EP0819188B1 - Method of weaving a three-dimensionally shaped fabric zone - Google Patents

Method of weaving a three-dimensionally shaped fabric zone Download PDF

Info

Publication number
EP0819188B1
EP0819188B1 EP96911971A EP96911971A EP0819188B1 EP 0819188 B1 EP0819188 B1 EP 0819188B1 EP 96911971 A EP96911971 A EP 96911971A EP 96911971 A EP96911971 A EP 96911971A EP 0819188 B1 EP0819188 B1 EP 0819188B1
Authority
EP
European Patent Office
Prior art keywords
fabric
threads
zone
warp
binding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP96911971A
Other languages
German (de)
French (fr)
Other versions
EP0819188A1 (en
Inventor
Alexander Büsgen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BUESGEN, ALEXANDER
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26014099&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0819188(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Individual filed Critical Individual
Publication of EP0819188A1 publication Critical patent/EP0819188A1/en
Application granted granted Critical
Publication of EP0819188B1 publication Critical patent/EP0819188B1/en
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D3/00Woven fabrics characterised by their shape
    • D03D3/08Arched, corrugated, or like fabrics
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D13/00Woven fabrics characterised by the special disposition of the warp or weft threads, e.g. with curved weft threads, with discontinuous warp threads, with diagonal warp or weft
    • D03D13/004Woven fabrics characterised by the special disposition of the warp or weft threads, e.g. with curved weft threads, with discontinuous warp threads, with diagonal warp or weft with weave pattern being non-standard or providing special effects
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D13/00Woven fabrics characterised by the special disposition of the warp or weft threads, e.g. with curved weft threads, with discontinuous warp threads, with diagonal warp or weft
    • D03D13/008Woven fabrics characterised by the special disposition of the warp or weft threads, e.g. with curved weft threads, with discontinuous warp threads, with diagonal warp or weft characterised by weave density or surface weight
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D25/00Woven fabrics not otherwise provided for
    • D03D25/005Three-dimensional woven fabrics
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D41/00Looms not otherwise provided for, e.g. for weaving chenille yarn; Details peculiar to these looms
    • D03D41/004Looms for three-dimensional fabrics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S139/00Textiles: weaving
    • Y10S139/01Bias fabric digest
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1334Nonself-supporting tubular film or bag [e.g., pouch, envelope, packet, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1334Nonself-supporting tubular film or bag [e.g., pouch, envelope, packet, etc.]
    • Y10T428/1345Single layer [continuous layer]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • Y10T428/1362Textile, fabric, cloth, or pile containing [e.g., web, net, woven, knitted, mesh, nonwoven, matted, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/30Woven fabric [i.e., woven strand or strip material]
    • Y10T442/3179Woven fabric is characterized by a particular or differential weave other than fabric in which the strand denier or warp/weft pick count is specified
    • Y10T442/322Warp differs from weft

