EP0819188B1 - Procede de tissage d'une zone de tissu faconnee a trois dimensions - Google Patents

Procede de tissage d'une zone de tissu faconnee a trois dimensions Download PDF

Info

Publication number
EP0819188B1
EP0819188B1 EP96911971A EP96911971A EP0819188B1 EP 0819188 B1 EP0819188 B1 EP 0819188B1 EP 96911971 A EP96911971 A EP 96911971A EP 96911971 A EP96911971 A EP 96911971A EP 0819188 B1 EP0819188 B1 EP 0819188B1
Authority
EP
European Patent Office
Prior art keywords
fabric
threads
zone
warp
binding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP96911971A
Other languages
German (de)
English (en)
Other versions
EP0819188A1 (fr
Inventor
Alexander Büsgen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BUESGEN, ALEXANDER
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26014099&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0819188(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Individual filed Critical Individual
Publication of EP0819188A1 publication Critical patent/EP0819188A1/fr
Application granted granted Critical
Publication of EP0819188B1 publication Critical patent/EP0819188B1/fr
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D3/00Woven fabrics characterised by their shape
    • D03D3/08Arched, corrugated, or like fabrics
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D13/00Woven fabrics characterised by the special disposition of the warp or weft threads, e.g. with curved weft threads, with discontinuous warp threads, with diagonal warp or weft
    • D03D13/004Woven fabrics characterised by the special disposition of the warp or weft threads, e.g. with curved weft threads, with discontinuous warp threads, with diagonal warp or weft with weave pattern being non-standard or providing special effects
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D13/00Woven fabrics characterised by the special disposition of the warp or weft threads, e.g. with curved weft threads, with discontinuous warp threads, with diagonal warp or weft
    • D03D13/008Woven fabrics characterised by the special disposition of the warp or weft threads, e.g. with curved weft threads, with discontinuous warp threads, with diagonal warp or weft characterised by weave density or surface weight
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D25/00Woven fabrics not otherwise provided for
    • D03D25/005Three-dimensional woven fabrics
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D41/00Looms not otherwise provided for, e.g. for weaving chenille yarn; Details peculiar to these looms
    • D03D41/004Looms for three-dimensional fabrics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S139/00Textiles: weaving
    • Y10S139/01Bias fabric digest
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1334Nonself-supporting tubular film or bag [e.g., pouch, envelope, packet, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1334Nonself-supporting tubular film or bag [e.g., pouch, envelope, packet, etc.]
    • Y10T428/1345Single layer [continuous layer]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • Y10T428/1362Textile, fabric, cloth, or pile containing [e.g., web, net, woven, knitted, mesh, nonwoven, matted, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/30Woven fabric [i.e., woven strand or strip material]
    • Y10T442/3179Woven fabric is characterized by a particular or differential weave other than fabric in which the strand denier or warp/weft pick count is specified
    • Y10T442/322Warp differs from weft

