4 und 6, dadurch gekennzeichnet, daß es eine Zusammensetzung gemäß folgender Formel hat: Pb(Ti0,4Mg0,3-z Mn z W0,3)O₃ + 0,003 (5 PbO + 1 WO₃);z = 0,003 bis 0,009.
  8. 8. Dielektrikum nach den Ansprüchen 4 und 6, dadurch gekennzeichnet, daß es eine Zusammensetzung gemäß folgender Formel hat: Pb(Ti0,4Mg0,3-z Cr z W0,3)O₃ + 0,003 (5 PbO + 1WO₃);z = 0,003 bis 0,009.
  9. 9. Dielektrikum nach den Ansprüchen 4 und 6, dadurch gekennzeichnet, daß es eine Zusammensetzung gemäß folgender Formel hat: Pb(Ti0,4Mg0,3-z Co z W0,3)O₃ + 0,003 (5 PbO + 1WO₃);z = 0,003 bis 0,009.
  10. 10. Dielektrikum nach den Ansprüchen 4 und 6, dadurch gekennzeichnet, daß es eine Zusammensetzung gemäß folgender Formel hat: Pb(Ti0,4Mg0,3-z Fe z W0,3)O₃ + 0,003 (5 PbO + 1WO₃);z = 0,003 bis 0,009.
  11. 11. Dielektrikum nach Anspruch 4, dadurch gekennzeichnet, daß es eine Zusammensetzung gemäß folgender Formel hat: Pb(Ti0,4Mg0,294Me0,006W0,3)O₃ + 0,001 bis 0,006 (5 PbO + 1 WO₃);Me = Cr, Mn, Fe und/oder Co.
  12. 12. Dielektrikum nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, daß seine Dielektrizitätskonstante ε zwischen etwa 1500 und 5400 liegt.
  13. 13. Dielektrikum nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, daß sein dielektrischer Verlustfaktor tanδ bei 1 kHz zwischen etwa 1,6 und 3,1% liegt.
  14. 14. Dielektrikum nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, daß es bei 25°C einen spezifischen Widerstand im Bereich von 2 · 10¹¹ bis 1 · 10¹³ Ωcm aufweist.
  15. 15. Dielektrikum nach den Ansprüchen 4 bis 11, dadurch gekennzeichnet, daß seine Dielektrizitätskonstante ε zwischen 2300 und 6100 liegt.
  16. 16. Dielektrikum nach den Ansprüchen 4 bis 11, dadurch gekennzeichnet, daß sein dielektrischer Verlustfaktor tanδ bei 1 kHz zwischen 0,3 und 3,1% liegt.
  17. 17. Dielektrikum nach den Ansprüchen 4 bis 11, dadurch gekennzeichnet, daß es bei 25°C einen spezifischen Widerstand im Bereich von 8 · 10¹⁰ bis 2 · 10¹³ Ωcm aufweist.
  18. 18. Verfahren zur Herstellung eines Dielektrikums nach den Ansprüchen 1 bis 17, dadurch gekennzeichnet, daß nach Mischen bzw. Mahlen der die stöchiometrische Grundverbindung bildenden Verbindungen ein Calcinierungsprozeß im Bereich von 700 bis 750°C durchgeführt wird, worauf das Produkt gemahlen, verformt und dann bei einer Temperature im Bereich von 800 bis 1000°C dichtgesintert wird, wobei die den Zusatz bildenden Verbindungen den die Grundverbindung bildenden Verbindungen vor oder nach dem Calcinierungsprozeß zugegeben werden.
  19. 19. Verfahren nach Anspruch 18, dadurch gekennzeichnet, daß bei einer Temperatur im Bereich von 800 bis 900°C dichtgesintert wird und daß die den Zusatz bildenden Verbindungen nach dem Calcinierungsprozeß zugegeben werden.
  20. 20. Verwendung des Dielektrikums nach den Ansprüchen 1 bis 19 zur Herstellung von keramischen Vielschichtkondensatoren.
DE19823206502 1982-02-24 1982-02-24 Dielektrikum auf der basis von bleititanaten sowie verfahren zu seiner herstellung und seine verwendung Granted DE3206502A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE19823206502 DE3206502A1 (de) 1982-02-24 1982-02-24 Dielektrikum auf der basis von bleititanaten sowie verfahren zu seiner herstellung und seine verwendung
GB08304707A GB2115400B (en) 1982-02-24 1983-02-21 Lead titanate dielectric
US06/468,818 US4474894A (en) 1982-02-24 1983-02-22 Dielectric on the basis of lead titanates, method of manufacturing same, and a multilayer capacitor comprising the dielectric
ES519987A ES519987A0 (es) 1982-02-24 1983-02-22 Un metodo para fabricar un dielectrico.
FR8302956A FR2522185A1 (fr) 1982-02-24 1983-02-23 Dielectrique a base de titanates de plomb, son procede de fabrication et condensateur multicouches pourvu d'un tel dielectrique
JP58028654A JPS58156576A (ja) 1982-02-24 1983-02-24 チタン酸鉛に基づく誘電体およびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19823206502 DE3206502A1 (de) 1982-02-24 1982-02-24 Dielektrikum auf der basis von bleititanaten sowie verfahren zu seiner herstellung und seine verwendung