Definitions

  • the invention relates to a method for weaving a three-dimensional Tissue zone according to the preamble of claim 1.
  • the invention has for its object to the above disadvantages avoid. It is supposed to be an arbitrarily three-dimensionally shaped tissue zone arise, their structures - regardless of the three-dimensional shape (3D shape) - can be specified and set as desired, in particular with regard to density and homogeneity in the warp and in the weft direction. In front the 3D shape should be stable.
  • a fabric is primarily defined by the number of its crossing points and the number of its binding points.
  • the number of crossing points per unit area results as the product of the number of warp threads and the number of weft threads in this unit area.
  • a point of intersection is understood as a point of intersection at which the warp threads involved have changed between the upper and lower shed.
  • the number of binding points in the three-dimensional tissue zone is changed. It is possible to work in smaller zones with constant take-off speeds of the warp threads passing through the fabric zone that are the same over the fabric width. However, the take-off speeds of the warp threads passing through the fabric zone are preferably varied, ie: increased, for example in order to avoid the formation of pre-cloths (claim 2). In order to compensate for the resulting increase in the spacing of the weft threads, that is to say a reduction in the number of crossing points, the formation of the 3D shape according to claim also results in an increase in the binding point density (claim 3).
  • the invention makes it possible not just a three-dimensional one Weave tissue zone, but at the same time the structure of this tissue zone by influencing, i.e.: increasing or decreasing the number of Binding points per unit area and - within limits also the number of Crossing points per unit area - to be controlled as required.
  • This allows a wealth of parameters to be influenced, e.g. Strength, Elongation behavior, sliding resistance, fabric thickness, air resistance, Permeability and filtration properties to liquids, optical Effects (translucency, translucency).
  • the three-dimensional fabric is characterized by an adjustable Basis weight. Seams or double layers to hide Seams are not necessary.
  • the fabric has a high mechanical Resilience because the density and homogeneity of the threads is adjustable and the threads are not damaged by subsequent stretching or overstretching are. Also a subsequent change in shape due to shrinkage of the threads due to frozen tensions is avoided. The bulge is through Calculation can be precisely specified and reproduced exactly. There is no waste and the process has high productivity.
  • the invention is based on the idea of three-dimensional bulging in a tissue through the targeted use of different bond point densities, i.e. different looping frequencies between To produce warp and weft. This is achieved by changing the Type of binding and / or by including or removing additional ones Threads.
  • the generation of the three-dimensional fabric curvature takes place before the goods are taken off, irrespective of the number of crossings, ie: the number of warp threads and weft threads, namely through the arrangement of the warp and weft threads.
  • An increase or decrease in the bond point density per unit area or an increase or decrease in the number of wraps leads to an increase in the surface of the tissue zone.
  • a reduction in the bond point density per unit area leads to a reduction in the surface area.
  • the change in the type of binding and the addition or removal of threads can be combined with each other, be it to adjust the bulge, be it to adjust the tissue density in the tissue zone.
  • the lateral distances between the warp threads can be varied.
  • This training of The method of claim 2 has particularly in the very steep 3-D areas the purpose, the lateral spacing of the warp threads and / or weft threads distribute in a targeted manner in order to create freedom for the distribution of To gain attachment points. Warp threads and weft threads can thus over the Vault are distributed so that they follow certain stress zones. The faster removal of the warp threads in the places where a Larger surface is created, prevents pre-cloth formation.
  • targeted thread courses can be combined with 3D geometries generated by binding technology, like e.g. the mechanical requirements for a reinforced fabric Demand plastic component.
  • the spacing of the weft threads is adjusted by generating different take-off speeds of the warp threads.
  • the spacing of the warp threads is adjusted by controllable reeds.
  • a fan-like reed is known as an example, in which the reed bars (rungs) diverge like a fan from the lower or upper longitudinal center of the reed.
  • Weaves of this type have previously been used to influence the width of a fabric, in particular a woven tape, by changing the warp thread spacing (see: International Textile Bulletin p.2 / 1993).
  • these fan-shaped reeds are moved more or less suddenly.
  • the movement is essentially continuous and adapted to the desired changes in the 3-dimensional shape of the tissue.
  • Another example is a reed with controllably displaceable reed bars (DE-OS 41 37 082).
  • the resulting tissue be in both directions (Warp and weft) despite different distances between the crossing points is homogeneous.
  • the method according to claim 3 serves this purpose. In each direction can now avoid network-like areas of the tissue and the physical Tissue properties are affected. This compensates for the bond point density or - what is the same - the number of wraps is not only different crossing distances along a warp thread, but also across it, i.e. along a weft.
  • the number of integrated warp threads and / or weft threads can thereby be varied so that individual warp threads or groups of warp threads on the Specialist training in areas of tissue does not participate, so the warp threads or weft threads only in other areas, in particular the 3-dimensional Areas that are involved, but float to the side of it.
  • the warp threads that do not take part in the technical training remain preferably positioned in the sub-compartment so that the floating lengths of the Do not hang weft threads down into the weaving machine.
  • the process can be carried out using a multi-shaft machine. Machines with up to 24 shafts are in use today. By hanging in different shafts and controlling the shafts differently, it can be achieved that the groups of warp threads guided in different shafts participate in the shed formation in different ways. It is particularly useful for this purpose to use a jacquard machine, by means of which all the warp threads can be raised and lowered individually according to the program for the purpose of forming the shed between the upper and lower shed.
  • a very large number of threads can be found in the three-dimensional fabric zone are additionally involved according to the method of claim 6. To do this multilayer fabrics are produced.
  • In the field of three-dimensional Tissue zones become threads from a dissolved or thinned out layer of tissue transferred and integrated into the fabric layer, which the determined three-dimensional shape of the tissue zone.
  • the fabric density remains So essentially the same, since the number of threads included stays the same.
  • the possibility of three-dimensional curvature becomes considerably enlarged by the large number of additional threads for the three-dimensional tissue zone is available.
  • the method of claim 7 is particularly effective to achieve a three-dimensional tissue zone. It allows a modified, ie: in general: a greater density of the binding points or a larger number of thread wraps to be used in the fabric zone than in the surrounding fabric zone.
  • the distance between two adjacent threads eg warp threads
  • the distance between two adjacent threads is influenced by how often the threads of the respective crossing thread system (eg weft threads) pass between them, since the threads are pressed apart at a wrap or tie point.
  • the more passages or tie points per unit area the greater the distances between the threads.
  • the distances are maximum due to the highest binding point density, in a simple twill weave they are smaller and in a long floating satin weave they are even smaller.
  • the method according to the invention firstly results in the formation of a three-dimensional fabric zone; on the other hand, the changed crossing point distance of the three-dimensional tissue zone can be compensated;
  • design options for the textile, mechanical or physical properties of the fabric zone Through these designs according to claim 8 wide technical applications are opened up. Strength, elongation behavior or sliding resistance, among other things, can also be set depending on the direction in the warp or weft direction. This is particularly advantageous if mechanical stresses are defined for a fabric, such as in the case of a load-bearing housing made of fiber composite materials.
  • the fabric structure, fabric thickness and local wall thickness can be adapted to mechanical requirements.
  • the fabric is suitable as a filter material for air, gas and liquid filters, as permeability and filtration are adjustable and independent of the geometry of the three-dimensional fabric zone.
  • Optical effects such as patterns can also be set independently of the geometry of the three-dimensional fabric zone, where not only technical properties of the seamless three-dimensional fabric are important, but also an attractive appearance and pattern.
  • the three-dimensional tissue zone can also be part of a hollow body.
  • the tissue zone can be connected to a surface with a flat or another three-dimensional tissue zone, for example by sewing or gluing.
  • This operation is replaced in favor of an automated method according to claim 9.
  • a fabric is woven from at least two layers, which are guided separately in the area of the three-dimensional fabric zone and are only brought together again behind the three-dimensional fabric zone and are closely connected or integrated with one another. So there is a distance or a cavity between the fabric layers.
  • Such cavities are advantageous, for example, if individual layers of fabric are to shift or move away from one another during further processing or during use.
  • the structure proposed here no longer has to be composed of individual pieces.
  • binding warp threads are warp threads that are partially floating in one or the other fabric layer in regular or irregular alternations and have a predetermined length. These binding warp threads are subjected to tensile stress when the cavity is inflated with gas, liquid or bulk material and thus limit the local distance between the two fabric layers. The distances between the layers of fabric lying one above the other can therefore be adjusted by the floating length of the binding warp threads. As a result, the two fabric layers can have defined spacing profiles. It is particularly advantageous here to simultaneously use the binding warp threads as filler threads to control the three-dimensional shape and / or fabric density.
  • the three-dimensional fabric zone can seamlessly enclose a large part of the airbag envelope.
  • the production of two fabric layers, which are connected by binding warp threads and are incorporated alternately between the upper and lower layers as spacers, is known, for example, from the production of velvet. There, these binding warp threads serve as pile threads after the fabric layers have been separated.
  • Such a double fabric is advantageous as an air bag Avoidance of injuries in motor vehicle accidents applicable.
  • the length and tensile stress of the binding warp threads is the shape of the inflated air bags so limited that the driver or passenger Explosion does not hit his face and injures him (claim 23).
  • the airbag according to the invention contains significantly less seams than previously. Above all, the total weight of the airbag is reduced Places where a person hits the airbag.
  • the threads used for the method according to the invention can consist of natural materials, especially linen, cotton, hemp, jute etc. exist. It can also be synthetic threads. Because the three-dimensional Shape is made by weaving in one operation the threads do not need to be plastically deformable or only slightly. For such materials are the methods and proposed according to the invention Products are particularly cheap because they are initially very low in deformability of the material no longer during the creation of a bulge affects.
  • the three-dimensional design can be strengthened and promoted by the measure according to claim 12.
  • the curvature which can be cylindrical or hemispherical, for example, is thus within a two-dimensional tissue environment, the two-dimensional environment enclosing the curvature in a ring completely or partially.
  • the two-dimensional tissue environment can then be completely or partially cut away or recycled.
  • Such a structure can in particular be designed as a hat, the two-dimensional ring-shaped fabric surrounding the three-dimensional, for example hemispherical or cylindrical, curved fabric zone serving as a brim.
  • Versatile forms of such a tissue zone result in particular from claims 13 and 14.
  • the fabric zone designed as a hemisphere or spherical zone is particularly suitable for parts of clothing items which are adapted to the shape of the body during weaving according to the weaving method of this invention and subsequently have no disruptive seams in the region of the arch.
  • Such tissues are orthopedic and medical support tissues that seamlessly fit a body part, e.g. Head, Align chin or foot.
  • Such seamless support fabrics with adjustable Densities are particularly beneficial when the tissue is used for support of parts of the body must remain firmly on the body for a long time (e.g. after a broken jaw or skull).
  • the support tissues also cause prolonged wear no pressure marks.
  • Another important area of application is parts of the outer clothing, the Underwear or swimwear, especially for women. So can a spherical shell-shaped tissue zone in the chest area as a support or as Part of the bra can be used. This support has the advantage that no seam and no metal reinforcements are needed anymore prolonged wearing are uncomfortable and press. Claim 20.
  • Elongated fabric profiles can also be formed.
  • a practical one Application of such a tissue zone is a sail that is in one Area receives the shape of a wing profile. Otherwise they are omitted usual seams, so that the current fits better on the sail and the Energy is better implemented because there is less turbulence. claim 22.
  • filter cloths Another important area of application is filter cloths. This creates the Advantage that a seamless, homogeneously designed filter surface with the desired three-dimensional shape and with certain filtration properties for the passage or retention of substances and / or Particles are produced.
  • the method can be used to produce self-supporting shells, vessels, containers or the like with a fabric reinforcement, which are used either as such or as reinforcing inserts for plastic bodies and plastic profiles.
  • a fabric reinforcement which are used either as such or as reinforcing inserts for plastic bodies and plastic profiles.
  • such a shaped body can be produced according to claim 18.
  • such a molded body is produced in a simple manner in only one or two operations -weaving and thermal treatment-.
  • fiber reinforcements such three-dimensional fabric zones and moldings have the advantage that they are constructed homogeneously and with uniform quality without deep-drawing or cutting work.
  • the weight distribution of fibers and matrix materials is already predetermined by the production of the fabric.
  • a fabric zone in the embodiment according to claim 13 can serve primarily as a fiber reinforcement for a hub of a wheel or for a rim.
  • Shell-shaped fiber reinforcements according to this invention are suitable for containers or crash helmets or safety helmets.
  • a container can contain two such tissue zones which are attached to the inside and outside of the matrix of the helmet. Since the fiber reinforcement according to this invention has neither seams nor has to be adapted to the three-dimensional helmet shape by overlapping several flat layers, and the fiber guidance is therefore not interrupted anywhere, especially not on the front or head sides, the fiber reinforcement holds the despite the small amount of material Loads stood. Since manual intervention is hardly necessary in the production process, the fiber insert can always be produced in the helmet shell with the same and pre-calculated quality and position. The invention thus ensures the production of three-dimensional fabrics with freely selectable geometries and closed surfaces or surfaces that can be adjusted to different requirements.
  • Geometries and thread structures can be freely controlled using the existing binding devices.
  • freely programmable, electronically controlled jacquard machines in the configuration according to claim 26 are a suitable means for carrying out the method according to the invention.
  • the control programs entered allow the precise reproduction of predetermined tissue curvatures with predetermined tissue structure as often as desired.
  • the embodiment of the weaving machine according to claim 27 serves for additional variation of the warp thread distances.
  • the quality of the fabric also depends in particular on the uniformity or the precise setting of the warp thread tensions. This uniformity or precise setting can only be achieved with the embodiment according to claim 28.
  • This design has its particular meaning in combination with claim 29, which allows the warp thread tensions to be controlled individually according to the program and to be adapted to the rest of the control in order to achieve the 3D shape of the fabric.
  • Fig. 1 a weaving machine is shown with its elements, which are necessary for the implementation of this invention.
  • Individual warp bobbins 1 are presented to the weaving machine.
  • the warp coils 1 are plugged onto gate 16.
  • the warp threads 2 are drawn off the bobbins and then individually guided through the individual elements of the weaving machine.
  • this application only one warp thread is spoken of; however, it should be noted that this can always mean two or three or a group of warp threads.
  • each warp thread is passed through one of the brakes 3.
  • Each brake can be set individually. This can be done by hand.
  • each brake 3 consists of a saucer 3.1 and a top plate 3.2.
  • Each warp thread 2 is between one such saucer and saucer pulled through.
  • the saucer 3.2 is arranged in a fixed position; the top plate 3.1 is on the plunger of an electromagnet 36 attached and can be set against the saucer 3.2 are pressed.
  • the electromagnets 36 are individually Brake device 14 and brake program 21 (Fig. 6) controlled. Thereby the braking force and the thread tension in the warp threads 2.1 can be different be set.
  • the set is individual Warp thread tension also from the fabric take-off 11 and its individual
  • the take-up speed of each individual warp thread depends on the program steps the brake program unit depending on the pull-off speed of the warp thread. This becomes closer to Fig. 6 explained.
  • the brakes are individual in the course of the weaving process controllable. It goes without saying that the brakes during Web process are also constantly adjustable.
  • the jacquard control 4 is used to move the warp threads up and down. Harness threads 18 are suspended in this jacquard control 4. Strands hang on the harness threads 18 and on these eyelets 6.
  • the harness threads and the jacquard control move the eyelets upwards and bring them into an upper position (upper compartment).
  • the eyelets 6 are connected at the bottom with rubber threads 33 - shown in FIG. 3 - through which the eyelets are pulled into a lower position (lower compartment) against the force of the jacquard control.
  • the strands 19 are small elongated metal tongues, which can be seen in Fig.3.
  • the warp thread positioning device 5 is arranged in front of the eyelets 6.
  • the harness threads 4 or strands 19 or eyelets 6 are laterally positioned such that the eyelets are at substantially the same distance as the warp threads running through the reed 7 (see below).
  • Each warp thread is guided behind its brake through an eyelet of the eyelets 6.
  • the jacquard control 4 moves each warp thread independently of the other warp threads into the upper compartment or the lower compartment according to the program of the jacquard program unit 22.
  • the type of weave of the fabric as well as the number of threads involved depend on the jacquard control, ie on which of the warp threads are moved into the upper or lower compartment in each weft.
  • the reed 7 is arranged behind the jacquard device.
  • the reed 7 is a frame in the form of a trapezoid or parallelogram. Between the upper edge and the lower edge parallel to it, the reed bars 8 (rungs) are clamped in such a way that the reed bars strive for a fan shape from the top edge.
  • Such a reed is shown, for example, in DE 39 15 085 A1.
  • Each warp thread is passed through a space between the reed bars 8.
  • the forward movement 15.1 (FIG.
  • the positioning device 5 already guides the warp threads through the eyelets of the jacquard device at the lateral distance specified by the reed.
  • the up and down movement 15.2 is controlled by the reed control according to a predetermined program.
  • the weft thread 9 is inserted behind the reed.
  • the weft thread is pulled off, for example, from the weft bobbin 10 and guided through the compartment by means of a gripper.
  • any other weft insertion systems are also possible, in particular weft insertion by shooters (weaving ship).
  • the resulting tissue 12 can be pulled off by individual grippers.
  • a witness tree 11 is used here.
  • the stuff tree 11 is broken down into individual and individually drivable roller segments, ie: rolls of small width.
  • the resulting tissue is clamped between the rollers and the freely rotating counter rollers.
  • the individual roller segments are now individually driven by the trigger control 25 and the trigger program 26 (FIG. 6).
  • the roller segments are moved at the same speed after each shot 9.
  • a suitable witness tree broken down into segments and its drive is likewise shown and described in DE 39 15 085 A1.
  • the brake control is operated synchronously with and depending on the trigger control.
  • the fabric can then be wound up on the fabric tree 17.
  • FIGS. 3 and 4 The positioning of the warp threads before entering the reed 7 is shown in detail in FIGS. 3 and 4. From the reed, only the frame and two reed bars 8 are shown. The reed bars 8 diverge from the top edge in a fan shape. Furthermore, only the warp thread 2 is shown, which runs through the space between the reed bars 8 shown. A set of parallel guide rods 32, which extend essentially parallel to the chain 2, is used to position the strands 19 with eyelets 6 or harness threads. For the sake of clarity, only the guide rod 32 is shown, which serves to guide the strand and the warp thread shown.
  • this guide rod 32 also projects with its front end into the same space between two reed rods 8 through which the warp thread 2 to be guided in each case also runs.
  • the other end of each guide rod 32 is held by an individual elastic band 34 in the warp direction and by a common elastic band 35 in the weft direction.
  • the common elastic band 35 can be stretched more or less elastically by positioning control 5. As a result, the distance between the fastening points of the guide rods 32 on the elastic band 35 changes.
  • the common elastic band 35 can be replaced by an identically directed guide strip (in the weft direction) on which the guide rods 32 slide.
  • the positioning of the guide rods is carried out with sufficient accuracy only by the horizontal spacing of the reed rods which guide the front ends of the guide rods.
  • the height-horizontal distance of the guide rods is therefore only determined by the vertical position of the reed, without any further positioning control being necessary.
  • the common elastic band 35 can also be replaced by a coil spring 35 (FIG. 4).
  • the coil spring extends in the weft direction. With its turns, it reaches between adjacent positioning rods 22.
  • the coil spring 35 is tensioned by the positioning control 5 with force F more or less. This changes the slope of the turns and thus the distance between the rear end of the positioning rods 22.
  • the distance between the front ends of the guide rods is predetermined by the respective vertical position of the reed 7.
  • each guide rod bears against a strand 19 and guides it laterally, the strands are spaced apart from the reed rods 8. As a result, the warp threads run through the reed without substantial deflection. Friction and the occurrence of unwanted thread tension is avoided.
  • the thread tension can be specified solely by braking and pulling off.
  • Fig. 5 shows a top view of this warp thread guide between the jacquard device and the fabric edge of the fabric 12. Only a few parts of the weaving machine are shown in supervision, namely the reed 7 with reed rods 8, the eyelets 6 of the jacquard control, some warp threads 2 and the Edge of the fabric 12. On the left side the top view with the guiding of the warp threads without a positioning device can be seen. The warp threads are deflected both on the eyelet 6 of the jacquard control and on the rung 8 of the reed 7 if the distance between the warp threads is widened by the fan reed - as shown here as an example.
  • the warp thread guide with positioning device 5 is shown in supervision.
  • the strands and eyelets 6 are held at a distance from one another by the positioning rods 22, which distance corresponds to the distance of the warp threads at the instantaneous vertical position of the reed. Due to the deflection of the warp threads, which results without the positioning device, an uneven warp thread tension is built up in the warp thread family. It has been found that deviations of the three-dimensional tissue zone from the pre-calculated shape have their cause here.
  • the positioning device also avoids wear and tear on the warp threads.
  • a flat tissue which is homogeneous over length and width is first produced.
  • This fabric is characterized by the number of crossing points per unit area, by the number of binding points with a loop of one warp and one weft thread, by the number and length of the floating threads, and - if desired - by the number of fabric layers.
  • the weave number that is to say: the number of weave points with one loop each, is in a zone of the weave, be it on the longitudinal edge or be it in a central region of the web of warp and weft, increased or decreased.
  • the number of incorporated threads can be increased by floating threads in the flat fabric area or in other fabric layers and thus holding a "supply" from which threads can be "taken” and integrated in the three-dimensional fabric zone.
  • increased lengths of weft and / or warp threads are incorporated in the fabric zone.
  • the mutual repulsion of the warp and weft threads changes in this fabric zone and the fabric zone bulges three-dimensionally. Therefore, with regard to the warp threads, it is advisable to increase or decrease the take-off speed of the affected roller segments of the take-off in order to avoid excess fabric on the take-off.
  • the difference in the speed of the warp threading leads to the three-dimensional bulging of the fabric.
  • This three-dimensional bulge is therefore based on a change in the number of crossing points. It can only be relatively weak; above all, it leads to a "thinning and thinning" of the tissue and is therefore not very stable.
  • the three-dimensional shape is forced on the tissue by changing the bond number and thus by changing its internal structure.
  • the change in the speed of the warp thread pull-off is not the cause of the three-dimensional shape, but merely a secondary possible, but not necessary measure, which is preferably compensated for in terms of the fabric density by a further change in the weave number.
  • the warp thread spacing and thus the number of crossings per unit area can also be changed by moving the reed up or down. This measure can also be compensated for with regard to the fabric density by a further change in the weave number.
  • the change in the type of weave or the number of threads incorporated happens by changing the rhythm of the subject training (up and down movement the jacquard eyelets 6).
  • Figure 7 illustrates a fabric that has a tissue zone with increased bond point density (Bond number) encloses.
  • this is inclusive Fabric in twill weave.
  • the enclosed three-dimensional Fabric zone has a plain weave.
  • the frequency is in this zone the warp / weft wrap over the enclosing one Tissue increased. This pushes the threads further apart and take up a larger surface area than the surrounding body tissue.
  • the canvas-bound zone therefore curves towards the surroundings on or forms a constantly growing scarf during weaving.
  • it is advantageous to use the fabric subtract increased speed so that this pre-form does not increase Leads to interference.
  • the intersection points deducted at increased speed would have greater spacing if the plain weave would not increase the number of wraps at the same time.
  • the Plain weave has a compensating effect on the enlargement of the intersection distances.
  • FIGS. 8 to 10 represent three types of weave, each of which has different looping frequencies and thereby entails different space requirements for the processed threads.
  • Fig. 8 shows a plain weave, which gives the greatest thread spacing both in the warp and in the weft direction.
  • the twill weave according to FIG. 9 has fewer loops and smaller thread spacings. Without changing the number of threads, this results in smaller fabric areas than with plain weave. 10 brings the threads very close together and therefore requires an even smaller area.
  • the bond point density of the three bonds shown in FIGS. 8 to 10 decreases from top to bottom in the arrangement of the figures. The different bond point densities per unit area and thus the bond-specific space available are used to maintain closed surfaces in the area of three-dimensional arches and to avoid geometry-related network-like points.
  • Fig. 11 shows the procedure when using sections integrated additional threads supports a three-dimensional shell geometry or is adjusted to special requirements.
  • Threads e.g. Warp threads 2.1 in plain weave in the fabric plane / layer to be arched inserted. If the distances between the intersections remain unchanged, displace them those previously bound below or above the level to be arched Now thread the existing threads in the plane and lead to them an enlargement (when threads are removed from this level to a Reduction) of the area size. This process leads to the desired one Bulge.
  • it can also change the properties of the fabric despite changing take-off speeds and changing Crossing point distances can be set, e.g. mechanical behavior, Permeability and sliding resistance.
  • FIGS. 12 to 14 use three exemplary types of weave to show how three-dimensional shell geometries are built up, filled in and adjusted in structure and density with the aid of multi-layer weave weaves.
  • a single layer plain weave is shown in FIG. No threads are "stored” in it. 13 contains in a second plane 27 between each second weft 9.2 a weft "additional thread" 9.3 and between every second warp thread 2.2 a warp "additional thread” 2.3. The "additional threads are inserted into the upper layer to form the 3D shape.
  • FIG. 15 shows floating, not tied threads (warp threads 2.1 or weft threads 9.1) which are integrated into the plane / layer 28 to be arched over desired distances, ie fabric zone 13.
  • 16 shows the structure of a woven hemisphere.
  • 16a (left) shows a fabric section according to the prior art, in which no binding technology has been used to compensate for increased crossover point distances or to set certain fabric properties, ie: only the distances between the crossover points have been changed; in the area of the 3D shape, the tissue becomes less dense or mesh-like.
  • 16a (right) shows a tissue section in which additional threads have been integrated into the surface.
  • the density of the fabric does not depend on the 3D shape.
  • the fabric can be used, for example, as a breast area or breast support for women's clothing, as a vessel, as a fiber reinforcement for a plastic part, for example a helmet shell.
  • FIG. 17 shows the example of additionally integrated weft threads 9 Pretreatment. It is based on the fact that in the three-dimensional Fabric zone by reducing weft spacing and densification of the tissue results in excess tissue. A deduction process which realizes different take-off speeds across the fabric width, is advantageous because it helps to compensate for pre-cloth formation can be.
  • Fig. 18 shows a sailboat with sail 30 in supervision. On the from The sail bulges in the shape of an airplane wing, facing away from the wind out. This bulge 29 of the sail in the area of the mast 31 is a 3D shape created according to this invention, without seams and subsequent deformation is produced.
  • Fig. 19 shows the section along a warp thread through a three-dimensional Fabric in the form of a sack.
  • a sack can, for example. as an air bag or serve as shaped bodies, the gaseous, liquid, foaming, solid Material or bulk goods is filled.
  • the gaseous, liquid, foaming, solid Material or bulk goods is filled.
  • weft or warp threads bag-like bulge By means of an appropriate tight type of binding and by incorporating many additional weft or warp threads bag-like bulge.
  • some warp threads 2.1 are in the area largest bulge not involved. Rather, these warp threads float with relatively high thread tension. Form these floating warp threads thus a movement limitation for the air bag and give the shape in the inflated state before.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Woven Fabrics (AREA)
  • Treatment Of Fiber Materials (AREA)

Abstract

PCT No. PCT/EP96/01397 Sec. 371 Date Dec. 15, 1997 Sec. 102(e) Date Dec. 15, 1997 PCT Filed Mar. 29, 1996 PCT Pub. No. WO96/31643 PCT Pub. Date Oct. 10, 1996A process and apparatus for weaving a fabric with a three dimensional bulging zone, which is formed by increasing the density of the crossing points of the warp and weft threads so as to naturally impart a bulging zone in the fabric. The density is changed by changing the number of threads and/or changing the weave pattern. The lengths of the warp threads can also be increased in the bulging zone. In a preferred embodiment, the threads include a material which is settable by thermal or chemical treatment, and such that upon being set a three dimensional rigid matrix is formed which includes the non-settable threads as a reinforcement. The apparatus for carrying out the process takes the form of a loom having the capability of individually drawing off selected lengths of the warp threads from a warp supply, and a jacquard head for forming the weaving sheds and which has a control for changing the number of threads woven and/or the weave pattern.