Definitions

  • the invention relates to a method for weaving a three-dimensional Tissue zone according to the preamble of claim 1.
  • the invention has for its object to the above disadvantages avoid. It is supposed to be an arbitrarily three-dimensionally shaped tissue zone arise, their structures - regardless of the three-dimensional shape (3D shape) - can be specified and set as desired, in particular with regard to density and homogeneity in the warp and in the weft direction. In front the 3D shape should be stable.
  • a fabric is primarily defined by the number of its crossing points and the number of its binding points.
  • the number of crossing points per unit area results as the product of the number of warp threads and the number of weft threads in this unit area.
  • a point of intersection is understood as a point of intersection at which the warp threads involved have changed between the upper and lower shed.
  • the number of binding points in the three-dimensional tissue zone is changed. It is possible to work in smaller zones with constant take-off speeds of the warp threads passing through the fabric zone that are the same over the fabric width. However, the take-off speeds of the warp threads passing through the fabric zone are preferably varied, ie: increased, for example in order to avoid the formation of pre-cloths (claim 2). In order to compensate for the resulting increase in the spacing of the weft threads, that is to say a reduction in the number of crossing points, the formation of the 3D shape according to claim also results in an increase in the binding point density (claim 3).
  • the invention makes it possible not just a three-dimensional one Weave tissue zone, but at the same time the structure of this tissue zone by influencing, i.e.: increasing or decreasing the number of Binding points per unit area and - within limits also the number of Crossing points per unit area - to be controlled as required.
  • This allows a wealth of parameters to be influenced, e.g. Strength, Elongation behavior, sliding resistance, fabric thickness, air resistance, Permeability and filtration properties to liquids, optical Effects (translucency, translucency).
  • the three-dimensional fabric is characterized by an adjustable Basis weight. Seams or double layers to hide Seams are not necessary.
  • the fabric has a high mechanical Resilience because the density and homogeneity of the threads is adjustable and the threads are not damaged by subsequent stretching or overstretching are. Also a subsequent change in shape due to shrinkage of the threads due to frozen tensions is avoided. The bulge is through Calculation can be precisely specified and reproduced exactly. There is no waste and the process has high productivity.
  • the invention is based on the idea of three-dimensional bulging in a tissue through the targeted use of different bond point densities, i.e. different looping frequencies between To produce warp and weft. This is achieved by changing the Type of binding and / or by including or removing additional ones Threads.
  • the generation of the three-dimensional fabric curvature takes place before the goods are taken off, irrespective of the number of crossings, ie: the number of warp threads and weft threads, namely through the arrangement of the warp and weft threads.
  • An increase or decrease in the bond point density per unit area or an increase or decrease in the number of wraps leads to an increase in the surface of the tissue zone.
  • a reduction in the bond point density per unit area leads to a reduction in the surface area.
  • the change in the type of binding and the addition or removal of threads can be combined with each other, be it to adjust the bulge, be it to adjust the tissue density in the tissue zone.
  • the lateral distances between the warp threads can be varied.
  • This training of The method of claim 2 has particularly in the very steep 3-D areas the purpose, the lateral spacing of the warp threads and / or weft threads distribute in a targeted manner in order to create freedom for the distribution of To gain attachment points. Warp threads and weft threads can thus over the Vault are distributed so that they follow certain stress zones. The faster removal of the warp threads in the places where a Larger surface is created, prevents pre-cloth formation.
  • targeted thread courses can be combined with 3D geometries generated by binding technology, like e.g. the mechanical requirements for a reinforced fabric Demand plastic component.
  • the spacing of the weft threads is adjusted by generating different take-off speeds of the warp threads.
  • the spacing of the warp threads is adjusted by controllable reeds.
  • a fan-like reed is known as an example, in which the reed bars (rungs) diverge like a fan from the lower or upper longitudinal center of the reed.
  • Weaves of this type have previously been used to influence the width of a fabric, in particular a woven tape, by changing the warp thread spacing (see: International Textile Bulletin p.2 / 1993).
  • these fan-shaped reeds are moved more or less suddenly.
  • the movement is essentially continuous and adapted to the desired changes in the 3-dimensional shape of the tissue.
  • Another example is a reed with controllably displaceable reed bars (DE-OS 41 37 082).
  • the resulting tissue be in both directions (Warp and weft) despite different distances between the crossing points is homogeneous.
  • the method according to claim 3 serves this purpose. In each direction can now avoid network-like areas of the tissue and the physical Tissue properties are affected. This compensates for the bond point density or - what is the same - the number of wraps is not only different crossing distances along a warp thread, but also across it, i.e. along a weft.
  • the number of integrated warp threads and / or weft threads can thereby be varied so that individual warp threads or groups of warp threads on the Specialist training in areas of tissue does not participate, so the warp threads or weft threads only in other areas, in particular the 3-dimensional Areas that are involved, but float to the side of it.
  • the warp threads that do not take part in the technical training remain preferably positioned in the sub-compartment so that the floating lengths of the Do not hang weft threads down into the weaving machine.
  • the process can be carried out using a multi-shaft machine. Machines with up to 24 shafts are in use today. By hanging in different shafts and controlling the shafts differently, it can be achieved that the groups of warp threads guided in different shafts participate in the shed formation in different ways. It is particularly useful for this purpose to use a jacquard machine, by means of which all the warp threads can be raised and lowered individually according to the program for the purpose of forming the shed between the upper and lower shed.
  • a very large number of threads can be found in the three-dimensional fabric zone are additionally involved according to the method of claim 6. To do this multilayer fabrics are produced.
  • In the field of three-dimensional Tissue zones become threads from a dissolved or thinned out layer of tissue transferred and integrated into the fabric layer, which the determined three-dimensional shape of the tissue zone.
  • the fabric density remains So essentially the same, since the number of threads included stays the same.
  • the possibility of three-dimensional curvature becomes considerably enlarged by the large number of additional threads for the three-dimensional tissue zone is available.
  • the method of claim 7 is particularly effective to achieve a three-dimensional tissue zone. It allows a modified, ie: in general: a greater density of the binding points or a larger number of thread wraps to be used in the fabric zone than in the surrounding fabric zone.
  • the distance between two adjacent threads eg warp threads
  • the distance between two adjacent threads is influenced by how often the threads of the respective crossing thread system (eg weft threads) pass between them, since the threads are pressed apart at a wrap or tie point.
  • the more passages or tie points per unit area the greater the distances between the threads.
  • the distances are maximum due to the highest binding point density, in a simple twill weave they are smaller and in a long floating satin weave they are even smaller.
  • the method according to the invention firstly results in the formation of a three-dimensional fabric zone; on the other hand, the changed crossing point distance of the three-dimensional tissue zone can be compensated;
  • design options for the textile, mechanical or physical properties of the fabric zone Through these designs according to claim 8 wide technical applications are opened up. Strength, elongation behavior or sliding resistance, among other things, can also be set depending on the direction in the warp or weft direction. This is particularly advantageous if mechanical stresses are defined for a fabric, such as in the case of a load-bearing housing made of fiber composite materials.
  • the fabric structure, fabric thickness and local wall thickness can be adapted to mechanical requirements.
  • the fabric is suitable as a filter material for air, gas and liquid filters, as permeability and filtration are adjustable and independent of the geometry of the three-dimensional fabric zone.
  • Optical effects such as patterns can also be set independently of the geometry of the three-dimensional fabric zone, where not only technical properties of the seamless three-dimensional fabric are important, but also an attractive appearance and pattern.
  • the three-dimensional tissue zone can also be part of a hollow body.
  • the tissue zone can be connected to a surface with a flat or another three-dimensional tissue zone, for example by sewing or gluing.
  • This operation is replaced in favor of an automated method according to claim 9.
  • a fabric is woven from at least two layers, which are guided separately in the area of the three-dimensional fabric zone and are only brought together again behind the three-dimensional fabric zone and are closely connected or integrated with one another. So there is a distance or a cavity between the fabric layers.
  • Such cavities are advantageous, for example, if individual layers of fabric are to shift or move away from one another during further processing or during use.
  • the structure proposed here no longer has to be composed of individual pieces.
  • binding warp threads are warp threads that are partially floating in one or the other fabric layer in regular or irregular alternations and have a predetermined length. These binding warp threads are subjected to tensile stress when the cavity is inflated with gas, liquid or bulk material and thus limit the local distance between the two fabric layers. The distances between the layers of fabric lying one above the other can therefore be adjusted by the floating length of the binding warp threads. As a result, the two fabric layers can have defined spacing profiles. It is particularly advantageous here to simultaneously use the binding warp threads as filler threads to control the three-dimensional shape and / or fabric density.
  • the three-dimensional fabric zone can seamlessly enclose a large part of the airbag envelope.
  • the production of two fabric layers, which are connected by binding warp threads and are incorporated alternately between the upper and lower layers as spacers, is known, for example, from the production of velvet. There, these binding warp threads serve as pile threads after the fabric layers have been separated.