Publications (2)

Publication Number Publication Date
DE3206502A1 DE3206502A1 (de) 1983-09-01
DE3206502C2 true DE3206502C2 (de) 1989-11-09

Family

ID=6156502

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19823206502 Granted DE3206502A1 (de) 1982-02-24 1982-02-24 Dielektrikum auf der basis von bleititanaten sowie verfahren zu seiner herstellung und seine verwendung

Country Status (6)

Country Link
US (1) US4474894A (de)
JP (1) JPS58156576A (de)
DE (1) DE3206502A1 (de)
ES (1) ES519987A0 (de)
FR (1) FR2522185A1 (de)
GB (1) GB2115400B (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4525768A (en) * 1984-02-28 1985-06-25 Standard Telephones And Cables, Plc Ceramic capacitors and dielectric compositions
US4582814A (en) * 1984-07-05 1986-04-15 E. I. Du Pont De Nemours And Company Dielectric compositions
KR900002982B1 (en) * 1984-08-21 1990-05-03 Denki Kagaku Kogyo Kk Lead-containing oxide powder
DE4442598A1 (de) * 1994-11-30 1996-06-05 Philips Patentverwaltung Komplexer, substituierter Lanthan-Blei-Zirkon-Titan-Perowskit, keramische Zusammensetzung und Aktuator
EP0771317B1 (de) * 1995-05-19 2001-07-18 Phycomp Holding B.V. Verfahren zum sintern keramischer grünkörper
EP1460658A4 (de) * 2002-10-28 2008-11-19 Prozess zur herstellung eines laminierten keramischen kondensators

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4048546A (en) * 1975-07-09 1977-09-13 E. I. Du Pont De Nemours And Company Dielectric powder compositions
US4063341A (en) * 1975-07-09 1977-12-20 E. I. Du Pont De Nemours And Company Process for making multilayer capacitors
US4228482A (en) * 1976-07-07 1980-10-14 E. I. Du Pont De Nemours And Company Multilayer ceramic capacitors
DE2659016C2 (de) * 1976-12-27 1982-03-25 Philips Patentverwaltung Gmbh, 2000 Hamburg Verfahren zur Herstellung eines Dielektrikums mit Perowskitstruktur

Also Published As

Publication number Publication date
ES8401432A1 (es) 1983-12-01
GB2115400B (en) 1985-11-06
DE3206502A1 (de) 1983-09-01
FR2522185B1 (de) 1985-04-05
GB8304707D0 (en) 1983-03-23
ES519987A0 (es) 1983-12-01
FR2522185A1 (fr) 1983-08-26
JPS58156576A (ja) 1983-09-17
GB2115400A (en) 1983-09-07
JPH0261434B2 (de) 1990-12-20
US4474894A (en) 1984-10-02

Similar Documents

Publication Publication Date Title
DE2737080C2 (de) Verfahren zur Herstellung von monolithischen keramischen Kondensatoren
DE10024236B4 (de) Keramisches Dielektrikum und Verfahren zu seiner Herstellung
DE4010827C2 (de) Monolithischer keramischer Kondensator
DE4028279C2 (de) Dielektrische keramische Zusammensetzung
DE4109948C2 (de)
DE69929378T2 (de) Reduktionswiderstandsfähige dielektrische keramische Zusammensetzung und diese beinhaltender monolitischer keramischer Kondensator
DE2701411C3 (de) Dielektrische Keramikverbindung
DE3800198A1 (de) Verfahren zur herstellung einer nicht-reduzierbaren dielektrischen keramischen zusammensetzung
EP0076011B1 (de) Verfahren zur Herstellung eines Dielektrikums
DE4314382C2 (de) Nicht-reduzierbare dielektrische Keramikzusammensetzung
DE2915409C2 (de)
DE3732054C2 (de)
DE4005505C2 (de) Monolithischer keramischer Kondensator
DE3924563C2 (de) Nicht-reduzierende dielektrische keramische Zusammensetzung
EP0106401B1 (de) Keramisches Dielektrikum auf Basis von Wismut enthaltendem BaTi03
DE2846888A1 (de) Keramikkondensator mit heterogener phase und verfahren zu seiner herstellung
DE2824870C2 (de)
DE2914130C2 (de)
DE3206502C2 (de)
DE4005507C2 (de) Dielektrische keramische Zusammensetzung
DE4336089C2 (de) Nicht-reduzierbare dielektrische keramische Zusammensetzung
EP0066333B1 (de) Nichtlinearer Widerstand und Verfahren zu seiner Herstellung
DE3011977A1 (de) Bei niedrigerer temperatur sinterbare dielektrische zusammensetzung und diese verwendender dickschichtkondensator
DE3520839C2 (de)
DE3541517C2 (de)

Legal Events

Date Code Title Description
8110 Request for examination paragraph 44
D2 Grant after examination
8364 No opposition during term of opposition
8339 Ceased/non-payment of the annual fee