Description

Die Erfindung betrifft ein Verfahren zum Weben einer drei-dimensionalen Gewebezone nach dem Oberbegriff von Anspruch 1.The invention relates to a method for weaving a three-dimensional Tissue zone according to the preamble of claim 1.

Ein solches Verfahren ist bekannt durch die DE- 39 15 085. Bei diesem bekannten Verfahren werden die Kettfäden an der Gewebebildungskante mit unterschiedlichen Geschwindigkeiten abgezogen. Damit entsteht die dreidimensional aufgewölbte Gewebezone durch Vergrößerung der Abstände der Schußfäden, d.h.: Verringerung der Zahl der Kreuzungspunkte. Die 3D-Form dieser Gewebezonen ist nicht stabil und die Gewebestruktur hängt von der 3D-Form ab.Such a method is known from DE 39 15 085. In this known processes, the warp threads on the fabric formation edge subtracted at different speeds. This creates the three-dimensional arched tissue zone by increasing the spacing of the Weft threads, i.e. reduction in the number of crossing points. The 3D shape this tissue zone is not stable and the tissue structure depends on the 3D shape.

Andere Verfahren zum Weben von dreidimensionalen Gewebeschalen arbeiten damit, die Abstände der Kettfäden zu variieren (US-PS 3,132,671; EP 0302012 A1).Other methods of weaving three-dimensional tissue shells work by varying the distances between the warp threads (US Pat. No. 3,132,671; EP 0302012 A1).

Diese bekannten Verfahren beruhen auf dem Prinzip, die Aufwölbung der Gewebezone durch Erhöhung der Fadenabstände, d.h.: durch Verminderung der Zahl der Kreuzungspunkte pro Flächeneinheit zu erzielen. Daher weisen die drei-dimensional gewölbten Zonen eine aufgelockerte Struktur auf, so daß u.U. ein netzähnliches Gebilde vorliegt. Für eine Weiterverarbeitung ist die Verschiebefestigkeit solcher Bereiche zu gering. Die physikalischen, speziell die mechanischen Eigenschaften sind gegenüber anderen Gewebebereichen reduziert und nicht in allen Richtungen homogen.These known methods are based on the principle of bulging Tissue zone by increasing the thread spacing, i.e. by reducing it the number of crossing points per unit area. Therefore point the three-dimensional domed zones have a loosened structure so that possibly there is a network-like structure. For further processing is the Such areas have insufficient resistance to displacement. The physical, specifically the mechanical properties are different from other tissue areas reduced and not homogeneous in all directions.

Ein weiteres Verfahren zur direkten Herstellung einer dreidimensionalen Schalengeometrie webt einen Kegel als zweischichtige Fläche. Anschließend wird der Kegel aus der Kettfadenschar herausgeschnitten und auseinandergefaltet (Rothe, H., Wiedemann, G.; Deutsche Textiltechnik 13 (1963) S. 95-101).Another method for the direct production of a three-dimensional Shell geometry weaves a cone as a two-layer surface. Subsequently the cone is cut out of the warp thread sheet and unfolded (Rothe, H., Wiedemann, G .; Deutsche Textiltechnik 13 (1963) pp. 95-101).

Der Erfindung liegt die Aufgabe zugrunde, die obengenannten Nachteile zu vermeiden. Es soll eine beliebig drei-dimensional geformte Gewebezone entstehen, deren Strukturen -unabhängig von der drei-dimensionalen Form (3D-Form)- beliebig vorgegeben und eingestellt werden kann, insbesondere hinsichtlich Dichte und Homogenität in Kett- und in Schußrichtung. Vor allem soll die 3D-Form stabil sein.The invention has for its object to the above disadvantages avoid. It is supposed to be an arbitrarily three-dimensionally shaped tissue zone arise, their structures - regardless of the three-dimensional shape (3D shape) - can be specified and set as desired, in particular with regard to density and homogeneity in the warp and in the weft direction. In front the 3D shape should be stable.

Diese Aufgabe wird durch Anspruch 1 gelöst.This object is solved by claim 1.

Ein Gewebe wird vor allem definiert durch die Zahl seiner Kreuzungspunkte sowie die Zahl seiner Bindungspunkte. Die Zahl der Kreuzungspunkte pro Flächeneinheit ergibt sich als Produkt aus der Anzahl der Kettfäden und der Anzahl der Schußfäden in dieser Flächeneinheit. Als Bindungspunkt wird ein Kreuzungspunkt verstanden, an dem ein Wechsel der beteiligten Kettfäden zwischen Ober-und Unterfach stattgefunden hat.
Nach dieser Erfindung wird die Zahl der Bindungspunkte in der dreidimensionalen Gewebezone verändert. Dabei kann man bei kleineren Zonen mit konstanten und über die Gewebebreite gleichen Abzugsgeschwindigkeiten der die Gewebezone durchlaufenden Kettfäden arbeiten.
Vorzugsweise werden die Abzugsgeschwindigkeiten der die Gewebezone durchlaufenden Kettfäden jedoch variiert, d.h.: heraufgesetzt, z.B. um die Vortuchbildung zu vermeiden (Anspruch 2).
Um die dadurch erzeugte Vergrößerung der Abstände der Schußfäden, d.h.: Verminderung der Kreuzungspunkte zu kompensieren, wird über die Bildung der 3D-Form nach Anspruch hinaus auch noch eine Vergrößerung der Bindepunktdichte herbeigeführt (Anspruch 3).
A fabric is primarily defined by the number of its crossing points and the number of its binding points. The number of crossing points per unit area results as the product of the number of warp threads and the number of weft threads in this unit area. A point of intersection is understood as a point of intersection at which the warp threads involved have changed between the upper and lower shed.
According to this invention, the number of binding points in the three-dimensional tissue zone is changed. It is possible to work in smaller zones with constant take-off speeds of the warp threads passing through the fabric zone that are the same over the fabric width.
However, the take-off speeds of the warp threads passing through the fabric zone are preferably varied, ie: increased, for example in order to avoid the formation of pre-cloths (claim 2).
In order to compensate for the resulting increase in the spacing of the weft threads, that is to say a reduction in the number of crossing points, the formation of the 3D shape according to claim also results in an increase in the binding point density (claim 3).

Durch die Erfindung wird es möglich, nicht nur eine dreidimensionale Gewebezone zu weben, sondern gleichzeitig auch die Struktur dieser Gewebezone durch Beeinflussung, d.h.: Erhöhung oder Erniedrigung der Zahl der Bindungspunkte pro Flächeneinheit und - in Grenzen auch der Zahl der Kreuzungspunkte pro Flächeneinheit - in gewünschter Weise zu steuern. Dadurch läßt sich eine Fülle von Parametern beeinflussen, wie z.B. Festigkeit, Dehnungsverhalten, Schiebewiderstand, Gewebedicke, Luftwiderstand, Durchlässigkeit und Filtrationseigenschaften gegenüber Flüssigkeiten, optische Effekte (Lichtdurchlässigkeit, Durchscheinigkeit).The invention makes it possible not just a three-dimensional one Weave tissue zone, but at the same time the structure of this tissue zone by influencing, i.e.: increasing or decreasing the number of Binding points per unit area and - within limits also the number of Crossing points per unit area - to be controlled as required. This allows a wealth of parameters to be influenced, e.g. Strength, Elongation behavior, sliding resistance, fabric thickness, air resistance, Permeability and filtration properties to liquids, optical Effects (translucency, translucency).

Das erzeugte dreidimensionale Gewebe zeichnet sich aus durch ein einstellbares Flächengewicht. Nähte oder doppelte Lagen zur Verdeckung von Nähten sind nicht erforderlich. Das Gewebe besitzt eine hohe mechanische Belastbarkeit, da die Dichte und Homogenität der Fäden einstellbar ist und die Fäden nicht durch nachträgliche Dehnung oder Überdehnung geschädigt sind. Auch eine nachträgliche Formänderung durch Schrumpfung der Fäden infolge eingefrorener Spannungen wird vermieden. Die Wölbung ist durch Berechnung genau vorgebbar und genau reproduzierbar. Es entfällt ein Verschnitt und das Verfahren besitzt eine hohe Produktivität.The three-dimensional fabric is characterized by an adjustable Basis weight. Seams or double layers to hide Seams are not necessary. The fabric has a high mechanical Resilience because the density and homogeneity of the threads is adjustable and the threads are not damaged by subsequent stretching or overstretching are. Also a subsequent change in shape due to shrinkage of the threads due to frozen tensions is avoided. The bulge is through Calculation can be precisely specified and reproduced exactly. There is no waste and the process has high productivity.

Der Erfindung liegt der Gedanke zugrunde, die dreidimensionale Auswölbung in einem Gewebe durch den gezielten Einsatz von unterschiedlichen Bindepunktdichten, d.h. unterschiedlichen Umschlingungshäufigkeiten zwischen Kette und Schuß zu erzeugen. Dies wird erreicht durch Änderung der Bindungsart und/oder durch die Einbindung oder Entfernung zusätzlicher Fäden.The invention is based on the idea of three-dimensional bulging in a tissue through the targeted use of different bond point densities, i.e. different looping frequencies between To produce warp and weft. This is achieved by changing the Type of binding and / or by including or removing additional ones Threads.

Im Unterschied zu allen bisher bekannten Techniken findet die Erzeugung der dreidimensionalen Gewebewölbung damit vor dem Warenabzug -unabhängig von der Kreuzungszahl, d.h.: der Anzahl der Kettfäden und Schußfädenstatt, und zwar durch die Anordnung der Kett- und Schußfäden. Eine Erhöhung oder Herabsetzung der Bindepunktdichte pro Flächeneinheit bzw. eine Erhöhung oder Herabsetzung der Anzahl an Umschlingungen führt zu einer Vergrößerung der Oberfläche der Gewebezone. Eine Verringerung der Bindepunktdichte pro Flächeneinheit führt zu einer Verkleinerung der Oberfläche. Eine Gewebezone mit größerer Oberfläche wölbt sich nach innen oder außen gegenüber der übrigen Gewebefläche zu einer dreidimensionalen Schale auf. Dabei ist es möglich, die Oberfläche so stark zu vergrößern, daß sich zylindrische oder noch stärker überhöhte Seitenbereiche der dreidimensionalen Gewebezone ausbilden.
Weist die betrachtete Zone gegenüber der umschließenden Zone eine verringerte Oberfläche auf, dann wölbt sich das umschließende Gewebe um diese Zone herum.
In contrast to all previously known techniques, the generation of the three-dimensional fabric curvature takes place before the goods are taken off, irrespective of the number of crossings, ie: the number of warp threads and weft threads, namely through the arrangement of the warp and weft threads. An increase or decrease in the bond point density per unit area or an increase or decrease in the number of wraps leads to an increase in the surface of the tissue zone. A reduction in the bond point density per unit area leads to a reduction in the surface area. A tissue zone with a larger surface bulges inwards or outwards in relation to the rest of the tissue surface to form a three-dimensional shell. It is possible to enlarge the surface so much that cylindrical or even more elevated side areas of the three-dimensional tissue zone are formed.
If the zone under consideration has a reduced surface area compared to the enclosing zone, then the enclosing tissue arches around this zone.

Die Änderung der Bindungsart und die Hinzu- bzw. Wegnahme von Fäden können miteinander kombiniert werden, sei es zur Einstellung der Aufwölbung, sei es zur Einstellung der Gewebedichte in der Gewebezone.The change in the type of binding and the addition or removal of threads can be combined with each other, be it to adjust the bulge, be it to adjust the tissue density in the tissue zone.

Es wurde bereits darauf hingewiesen, daß eine Einstellung der Schußfadenabstände durch Veränderung der Abzugsgeschwindigkeit der Kettfäden zweckmäßig sein kann. Neben den Abständen der Schußfäden können auch die seitlichen Abstände der Kettfäden variiert werden. Diese Ausbildung des Verfahrens nach Anspruch 2 hat insbesondere in den sehr steilen 3-D-Bereichen den Zweck, die seitlichen Abstände der Kettfäden und /oder Schußfäden gezielt zu verteilen, um Gestaltungsfreiheit für die Verteilung der Bindungspunkte zu erlangen. Kettfäden und Schußfäden können so über die Wölbung verteilt werden, daß sie bestimmten Beanspruchungszonen folgen. Durch das raschere Abziehen der Kettfäden wird an den Stellen, wo eine größere Oberfläche entsteht, eine Vortuchbildung verhindert. Dadurch, daß der seitliche Abstand der Kettfäden gesteuert wird, können gezielte Fadenverläufe mit bindungstechnisch erzeugten 3D-Geometrien kombiniert werden, so wie es z.B. die mechanischen Anforderungen an ein gewebeverstärktes Kunststoffbauteil verlangen.It has already been pointed out that an adjustment of the weft thread spacing expedient by changing the take-off speed of the warp threads can be. In addition to the spacing of the weft threads, the lateral distances between the warp threads can be varied. This training of The method of claim 2 has particularly in the very steep 3-D areas the purpose, the lateral spacing of the warp threads and / or weft threads distribute in a targeted manner in order to create freedom for the distribution of To gain attachment points. Warp threads and weft threads can thus over the Vault are distributed so that they follow certain stress zones. The faster removal of the warp threads in the places where a Larger surface is created, prevents pre-cloth formation. As a result of that The lateral distance of the warp threads can be controlled, targeted thread courses can be combined with 3D geometries generated by binding technology, like e.g. the mechanical requirements for a reinforced fabric Demand plastic component.