  • Such a double fabric is advantageous as an air bag Avoidance of injuries in motor vehicle accidents applicable.
  • the length and tensile stress of the binding warp threads is the shape of the inflated air bags so limited that the driver or passenger Explosion does not hit his face and injures him (claim 23).
  • the airbag according to the invention contains significantly less seams than previously. Above all, the total weight of the airbag is reduced Places where a person hits the airbag.
  • the threads used for the method according to the invention can consist of natural materials, especially linen, cotton, hemp, jute etc. exist. It can also be synthetic threads. Because the three-dimensional Shape is made by weaving in one operation the threads do not need to be plastically deformable or only slightly. For such materials are the methods and proposed according to the invention Products are particularly cheap because they are initially very low in deformability of the material no longer during the creation of a bulge affects.
  • the three-dimensional design can be strengthened and promoted by the measure according to claim 12.
  • the curvature which can be cylindrical or hemispherical, for example, is thus within a two-dimensional tissue environment, the two-dimensional environment enclosing the curvature in a ring completely or partially.
  • the two-dimensional tissue environment can then be completely or partially cut away or recycled.
  • Such a structure can in particular be designed as a hat, the two-dimensional ring-shaped fabric surrounding the three-dimensional, for example hemispherical or cylindrical, curved fabric zone serving as a brim.
  • Versatile forms of such a tissue zone result in particular from claims 13 and 14.
  • the fabric zone designed as a hemisphere or spherical zone is particularly suitable for parts of clothing items which are adapted to the shape of the body during weaving according to the weaving method of this invention and subsequently have no disruptive seams in the region of the arch.
  • Such tissues are orthopedic and medical support tissues that seamlessly fit a body part, e.g. Head, Align chin or foot.
  • Such seamless support fabrics with adjustable Densities are particularly beneficial when the tissue is used for support of parts of the body must remain firmly on the body for a long time (e.g. after a broken jaw or skull).
  • the support tissues also cause prolonged wear no pressure marks.
  • Another important area of application is parts of the outer clothing, the Underwear or swimwear, especially for women. So can a spherical shell-shaped tissue zone in the chest area as a support or as Part of the bra can be used. This support has the advantage that no seam and no metal reinforcements are needed anymore prolonged wearing are uncomfortable and press. Claim 20.
  • Elongated fabric profiles can also be formed.
  • a practical one Application of such a tissue zone is a sail that is in one Area receives the shape of a wing profile. Otherwise they are omitted usual seams, so that the current fits better on the sail and the Energy is better implemented because there is less turbulence. claim 22.
  • filter cloths Another important area of application is filter cloths. This creates the Advantage that a seamless, homogeneously designed filter surface with the desired three-dimensional shape and with certain filtration properties for the passage or retention of substances and / or Particles are produced.
  • the method can be used to produce self-supporting shells, vessels, containers or the like with a fabric reinforcement, which are used either as such or as reinforcing inserts for plastic bodies and plastic profiles.
  • a fabric reinforcement which are used either as such or as reinforcing inserts for plastic bodies and plastic profiles.
  • such a shaped body can be produced according to claim 18.
  • such a molded body is produced in a simple manner in only one or two operations -weaving and thermal treatment-.
  • fiber reinforcements such three-dimensional fabric zones and moldings have the advantage that they are constructed homogeneously and with uniform quality without deep-drawing or cutting work.
  • the weight distribution of fibers and matrix materials is already predetermined by the production of the fabric.
  • a fabric zone in the embodiment according to claim 13 can serve primarily as a fiber reinforcement for a hub of a wheel or for a rim.
  • Shell-shaped fiber reinforcements according to this invention are suitable for containers or crash helmets or safety helmets.
  • a container can contain two such tissue zones which are attached to the inside and outside of the matrix of the helmet. Since the fiber reinforcement according to this invention has neither seams nor has to be adapted to the three-dimensional helmet shape by overlapping several flat layers, and the fiber guidance is therefore not interrupted anywhere, especially not on the front or head sides, the fiber reinforcement holds the despite the small amount of material Loads stood. Since manual intervention is hardly necessary in the production process, the fiber insert can always be produced in the helmet shell with the same and pre-calculated quality and position. The invention thus ensures the production of three-dimensional fabrics with freely selectable geometries and closed surfaces or surfaces that can be adjusted to different requirements.
  • Geometries and thread structures can be freely controlled using the existing binding devices.
  • freely programmable, electronically controlled jacquard machines in the configuration according to claim 26 are a suitable means for carrying out the method according to the invention.
  • the control programs entered allow the precise reproduction of predetermined tissue curvatures with predetermined tissue structure as often as desired.
  • the embodiment of the weaving machine according to claim 27 serves for additional variation of the warp thread distances.
  • the quality of the fabric also depends in particular on the uniformity or the precise setting of the warp thread tensions. This uniformity or precise setting can only be achieved with the embodiment according to claim 28.
  • This design has its particular meaning in combination with claim 29, which allows the warp thread tensions to be controlled individually according to the program and to be adapted to the rest of the control in order to achieve the 3D shape of the fabric.
  • Fig. 1 a weaving machine is shown with its elements, which are necessary for the implementation of this invention.
  • Individual warp bobbins 1 are presented to the weaving machine.
  • the warp coils 1 are plugged onto gate 16.
  • the warp threads 2 are drawn off the bobbins and then individually guided through the individual elements of the weaving machine.
  • this application only one warp thread is spoken of; however, it should be noted that this can always mean two or three or a group of warp threads.
  • each warp thread is passed through one of the brakes 3.
  • Each brake can be set individually. This can be done by hand.
  • each brake 3 consists of a saucer 3.1 and a top plate 3.2.
  • Each warp thread 2 is between one such saucer and saucer pulled through.
  • the saucer 3.2 is arranged in a fixed position; the top plate 3.1 is on the plunger of an electromagnet 36 attached and can be set against the saucer 3.2 are pressed.
  • the electromagnets 36 are individually Brake device 14 and brake program 21 (Fig. 6) controlled. Thereby the braking force and the thread tension in the warp threads 2.1 can be different be set.
  • the set is individual Warp thread tension also from the fabric take-off 11 and its individual
  • the take-up speed of each individual warp thread depends on the program steps the brake program unit depending on the pull-off speed of the warp thread. This becomes closer to Fig. 6 explained.
  • the brakes are individual in the course of the weaving process controllable. It goes without saying that the brakes during Web process are also constantly adjustable.
  • the jacquard control 4 is used to move the warp threads up and down. Harness threads 18 are suspended in this jacquard control 4. Strands hang on the harness threads 18 and on these eyelets 6.
  • the harness threads and the jacquard control move the eyelets upwards and bring them into an upper position (upper compartment).
  • the eyelets 6 are connected at the bottom with rubber threads 33 - shown in FIG. 3 - through which the eyelets are pulled into a lower position (lower compartment) against the force of the jacquard control.
  • the strands 19 are small elongated metal tongues, which can be seen in Fig.3.
  • the warp thread positioning device 5 is arranged in front of the eyelets 6.
  • the harness threads 4 or strands 19 or eyelets 6 are laterally positioned such that the eyelets are at substantially the same distance as the warp threads running through the reed 7 (see below).
  • Each warp thread is guided behind its brake through an eyelet of the eyelets 6.
  • the jacquard control 4 moves each warp thread independently of the other warp threads into the upper compartment or the lower compartment according to the program of the jacquard program unit 22.
  • the type of weave of the fabric as well as the number of threads involved depend on the jacquard control, ie on which of the warp threads are moved into the upper or lower compartment in each weft.
  • the reed 7 is arranged behind the jacquard device.
  • the reed 7 is a frame in the form of a trapezoid or parallelogram. Between the upper edge and the lower edge parallel to it, the reed bars 8 (rungs) are clamped in such a way that the reed bars strive for a fan shape from the top edge.
  • Such a reed is shown, for example, in DE 39 15 085 A1.
  • Each warp thread is passed through a space between the reed bars 8.
  • the forward movement 15.1 (FIG.
  • the positioning device 5 already guides the warp threads through the eyelets of the jacquard device at the lateral distance specified by the reed.
  • the up and down movement 15.2 is controlled by the reed control according to a predetermined program.
  • the weft thread 9 is inserted behind the reed.
  • the weft thread is pulled off, for example, from the weft bobbin 10 and guided through the compartment by means of a gripper.
  • any other weft insertion systems are also possible, in particular weft insertion by shooters (weaving ship).
  • the resulting tissue 12 can be pulled off by individual grippers.
  • a witness tree 11 is used here.
  • the stuff tree 11 is broken down into individual and individually drivable roller segments, ie: rolls of small width.
  • the resulting tissue is clamped between the rollers and the freely rotating counter rollers.
  • the individual roller segments are now individually driven by the trigger control 25 and the trigger program 26 (FIG. 6).
  • the roller segments are moved at the same speed after each shot 9.
  • a suitable witness tree broken down into segments and its drive is likewise shown and described in DE 39 15 085 A1.
  • the brake control is operated synchronously with and depending on the trigger control.
  • the fabric can then be wound up on the fabric tree 17.
