EP0065806B1 - Résistance dépendant de la tension et procédé pour sa fabrication - Google Patents

Résistance dépendant de la tension et procédé pour sa fabrication Download PDF

Info

Publication number
EP0065806B1
EP0065806B1 EP82200615A EP82200615A EP0065806B1 EP 0065806 B1 EP0065806 B1 EP 0065806B1 EP 82200615 A EP82200615 A EP 82200615A EP 82200615 A EP82200615 A EP 82200615A EP 0065806 B1 EP0065806 B1 EP 0065806B1
Authority
EP
European Patent Office
Prior art keywords
metal oxide
sintered body
voltage
metal
dependent resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP82200615A
Other languages
German (de)
English (en)
Other versions
EP0065806A3 (en
EP0065806A2 (fr
Inventor
Detlev Dr. Hennings
Axel Dr. Schnell
Herbert Schreinemacher
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Philips Intellectual Property and Standards GmbH
Koninklijke Philips NV
Original Assignee
Philips Patentverwaltung GmbH
Philips Gloeilampenfabrieken NV
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Philips Patentverwaltung GmbH, Philips Gloeilampenfabrieken NV, Koninklijke Philips Electronics NV filed Critical Philips Patentverwaltung GmbH
Publication of EP0065806A2 publication Critical patent/EP0065806A2/fr
Publication of EP0065806A3 publication Critical patent/EP0065806A3/de
Application granted granted Critical
Publication of EP0065806B1 publication Critical patent/EP0065806B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/10Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material voltage responsive, i.e. varistors
    • H01C7/105Varistor cores
    • H01C7/108Metal oxide
    • H01C7/115Titanium dioxide- or titanate type