Die Einstellung der Abstände der Schußfäden geschieht -wie gesagt- durch Erzeugung unterschiedlicher Abzugsgeschwindigkeiten der Kettfäden.
Die Einstellung der Abstände der Kettfäden geschieht durch steuerbare Webblätter. Als Beispiel ist ein fächerartiges Webblatt bekannt, bei dem die Rietstäbe (Sprossen) von der unteren oder oberen Längsmitte des Webblattes aus fächerartig auseinander laufen. Solche Webblätter wurden bisher benutzt, um die Breite eines Gewebes, insbesondere gewebten Bandes durch Veränderung des Kettfädenabstandes zu beeinflussen (vgl.: International Textile Bulletin S.2/ 1993). Dazu werden diese fächerförmigen Webblätter mehr oder weniger schlagartig bewegt. Erfindungsgemäß geschieht die Bewegung im wesentlichen kontinuierlich und angepaßt an die gewünschten Änderungen der 3-dimensionalen Form des Gewebes.
Ein anderes Beispiel ist ein Webblatt mit steuerbar verschiebbaren Rietstäben (DE-OS 41 37 082).
As stated, the spacing of the weft threads is adjusted by generating different take-off speeds of the warp threads.
The spacing of the warp threads is adjusted by controllable reeds. A fan-like reed is known as an example, in which the reed bars (rungs) diverge like a fan from the lower or upper longitudinal center of the reed. Weaves of this type have previously been used to influence the width of a fabric, in particular a woven tape, by changing the warp thread spacing (see: International Textile Bulletin p.2 / 1993). For this purpose, these fan-shaped reeds are moved more or less suddenly. According to the invention, the movement is essentially continuous and adapted to the desired changes in the 3-dimensional shape of the tissue.
Another example is a reed with controllably displaceable reed bars (DE-OS 41 37 082).

Es ist erstrebenswert, daß das entstehende Gewebe in beiden Richtungen (Kette und Schuß) trotz unterschiedlicher Abstände der Kreuzungspunkte homogen ist. Hierzu dient das Verfahren nach Anspruch 3. In jeder Richtung können nun netzartige Stellen des Gewebes vermieden und die physikalischen Gewebeigenschaften beeinflußt werden. Damit kompensiert die Bindepunktdichte bzw. -was dasselbe ist- die Anzahl der Umschlingungen nicht nur unterschiedliche Kreuzungsabstände entlang eines Kettfadens, sondern auch quer dazu, d.h. entlang eines Schußfadens.It is desirable that the resulting tissue be in both directions (Warp and weft) despite different distances between the crossing points is homogeneous. The method according to claim 3 serves this purpose. In each direction can now avoid network-like areas of the tissue and the physical Tissue properties are affected. This compensates for the bond point density or - what is the same - the number of wraps is not only different crossing distances along a warp thread, but also across it, i.e. along a weft.

Die Zahl der eingebundenen Kettfäden und/oder Schußfäden kann dadurch variiert werden, daß einzelne Kettfäden oder Gruppen von Kettfäden an der Fachbildung in Bereichen des Gewebes nicht teilnehmen, so daß die Kettfäden bzw. Schußfäden nur in anderen Bereichen, also insbesondere den 3-dimensionalen Bereichen, eingebunden werden, seitlich davon jedoch flottieren. Die nicht an der Fachbildung teilnehmenden Kettfäden bleiben dabei vorzugsweise im Unterfach positioniert, damit die flottierenden Längen der Schußfäden nicht nach unten in die Webmaschine hängen.The number of integrated warp threads and / or weft threads can thereby be varied so that individual warp threads or groups of warp threads on the Specialist training in areas of tissue does not participate, so the warp threads or weft threads only in other areas, in particular the 3-dimensional Areas that are involved, but float to the side of it. The warp threads that do not take part in the technical training remain preferably positioned in the sub-compartment so that the floating lengths of the Do not hang weft threads down into the weaving machine.

Nach der Erfindung ist also vorgesehen, daß in Bereichen des Gewebes, die 3-dimensional ausgebildet werden, die Zahl der eingebundenen Kettfäden und/oder Schußfäden variiert oder daß eine andere Art der Bindung vorgesehen wird. In beiden Fällen kann das Verfahren ausgeübt werden durch eine Viel-Schaft-Maschine. Es sind heute Maschinen mit bis zu 24 Schäften in Gebrauch. Durch Aufhängung in unterschiedlichen Schäften und unterschiedliche Ansteuerung der Schäfte läßt sich erreichen, daß die in unterschiedlichen Schäfen geführten Gruppen von Kettfäden in unterschiedlicher Weise an der Fach-Bildung teilnehmen.
Besonders zweckmäßig ist für diesen Zweck die Verwendung einer Jacquard-Maschine, durch die sämtliche Kettfäden individuell nach Programm zum Zwecke der Fachbildung zwischen Oberfach und Unterfach gehoben und gesenkt werden können.
According to the invention it is therefore provided that in areas of the fabric which are formed three-dimensionally, the number of warp threads and / or weft threads incorporated varies or that a different type of binding is provided. In both cases, the process can be carried out using a multi-shaft machine. Machines with up to 24 shafts are in use today. By hanging in different shafts and controlling the shafts differently, it can be achieved that the groups of warp threads guided in different shafts participate in the shed formation in different ways.
It is particularly useful for this purpose to use a jacquard machine, by means of which all the warp threads can be raised and lowered individually according to the program for the purpose of forming the shed between the upper and lower shed.

Durch die Maßnahme nach Anspruch 4 werden Kettfäden wie auch die Schußfäden in bestimmten Gewebebereichen eingebunden, in anderen flottieren sie. Wo die Kettfäden bzw. Schußfäden eingebunden sind, vergrößert sich jedenfalls die Dichte des Gewebes, unter Umständen aber auch die Oberfläche des Gewebes und -umgekehrt- wird jedenfalls die Dichte des Gewebes geringer, unter Umständen aber auch die Oberfläche des Gewebes kleiner, wo die Fäden flottieren. The measure according to claim 4 warp threads as well Weft threads bound in certain areas of the fabric, floating in others she. Where the warp threads or weft threads are bound, enlarged in any case the density of the tissue, but possibly also that The surface of the fabric and, conversely, the density of the Fabric less, but possibly also the surface of the fabric smaller where the threads float.

Die Verwendung einer Schützenwebmaschine bietet den Vorteil, daß -abhängig von der Breite der dreidimensionalen Gewebezone- die Schußfäden nur in der dreidimensionalen Gewebezone eingetragen werden und in den übrigen Gewebebereichen nicht flottieren (Anspruch 5). Diese Zusatzfäden wirken sich weitgehend wie die zuvor angesprochenen flottierenden Fäden aus, mit dem Unterschied, daß ihre Fadenlänge an die Breite der betrachteten Gewebezone angeglichen ist. Es entfällt das nachträgliche Abschneiden von teilweise langen herausstehenden Fadenenden. Weiterhin reduziert sich die einzusetzende Materialmenge wegen des verringerten Verschnittabfalls.The use of a shuttle loom offers the advantage that it depends from the width of the three-dimensional fabric zone - the weft threads only be entered in the three-dimensional tissue zone and in the do not float the remaining tissue areas (claim 5). These additional threads largely have the same effect as the floating threads mentioned above with the difference that their thread length to the width of the considered Tissue zone is aligned. Subsequent cutting is no longer necessary of partially long protruding thread ends. Farther the amount of material to be used is reduced because of the reduced Waste waste.

Eine sehr große Zahl von Fäden kann in der drei-dimensionalen Gewebezone zusätzlich eingebunden werden nach dem Verfahren des Anspruch 6. Dazu werden mehrschichtige Gewebe hergestellt. Im Bereich der drei-dimensionalen Gewebezone werden Fäden aus einer aufgelösten oder ausgedünnten Gewebeschicht in die Gewebeschicht übertragen und eingebunden, welche die dreidimensionale Form der Gewebezone bestimmt. Die Gewebedichte bleibt also im wesentlichen gleich, da auch die Zahl der eingebundenen Fäden gleich bleibt. Die Möglichkeit der drei-dimensionalen Wölbung wird jedoch beträchtlich vergrößert durch die große Zahl von Zusatzfäden, die für die drei-dimensionale Gewebezone zur Verfügung steht.A very large number of threads can be found in the three-dimensional fabric zone are additionally involved according to the method of claim 6. To do this multilayer fabrics are produced. In the field of three-dimensional Tissue zones become threads from a dissolved or thinned out layer of tissue transferred and integrated into the fabric layer, which the determined three-dimensional shape of the tissue zone. The fabric density remains So essentially the same, since the number of threads included stays the same. However, the possibility of three-dimensional curvature becomes considerably enlarged by the large number of additional threads for the three-dimensional tissue zone is available.

Das Verfahren nach Anspruch 7 ist besonders wirksam, um eine drei-dimensionale Gewebezone zu erzielen. Es gestattet, in der Gewebezone eine veränderte, d.h.: im allgemeinen: eine größere Dichte der Bindungspunkte bzw. eine größere Anzahl an Fadenumschlingungen anzuwenden als in der umgebenden Gewebezone.
Der Abstand zweier benachbarter Fäden (z.B. Kettfäden) wird dadurch beeinflußt, wie häufig zwischen ihnen die Fäden des jeweils kreuzenden Fadensystems (z.B. Schußfäden) hindurchgehen, da die Fäden an einem Umschlingungs- bzw. Bindungspunkt auseinandergedrückt werden. Je mehr Durchgänge bzw. Bindungspunkte pro Flächeneinheit vorhanden sind, um so größer sind die Abstände der Fäden untereinander. So sind z.B. in einer Leinwandbindung die Abstände durch die höchste Bindepunktdichte maximal, in einer einfachen Köperbindung sind sie geringer und in einer langflottierenden Atlasbindung noch geringer. Wenn in einem Gewebe mit geringer Bindungspunktdichte pro Flächeneinheit eine wenigstens teilweise umschlossene Gewebezone mit erhöhter Bindungspunktdichte pro Flächeneinheit erzeugt wird, so entsteht bereits eine dreidimensionale Schalenform aufgrund der größeren Oberfläche dieser Gewebezone. Dieses Verfahren erleichtert die Erzeugung von dreidimensionalen Gewebewölbungen insofern, daß sich so die Vortuchbildung an wählbaren Stellen steuern läßt und durch Erzeugung unterschiedlicher Abzugsgeschwindigkeiten nur noch dieses Vortuch ausgeglichen werden muß. Auf das Einbinden von zusätzlichen Fäden kann ganz verzichtet werden. Die Homogenität oder sonstigen strukturellen Eigenschaften des Gewebes können damit unabhängig von der Geometrie des Gewebes gesteuert werden.
The method of claim 7 is particularly effective to achieve a three-dimensional tissue zone. It allows a modified, ie: in general: a greater density of the binding points or a larger number of thread wraps to be used in the fabric zone than in the surrounding fabric zone.
The distance between two adjacent threads (eg warp threads) is influenced by how often the threads of the respective crossing thread system (eg weft threads) pass between them, since the threads are pressed apart at a wrap or tie point. The more passages or tie points per unit area, the greater the distances between the threads. In a plain weave, for example, the distances are maximum due to the highest binding point density, in a simple twill weave they are smaller and in a long floating satin weave they are even smaller. If an at least partially enclosed tissue zone with increased binding point density per unit area is produced in a fabric with a low binding point density per unit area, a three-dimensional shell shape is already created due to the larger surface area of this fabric zone. This method facilitates the creation of three-dimensional fabric curvatures in that the pre-blanket formation can be controlled at selectable points and only this pre-blanket has to be compensated for by generating different take-off speeds. There is no need to include additional threads. The homogeneity or other structural properties of the fabric can thus be controlled independently of the geometry of the fabric.

Das erfindungsgemäße Verfahren bewirkt durch die Änderungen der Bindungsart und/oder der Fadenanzahl der eingebundenen Fäden zum einen die Ausbildung einer drei-dimensionalen Gewebezone; zum anderen läßt sich der veränderte Kreuzungspunktabstand der drei-dimensionalen Gewebezone ausgleichen; darüberhinaus ergeben sich aber auch vorteilhafte Gestaltungsmöglichkeiten für die textilen, mechanischen oder physikalischen Eigenschaften der Gewebezone.
Durch diese Gestaltungen nach Anspruch 8 werden breite technische Anwendungsmöglichkeiten erschlossen.
Festigkeit, Dehnungsverhalten oder Schiebewiderstand u.a. können dabei auch richtungsabhängig in Ketten- oder Schußrichtung eingestellt werden. Dies ist besonders vorteilhaft, wenn für ein Gewebe mechanische Beanspruchungen definiert sind, wie z.B. bei einem lastaufnehmenden Gehäuse aus Faserverbundwerkstoffen.
Mit Hilfe der zuvor beschriebenen Bindungs- und Füllfadentechniken kann die Gewebestruktur, Gewebedicke, lokale Wandstärke mechanischen Anforderungen angepaßt werden.
Das Gewebe eignet sich als Filtermaterial für Luft-, Gas- und Flüssigkeitsfilter, da Durchlässigkeit und Filtration einstellbar und unabhängig von der Geometrie der dreidimensionalen Gewebezone ist.
Auch optische Effekte wie z.B. Musterungen werden unabhängig von der Geometrie der dreidimensionalen Gewebezone einstellbar, wo nicht allein technische Eigenschaften des nahtlosen drei-dimensionale Gewebes sondern auch eine ansprechende Optik und Musterung ausschlaggebend sind.
By changing the type of weave and / or the number of threads of the incorporated threads, the method according to the invention firstly results in the formation of a three-dimensional fabric zone; on the other hand, the changed crossing point distance of the three-dimensional tissue zone can be compensated; In addition, there are also advantageous design options for the textile, mechanical or physical properties of the fabric zone.
Through these designs according to claim 8 wide technical applications are opened up.
Strength, elongation behavior or sliding resistance, among other things, can also be set depending on the direction in the warp or weft direction. This is particularly advantageous if mechanical stresses are defined for a fabric, such as in the case of a load-bearing housing made of fiber composite materials.
With the help of the binding and filling thread techniques described above, the fabric structure, fabric thickness and local wall thickness can be adapted to mechanical requirements.
The fabric is suitable as a filter material for air, gas and liquid filters, as permeability and filtration are adjustable and independent of the geometry of the three-dimensional fabric zone.
Optical effects such as patterns can also be set independently of the geometry of the three-dimensional fabric zone, where not only technical properties of the seamless three-dimensional fabric are important, but also an attractive appearance and pattern.