  • FIGS. 3 and 4 The positioning of the warp threads before entering the reed 7 is shown in detail in FIGS. 3 and 4. From the reed, only the frame and two reed bars 8 are shown. The reed bars 8 diverge from the top edge in a fan shape. Furthermore, only the warp thread 2 is shown, which runs through the space between the reed bars 8 shown. A set of parallel guide rods 32, which extend essentially parallel to the chain 2, is used to position the strands 19 with eyelets 6 or harness threads. For the sake of clarity, only the guide rod 32 is shown, which serves to guide the strand and the warp thread shown.
  • this guide rod 32 also projects with its front end into the same space between two reed rods 8 through which the warp thread 2 to be guided in each case also runs.
  • the other end of each guide rod 32 is held by an individual elastic band 34 in the warp direction and by a common elastic band 35 in the weft direction.
  • the common elastic band 35 can be stretched more or less elastically by positioning control 5. As a result, the distance between the fastening points of the guide rods 32 on the elastic band 35 changes.
  • the common elastic band 35 can be replaced by an identically directed guide strip (in the weft direction) on which the guide rods 32 slide.
  • the positioning of the guide rods is carried out with sufficient accuracy only by the horizontal spacing of the reed rods which guide the front ends of the guide rods.
  • the height-horizontal distance of the guide rods is therefore only determined by the vertical position of the reed, without any further positioning control being necessary.
  • the common elastic band 35 can also be replaced by a coil spring 35 (FIG. 4).
  • the coil spring extends in the weft direction. With its turns, it reaches between adjacent positioning rods 22.
  • the coil spring 35 is tensioned by the positioning control 5 with force F more or less. This changes the slope of the turns and thus the distance between the rear end of the positioning rods 22.
  • the distance between the front ends of the guide rods is predetermined by the respective vertical position of the reed 7.
  • each guide rod bears against a strand 19 and guides it laterally, the strands are spaced apart from the reed rods 8. As a result, the warp threads run through the reed without substantial deflection. Friction and the occurrence of unwanted thread tension is avoided.
  • the thread tension can be specified solely by braking and pulling off.
  • Fig. 5 shows a top view of this warp thread guide between the jacquard device and the fabric edge of the fabric 12. Only a few parts of the weaving machine are shown in supervision, namely the reed 7 with reed rods 8, the eyelets 6 of the jacquard control, some warp threads 2 and the Edge of the fabric 12. On the left side the top view with the guiding of the warp threads without a positioning device can be seen. The warp threads are deflected both on the eyelet 6 of the jacquard control and on the rung 8 of the reed 7 if the distance between the warp threads is widened by the fan reed - as shown here as an example.
  • the warp thread guide with positioning device 5 is shown in supervision.
  • the strands and eyelets 6 are held at a distance from one another by the positioning rods 22, which distance corresponds to the distance of the warp threads at the instantaneous vertical position of the reed. Due to the deflection of the warp threads, which results without the positioning device, an uneven warp thread tension is built up in the warp thread family. It has been found that deviations of the three-dimensional tissue zone from the pre-calculated shape have their cause here.
  • the positioning device also avoids wear and tear on the warp threads.
  • a flat tissue which is homogeneous over length and width is first produced.
  • This fabric is characterized by the number of crossing points per unit area, by the number of binding points with a loop of one warp and one weft thread, by the number and length of the floating threads, and - if desired - by the number of fabric layers.
  • the weave number that is to say: the number of weave points with one loop each, is in a zone of the weave, be it on the longitudinal edge or be it in a central region of the web of warp and weft, increased or decreased.
  • the number of incorporated threads can be increased by floating threads in the flat fabric area or in other fabric layers and thus holding a "supply" from which threads can be "taken” and integrated in the three-dimensional fabric zone.
  • increased lengths of weft and / or warp threads are incorporated in the fabric zone.
  • the mutual repulsion of the warp and weft threads changes in this fabric zone and the fabric zone bulges three-dimensionally. Therefore, with regard to the warp threads, it is advisable to increase or decrease the take-off speed of the affected roller segments of the take-off in order to avoid excess fabric on the take-off.
  • the difference in the speed of the warp threading leads to the three-dimensional bulging of the fabric.
  • This three-dimensional bulge is therefore based on a change in the number of crossing points. It can only be relatively weak; above all, it leads to a "thinning and thinning" of the tissue and is therefore not very stable.
  • the three-dimensional shape is forced on the tissue by changing the bond number and thus by changing its internal structure.
  • the change in the speed of the warp thread pull-off is not the cause of the three-dimensional shape, but merely a secondary possible, but not necessary measure, which is preferably compensated for in terms of the fabric density by a further change in the weave number.
  • the warp thread spacing and thus the number of crossings per unit area can also be changed by moving the reed up or down. This measure can also be compensated for with regard to the fabric density by a further change in the weave number.
  • the change in the type of weave or the number of threads incorporated happens by changing the rhythm of the subject training (up and down movement the jacquard eyelets 6).
  • Figure 7 illustrates a fabric that has a tissue zone with increased bond point density (Bond number) encloses.
  • this is inclusive Fabric in twill weave.
  • the enclosed three-dimensional Fabric zone has a plain weave.
  • the frequency is in this zone the warp / weft wrap over the enclosing one Tissue increased. This pushes the threads further apart and take up a larger surface area than the surrounding body tissue.
  • the canvas-bound zone therefore curves towards the surroundings on or forms a constantly growing scarf during weaving.
  • it is advantageous to use the fabric subtract increased speed so that this pre-form does not increase Leads to interference.
  • the intersection points deducted at increased speed would have greater spacing if the plain weave would not increase the number of wraps at the same time.
  • the Plain weave has a compensating effect on the enlargement of the intersection distances.
  • FIGS. 8 to 10 represent three types of weave, each of which has different looping frequencies and thereby entails different space requirements for the processed threads.
  • Fig. 8 shows a plain weave, which gives the greatest thread spacing both in the warp and in the weft direction.
  • the twill weave according to FIG. 9 has fewer loops and smaller thread spacings. Without changing the number of threads, this results in smaller fabric areas than with plain weave. 10 brings the threads very close together and therefore requires an even smaller area.
  • the bond point density of the three bonds shown in FIGS. 8 to 10 decreases from top to bottom in the arrangement of the figures. The different bond point densities per unit area and thus the bond-specific space available are used to maintain closed surfaces in the area of three-dimensional arches and to avoid geometry-related network-like points.
  • Fig. 11 shows the procedure when using sections integrated additional threads supports a three-dimensional shell geometry or is adjusted to special requirements.
  • Threads e.g. Warp threads 2.1 in plain weave in the fabric plane / layer to be arched inserted. If the distances between the intersections remain unchanged, displace them those previously bound below or above the level to be arched Now thread the existing threads in the plane and lead to them an enlargement (when threads are removed from this level to a Reduction) of the area size. This process leads to the desired one Bulge.
  • it can also change the properties of the fabric despite changing take-off speeds and changing Crossing point distances can be set, e.g. mechanical behavior, Permeability and sliding resistance.
  • FIGS. 12 to 14 use three exemplary types of weave to show how three-dimensional shell geometries are built up, filled in and adjusted in structure and density with the aid of multi-layer weave weaves.
  • a single layer plain weave is shown in FIG. No threads are "stored” in it. 13 contains in a second plane 27 between each second weft 9.2 a weft "additional thread" 9.3 and between every second warp thread 2.2 a warp "additional thread” 2.3. The "additional threads are inserted into the upper layer to form the 3D shape.
  • FIG. 15 shows floating, not tied threads (warp threads 2.1 or weft threads 9.1) which are integrated into the plane / layer 28 to be arched over desired distances, ie fabric zone 13.
  • 16 shows the structure of a woven hemisphere.
  • 16a (left) shows a fabric section according to the prior art, in which no binding technology has been used to compensate for increased crossover point distances or to set certain fabric properties, ie: only the distances between the crossover points have been changed; in the area of the 3D shape, the tissue becomes less dense or mesh-like.
  • 16a (right) shows a tissue section in which additional threads have been integrated into the surface.
  • the density of the fabric does not depend on the 3D shape.
  • the fabric can be used, for example, as a breast area or breast support for women's clothing, as a vessel, as a fiber reinforcement for a plastic part, for example a helmet shell.
  • FIG. 17 shows the example of additionally integrated weft threads 9 Pretreatment. It is based on the fact that in the three-dimensional Fabric zone by reducing weft spacing and densification of the tissue results in excess tissue. A deduction process which realizes different take-off speeds across the fabric width, is advantageous because it helps to compensate for pre-cloth formation can be.
  • Fig. 18 shows a sailboat with sail 30 in supervision. On the from The sail bulges in the shape of an airplane wing, facing away from the wind out. This bulge 29 of the sail in the area of the mast 31 is a 3D shape created according to this invention, without seams and subsequent deformation is produced.
  • Fig. 19 shows the section along a warp thread through a three-dimensional Fabric in the form of a sack.
  • a sack can, for example. as an air bag or serve as shaped bodies, the gaseous, liquid, foaming, solid Material or bulk goods is filled.
  • the gaseous, liquid, foaming, solid Material or bulk goods is filled.
  • weft or warp threads bag-like bulge By means of an appropriate tight type of binding and by incorporating many additional weft or warp threads bag-like bulge.
  • some warp threads 2.1 are in the area largest bulge not involved. Rather, these warp threads float with relatively high thread tension. Form these floating warp threads thus a movement limitation for the air bag and give the shape in the inflated state before.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Woven Fabrics (AREA)
  • Treatment Of Fiber Materials (AREA)