Definitions

  • the invention relates to a voltage-dependent resistor with a ceramic sintered body based on a polycrystalline, alkaline earth metal titanate doped with a small amount of a metal oxide to produce an N-type conductivity, with electrodes arranged on opposing surfaces, and a method for producing such a resistor.
  • a voltage-dependent resistor is known from German patent application P 30 19 969.0, which is based on N-doped strontium titanate, to which a small proportion of a lead germanate phase was added before sintering, which leads to the formation of insulating grain boundary layers in the polycrystalline structure of the sintered body.
  • This known resistance is because of its relatively high field strength - a current density z. B. of about 3 mAlcm 2 results only in fields of about 6 kV / cm - can only be used to a limited extent; he is e.g. B. Not suitable for modern semiconductor circuits that work with low voltages.
  • the invention has for its object to develop a voltage-dependent resistor according to the preamble of the claim and a method for its production such that a voltage-dependent resistor with a low field strength is obtained.
  • a method for producing a voltage-dependent resistor with a ceramic sintered body based on a polycrystalline, alkaline earth metal titanate doped with a small amount of a metal oxide to produce an N-type conductivity is characterized in that the sintered body with a perovskite structure is first produced in a reducing atmosphere by producing it Sintered body is then covered on its surface to form an insulating layer on the grain edge layers of the polycrystalline perovskite phase with a suspension containing at least one metal oxide or a metal oxide compound, the metal oxide or metal oxide compound having a lower melting point than the perovskite phase, the polycrystalline perovskite phase on the other Grain edge layers well wetted and showing reversible breakthrough phenomena during field strengths during operation of the component, after which the sintered body in an oxidizing atmosphere, preferably in air, b at a temperature which is above the melting point of the suspension component (s).
  • the alkaline earth metal titanate is reacted by reacting SrC0 3 with Ti0 2 in a molar ratio of 1: 1.001 to 1: 1.02 with the addition of the doping metals in the form of their oxides in an amount of 0.05 to a maximum of 60 mol% of the constituent to be substituted after grinding and presintering for 15 h at 1,150 ° C. in air.
  • this is made from 90 for 4 h at a temperature of 1,460 ° C. in a reducing atmosphere consisting of mixed gas saturated with water vapor Vol.% N 2 and 10 vol.% H 2 sintered.
  • La 2 0 3 , Nb 2 0 5 or W0 3 are used as the doping metal oxide and Bi 2 0 3 as the metal oxide to be diffused in, or lead germanate Pb 5 Ge 3 O 11 is used as the metal oxide compound to be diffused in.
  • La 3 + , Nb s + and W 6+ ions have proven to be particularly suitable for N doping.
  • other dopings are also conceivable, e.g. B. other rare earth metal ions such as Sm 3+ or Y 3+ ; instead of Nb 5+ , Ta 5+ , As 5+ or Sb 5+ and instead of W 6+ , Mo 6+ and U 6+ can be used.
  • the doping ions are installed either on Sr or Ti sites in the perovskite lattice.
  • a suspension with at least one metal oxide that melts relatively low with respect to the sintered body or at least one metal oxide compound that melts relatively low with respect to the sintered body e.g. B. Bi 2 0 3 or lead germanate Pb 5 Ge 3 O 11 , applied in an organic binder and baked under oxidizing conditions at temperatures around or above 900 ° C, the applied molten metal oxide or the metal oxide compound diffuses preferably along the grain boundaries into the semiconducting ceramic and creates highly insulating grain boundary layers there.
  • the voltage across a varistor of composition is Sr (Ti 0.996 W 0.004 ) O 3 .
  • 0.0TiO 2 with a diffused phase of Bi 2 O 3 at 1 mA and 30 mA depending on the temperature.
  • a liquid sintering phase is formed with the SrTi0 3 at a sintering above 1 400 ° C - it can be assumed that this is the eutectic SrTi0 3 -Ti0 2 occurring at ⁇ 1 440 ° C, which is caused by the addition of Dopants can also occur at lower temperatures.
  • a liquid sintering phase of this type promotes coarse grain growth, which, as already stated, is desirable.
  • the raw materials are weighed in an amount corresponding to the desired composition and 2 hours in a ball mill, e.g. B. agate, wet mixed. This is followed by presintering at 1,150 ° C for 15 h.
  • the pre-sintered powders are ground again wet (1 h in a ball mill, e.g. made of agate).
  • the millbase is then dried, and the powders thus obtained are then removed using a suitable binder, e.g. B. a 10% aqueous polyvinyl alcohol solution, granulated.
  • the granules are molded articles suitable for ceramic resistors, for. B.
  • sintering it is remarkable that coarse-grained structures preferably occur at sintering temperatures above 1,440 ° C.
  • the reducing sintering should take place in a tightly closing furnace, e.g. B. a tube furnace is suitable. Excess reducing gas should expediently flow out via a bubble counter in order to create a constant sintering atmosphere.
  • Sintered bodies produced in this way are semiconducting and no longer show open porosity.
  • the insulating grain edge layers are by diffusing at least one molten metal oxide or at least one metal oxide compound, for. B. Bi 2 0 3 or lead germanate Pb 5 Ge 3 O 11 , generated in air.
  • the metal oxide or the metal oxide compound is first suspended in a binder based on polyvinyl acetate and applied to the already sintered ceramic.
  • the suspended metal oxide or the suspended metal oxide compound is then baked into the sintered body by a tempering process at a temperature at which they are in the molten state.
  • the minimum annealing temperature was a temperature slightly above the melting point of the metal oxide used or the used metal oxide compound determined.
  • the amounts of the metal oxides or metal oxide compounds diffused into the sintered body were determined in parallel experiments by weighing the sintered bodies before applying the suspension, after burning out the binder in air at 600 ° C. and after tempering.
  • the heating-up and cooling-down times were uniformly 100 minutes for all tests.
  • electrodes made of suitable metals, preferably gold, e.g. B. by vapor deposition.
  • a suitable adhesive layer as an intermediate layer between the ceramic and the electrode metal on the ceramic sintered body; e.g. B. a Cr-Ni layer is suitable.
  • x results from the solubility limit of La in the perovskite phase.
  • Different operating voltages of the finished component can, however, be set by different thickness of the components.
  • the sintered bodies treated with a diffusion phase made of Bi 203 show the normal VDR dependence superimposed on a negative resistance range, ie, the voltage across the component decreases with increasing current, which can be advantageous in certain applications, since this is practically a value for the current index ⁇ ⁇ 0 corresponds (for this, reference is made to FIG. 2).
  • An overvoltage is thereby not only limited to a certain value, but additional energy is absorbed in the component as the current decreases as the current increases.
  • This property of the sintered body treated with Bi 2 0 3 is only partially caused by the heating and the associated decrease in resistance of the components. This is shown in FIG. 3, in which the voltage across the component was plotted at 1 mA and 30 mA as a function of the temperature. The 30 mA values were measured by short current pulses, so that self-heating by the measuring current is negligible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Thermistors And Varistors (AREA)

Claims (18)