Die drei-dimensionale Gewebezone kann auch Bestandteil eines Hohlkörpers sein. Dazu kann die Gewebezone mit einer ebenen oder einer anderen dreidimensionalen Gewebezone flächig verbunden werden, z.B. durch Vernähen oder Verkleben. Dieser Arbeitsgang wird zugunsten eines automatisierten Verfahrens nach Anspruch 9 ersetzt. Dabei wird ein Gewebe aus mindestens zwei Schichten gewebt, die im Bereich der drei-dimensionalen Gewebezone getrennt geführt und erst hinter der drei-dimensionalen Gewebezone wieder zusammengeführt und miteinander eng verbunden oder eingebunden werden. Es entsteht also ein Abstand bzw. ein Hohlraum zwischen den Gewebeschichten. Solche Hohlräume sind z.B. dann vorteilhaft, wenn sich einzelne Gewebelagen während der Weiterverarbeitung oder während des Einsatzes gegeneinander verschieben oder voneinander entfernen sollen. Die hier vorgeschlagene Struktur muß dafür nicht mehr aus einzelnen Stücken zusammengesetzt werden.
Der Zwischenraum zwischen den verbundenen Gewebeschichten würde bei Füllung mit Gas, Flüssigkeit oder Schüttgut eine weitgehend beliebige Form annehmen. Dies wird vermieden nach Anspruch 10. Dabei sind Bindekettfäden solche Kettfäden die streckenweise in der einen bzw. anderen Gewebeschicht im regelmäßigen oder unregelmäßigen Wechsel flottierend eingebunden sind und eine jeweils vorbestimmte Länge haben. Diese Bindekettfäden werden bei Aufblähung des Hohlraums mit Gas, Flüssigkeit oder Schüttgut auf Zug beansprucht und begrenzen so den örtlichen Abstand zwischen den beiden Gewebeschichten. Die Abstände zwischen den übereinander liegenden Gewebeschichten kann also durch die flottierende Länge der Bindekettfäden eingestellt werden. Dadurch können die beiden Gewebeschichten definierte Abstandprofile erhalten. Hierbei ist es besonders vorteilhaft, die Bindekettfäden gleichzeitig als Füllfäden zur Steuerung der drei-dimensionalen Form und/oder Gewebedichte zu verwenden. Die drei-dimensionale Gewebezone kann einen großen Teil der Luftsackhülle nahtlos umschließen.
Die Herstellung von zwei Gewebeschichten, die durch Bindekettfäden verbunden sind und im Wechsel zwischen der oberen und unteren Schicht als Abstandshalter eingebunden werden, ist z.B. aus der Samtherstellung bekannt. Dort dienen diese Bindekettfäden nach dem Auftrennen der Gewebeschichten als Polfäden.
The three-dimensional tissue zone can also be part of a hollow body. For this purpose, the tissue zone can be connected to a surface with a flat or another three-dimensional tissue zone, for example by sewing or gluing. This operation is replaced in favor of an automated method according to claim 9. Here, a fabric is woven from at least two layers, which are guided separately in the area of the three-dimensional fabric zone and are only brought together again behind the three-dimensional fabric zone and are closely connected or integrated with one another. So there is a distance or a cavity between the fabric layers. Such cavities are advantageous, for example, if individual layers of fabric are to shift or move away from one another during further processing or during use. The structure proposed here no longer has to be composed of individual pieces.
The space between the connected layers of tissue would assume a largely arbitrary shape when filled with gas, liquid or bulk material. This is avoided according to claim 10. Here, binding warp threads are warp threads that are partially floating in one or the other fabric layer in regular or irregular alternations and have a predetermined length. These binding warp threads are subjected to tensile stress when the cavity is inflated with gas, liquid or bulk material and thus limit the local distance between the two fabric layers. The distances between the layers of fabric lying one above the other can therefore be adjusted by the floating length of the binding warp threads. As a result, the two fabric layers can have defined spacing profiles. It is particularly advantageous here to simultaneously use the binding warp threads as filler threads to control the three-dimensional shape and / or fabric density. The three-dimensional fabric zone can seamlessly enclose a large part of the airbag envelope.
The production of two fabric layers, which are connected by binding warp threads and are incorporated alternately between the upper and lower layers as spacers, is known, for example, from the production of velvet. There, these binding warp threads serve as pile threads after the fabric layers have been separated.

Ein derartiges doppeltes Gewebe ist vorteilhaft als Luftsack (Air Bag) zur Vermeidung von Verletzungen bei Kraftfahrzeug-Unfällen anwendbar. Durch die Länge und Zugbeanspruchung der Bindekettfäden ist die Form des aufgeblähten Luftsacks so begrenzt, daß er dem Fahrer bzw. Fahrgast bei Explosion nicht ins Gesicht schlägt und ihn verletzt (Anspruch 23). Der erfindungsgemäße Luftsack enthält wesentlich weniger Nähte als bisher. Dabei verringert sich das Gesamtgewicht des Luftsackes vor allem an Stellen, wo ein Mensch auf den Luftsack prallt.Such a double fabric is advantageous as an air bag Avoidance of injuries in motor vehicle accidents applicable. By the length and tensile stress of the binding warp threads is the shape of the inflated air bags so limited that the driver or passenger Explosion does not hit his face and injures him (claim 23). The airbag according to the invention contains significantly less seams than previously. Above all, the total weight of the airbag is reduced Places where a person hits the airbag.

Bei Füllung mit einem flüssigen, festen, schüttgutartigen oder aufschäumenden (expandierenden) Material oder mit einer aushärtenden Flüssigkeit oder bei Tränkung des aufgeblähten Gewebes mit einer aushärtenden Flüssigkeit können auf diese Weise Körper mit Gewebeumhüllung ohne Nähte hergestellt werden. (Anspruch 11).When filling with a liquid, solid, bulk-like or foaming (expanding) material or with a hardening liquid or when the bloated tissue is impregnated with a hardening liquid can be used to produce bodies with a fabric covering without seams become. (Claim 11).

Die für das erfindungsgemäße Verfahren eingesetzten Fäden können aus natürlichen Materialien, insbesondere Leinen, Baumwolle, Hanf, Jute usw. bestehe. Es kann sich auch um synthetische Fäden handeln. Da die dreidimensionale Form durch Weben in einem Arbeitsgang hergestellt wird, brauchen die Fäden nicht oder nur gering plastisch verformbar sein. Für solche Materialien sind die erfindungsgemäß vorgeschlagenen Verfahren und Erzeugnisse besonders günstig, da sich die zunächst sehr geringe Verformbarkeit des Materials nicht mehr während der Erzeugung einer Wölbung auswirkt.The threads used for the method according to the invention can consist of natural materials, especially linen, cotton, hemp, jute etc. exist. It can also be synthetic threads. Because the three-dimensional Shape is made by weaving in one operation the threads do not need to be plastically deformable or only slightly. For such materials are the methods and proposed according to the invention Products are particularly cheap because they are initially very low in deformability of the material no longer during the creation of a bulge affects.

Die drei-dimensionale Ausbildung kann verstärkt und gefördert werden durch die Maßnahme nach Anspruch 12. Die Wölbung, die z.B. zylindrisch oder halbkugelähnlich sein kann, liegt also innerhalb einer zweidimensionalen Gewebeumgebung, wobei die zweidimensionale Umgebung die Wölbung ringförmig ganz oder teilweise umschließt.
Die zweidimensionalen Gewebeumgebung kann anschließend ganz oder teilweise weggeschnitten oder mit verwertet werden. Ein solches Gebilde kann insbesondere als Hut ausgeführt werden, wobei die zweidimensionalen ringförmige Gewebeumgebung der dreidimensional -z.B. halbkugel-förmig oder zylindrisch- gewölbten Gewebezone als Krempe dient.
Vielseitig verwendbare Formen einer solchen Gewebezone ergeben sich insbesondere aus den Ansprüchen 13 und 14.
Die als Halbkugel oder Kugelzone ausgebildete Gewebezone eignet sich insbesondere für Teile von Bekleidungsstücken, die nach dem Webverfahren dieser Erfindung der Körperform beim Weben angepaßt werden und anschließend im Bereich der Wölbung keine störenden Nähte aufweisen.
The three-dimensional design can be strengthened and promoted by the measure according to claim 12. The curvature, which can be cylindrical or hemispherical, for example, is thus within a two-dimensional tissue environment, the two-dimensional environment enclosing the curvature in a ring completely or partially.
The two-dimensional tissue environment can then be completely or partially cut away or recycled. Such a structure can in particular be designed as a hat, the two-dimensional ring-shaped fabric surrounding the three-dimensional, for example hemispherical or cylindrical, curved fabric zone serving as a brim.
Versatile forms of such a tissue zone result in particular from claims 13 and 14.
The fabric zone designed as a hemisphere or spherical zone is particularly suitable for parts of clothing items which are adapted to the shape of the body during weaving according to the weaving method of this invention and subsequently have no disruptive seams in the region of the arch.

Ein wichtiges Anwendungsgebiet für solche Gewebe sind orthopädische und medizinische Stützgewebe, die sich nahtlos einem Körperteil, z.B. Kopf, Kinn oder Fuß angleichen lassen. Solche nahtlosen Stützgewebe mit einstellbarer Dichte sind besonders dann vorteilhaft, wenn das Gewebe zur Stützung von Körperteilen für lange Zeit fest am Körper verbleiben muß(z.B. nach einem Kiefer- oder Schädelbruch). Die Stützgewebe verursachen auch bei längerem Tragen keine Druckstellen.An important area of application for such tissues are orthopedic and medical support tissues that seamlessly fit a body part, e.g. Head, Align chin or foot. Such seamless support fabrics with adjustable Densities are particularly beneficial when the tissue is used for support of parts of the body must remain firmly on the body for a long time (e.g. after a broken jaw or skull). The support tissues also cause prolonged wear no pressure marks.

Ein anderes wichtiges Anwendungsgebiet sind Teile der Oberbekleidung, der Unterbekleidung oder der Badebekleidung, insbesondere für Damen. So kann eine kugelschalen-förmige Gewebezone im Brustbereich als Stütze oder als Teil des Büstenhalters eingesetzt werden. Diese Stütze hat den Vorteil, daß keine Naht und keine Metallverstärkungen mehr benötigt werden, die bei längerem Tragen unbequem sind und drücken. Anspruch 20.Another important area of application is parts of the outer clothing, the Underwear or swimwear, especially for women. So can a spherical shell-shaped tissue zone in the chest area as a support or as Part of the bra can be used. This support has the advantage that no seam and no metal reinforcements are needed anymore prolonged wearing are uncomfortable and press. Claim 20.

Es lassen sich auch langgestreckte Gewebeprofile ausbilden. Eine zweckmäßige Anwendung einer solchen Gewebezone ist ein Segel, das in einem Bereich die Form eines Tragflächenprofils erhält. Dabei entfallen die sonst üblichen Nähte, wodurch die Strömung am Segel besser anliegt und die Energie besser umgesetzt wird, da weniger Turbulenzen auftreten. Anspruch 22.Elongated fabric profiles can also be formed. A practical one Application of such a tissue zone is a sail that is in one Area receives the shape of a wing profile. Otherwise they are omitted usual seams, so that the current fits better on the sail and the Energy is better implemented because there is less turbulence. claim 22.

Ein anderes wichtiges Anwendungsgebiet sind Filtertücher. Dabei entsteht der Vorteil, daß eine nahtlose, homogen gestaltbare Filteroberfläche mit gewünschter dreidimensionaler Gestalt und mit bestimmten Filtrationseigenschaften für den Durchlass bzw. das Zurückhalten von Stoffen und/oder Partikeln hergestellt werden.Another important area of application is filter cloths. This creates the Advantage that a seamless, homogeneously designed filter surface with the desired three-dimensional shape and with certain filtration properties for the passage or retention of substances and / or Particles are produced.

Schließlich kann das Verfahren genutzt werden zur Herstellung selbsttragender Schalen, Gefäße, Behälter, oder dergleichen mit einer Gewebeverstärkung, die entweder als solche oder aber als Verstärkungseinlagen für Kunststoffkörper und Kunststoffprofile Anwendung finden. Im einfachsten Falle läßt sich ein solcher Formkörper nach Anspruch 18 herstellen.
Nach Anspruch 15 oder 16, insbesondere in der Ausführung nach Anspruch 17 entsteht ein solcher Formkörper in einfacher Weise in nur einem bzw. zwei Arbeitsgängen -Weben und thermische Behandlung-.
Als Faserverstärkungen haben solche dreidimensionalen Gewebezonen und Formkörper den Vorteil, daß sie ohne Tiefzieh- oder Schneidearbeiten homogen und mit gleichmäßiger Qualität aufgebaut sind. Die Gewichtsverteilung von Fasern und Matrix -Werkstoffen ist durch die Herstellung des Gewebes bereits fest vorgegeben.
Eine Gewebezone in der Ausbildung nach Anspruch 13 kann vor allem als Faserverstärkung für eine Nabe eines Rades oder für eine Felge dienen.
Finally, the method can be used to produce self-supporting shells, vessels, containers or the like with a fabric reinforcement, which are used either as such or as reinforcing inserts for plastic bodies and plastic profiles. In the simplest case, such a shaped body can be produced according to claim 18.
According to claim 15 or 16, in particular in the embodiment according to claim 17, such a molded body is produced in a simple manner in only one or two operations -weaving and thermal treatment-.
As fiber reinforcements, such three-dimensional fabric zones and moldings have the advantage that they are constructed homogeneously and with uniform quality without deep-drawing or cutting work. The weight distribution of fibers and matrix materials is already predetermined by the production of the fabric.
A fabric zone in the embodiment according to claim 13 can serve primarily as a fiber reinforcement for a hub of a wheel or for a rim.