Claims (27)

  1. Procédé de tissage d'une zone de tissu (13) dotée d'une forme tridimensionnelle, caractérisé en ce que, dans la zone de tissu (13), par une implantation adéquate de densités de points de liage différentes, il est imposé au tissu une modification de sa structure interne et, de cette façon, il s'établit un bombement tridimensionnel approprié de la zone de tissu (13), le nombre des points de liage étant modifié par modification du nombre des fils de chaíne (2) et des fils de trame (9), insérés par liage, et/ou par la modification du mode de liage.
  2. Procédé selon la revendication 1, caractérisé en ce que, dans la zone de tissu (13), en plus de la modification du nombre des points de liage, il est réalisé une modification des intervalles des points de croisement dans la direction des fils de chaíne, par la génération de vitesses différentes de tirage de fils de chaíne individuels (2), et/ou une modification des intervalles des points de croisement dans la direction des fils de trame, par une modification des écartements latéraux des fils de chaíne (2).
  3. Procédé selon la revendication 2, caractérisé en ce que, dans la zone de tissu (13), la modification des intervalles des points de croisement est compensée, en totalité ou en partie, par la modification du nombre des points de liage.
  4. Procédé selon l'une des revendications 1 à 3, caractérisé en ce que la modification du nombre des fils insérés par liage est réalisée en insérant par liage, dans la région de la zone de tissu (13), des fils (2.1 ; 9.1) qui flottent dans le tissu adjacent à la zone de tissu (13).
  5. Procédé selon l'une des revendications précédentes, caractérisé en ce que la modification du nombre des fils insérés par liage est réalisée en insérant par liage, dans la région de la zone de tissu (13), des fils dont la longueur est adaptée à la zone de tissu (13).
  6. Procédé selon la revendication 4, caractérisé en ce que, dans le cas de tissus à plusieurs couches (27, 28), pour la modification du nombre des fils insérés par liage dans la région de la zone de tissu (13) de la couche de tissu (28), des fils sont transférés de la couche de tissu (27) dans la couche de tissu (28) et sont liés dans la couche de tissu (28).
  7. Procédé selon l'une des revendications précédentes, caractérisé en ce que, pour la modification du nombre des fils insérés par liage dans la région de la zone de tissu (13), on a recours à un mode de liage avec densité modifiée, de préférence augmentée, des points de liage et avec un nombre modifié en conséquence, respectivement plus grand, d'entrelacements de fils.
  8. Procédé selon l'une des revendications précédentes, caractérisé en ce que les modifications du mode de liage et/ou du nombre des fils insérés par liage, sont réalisées pour, en plus du bombement tridimensionnel de la zone de tissu, ajuster aussi des caractéristiques mécaniques et/ou physiques de la zone de tissu (13), notamment pour ajuster l'une des caractéristiques suivantes : solidité, taux de dilatation ou résistance au cisaillement, épaisseur du tissu, résistance à l'air, perméabilité, caractéristiques de filtration, effets optiques tels que aspect visuel, translucidité, dessin, transparence.
  9. Procédé selon l'une des revendications précédentes, caractérisé en ce que le tissu, au moins dans une région de la zone de tissu (13), est constitué de deux couches, lesquelles couches présentent un espacement ou forment entre elles un vide.
  10. Procédé selon la revendication 9, caractérisé en ce que des fils, dits fils de chaíne de liage (2.1), sont insérés suivant une alternance régulière ou irrégulière entre la couche de dessus et la couche de dessous, avec une longueur flottante prédéterminée.
  11. Procédé selon l'une des revendications 9 ou 10, caractérisé en ce que les vides formés entre les couches de tissus sont remplis par un matériau fluide, un matériau moussant à l'état fluide ou un matériau solide.
  12. Procédé selon l'une des revendications 1 à 11, caractérisé en ce que la zone de tissu (13) est formée à l'intérieur d'un tissu bidimensionnel, le tissu bidimensionnel entourant alors, en totalité ou partie, la zone de tissu (13), de préférence sous une forme annulaire.
  13. Procédé selon l'une des revendications 1 à 12, caractérisé en ce que la zone de tissu (13) a la forme d'un cylindre qui est ouvert sur une face d'extrémité, étant pourvu, sur l'autre face d'extrémité, d'un élément de fermeture plan ou semblable à un hémisphère et, de préférence, avec une ouverture centrale.
  14. Procédé selon l'une des revendications 1 à 12, caractérisé en ce que la zone de tissu (13) a la forme d'une calotte sphérique ou d'un hémisphère.
  15. Procédé selon l'une des revendications 1 à 14, caractérisé en ce que, dans la zone de tissu (13), des fils faits d'un premier matériau et des fils faits d'un second matériau sont tissés ensemble.
  16. Procédé selon la revendication 15, caractérisé en ce qu'aux fils de trame (9) et/ou aux fils de chaíne (2), sont ajoutés, notamment par enveloppement, flocage ou entremêlement, des fibres ou des fils faits d'un second matériau.
  17. Procédé selon la revendication 15 ou 16, caractérisé en ce que les fibres ou les fils, faits du second matériau, sont reformés par traitement thermique ou chimique de manière à former une matrice continue, dans laquelle les fils faits du premier matériau sont répartis.
  18. Procédé selon l'une des revendications précédentes, caractérisé en ce que la zone de tissu (13), en vue de la fabrication d'un corps façonné, est revêtue et/ou imprégnée de la phase liquide d'une matière plastique durcissable.
  19. Corps façonné en matière plastique, notamment récipient, coque, coque de casque, jante munie d'un renfort en fibres, qui est réalisé sous forme d'un tissu comportant une zone de tissu tridimensionnelle (13), caractérisé en ce que la zone de tissu (13) est bombée sous l'effet d'une implantation adéquate de densités de points de liage différentes, les densités de points de liage différentes étant obtenues par modification du nombre des fils de chaíne (2) et des fils de trame (9), insérés par liage, et/ou par la modification du mode de liage, selon l'une des revendications 1 à 17.
  20. Pièce d'habillement tissée, notamment soutien-gorge ou bustier ou tissu de soutien orthopédique et à usage médical, comportant une zone de tissu tridimensionnelle (13) adaptée à la forme du corps, caractérisée en ce que la zone de tissu (13) est bombée sous l'effet d'une implantation adéquate de densités de points de liage différentes, les densités de points de liage différentes étant obtenues par modification du nombre des fils de chaíne (2) et des fils de trame (9), insérés par liage, et/ou par la modification du mode de liage, selon l'une des revendications 1 à 17.
  21. Profilé creux en tissu, qui présente une zone de tissu tridimensionnelle (13), notamment coussin gonflable, caractérisée en ce que la zone de tissu (13) est bombée sous l'effet d'une implantation adéquate de densités de points de liage différentes, les densités de points de liage différentes étant obtenues par modification du nombre des fils de chaíne (2) et des fils de trame (9), insérés par liage, et/ou par la modification du mode de liage, selon l'une des revendications 1 à 17, et en ce que la zone de tissu (13) est reliée à un autre tissu parallèle, en particulier se compose d'une couche de dessus et d'une couche de dessous dans la région de la zone de tissu (13), les couches présentant un espacement ou formant entre elles un vide et des fils dits fils de chaíne de liage étant, de préférence, insérés dans les couches, suivant une alternance régulière ou irrégulière entre la couche de dessus et la couche de dessous, avec une longueur flottante prédéterminée.
  22. Voile comportant une région (31) qui se renfle du côté situé à l'opposé du vent, en particulier est renflée sous forme d'un profil de surface portante, caractérisée en ce que la région (31) est une zone de tissu qui est bombée sous l'effet d'une implantation adéquate de densités de points de liage différentes, les densités de points de liage différentes étant obtenues par modification du nombre des fils de chaíne (2) et des fils de trame (9), insérés par liage, et/ou par la modification du mode de liage, selon l'une des revendications 1 à 17.
  23. Chapeau comportant une zone de tissu tridimensionnelle (13), en forme de coque, et un rebord tissé bidimensionnel, qui entoure en totalité ou en partie la zone de tissu tridimensionnelle (13), caractérisé en ce que la zone de tissu tridimensionnelle est bombée sous l'effet d'une implantation adéquate de densités de points de liage différentes, les densités de points de liage différentes étant obtenues par modification du nombre des fils de chaíne (2) et des fils de trame (9), insérés par liage, et/ou par la modification du mode de liage, selon l'une des revendications 1 à 17, et est tissée en une pièce avec le rebord tissé sous une forme bidimensionnelle.
  24. Métier à tisser comportant un cantre (16) pourvu de bobines de chaíne (1) desquelles les fils de chaíne (2) peuvent être tirés individuellement à des vitesses pouvant être fixées, par commande, à des valeurs différentes, un frein respectif (3) pour chacun des fils de chaíne (2), une enrouleuse de tissu (11) destinée à tirer le tissu fini (12), qui est subdivisée en segments d'acheminement et dont les segments d'acheminement, chacun pour un fil de chaíne ou un groupe de fils de chaíne (2), peuvent être entraínés séparément les uns des autres à des vitesses différentes et pouvant être commandées, ainsi qu'un dispositif Jacquard, caractérisé en ce que le dispositif Jacquard est équipé d'un dispositif de commande (4) destiné à modifier le nombre des fils insérés par liage et/ou le mode de liage, pour la mise en oeuvre du procédé selon l'une des revendications précédentes 1 à 17.
  25. Métier à tisser selon la revendication 24, caractérisé par un dispositif répartiteur (7) installé en aval du dispositif Jacquard pour le réglage, commandé en continu, des écartements latéraux des fils de chaíne, en particulier un peigne (7), dont les dents (8) peuvent être déplacées l'une par rapport à l'autre, en permanence et de façon sensiblement continue, pendant le processus de tissage, ou un peigne (7) comportant des barreaux fixes (8), qui sont montés convergeant en direction verticale sous forme d'un éventail, le peigne pouvant être déplacé horizontalement ainsi que déplacé vers le haut et vers le bas, de façon sensiblement continue, et positionné, en fonction de l'introduction des fils de trame.
  26. Métier à tisser selon la revendication 24 ou 25, caractérisé par un dispositif de guidage (5) destiné à guider les fils de chaíne (2) dans les oeillets de guidage (6) du dispositif Jacquard, lequel peut être commandé en fonction de la position du dispositif répartiteur (7) d'une manière telle que les fils de chaíne (2) traversent sans déviation sensible les oeillets de guidage (6) du dispositif Jacquard et le dispositif répartiteur (7).
  27. Métier à tisser selon la revendication 24, 25 ou 26, caractérisé par un dispositif de commande de freins (14), au moyen duquel chacun des freins (3), associés aux fils de chaíne individuels, peuvent être commandés individuellement, d'une manière pré-établie, de préférence selon un programme.
EP96911971A 1995-04-06 1996-03-29 Procede de tissage d'une zone de tissu faconnee a trois dimensions Revoked EP0819188B1 (fr)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE19512554 1995-04-06
DE19512554 1995-04-06
DE19540628 1995-10-31
DE19540628 1995-10-31
PCT/EP1996/001397 WO1996031643A1 (fr) 1995-04-06 1996-03-29 Procede de tissage d'une zone de tissu façonnee a trois dimensions