1. Résistance dépendant de la tension présentant un corps fritté céramique à base d'un titanate de métal alcalino-terreux polycristallin dopé à l'aide d'une petite quantité d'un oxyde métallique pour obtenir une conductivité de type N, présentant des électrodes appliquées sur des faces situées vis-à-vis, caractérisée en ce que le corps fritté est constitué par un titanate d'un métal alcalino-terreux présentant la structure de Perowskite répondant à la formule générale :
Figure imgb0010
formule dans laquelle
A = métal alcalino-terreux
SE = métal des terres rares
Me = métal présentant une valence de 5 ou plus
0.000 5 < x < limite de solubilité dans la phase de Perowskite y = 0.001 à 0.02
et qu'à ses limites des grains, le corps présente des couches isolantes formées par diffusion d'au moins un oxyde métallique ou moins un composé d'oxyde métallique, l'oxyde métallique ou le composé d'oxyde métallique présentant un point de fusion inférieur à celui de la phase de Perowskite, qui mouille convenablement les couches de limite des grains de la phase de Perowskite polycristalline et qui présente des phénomènes de claquage réversibles dans le cas des intensités de champ se produisant pendant le fonctionnement du composant.
2. Résistance dépendant de la tension selon la revendication 1, caractérisée en ce que du strontium est choisi comme métal alcalino-terreux.
3. Résistance dépendant de la tension selon la revendication 1, caractérisée en ce que du lanthane est choisi comme métal des terres rares.
4. Résistance dépendant de la tension selon la revendication 1, caractérisée en ce que du niobium est choisi comme métal présentant la valence 5.
5. Résistance dépendant de la tension selon la revendication 1, caractérisée en ce que du tungstène est choisi comme métal présentant la valence > 5.
6. Résistance dépendant de la tension selon la revendication 1, caractérisée en ce que du B1203 est choisi comme oxyde métallique à diffuser.
7. Résistance dépendant de la tension selon la revendication 1, caractérisée en ce que du germanate de plomb Pb5Ge3O11 est choisi comme composé d'oxyde métallique à diffuser.
8. Procédé permettant de réaliser une résistance dépendant de la tension, comportant un corps fritté céramique à base d'un titanate de métal alcalino-terreux polycristallin dopé à l'aide d'une petite quantité d'un oxyde métallique pour l'obtention d'une conductivité de type N selon l'une des revendications précédentes, caractérisé en ce que d'abord le corps fritté présentant la structure de Perowskite est réalisée dans une atmosphère réductrice, puis, que ce corps fritté est recouvert d'une couche isolante aux limites des grains de la phase de Perowskite polycristalline à l'aide d'une suspension contenant au moins un oxyde métallique ou un composé d'oxyde métallique, l'oxyde métallique ou le composé d'oxyde métallique présentant un point de fusion plus bas que celui de la phase de Perowskite, et mouille convenablement les couches de limites des grains de la phase de Perowskite polycristalline et présente des phénomènes de claquage réversibles dans le cas des intensités de champ se produisant pendant le fonctionnement du composant, après quoi le corps fritté est recuit dans une atmosphère oxydante, de préférence de l'air, à une température qui est supérieure au point de fusion du ou des composant(s) de la suspension.
9. Procédé selon la revendication 8, caractérisé par les étapes de fabrication suivantes :
a) broyage d'un mélange des substances de départ pour un titanate de métal alcalino-terreux présentant la structure de Perowskite, à l'aide d'une addition à effet de dopage d'un oxyde métallique pour l'obtention d'une conductivité de type N répondant à la formule
Figure imgb0011
formule dans laquelle:
A = métal alcalino-terreux
SE = métal des terres rares
Me = métal présentant une valence de 5 ou plus
0,000 5 < x < limite de solubilité dans la phase de Perowskite
y = 0.001 à 0,02 ;
b) préfrittage de la matière broyée selon l'étape a) pendant 2 à 20 heures dans la gamme de températures comprise entre 1 050 à 1 350 °C dans de l'air ;
c) broyage et granulation de la matière frittée selon l'étape b) avec un liant approprié ;
d) compression de la matière broyée selon l'étape c) de façon à obtenir un corps façonné approprié pour une résistance ;
e) frittage du corps façonné selon l'étape d) pendant 1 à 10 heures à une température située dans la gamme de 1 400 à 1 500 °C dans une atmosphère réductrice ;
f) application de la suspension contenant l'oxyde métallique ou les oxydes métalliques ou le composé d'oxyde métallique ou les composés d'oxyde métallique sur la surface du corps fritté selon l'étape e) ;
g) diffusion du composant ou des composants de la suspension selon l'étape f) dans le corps fritte à des températures supérieures à la température de fusion du composant ou des composants de suspension instantané(s) dans une atmosphère oxydante, de préférence de l'air ;
h) application d'électrodes métaliques sur des faces situées vis-à-vis du corps fritté selon l'étape g).
10. Procédé selon la revendication 9, caractérisé en ce que le titanate de métal alcalino-terreux est formé par décomposition de SrC03 avec Ti02 dans le rapport molaire 1 : 1,001 à 1 : 1,02 avec addition des métaux de dopage sous forme de leurs oxydes dans une quantité de 0,05 à au maximum 60 % en moles du composant à substituer après broyage et préfrittage pendant 15 heures à 1 150 °C dans de l'air.
11. Procédé selon la revendication 9, caractérisé en ce que La203 est utilisé comme oxyde métallique de dopage.
12. Procédé selon la revendication 9, caractérisé en ce que Nb205 est utilisé comme oxyde métallique de dopage.
13. Procédé selon la revendication 9, caractérisé en ce que W03 est utilisé comme oxyde métallique de dopage.
14. Procédé selon la revendication 9, caractérisé en ce qu'une solution aqueuse d'alcool polyvinylique à 10 % est utilisée comme liant.
15. Procédé selon la revendication 9, caractérisé en ce que le corps façonné selon l'étape d) est fritté pendant 4 heures à une température de 1 460 °C dans une atmosphère réductrice constituée par un mélange gazeux saturé de vapeur d'eau et constitué par 90 % en volume de N2 et 10 % en volume de H2.
16. Procédé selon la revendication 15, caractérisé en ce que le mélange gazeux est saturé avec H20 à - 25 °C.
17. Procédé selon la revendication 9, caractérisé en ce que comme oxyde métallique à diffuser selon l'étape f) est utilisé Bi2O3 mis en suspension dans une solution d'acétate polyvinylique.
18. Procédé selon la revendication 9, caractérisé en ce comme composé d'oxyde métallique à diffuser selon l'étape f) est utilisé du germanate de plomb Pb5Ge3O11 mis en suspension dans une solution d'acétate polyvinylique.
EP82200615A 1981-05-29 1982-05-19 Résistance dépendant de la tension et procédé pour sa fabrication Expired EP0065806B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19813121289 DE3121289A1 (de) 1981-05-29 1981-05-29 Spannungsabhaengiger widerstand und verfahren zu seiner herstellung
DE3121289 1981-05-29