Schalenförmige Faserverstärkungen nach dieser Erfindung eignen sich für Behälter oder Sturzhelme oder Sicherheitshelme.
Ein solcher Behälter kann zwei solcher Gewebezonen enthalten, die auf der Innenseite und der Außenseite der Matrix des Helms angebracht werden. Da die Faserverstärkung nach dieser Erfindung weder Nähte hat noch durch Überlappungen mehrerer ebener Lagen der drei-dimensionalen Helmform angepaßt werden muß, und die Faserführung daher nirgendwo, vor allem nicht an den Stirn- oder Kopfseiten, unterbrochen ist, hält die Faserverstärkung trotz geringer Materialmenge den Belastungen stand. Da in der Herstellung kaum noch manuelle Eingriffe notwendig sind, kann die Fasereinlage in stets gleicher und vorausberechneter Qualität und Lage in der Helmschale hergestellt werden.
Die Erfindung gewährleistet also die Herstellung von dreidimensionalen Geweben mit frei wählbaren Geometrien und geschlossenen oder auf unterschiedliche Anforderungen hin einstellbaren Oberflächen. Geometrien und Fadenstrukturen sind mit Hilfe der vorhandenen Bindungsvorrichtungen frei steuerbar. Vor allem frei programmierbare elektronisch gesteuerte Jacquardmaschinen in der Ausstattung nach Anspruch 26 sind hierbei ein geeignetes Mittel zur Ausführung des erfindungsgemäßen Verfahrens. Die eingegebenen Steuerungsprogramme erlauben die beliebig häufige genaue Reproduktion vorgegebener Gewebe-Wölbungen mit vorgegebener Gewebestruktur.
Zur zusätzlichen Variation der Kettfadenabstände dient die Ausführung der Webmaschine nach Anspruch 27.
Die Qualität des Gewebes hängt insbesondere auch von der Gleichmäßigkeit bzw. der genauen Einstellung der Kettfadenspannungen ab. Diese Gleichmäßigkeit bzw. genaue Einstellung läßt sich nur mit der Ausführung nach Anspruch 28 erreichen.
Ihren besonderen Sinn erhält diese Ausführung in Kombination mit Anspruch 29, der es erlaubt, die Kettfadenspannungen individuell nach Programm zu steuern und an die übrige Steuerung zur Erzielung der 3D-Form des Gewebes anzupassen.
Shell-shaped fiber reinforcements according to this invention are suitable for containers or crash helmets or safety helmets.
Such a container can contain two such tissue zones which are attached to the inside and outside of the matrix of the helmet. Since the fiber reinforcement according to this invention has neither seams nor has to be adapted to the three-dimensional helmet shape by overlapping several flat layers, and the fiber guidance is therefore not interrupted anywhere, especially not on the front or head sides, the fiber reinforcement holds the despite the small amount of material Loads stood. Since manual intervention is hardly necessary in the production process, the fiber insert can always be produced in the helmet shell with the same and pre-calculated quality and position.
The invention thus ensures the production of three-dimensional fabrics with freely selectable geometries and closed surfaces or surfaces that can be adjusted to different requirements. Geometries and thread structures can be freely controlled using the existing binding devices. In particular, freely programmable, electronically controlled jacquard machines in the configuration according to claim 26 are a suitable means for carrying out the method according to the invention. The control programs entered allow the precise reproduction of predetermined tissue curvatures with predetermined tissue structure as often as desired.
The embodiment of the weaving machine according to claim 27 serves for additional variation of the warp thread distances.
The quality of the fabric also depends in particular on the uniformity or the precise setting of the warp thread tensions. This uniformity or precise setting can only be achieved with the embodiment according to claim 28.
This design has its particular meaning in combination with claim 29, which allows the warp thread tensions to be controlled individually according to the program and to be adapted to the rest of the control in order to achieve the 3D shape of the fabric.

Die Erfindung wird nachstehend anhand von Ausführungsbeispielen mit Hilfe von Zeichnungen näher erläutert. Es zeigen:

Fig. 1
eine Webmaschine,
Fig. 2
als Detail die Bremseinrichtung,
Fig. 3
als Detail die Positionierung der Kettfäden,
Fig. 4
die Positionierung der Kettfäden durch Schraubenfeder,
Fig. 5
die Kettfädenführung mit/ohne Positioniereinrichtung,
Fig. 6
das Programm- und Steuerschema,
Fig. 7
eine Gewebezone mit erhöhter Bindepunktdichte pro Flächeneinheit, umgeben von einer Zone mit geringerer Bindepunktdichte pro Flächeneinheit,
Fig. 8
Schnitt und Bindungspatrone einer Leinwandbindung,
Fig. 9
Schnitt und Bindungspatrone einer Köperbindung,
Fig.10
Schnitt und Bindungspatrone einer Atlasbindung,
Fig.11
Verwendung streckenweise eingebundener Zusatzfä den,
Fig.12
Schnitt und Bindungspatrone einer Leinwandbindung ohne gespeicherte Fäden,
Fig. 13
Schnitt und Bindungspatrone eines zweilagigen Gewebes mit einem Zusatzfaden zwischen jedem zweiten Schuß- und Kettfäden,
Fig. 14
Schnitt und Bindungspatrone eines zweilagigen Gewebes mit einem Zusatzfaden für jeden Schuß- und Kettfäden,
Fig.15
Schnitt durch eine Bindung mit flottierenden Fäden,
Fig.16
eine gewebte Halbkugel,
Fig. 17
Vortuchbildung,
Fig.18
ein Segel, und
Fig.19
ein sackförmiges Gewebe.
The invention is explained in more detail below on the basis of exemplary embodiments with the aid of drawings. Show it:
Fig. 1
a loom,
Fig. 2
as a detail the braking device,
Fig. 3
as a detail the positioning of the warp threads,
Fig. 4
the positioning of the warp threads by coil spring,
Fig. 5
the warp thread guide with / without positioning device,
Fig. 6
the program and control scheme,
Fig. 7
a tissue zone with increased binding point density per unit area, surrounded by a zone with lower binding point density per unit area,
Fig. 8
Cut and binding cartridge of a plain weave,
Fig. 9
Cut and binding cartridge of a twill weave,
Fig. 10
Cut and binding cartridge of an atlas binding,
Fig. 11
Use of additional threads integrated in places,
Fig. 12
Cut and binding cartridge of a plain weave without stored threads,
Fig. 13
Cut and tie cartridge of a two-layer fabric with an additional thread between every second weft and warp threads,
Fig. 14
Cut and binding cartridge of a two-layer fabric with an additional thread for each weft and warp thread,
Fig. 15
Cut through a tie with floating threads,
Fig. 16
a woven hemisphere,
Fig. 17
Pre-cloth formation,
Fig. 18
a sail, and
Fig. 19
a sack-shaped fabric.

In Fig. 1 ist eine Webmaschine mit ihren Elementen dargestellt, die zur Ausführung dieser Erfindung erforderlich sind. Der Webmaschine werden einzelne Kettspulen 1 vorgelegt. Die Kettspulen 1 sind auf Gatter 16 aufgesteckt. Die Kettfäden 2 werden von den Spulen abgezogen und sodann individuell durch die einzelnen Elemente der Webmaschine geführt. In dieser Anmeldung wird stets nur von einem Kettfaden gesprochen; es sei jedoch bemerkt, daß damit stets auch zwei oder drei oder eine Gruppe von Kettfäden gemeint sein kann.
Zunächst wird jeder Kettfäden durch eine der Bremsen 3 geführt. Jede Bremse kann individuell eingestellt werden. Dies kann von Hand geschehen.
In Fig. 1 a weaving machine is shown with its elements, which are necessary for the implementation of this invention. Individual warp bobbins 1 are presented to the weaving machine. The warp coils 1 are plugged onto gate 16. The warp threads 2 are drawn off the bobbins and then individually guided through the individual elements of the weaving machine. In this application only one warp thread is spoken of; however, it should be noted that this can always mean two or three or a group of warp threads.
First, each warp thread is passed through one of the brakes 3. Each brake can be set individually. This can be done by hand.

In der Ausführung nach Fig. 2 besteht jede Bremse 3 aus einem Unterteller 3.1 und einem Oberteller 3.2. Jeder Kettfäden 2 wird zwischen einem solchen Unterteller und Oberteller hindurch gezogen. Der Unterteller 3.2 ist ortsfest angeordnet; der Oberteller 3.1 ist an dem Stößel eines Elektromagneten 36 befestigt und kann mit vorgebbarer Kraft gegen den Unterteller 3.2 gedrückt werden. Die Elektromagneten 36 werden individuell durch Bremseinrichtung 14 und Bremsprogramm 21 (Fig.6) angesteuert. Dadurch kann die Bremskraft und die Fadenspannung in den Kettfäden 2.1 unterschiedlich eingestellte werden. Andererseits ist die eingestellte individuelle Kettfadenspannung auch von dem Warenabzug 11 und seiner individuellen Abzugsgeschwindigkeit jedes einzelnen Kettfadens abhängig, da die Programmschritte der Bremsprogrammeinheit in Abhängigkeit von der Abzugsgeschwindigkeit des Kettfadens abgerufen werden. Dies wird zu Fig. 6 näher erläutert. Dadurch sind die Bremsen im Verlaufe des Webprozesses individuell steuerbar. Es ist dabei selbstverständlich, daß die Bremsen während des Webprozesses auch konstant einstellbar sind.2, each brake 3 consists of a saucer 3.1 and a top plate 3.2. Each warp thread 2 is between one such saucer and saucer pulled through. The saucer 3.2 is arranged in a fixed position; the top plate 3.1 is on the plunger of an electromagnet 36 attached and can be set against the saucer 3.2 are pressed. The electromagnets 36 are individually Brake device 14 and brake program 21 (Fig. 6) controlled. Thereby the braking force and the thread tension in the warp threads 2.1 can be different be set. On the other hand, the set is individual Warp thread tension also from the fabric take-off 11 and its individual The take-up speed of each individual warp thread depends on the program steps the brake program unit depending on the pull-off speed of the warp thread. This becomes closer to Fig. 6 explained. As a result, the brakes are individual in the course of the weaving process controllable. It goes without saying that the brakes during Web process are also constantly adjustable.

Zur Auf- und Abbewegung der Kettfäden dient die Jacquard-Steuerung 4. In dieser Jacquard-Steuerung 4 sind Harnischfäden 18 aufgehängt. An den Harnischfäden 18 hängen Litzen und an diesen Ösen 6. Durch die Harnischfäden und die Jacquard-Steuerung werden die Ösen aufwärts bewegt und in eine obere Position (Oberfach) gebracht. Die Ösen 6 sind nach unten mit Gummifäden 33 -in Fig.3 gezeigt- verbunden, durch die die Ösen gegen die Kraft der Jacquard-Steuerung in eine untere Position (Unterfach) gezogen werden.
Die Litzen 19 sind kleine längliche Metallzungen, die in Fig.3 zu sehen sind. Vor den Ösen 6 ist die Kettfaden-Positioniereinrichtung 5 angeordnet. Mittels dieser Kettfaden-Positioniereinrichtung werden die Harnischfäden 4 bzw. Litzen 19 bzw. Ösen 6 seitlich so positioniert, daß die Ösen im wesentlichen denselben Abstand haben wie die durch das Webblatt 7 (siehe unten) laufenden Kettfäden.
Jeder Kettfaden wird hinter seiner Bremse durch je eine Öse der Ösen 6 geführt. Durch die Jacquard-Steuerung 4 wird jeder Kettfaden unabhängig von den anderen Kettfäden in das Oberfach oder das Unterfach nach dem Programm der Jacquard-Programmeinheit 22 bewegt.
Die Bindungsart des Gewebes wie auch die Zahl der eingebundenen Fäden hängt dabei von der Jacquardsteuerung ab, d.h. davon welche der Kettfäden jeweils bei einem Schuß in das Oberfach bzw. Unterfach bewegt werden.
The jacquard control 4 is used to move the warp threads up and down. Harness threads 18 are suspended in this jacquard control 4. Strands hang on the harness threads 18 and on these eyelets 6. The harness threads and the jacquard control move the eyelets upwards and bring them into an upper position (upper compartment). The eyelets 6 are connected at the bottom with rubber threads 33 - shown in FIG. 3 - through which the eyelets are pulled into a lower position (lower compartment) against the force of the jacquard control.
The strands 19 are small elongated metal tongues, which can be seen in Fig.3. The warp thread positioning device 5 is arranged in front of the eyelets 6. By means of this warp thread positioning device, the harness threads 4 or strands 19 or eyelets 6 are laterally positioned such that the eyelets are at substantially the same distance as the warp threads running through the reed 7 (see below).
Each warp thread is guided behind its brake through an eyelet of the eyelets 6. The jacquard control 4 moves each warp thread independently of the other warp threads into the upper compartment or the lower compartment according to the program of the jacquard program unit 22.
The type of weave of the fabric as well as the number of threads involved depend on the jacquard control, ie on which of the warp threads are moved into the upper or lower compartment in each weft.

Hinter der Jacquardeinrichtung ist das Webblatt 7 angeordnet.
Das Webblatt 7 ist ein Rahmen von der Form eines Trapezes oder Parallelogramms. Zwischen der Oberkante und der dazu parallelen Unterkante sind die Rietstäbe 8 (Sprossen) derart eingespannt, daß die Rietstäbe von der Oberkante aus fächerförmig auseinander streben. Ein derartiges Webblatt ist z.B. in der DE 39 15 085 A1 dargestellt. Jeder Kettfaden wird durch einen Zwischenraum zwischen den Rietstäben 8 hindurch geführt. Die Vor-Bewegung 15.1 (Fig.3) des Webblattes, durch die nach jedem Schuß der letzte Schußfaden an die Gewebekante gedrückt wird und die Rück-Bewegung des Webblattes 15.1 wird durch die Maschinensteuerung z.B. einen Kurbeltrieb (nicht gezeigt) bewirkt.
Durch die langsame Auf- oder Abbewegung 15.2 des Webblattes (Fig. 3) wird der seitliche Abstand der Kettfäden im Webblatt und dahinter bestimmt.
The reed 7 is arranged behind the jacquard device.
The reed 7 is a frame in the form of a trapezoid or parallelogram. Between the upper edge and the lower edge parallel to it, the reed bars 8 (rungs) are clamped in such a way that the reed bars strive for a fan shape from the top edge. Such a reed is shown, for example, in DE 39 15 085 A1. Each warp thread is passed through a space between the reed bars 8. The forward movement 15.1 (FIG. 3) of the reed, by means of which the last weft thread is pressed against the fabric edge after each weft, and the return movement of the reed 15.1 is effected by the machine control, for example a crank drive (not shown).
The lateral distance of the warp threads in the reed and behind it is determined by the slow up or down movement 15.2 of the reed (FIG. 3).

Die Positioniereinrichtung 5 führt die Kettfaden bereits mit dem durch das Webblatt vorgegebenen seitlichen Abstand durch die Ösen der JacquardEinrichtung.
Die Auf-Bewegung und Ab-Bewegung 15.2 wird durch die Webblattsteuerung nach einem vorgegebenen Programm gesteuert.
Hinter dem Webblatt erfolgt der Schußeintrag des Schußfadens 9. Der Schußfaden wird z.B. von Schußspule 10 abgezogen und mittels Greifer durch das Fach geführt. Es sind aber auch beliebig andere Schußeintrag-Systeme möglich, insbesondere Schußeintrag durch Schützen (Webschiff).
The positioning device 5 already guides the warp threads through the eyelets of the jacquard device at the lateral distance specified by the reed.
The up and down movement 15.2 is controlled by the reed control according to a predetermined program.
The weft thread 9 is inserted behind the reed. The weft thread is pulled off, for example, from the weft bobbin 10 and guided through the compartment by means of a gripper. However, any other weft insertion systems are also possible, in particular weft insertion by shooters (weaving ship).