Publications (2)

Publication Number Publication Date
EP0819188A1 EP0819188A1 (fr) 1998-01-21
EP0819188B1 true EP0819188B1 (fr) 2000-06-21

Family

ID=26014099

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96911971A Revoked EP0819188B1 (fr) 1995-04-06 1996-03-29 Procede de tissage d'une zone de tissu faconnee a trois dimensions

Country Status (7)

Country Link
US (1) US6000442A (fr)
EP (1) EP0819188B1 (fr)
JP (1) JPH11505296A (fr)
CN (1) CN1183123A (fr)
AT (1) ATE194019T1 (fr)
DE (1) DE59605463D1 (fr)
WO (1) WO1996031643A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004048331A1 (de) * 2004-10-05 2006-04-06 Volkswagen Ag Armaturenbrett für ein Kraftfahrzeug
DE102006050533A1 (de) * 2006-10-26 2008-04-30 Volkswagen Ag Innenraumverkleidung für ein Fahrzeug
DE102011121883A1 (de) 2011-12-21 2013-06-27 Volkswagen Aktiengesellschaft Verfahren und Vorrichtung zur Herstellung eines Formteils
EP2865797A1 (fr) * 2013-10-25 2015-04-29 Gustav Gerster GmbH & Co. KG Ruban tissé avec une courbure prédéterminée
DE102014107129B3 (de) * 2014-05-20 2015-07-02 Deutsche Institute Für Textil- Und Faserforschung Denkendorf Gewebeteil und Verfahren zur Herstellung eines dreidimensionalen Vorformteils