Publications (3)

Publication Number Publication Date
EP0065806A2 EP0065806A2 (fr) 1982-12-01
EP0065806A3 EP0065806A3 (en) 1983-05-04
EP0065806B1 true EP0065806B1 (fr) 1985-11-21

Family

ID=6133437

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82200615A Expired EP0065806B1 (fr) 1981-05-29 1982-05-19 Résistance dépendant de la tension et procédé pour sa fabrication

Country Status (4)

Country Link
US (2) US4581159A (fr)
EP (1) EP0065806B1 (fr)
JP (1) JPS57199202A (fr)
DE (2) DE3121289A1 (fr)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59188103A (ja) * 1983-04-08 1984-10-25 株式会社村田製作所 電圧非直線抵抗体用磁器組成物
DE3523681A1 (de) * 1985-07-03 1987-01-08 Philips Patentverwaltung Verfahren zur herstellung keramischer sinterkoerper
JPH0670884B2 (ja) * 1986-12-27 1994-09-07 株式会社住友金属セラミックス マイクロ波用誘電体磁器組成物
US5225126A (en) * 1991-10-03 1993-07-06 Alfred University Piezoresistive sensor
DE10026258B4 (de) * 2000-05-26 2004-03-25 Epcos Ag Keramisches Material, keramisches Bauelement mit dem keramischen Material und Verwendung des keramischen Bauelements
DE102007010239A1 (de) 2007-03-02 2008-09-04 Epcos Ag Piezoelektrisches Material, Vielschicht-Aktuator und Verfahren zur Herstellung eines piezoelektrischen Bauelements
DE102009058795A1 (de) * 2009-12-18 2011-06-22 Epcos Ag, 81669 Piezoelektrisches Keramikmaterial, Verfahren zur Herstellung des piezoelektrischen Keramikmaterials, piezoelektrisches Vielschichtbauelement und Verfahren zur Herstellung des piezoelektrischen Vielschichtbauelements
US10529472B2 (en) 2017-12-01 2020-01-07 Avx Corporation Low aspect ratio varistor