Das entstehende Gewebe 12 kann durch einzelne Greifer abgezogen werden. Hier wird ein Zeugbaum 11 verwandt. Der Zeugbaum 11 ist in einzelne und einzeln antreibbare Walzensegmente, d.h.: Rollen geringer Breite zerlegt. Das entstehende Gewebe wird zwischen den Rollen und den frei drehbaren Gegenrollen festgeklemmt. Nunmehr werden die einzelnen Walzensegmente durch die Abzugsteuerung 25 und das Abzugprogramm 26 (Fig.6) individuell angetrieben. Zur Bildung eines ebenen Gewebes bzw. eines ebenen Gewebebereichs werden die Walzensegmente nach jedem Schuß 9 mit gleicher Geschwindigkeit bewegt. Bei Bildung einer drei-dimensionalen Gewebezone ist es vorteilhaft, die Walzensegmente nach jedem Schuß 9 mit unterschiedlicher Geschwindigkeit zu bewegen.
Dadurch erhalten die Kettfäden der Gewebezone eine individuell steuerbare Abzugsgeschwindigkeit.
Ein geeigneter in Segmente zerlegte Zeugbaum und sein Antrieb ist ebenfalls in der DE 39 15 085 A1 gezeigt und beschrieben.
Die Bremssteuerung wird -wie gesagt- synchron mit und abhängig von der Abzugsteuerung betätigt.
Das Gewebe kann anschließend auf dem Warenbaum 17 aufgewickelt werden.
The resulting tissue 12 can be pulled off by individual grippers. A witness tree 11 is used here. The stuff tree 11 is broken down into individual and individually drivable roller segments, ie: rolls of small width. The resulting tissue is clamped between the rollers and the freely rotating counter rollers. The individual roller segments are now individually driven by the trigger control 25 and the trigger program 26 (FIG. 6). To form a flat fabric or a flat fabric region, the roller segments are moved at the same speed after each shot 9. When forming a three-dimensional fabric zone, it is advantageous to move the roller segments after each shot 9 at different speeds.
This gives the warp threads of the fabric zone an individually controllable take-off speed.
A suitable witness tree broken down into segments and its drive is likewise shown and described in DE 39 15 085 A1.
As stated, the brake control is operated synchronously with and depending on the trigger control.
The fabric can then be wound up on the fabric tree 17.

In Fig. 3 und Fig. 4 ist als Detail die Positionierung der Kettfäden vor Einlauf in das Webblatt 7 dargestellt. Von dem Webblatt sind lediglich der Rahmen und zwei Rietstäbe 8 dargestellt. Die Rietstäbe 8 laufen von der Oberkante aus fächerförmig auseinander. Es ist weiterhin lediglich der Kettfaden 2 dargestellt, der durch den Zwischenraum zwischen den dargestellten Rietstäbe 8 läuft.
Zur Positionierung der Litzen 19 mit Ösen 6 bzw. Harnischfäden dient eine Schar paralleler Führungsstäbe 32, die sich im wesentlichen parallel zur Kette 2 erstrecken. Der Übersichtlichkeit wegen ist nur der Führungsstab 32 dargestellt, der zur Führung der dargestellten Litze und des dargestellten Kettfadens dient. Wie jeder der Führungsstäbe ragt auch dieser Führungsstab 32 mit seinem vorderen Ende in denselben Zwischenraum zwischen zwei Rietstäben 8, durch welchen auch der jeweils zu führende Kettfaden 2 läuft. Das andere Ende jedes Führunsstabes 32 wird durch einen individuellen Gummizug 34 in Kettrichtung sowie durch einen allen Führungsstäben gemeinsamen Gummizug 35 in Schußrichtung gehalten. Der gemeinsame Gummizug 35 kann durch Positioniersteuerung 5 mehr oder weniger elastisch gedehnt werden. Dadurch ändert sich der Abstand der Befestigungspunkte der Führungsstäbe 32 an dem Gummizug 35. Alternativ kann der gemeinsame Gummizug 35 ersetzt werden durch eine gleich (in Schußrichtung) gerichtete Führungsleiste, auf der die Führungsstäbe 32 gleiten. In diesem Falle erfolgt die Positionierung der Führungsstäbe mit ausreichender Genauigkeit ausschließlich durch den horizontalen Abstand der Rietstäbe, welche die vorderen Enden der Führungsstäbe führen. Der hörozontale Abstand der Führungsstäbe ist also ausschließlich durch die vertikale Stellung des Webblatts vorgegeben, ohne daß eine weitere Positioniersteuerung erforderlich wäre.
Der gemeinsame Gummizug 35 kann auch ersetzt werden durch eine Schraubenfeder 35 (Fig. 4). Die Schraubenfeder erstreckt sich in Schußrichtung. Sie greift mit ihren Windungen zwischen benachbarte Positionierungsstäbe
22. Die Schraubenfeder 35 wird durch die Positioniersteuerung 5 mit Kraft F mehr oder weniger gespannt. Dadurch ändert sich die Steigung der Windungen und damit der Abstand des hinteren Endes der Positionierstäbe 22.
Der Abstand der vorderen Enden der Führungsstäbe ist durch die jeweilige vertikale Position des Webblattes 7 vorgegeben. Beide Abstände werden durch die vertikale Webblattsteuerung einerseits und die Positioniersteuerung 5 andererseits auf einander abgestimmt.
Da jeder Führungsstab an einer Litze 19 anliegt und diese seitlich führt, erhalten die Litzen den Abstand der Rietstäbe 8. Dadurch laufen die Kettfäden ohne wesentliche Umlenkung durch das Webblatt. Reibung und Entstehen ungewollter Fadenzugkräfte wird vermieden. Die Fadenzukraft kann allein durch die Bremsung und den Abzug vorgegeben werden.
The positioning of the warp threads before entering the reed 7 is shown in detail in FIGS. 3 and 4. From the reed, only the frame and two reed bars 8 are shown. The reed bars 8 diverge from the top edge in a fan shape. Furthermore, only the warp thread 2 is shown, which runs through the space between the reed bars 8 shown.
A set of parallel guide rods 32, which extend essentially parallel to the chain 2, is used to position the strands 19 with eyelets 6 or harness threads. For the sake of clarity, only the guide rod 32 is shown, which serves to guide the strand and the warp thread shown. Like each of the guide rods, this guide rod 32 also projects with its front end into the same space between two reed rods 8 through which the warp thread 2 to be guided in each case also runs. The other end of each guide rod 32 is held by an individual elastic band 34 in the warp direction and by a common elastic band 35 in the weft direction. The common elastic band 35 can be stretched more or less elastically by positioning control 5. As a result, the distance between the fastening points of the guide rods 32 on the elastic band 35 changes. Alternatively, the common elastic band 35 can be replaced by an identically directed guide strip (in the weft direction) on which the guide rods 32 slide. In this case, the positioning of the guide rods is carried out with sufficient accuracy only by the horizontal spacing of the reed rods which guide the front ends of the guide rods. The height-horizontal distance of the guide rods is therefore only determined by the vertical position of the reed, without any further positioning control being necessary.
The common elastic band 35 can also be replaced by a coil spring 35 (FIG. 4). The coil spring extends in the weft direction. With its turns, it reaches between adjacent positioning rods
22. The coil spring 35 is tensioned by the positioning control 5 with force F more or less. This changes the slope of the turns and thus the distance between the rear end of the positioning rods 22.
The distance between the front ends of the guide rods is predetermined by the respective vertical position of the reed 7. Both distances are coordinated with each other by the vertical reed control on the one hand and the positioning control 5 on the other.
Since each guide rod bears against a strand 19 and guides it laterally, the strands are spaced apart from the reed rods 8. As a result, the warp threads run through the reed without substantial deflection. Friction and the occurrence of unwanted thread tension is avoided. The thread tension can be specified solely by braking and pulling off.

Fig. 5 zeigt als Aufsicht diese Kettfädenführung zwischen der Jacquardeinrichtung und dem Geweberand des Gewebes 12. Es sind lediglich einige Teile der Webmaschine in Aufsicht dargestellt und zwar das Webblatt 7 mit Rietstäbe 8, die Ösen 6 der Jaquard-Steuerung, einige Kettfäden 2 sowie der Rand des Gewebes 12. Auf der linken Seite ist die Aufsicht mit Führung der Kettfäden ohne Positioniereinrichtung zu sehen. Die Kettfäden werden sowohl an der Öse 6 der Jaquard-Steuerung als auch an der Sprosse 8 des Webblattes 7 umgelenkt, wenn durch das Fächerwebblatt der Abstand zwischen den Kettfäden -wie hier als Beispiel dargestellt- verbreitert wird.
Auf der rechten Seite ist die Kettfadenführung mit Positioniereinrichtung 5 in Aufsicht dargestellt. Durch die Positionierstäbe 22 werden die Litzen und Ösen 6 in einem Abstand zueinander gehalten, welcher dem Abstand der Kettfäden bei der augenblicklichen vertikalen Position des Webblattes entspricht.
Durch die Umlenkung der Kettfäden, die sich ohne die Positioniereinrichtung ergibt, wird in der Kettfädenschar eine ungleichmäßige Kettfadenspannung aufgebaut. Es hat sich herausgestellt, daß Abweichungen der dreidimensionalen Gewebezone von der vorberechneten Form hier ihre Ursache haben. Die Positioniereinrichtung vermeidet auch Abrieb und Verschleiß der Kettfäden.
Fig. 5 shows a top view of this warp thread guide between the jacquard device and the fabric edge of the fabric 12. Only a few parts of the weaving machine are shown in supervision, namely the reed 7 with reed rods 8, the eyelets 6 of the jacquard control, some warp threads 2 and the Edge of the fabric 12. On the left side the top view with the guiding of the warp threads without a positioning device can be seen. The warp threads are deflected both on the eyelet 6 of the jacquard control and on the rung 8 of the reed 7 if the distance between the warp threads is widened by the fan reed - as shown here as an example.
On the right side, the warp thread guide with positioning device 5 is shown in supervision. The strands and eyelets 6 are held at a distance from one another by the positioning rods 22, which distance corresponds to the distance of the warp threads at the instantaneous vertical position of the reed.
Due to the deflection of the warp threads, which results without the positioning device, an uneven warp thread tension is built up in the warp thread family. It has been found that deviations of the three-dimensional tissue zone from the pre-calculated shape have their cause here. The positioning device also avoids wear and tear on the warp threads.

Fig. 6 zeigt schematisch das Zusammenwirken der einzelnen Steuerungen und der zugehörigen Programme. Die Steuerung der Webmachine geschieht durch das übergeordnete Webprogramm 20. Dieses ist durch das drei-dimensionale Gewebe, das hergestellt werden soll, vorgegeben. Durch das Webprogramm werden die einzelnen Programmschritte der untergeordeten Programme 21,22,23,25 abgerufen. Bei den untergeordeten Programmen handelt es sich um

  • das Bremsprogramm 21; durch dieses wird die Bremssteuerung 14 angesteuert. Die Bremsen 3 für jeden Kettfaden 2 können individuell oder in Gruppen oder insgesamt und in Abhängigkeit von den Befehlsschritten des Abzugsprogramms 25 eingestellt werden.
  • das Jacquard-Programm 22; durch dieses wird die Jacquard-Steuerung 4 betätigt. Jeder Harnischfaden 16 kann für sich oder in Grupen mit anderen zur Bildung des Oberfachs hochgezogen oder durch den Gummifaden zur Bildung des Unterfachs nach unten gezogen. Das Jacquard-Programm ist so vorgegeben, daß im Laufe der Gewebebildung die Art der Bindung und/oder die Zahl der eingebundenen Fäden entsprechend der vorgesehenen drei-dimensionalen Form der zu bildenden Gewebezone verändert und eingestellt wird.
  • das Webblatt-Programm 23; durch dieses wird die Webblatt-Steuerung 24 angesteuert und damit die vertikale Position des Webblattes in Richtung 15.2 vorgegeben. Dadurch wird der seitliche Abstand der Kettfäden und damit die Dichte der Kreuzungspunkte beeinflußt. Gleichzeitig wird die Positionier-Steuerung 5 so gesteuert, daß der seitliche Abstand der Kettfäden vor dem Webblatt demjenigen Abstand entspricht, den die Kettfäden durch die jeweilige vertikale Postion des Webblattes erhalten.
  • das Abzugsprogramm 25; durch dieses wird die Abzug-Steuerung 26 angesteuert und damit die Geschwindigkeit der Walzensegmente des Warenabzugs 11 individuell oder in Gruppen oder in ihrer Gesamtheit vorgegeben. Synchron mit den Schritten des Abzugsprogramms erfolgt die Auslösung des Bremsprogramms. Dadurch wird die Bremsung des einzelnen Fadens seiner Abzugsgeschwindigkeit angepaßt.
Fig. 6 shows schematically the interaction of the individual controls and the associated programs. The control of the weaving machine is done by the superordinate weaving program 20. This is predetermined by the three-dimensional fabric that is to be manufactured. The individual program steps of the subordinate programs 21, 22, 23, 25 are called up by the web program. The subordinate programs are
  • the brake program 21; this controls the brake control 14. The brakes 3 for each warp thread 2 can be set individually or in groups or in total and depending on the command steps of the draw-off program 25.
  • the Jacquard program 22; the jacquard control 4 is actuated by this. Each harness thread 16 can be pulled up by itself or in groups with others to form the upper compartment or pulled down by the rubber thread to form the lower compartment. The Jacquard program is predefined in such a way that the type of weave and / or the number of incorporated threads is changed and adjusted in accordance with the intended three-dimensional shape of the tissue zone to be formed.
  • the reed program 23; This controls the reed control 24 and thus specifies the vertical position of the reed in the direction 15.2. This influences the lateral distance between the warp threads and thus the density of the crossing points. At the same time, the positioning controller 5 is controlled so that the lateral distance of the warp threads in front of the reed corresponds to the distance that the warp threads receive from the respective vertical position of the reed.
  • the deduction program 25; This controls the take-off control 26 and thus the speed of the roller segments of the take-off 11 is specified individually or in groups or in their entirety. The braking program is triggered synchronously with the steps in the trigger program. As a result, the braking of the individual thread is adapted to its take-off speed.