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6419263B1 (en) * 1998-05-11 2002-07-16 The B. F. Goodrich Company Seatbelt system having seamless inflatable member
AU7296398A (en) 1997-05-11 1998-12-08 B.F. Goodrich Company, The Seatbelt system having seamless inflatable member
DE19803656C2 (de) 1998-01-30 2000-02-17 Milliken Europ Nv Bandförmiges Textilerzeugnis und Verfahren zur Herstellung eines mit dem Textilerzeugnis verstärkten Körpers
US6892767B2 (en) * 1999-07-19 2005-05-17 Toyo Boseki Kabushiki Kaisha Uncoated air bag fabric
US6398253B1 (en) * 1999-09-01 2002-06-04 Trw Occupant Restraint Systems Gmbh & Co. Kg Gas bag protective device
EP1407066B1 (fr) * 2001-07-17 2005-10-12 Price Shepshed Limited Tissu tubulaire et methode de fabrication
BE1014721A5 (nl) * 2002-03-22 2004-03-02 Wiele Michel Van De Nv Werkwijze en weefmachine voor het weven van weefsels met poollussen.
US6886858B2 (en) 2002-07-26 2005-05-03 Key Safety Systems, Inc. Air bag assembly with tethers in a woven cushion and method of construction
US20040100080A1 (en) * 2002-11-27 2004-05-27 Depue Todd Expandable skin for safety restraint system
CN1317437C (zh) * 2004-05-10 2007-05-23 中材科技股份有限公司 异形截面机织三维织物的织造工艺
US7670969B2 (en) * 2004-11-19 2010-03-02 Albany Engineered Composites, Inc. Fabricating symmetric and asymmetric shapes with off-axis reinforcement from symmetric preforms
CN101142352A (zh) * 2005-01-28 2008-03-12 D·S·颜科霍姆 无缝衣服
DE102005019228A1 (de) * 2005-04-20 2006-11-02 Takata-Petri (Ulm) Gmbh Gewebe für einen Airbag
ES2259569B1 (es) * 2005-09-28 2007-06-16 Loncar, S.L. Soporte laminar para absorcion de impactos por choques de humanos.
US20070200329A1 (en) * 2006-02-27 2007-08-30 Key Safety Systems, Inc. Woven air bag with integrally woven 3-D tethers
FR2911615B1 (fr) * 2007-01-18 2011-11-25 Custon Laminates Mfg Materiaux pour la confection de voiles et voiles realisees avec ce type de materiaux.
FR2913053B1 (fr) * 2007-02-23 2009-05-22 Snecma Sa Procede de fabrication d'un carter de turbine a gaz en materiau composite et carter ainsi obtenu
US8834552B2 (en) * 2007-12-27 2014-09-16 Cook Medical Technologies Llc Stent graft having floating yarns
FR2926821B1 (fr) * 2008-01-29 2010-04-02 Deschamps A & Fils Ets Structure tissee et panneau ou recipient comportant une telle structure
FR2926822B1 (fr) * 2008-01-29 2010-05-28 Deschamps A & Fils Ets Procede de tissage et metier a tisser pour la mise en oeuvre de ce procede
EP2383377B1 (fr) 2010-04-29 2012-09-26 Groz-Beckert KG Métier à tisser et procédé de tissage tridimensionnel
US8696741B2 (en) * 2010-12-23 2014-04-15 Maquet Cardiovascular Llc Woven prosthesis and method for manufacturing the same
RU2603593C2 (ru) * 2011-12-14 2016-11-27 Снекма Жаккардовый ткацкий станок, имеющий оптимизированную плотность основных нитей
JP5880280B2 (ja) * 2012-05-25 2016-03-08 株式会社豊田自動織機 織物基材及び繊維強化複合材料
US9725833B2 (en) * 2012-07-12 2017-08-08 United Technologies Corporation Woven structure and method for weaving same
US10060054B2 (en) * 2014-05-09 2018-08-28 The North Face Apparel Corp. Unitary woven fabric construct of multiple zones
US9719196B2 (en) * 2015-04-07 2017-08-01 Mahmoud M Salama Interlocking weave for high performance fabrics
US11457682B2 (en) 2015-04-30 2022-10-04 The North Face Apparel Corp. Baffle constructs for insulative fill materials
CN105239256B (zh) * 2015-09-06 2017-04-19 西安工程大学 三维多层喷气引纬织机
US10052789B2 (en) 2015-11-25 2018-08-21 General Electric Company Methods of processing ceramic fiber
US9815736B2 (en) 2015-11-25 2017-11-14 General Electric Company Apparatus and methods for processing ceramic fiber
CN107042030B (zh) * 2016-02-06 2019-11-12 谢建民 过滤布及其制造方法、过滤组件及其制造方法
US10905188B2 (en) * 2016-07-19 2021-02-02 Bradford C. Jamison Plexus of filaments with linked members
JP6760101B2 (ja) * 2017-01-20 2020-09-23 トヨタ紡織株式会社 袋織エアバッグ
EP3615719A4 (fr) * 2017-04-28 2020-12-30 Unspun, Inc. Systèmes et procédés pour créer un tissu tissé topographique
US20190076632A1 (en) * 2017-09-14 2019-03-14 Amrita Vishwa Vidyapeetham Suturable woven implants from electrospun yarns for sustained drug release in body cavities
US20190344743A1 (en) * 2018-05-14 2019-11-14 Ford Global Technologies, Llc Seatbelt assembly
CN108950833B (zh) * 2018-07-26 2019-12-17 珠海建轩服装有限公司 扇形提花织物及其编织方法和应用
CN109402831B (zh) * 2018-12-18 2020-10-23 中材科技股份有限公司 一种具有仿形功能的中空夹层织物
KR102102435B1 (ko) * 2019-09-04 2020-04-20 한국건설기술연구원 부착력을 향상시킨 텍스타일 그리드 제조장치 및 그 방법
CN112680863B (zh) * 2020-12-11 2022-05-10 江苏恒力化纤股份有限公司 一种3d织物及其制备方法
CN113403727B (zh) * 2021-07-02 2022-11-29 大连工业大学 利用普通织机织造变直径三维机织管状织物的方法
US20230110539A1 (en) * 2021-10-13 2023-04-13 Meta Platforms, Inc. Methods and apparatus for fabricating curved elastic bands and articles incorporating curved elastic bands

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US579164A (en) * 1897-03-23 mcauliffe
FR814429A (fr) * 1936-12-03 1937-06-23 Successeurs De G Deglas & Cie Tissus dont les fils de chaine et les fils de trame sont ondulés, et procédé de fabrication
US2655950A (en) * 1948-06-30 1953-10-20 Bates Mfg Co Terry weave fabric
US3132671A (en) * 1956-11-20 1964-05-12 Raymond Dev Ind Inc Methods of and apparatus for weaving shaped fabrics and articles woven thereby
US3360014A (en) * 1965-07-28 1967-12-26 Allied Chem Textile containers
US3340919A (en) * 1965-12-15 1967-09-12 Johnson & Johnson Bag
US3807754A (en) * 1972-01-03 1974-04-30 Uniroyal Inc Passive restraint systems for vehicle occupants
FR2213363A1 (en) * 1973-01-08 1974-08-02 Lorichon Gerard Loom has reed with non-parallel teeth - which are spaced by a greater amount at one of their ends than the other
JPS51133574A (en) * 1975-04-11 1976-11-19 Permes Einlagestoff Zonal core fabric
JPS63182446A (ja) * 1987-01-16 1988-07-27 株式会社 川島織物 カ−テン地
US4825912A (en) * 1987-07-23 1989-05-02 Ciba-Geigy Corporation Apparatus for weaving spheriodially contoured fabric
JPH0692218B2 (ja) * 1987-12-11 1994-11-16 旭化成工業株式会社 衝撃吸収用バッグおよびその製造法
US4848412A (en) * 1988-02-23 1989-07-18 Milliken Research Corporation Patterned woven fabric
US5685347A (en) * 1989-02-16 1997-11-11 Airbags International Limited Circular air bag made of two simultaneously woven fabrics
GB8903559D0 (en) * 1989-02-16 1989-04-05 Marling Ind Plc Air bag
DE3915085C2 (de) * 1989-05-09 1998-05-07 Buesgen Wilhelm Alexander Dr I Vorrichtung zum Herstellen eines dreidimensionalen Gewebes
US5011183A (en) * 1990-06-08 1991-04-30 Stern & Stern Industries, Inc. Bag, airbag, and method of making the same
JP3222158B2 (ja) * 1990-09-08 2001-10-22 アクゾ ノーベル ナムローゼ フェンノートシャップ エアーバッグのフィルタ部分用の織布を製造する方法
DE4137082C2 (de) * 1991-11-12 1995-08-31 Wilhelm Buesgen Gmbh & Co Kg Vorrichtung zur Variation von Kettfadenabständen bei der Herstellung von zwei- oder dreidimensionalen textilen Flächengebilden
JPH05156545A (ja) * 1991-12-10 1993-06-22 Takata Kk ノンコート織布及びその製造方法
JP3036215B2 (ja) * 1992-03-18 2000-04-24 タカタ株式会社 エアバッグ
JPH06156174A (ja) * 1992-11-30 1994-06-03 Takata Kk エアバッグ
US5277230A (en) * 1993-02-22 1994-01-11 Milliken Research Corporation Double twillwoven air bag fabric
JP3207204B2 (ja) * 1993-03-03 2001-09-10 帝人株式会社 エアーバッグ用フィルタークロス
DE59406816D1 (de) * 1993-07-31 1998-10-08 Akzo Nobel Nv Verfahren zur Herstellung von unbeschichteten technischen Geweben