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL301822A (fr) * 1963-12-13
US3561106A (en) * 1968-07-03 1971-02-09 Univ Iowa State Res Found Inc Barrier layer circuit element and method of forming
US3933668A (en) * 1973-07-16 1976-01-20 Sony Corporation Intergranular insulation type polycrystalline ceramic semiconductive composition
GB1556638A (en) * 1977-02-09 1979-11-28 Matsushita Electric Ind Co Ltd Method for manufacturing a ceramic electronic component
US4237084A (en) * 1979-03-26 1980-12-02 University Of Illinois Foundation Method of producing internal boundary layer ceramic compositions
JPS56169316A (en) * 1980-05-30 1981-12-26 Matsushita Electric Ind Co Ltd Composition functional element and method of producing same
JPS5735303A (en) * 1980-07-30 1982-02-25 Taiyo Yuden Kk Voltage vs current characteristic nonlinear semiconductor porcelain composition and method of producing same
US4347167A (en) * 1980-10-01 1982-08-31 University Of Illinois Foundation Fine-grain semiconducting ceramic compositions
US4419310A (en) * 1981-05-06 1983-12-06 Sprague Electric Company SrTiO3 barrier layer capacitor
JPS58103116A (ja) * 1981-12-16 1983-06-20 太陽誘電株式会社 コンデンサ用半導体磁器
JPS5891602A (ja) * 1981-11-26 1983-05-31 太陽誘電株式会社 電圧非直線磁器組成物
US4436650A (en) * 1982-07-14 1984-03-13 Gte Laboratories Incorporated Low voltage ceramic varistor

Also Published As

Publication number Publication date
DE3121289A1 (de) 1982-12-23
DE3267542D1 (en) 1986-01-02
EP0065806A3 (en) 1983-05-04
US4581159A (en) 1986-04-08
JPH0236041B2 (fr) 1990-08-15
US4692289A (en) 1987-09-08
EP0065806A2 (fr) 1982-12-01
JPS57199202A (en) 1982-12-07

Similar Documents

Publication Publication Date Title
EP0351004B1 (fr) Résistance non linéaire dépendent de la tension
DE2450108C3 (de) Verfahren zur Herstellung in sich selbst spannungsabhängiger Widerstände
DE3732054C2 (fr)
DE2308073B2 (de) Keramischer elektrischer widerstandskoerper mit positivem temperaturkoeffizienten des elektrischen widerstandswertes und verfahren zu seiner herstellung
WO2018036976A1 (fr) Matériau ceramique, composant et procédé de fabrication dudit composant
EP0065806B1 (fr) Résistance dépendant de la tension et procédé pour sa fabrication
DE2021983B2 (de) Spannungsabhaengiger widerstand
EP0040881B1 (fr) Résistance dépendant de la tension et procédé pour la fabrication
EP0106401B1 (fr) Céramique diélectrique à base de titanate de baryum contenant du bismuth
EP0066333B1 (fr) Résistance non-linéaire et procédé pour sa fabrication
DE1646987C3 (de) Verfahren zum Herstellen polykristalliner scheiben-, stabrohr- oder folienförmiger keramischer Kaltleiter-, bzw. Dielektrikums- bzw. Heißleiterkörper
DE1956817B2 (de) Mangan-modifizierte spannungsabhaengige zinkoxid-widerstandskeramikmasse
DE102008046858A1 (de) Keramikmaterial, Verfahren zur Herstellung eines Keramikmaterials, elektrokeramisches Bauelement umfassend das Keramikmaterial
DE2914130C2 (fr)
DE102007012468A1 (de) Keramikmaterial und elektrokeramisches Bauelement mit dem Keramikmaterial
DE2752150A1 (de) Spannungsabhaengiger widerstand und verfahren zu dessen herstellung
DE3206502C2 (fr)
DE1765097C3 (de) Spannungsabhaengiger Widerstand aus einer gesinterten Scheibe aus Zinkoxid
DE2225431C2 (de) Metalloxid-Varistor mit einem Gehalt an ZnO
DE102009023846A1 (de) Varistorkeramik, Vielschichtbauelement umfassend die Varistorkeramik, Herstellungsverfahren für die Varistorkeramik
EP0357113B1 (fr) Procédé de production d&#39;une résistance non linéaire dépendant de la tension
DE2106498C3 (de) Spannungsabhängiges Widerstandselement
DE2525053C2 (de) Nichtlinearer Widerstandskörper aus Zinkoxid(Varistor)
DE1514012B2 (de) Verfahren zur Herstellung eines Dünnschichtkondensators
DD271769A1 (de) Verfahren zur herstellung von zinkoxid-niederspannungsvaristoren

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19820519

AK Designated contracting states

Designated state(s): BE DE FR GB NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): BE DE FR GB NL

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE DE FR GB NL

REF Corresponds to:

Ref document number: 3267542

Country of ref document: DE

Date of ref document: 19860102

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19870531

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19890519

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19890531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19891201

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19900131

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19950724

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19970201