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004048331A1 (de) * 2004-10-05 2006-04-06 Volkswagen Ag Armaturenbrett für ein Kraftfahrzeug
DE102006050533A1 (de) * 2006-10-26 2008-04-30 Volkswagen Ag Innenraumverkleidung für ein Fahrzeug
DE102011121883A1 (de) 2011-12-21 2013-06-27 Volkswagen Aktiengesellschaft Verfahren und Vorrichtung zur Herstellung eines Formteils
DE102011121883B4 (de) 2011-12-21 2024-03-07 Volkswagen Aktiengesellschaft Verfahren und Vorrichtung zur Herstellung eines Formteils
EP2865797A1 (fr) * 2013-10-25 2015-04-29 Gustav Gerster GmbH & Co. KG Ruban tissé avec une courbure prédéterminée
DE102014107129B3 (de) * 2014-05-20 2015-07-02 Deutsche Institute Für Textil- Und Faserforschung Denkendorf Gewebeteil und Verfahren zur Herstellung eines dreidimensionalen Vorformteils
EP2947189A1 (fr) 2014-05-20 2015-11-25 Deutsche Institute für Textil- und Faserforschung Denkendorf Partie de tissu et procédé de fabrication d'un élément de préforme tridimensionnel

Also Published As

Publication number Publication date
EP0819188A1 (fr) 1998-01-21
CN1183123A (zh) 1998-05-27
WO1996031643A1 (fr) 1996-10-10
ATE194019T1 (de) 2000-07-15
DE59605463D1 (de) 2000-07-27
US6000442A (en) 1999-12-14
JPH11505296A (ja) 1999-05-18

Similar Documents

Publication Publication Date Title
EP0819188B1 (fr) Procede de tissage d'une zone de tissu faconnee a trois dimensions
EP0981660B1 (fr) Tissu a largeur variable
EP2383377B1 (fr) Métier à tisser et procédé de tissage tridimensionnel
DE2110464C2 (de) Rohteil für einen Büstenhalter und Verfahren und Vorrichtung zu dessen Herstellung
EP2754548B1 (fr) Procédé de fabrication des préformes pour des matériaux composites renforcés par des fibres
DE2500365C2 (de) Verfahren und Vorrichtung zur Herstellung von Polstern aus geschäumtem Kunststoff mit einem textilen Verbundüberzug
DE10005202B4 (de) Verfahren und Vorrichtung zur kontinuierlichen bauteil- und prozessorientierten Herstellung von Verstärkungsstruktur-Halbzeugen für Faser-Kunststoff-Verbundwerkstoffe
DE60010676T2 (de) Schräges gewebe, verfahren und webmaschine zur kontinuierlichen herstellung eines solchen gewebes
EP1278901B1 (fr) Dispositif de fabrication d'au moins deux sangles de type tuyau pouvant etre retournees
WO2013167362A1 (fr) Pièce textile, élément en matériau composite comportant une pièce textile et leur procédé de fabrication
EP3310952B1 (fr) Tissu bidimensionnel et procédé de production de celui-ci
EP3332053A1 (fr) Tissu multicouche et procédé de fabrication correspondant
EP0036498A1 (fr) Procédé pour ammener une bande de fils parellels à une machine en vue de réaliser un produit textile
DE69002710T2 (de) Verfahren zur Herstellung von Beuteln durch Weben.
DE69510598T2 (de) Webverfahren und Webblatt
EP2364670A1 (fr) Dispositif pour la production d'une courbure dans une prothèse de vaisseau
DE102012101016A1 (de) Verfahren zur Herstellung eines profilierten Faserverbundhalbzeuges, ein danach hergestelltes Faserverbundhalbzeug, ein Faserverbundwerkstoff sowie eine Vorrichtung zur Herstellung eines profilierten Faserverbundhalbzeuges
DE102013003439A1 (de) Verfahren und Vorrichtung zur Herstellung eines gewebten Schlauches mit variablem Durchmesser
EP1375715B1 (fr) Procédé et métier à tisser double peluche pour la fabrication de tissu à poil à motifs
EP2465982B1 (fr) Tissu pour l'utilisation dans des matières composites et procédé de fabrication du tissu et d'un corps en matière composite
DE102007038931A1 (de) Fadenlagennähwirkstoffe
DE102011106865A1 (de) Faserverstärkte Kunststoffprofile
DE3031428A1 (de) Kettflorgewebe sowie verfahren zu seiner herstellung und webmaschine zum weben desselben
DE102018217421B4 (de) Webmaschine zur Herstellung von Falten, insbesondere Plisseefalten, und/oder Schlaufen aufweisendem Gewebe sowie Verfahren zum Herstellen eines solchen Gewebes
EP1375714B1 (fr) Procédé de fabrication d'un tissu à poils

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19971027

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE FR GB IT LI

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19990611

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR GB IT LI

REF Corresponds to:

Ref document number: 194019

Country of ref document: AT

Date of ref document: 20000715

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SCHMAUDER & PARTNER AG PATENTANWALTSBUERO

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59605463

Country of ref document: DE

Date of ref document: 20000727

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20000726

ITF It: translation for a ep patent filed
ET Fr: translation filed
PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

26 Opposition filed

Opponent name: BOSTON SCIENTIFIC CORPORATION

Effective date: 20010321

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20030424

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20030425

Year of fee payment: 8

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040331

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

APAA Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOS REFN

PLAQ Examination of admissibility of opposition: information related to despatch of communication + time limit deleted

Free format text: ORIGINAL CODE: EPIDOSDOPE2

PLAR Examination of admissibility of opposition: information related to receipt of reply deleted

Free format text: ORIGINAL CODE: EPIDOSDOPE4

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: BOSTON SCIENTIFIC CORPORATION

Effective date: 20010321

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20050414

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20050419

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20050425

Year of fee payment: 10

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: BUESGEN, ALEXANDER

RIN2 Information on inventor provided after grant (corrected)

Inventor name: BUESGEN, ALEXANDER

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060331

Year of fee payment: 11

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

27W Patent revoked

Effective date: 20060124

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Free format text: 20060124