Zur Ausführung der Erfindung wird zunächst ein über Länge und Breite homogenes ebenes Gewebe erzeugt. Dieses Gewebe ist charakterisiert durch die Zahl der Kreuzungspunkte pro Flächeneinheit, durch die Zahl der Bindungspunkte mit jeweils einer Umschlingung von einem Kett- und einem Schußfaden, durch die Zahl und Länge der flottierenden Fäden, sowie -falls gewünscht- durch die Zahl der Gewebelagen.
Um nunmehr eine dreidimensionale Gewebezone 13 - z.B. nach Fig. 7 ff.-auszubilden, wird in einer Zone des Gewebes, sei es am Längsrand, sei es in einem mittleren Bereich der Bahn, die Bindungszahl, d.h.: die Zahl Bindungspunkte mit je einer Umschlingung von Kett- und Schußfaden, erhöht oder vermindert. Das geschieht durch Änderung der Bindungsart und/ oder Änderung der Zahl der eingebundenen Fäden.
Die Zahl der eingebundenen Fäden kann erhöht werden, indem man im ebenen Gewebebereich Fäden flottierend oder in anderen Gewebelagen mitführt und so einen "Vorrat" bereithält, aus dem man Fäden "entnehmen" und in der drei-dimensionalen Gewebezone einbinden kann. Dadurch werden in der Gewebezone vergrößerte Längen an Schuß- und/oder Kettfäden eingebunden. Folglich ändert sich in dieser Gewebezone die gegenseitige Abstoßung der Kett- und Schußfäden und die Gewebezone wölbt sich drei-dimensional auf.
Deshalb ist hinsichtlich der Kettfäden eine Erhöhung oder Verminderung der Abzugsgeschwindigkeit der betroffenen Walzensegmente des Warenabzugs zweckmäßig, um einen Gewebeüberschuß am Abzug zu vermeiden.
Es sei bemerkt, daß im Stand der Technik der Unterschied der Geschwindigkeit des Kettfadenabzugs zu der dreidimensionalen Aufwölbung des Gewebes führt. Diese dreidimensionalen Aufwölbung beruht daher auf einer Änderung der Zahl der Kreuzungspunkte. Sie kann nur relativ schwach sein; vor allem führt sie zu einer "Verdünnung und Ausdünnung" des Gewebes und ist daher wenig stabil.
Nach der Erfindung wird dagegen dem Gewebe die dreidimensionalen Form durch die Änderung der Bindungszahl und damit durch Änderung seiner inneren Struktur aufgezwungen. Die Änderung der Geschwindigkeit des Kettfadenabzugs ist nicht die Ursache der drei-dimensionalen Form sondern lediglich eine sekundäre mögliche, jedoch nicht notwendige Maßnahme, die hinsichtlich der Gewebedichte vorzugsweise kompensiert wird durch eine weitere Änderung der Bindungszahl. Die Änderung der Geschwindigkeit des Kettfadenabzugs ist vor allem bei kleineren 3D-Formen oder bei großer Fachbildung nicht erforderlich.
Zur Unterstützung und Modifizierung der drei-dimensionalen Ausbildung der Gewebezone kann zudem der Kettfadenabstand und damit die Kreuzungszahl pro Flächeneinheit durch Auf- oder Abbewegung des Webblattes verändert werden. Auch diese Maßnahme kann hinsichtlich der Gewebedichte kompensiert werden durch eine weitere Änderung der Bindungszahl.
In order to carry out the invention, a flat tissue which is homogeneous over length and width is first produced. This fabric is characterized by the number of crossing points per unit area, by the number of binding points with a loop of one warp and one weft thread, by the number and length of the floating threads, and - if desired - by the number of fabric layers.
In order now to form a three-dimensional fabric zone 13 - for example according to FIG. 7 ff.-, the weave number, that is to say: the number of weave points with one loop each, is in a zone of the weave, be it on the longitudinal edge or be it in a central region of the web of warp and weft, increased or decreased. This is done by changing the type of weave and / or changing the number of threads involved.
The number of incorporated threads can be increased by floating threads in the flat fabric area or in other fabric layers and thus holding a "supply" from which threads can be "taken" and integrated in the three-dimensional fabric zone. As a result, increased lengths of weft and / or warp threads are incorporated in the fabric zone. As a result, the mutual repulsion of the warp and weft threads changes in this fabric zone and the fabric zone bulges three-dimensionally.
Therefore, with regard to the warp threads, it is advisable to increase or decrease the take-off speed of the affected roller segments of the take-off in order to avoid excess fabric on the take-off.
It should be noted that in the prior art the difference in the speed of the warp threading leads to the three-dimensional bulging of the fabric. This three-dimensional bulge is therefore based on a change in the number of crossing points. It can only be relatively weak; above all, it leads to a "thinning and thinning" of the tissue and is therefore not very stable.
According to the invention, however, the three-dimensional shape is forced on the tissue by changing the bond number and thus by changing its internal structure. The change in the speed of the warp thread pull-off is not the cause of the three-dimensional shape, but merely a secondary possible, but not necessary measure, which is preferably compensated for in terms of the fabric density by a further change in the weave number. It is not necessary to change the speed of the warp thread draw-off, especially in the case of smaller 3D shapes or if the shed is large.
To support and modify the three-dimensional formation of the fabric zone, the warp thread spacing and thus the number of crossings per unit area can also be changed by moving the reed up or down. This measure can also be compensated for with regard to the fabric density by a further change in the weave number.

Die Änderung der Bindungsart oder der Zahl der eingebundenen Fäden geschieht durch Änderung des Rhythmus der Fachbildung (Auf- und Abbewegung der Jacquardösen 6).The change in the type of weave or the number of threads incorporated happens by changing the rhythm of the subject training (up and down movement the jacquard eyelets 6).

Weitere Einzelheiten werden anhand der Figuren 7 bis 17 beschrieben.Further details are described with reference to FIGS. 7 to 17.

Fig. 7 stellt ein Gewebe dar, das eine Gewebezone mit herhöhter Bindepunktdichte (Bindungszahl) umschließt. Als Beispiel ist das umschließende Gewebe als Köperbindung ausgeführt. Die umschlossene drei-dimensionale Gewebezone weist eine Leinwandbindung auf. In dieser Zone ist die Häufigkeit der Kett-/Schußfaden-Umschlingungen gegenüber dem umschließenden Gewebe erhöht. Dadurch werden die Fäden weiter auseinandergedrückt und nehmen eine größere Oberfläche ein als das umschließende Köpergewebe. Die in Leinwand gebundene Zone wölbt sich daher gegenüber der Umgebung auf bzw. bildet während des Webens ein stetig wachsendes Vortuch. Im Bereich dieser leinwandbindigen Zone ist es vorteilhaft, das Gewebe mit erhöhter Geschwindigkeit abzuziehen, damit diese Vortuchbildung nicht zu Störungen führt. Die mit der erhöhten Geschwindigkeit abgezogenen Kreuzungsstellen würden größere Abstände aufweisen, wenn die Leinwandbindung nicht gleichzeitig die Anzahl der Umschlingungen erhöhen würde. Die Leinwandbindung wirkt damit ausgleichend auf die Vergrößerung von Kreuzungspunkt-Abständen.Figure 7 illustrates a fabric that has a tissue zone with increased bond point density (Bond number) encloses. As an example, this is inclusive Fabric in twill weave. The enclosed three-dimensional Fabric zone has a plain weave. The frequency is in this zone the warp / weft wrap over the enclosing one Tissue increased. This pushes the threads further apart and take up a larger surface area than the surrounding body tissue. The canvas-bound zone therefore curves towards the surroundings on or forms a constantly growing scarf during weaving. In the area of this canvas-binding zone, it is advantageous to use the fabric subtract increased speed so that this pre-form does not increase Leads to interference. The intersection points deducted at increased speed would have greater spacing if the plain weave would not increase the number of wraps at the same time. The Plain weave has a compensating effect on the enlargement of the intersection distances.

Die Fig. 8 bis 10 stellen drei Bindungsarten dar, die jeweils unterschiedliche Umschlingungshäufigkeiten aufweisen und dadurch unterschiedliche Platzbedürfnisse der verarbeiteten Fäden nach sich ziehen.
Fig. 8 zeigt eine Leinwandbindung, welche sowohl in Kett- als auch in Schußrichtung die größten Fadenabstände ergibt.
Die Köperbindung nach Fig. 9 hat demgegenüber weniger Umschlingungen und kleinere Fadenabstände. Ohne die Anzahl der Fäden zu ändern, ergeben sich dabei kleinere Gewebeflächen als bei der Leinwandbindung.
Der fünfbindige Atlas nach Fig. 10 führt die Fäden sehr dicht zusammen und beansprucht daher eine noch kleinere Flächenausdehnung.
Die Bindepunktdichte der drei in Fig. 8 bis 10 gezeigten Bindungen nimmt in der Anordnung der Figuren von oben nach unten ab. Die unterschiedlichen Bindepunktdichten pro Flächeneinheit und damit die bindungsspezifischen Platzverhältnisse werden genutzt, um im Bereich dreidimensionaler Wölbungen geschlossene Oberflächen zu erhalten und geometriebedingte netzartige Stellen zu vermeiden.
8 to 10 represent three types of weave, each of which has different looping frequencies and thereby entails different space requirements for the processed threads.
Fig. 8 shows a plain weave, which gives the greatest thread spacing both in the warp and in the weft direction.
In contrast, the twill weave according to FIG. 9 has fewer loops and smaller thread spacings. Without changing the number of threads, this results in smaller fabric areas than with plain weave.
10 brings the threads very close together and therefore requires an even smaller area.
The bond point density of the three bonds shown in FIGS. 8 to 10 decreases from top to bottom in the arrangement of the figures. The different bond point densities per unit area and thus the bond-specific space available are used to maintain closed surfaces in the area of three-dimensional arches and to avoid geometry-related network-like points.

Fig. 11 zeigt die Vorgehensweise, wenn mit Hilfe von streckenweise eingebundenen Zusatzfäden eine dreidimensionale Schalengeometrie unterstützt oder auf spezielle Anforderungen eingestellt wird. Vor der Schalenwölbung werden im Gewebe in einer unter oder über der später gewölbten Ebene liegenden Schicht Kett- und Schußfäden mitgeführt, die in dieser Ebene nicht eingebunden werden. An bestimmten Stellen werden diese mitgeführten Fäden z.B. Kettfäden 2.1 in Leinwandbindung in die zu wölbende Gewebe-Ebene/Schicht eingefügt. Bei unveränderten Kreuzungspunktabständen verdrängen die bisher unter oder über der zu wölbenden Ebene gebundenen Fäden nun die schon vorhandenen Fäden in der Ebene und führen damit zu einer Vergrößerung (bei Herausnahme von Fäden aus dieser Ebene zu einer Verkleinerung) der Flächengröße. Dieser Vorgang führt zu der gewünschten Wölbung. Andererseits können damit auch die Eigenschaften des Gewebes trotz wechselnder Abzugsgeschwindigkeiten und wechselnder Kreuzungspunktabstände eingestellt werden, z.B. mechanisches Verhalten, Durchlässigkeit und Schiebewiderstand.Fig. 11 shows the procedure when using sections integrated additional threads supports a three-dimensional shell geometry or is adjusted to special requirements. Before the bowl arch are in the tissue in a below or above the later arched level lying layer of warp and weft threads that are not in this plane be involved. These are carried at certain points Threads e.g. Warp threads 2.1 in plain weave in the fabric plane / layer to be arched inserted. If the distances between the intersections remain unchanged, displace them those previously bound below or above the level to be arched Now thread the existing threads in the plane and lead to them an enlargement (when threads are removed from this level to a Reduction) of the area size. This process leads to the desired one Bulge. On the other hand, it can also change the properties of the fabric despite changing take-off speeds and changing Crossing point distances can be set, e.g. mechanical behavior, Permeability and sliding resistance.

Die Fig. 12 bis 14 stellen anhand von drei exemplarischen Bindungsarten dar, wie mit Hilfe von mehrschichtigen Gewebebindungen dreidimensionale Schalengeometrien aufgebaut, ausgefüllt und in ihrer Struktur und Dichte eingestellt werden.
In Fig. 12 ist eine einschichtige Leinwandbindung gezeigt. Darin sind keine Fäden "gespeichert".
Die Bindung gemäß Fig. 13 enthält in einer zweiten Ebene 27 zwischen jedem zweiten Schußfaden 9.2 einen Schuß-"Zusatzfaden" 9.3 und zwischen jedem zweiten Kettfaden 2.2 einen Kett-"Zusatzfaden" 2.3. Die "Zusatzfäden werden zur Ausbildung der 3D-Form in die obere Schicht eingefügt.
In der Bindung gemäß Fig. 14 sind für jeden Schußfaden 9.1 und 9.2 je ein Schuß-"Zusatzfaden" 9.3 und 9.4 und für jeden Kettfaden 2.1 und 2.2 je ein Kett-"Zusatzfaden" 2.3 und 2.4 als zweite Gewebeschicht 27 eingebunden.
Je nachdem, wie groß die Wölbung sein soll, müssen mehr oder weniger Fäden aus der zusätzlichen Schicht 27 in die Gewebe-Ebene 28 eingebunden werden, die die Wölbung verursachen soll.
Je nachdem, wie groß die später beabsichtigte Wölbung der drei-dimensionalen Gewebe-Ebene 28 sein soll, müssen mehr oder weniger Fäden in zusätzlichen Schichten 27 mitgeführt werden, bis sie in die gewölbte Ebene 28 eingehen. In Fig. 15 sind neben der Bildung von mehreren Zusatzschichten 27 noch flottierende, nicht abgebundene Fäden (Kettfäden 2.1 oder Schußfäden 9.1) dargestellt, die über gewünschte Strecken, d.h. Gewebezone 13, in die zu wölbende Ebene/Schicht 28 eingebunden werden.
FIGS. 12 to 14 use three exemplary types of weave to show how three-dimensional shell geometries are built up, filled in and adjusted in structure and density with the aid of multi-layer weave weaves.
A single layer plain weave is shown in FIG. No threads are "stored" in it.
13 contains in a second plane 27 between each second weft 9.2 a weft "additional thread" 9.3 and between every second warp thread 2.2 a warp "additional thread" 2.3. The "additional threads are inserted into the upper layer to form the 3D shape.
14 are each a weft "additional thread" 9.3 and 9.4 and for each warp thread 2.1 and 2.2 each a warp "additional thread" 2.3 and 2.4 are incorporated as a second fabric layer 27 for each weft 9.1 and 9.2.
Depending on how large the curvature should be, more or fewer threads from the additional layer 27 have to be integrated into the fabric plane 28 which is to cause the curvature.
Depending on how large the later intended curvature of the three-dimensional fabric level 28 should be, more or fewer threads must be carried in additional layers 27 until they enter the curved level 28. In addition to the formation of a plurality of additional layers 27, FIG. 15 also shows floating, not tied threads (warp threads 2.1 or weft threads 9.1) which are integrated into the plane / layer 28 to be arched over desired distances, ie fabric zone 13.

Fig. 16 zeigt die Struktur einer gewebten Halbkugel.
Fig 16a (links) zeigt einen Gewebeausschnitt nach dem Stand der Technik, bei dem keine bindungstechnischen Verfahren zum Ausgleichen von vergrößerten Kreuzungspunktabständen bzw. zum Einstellen von bestimmten Gewebeeigenschaften eingesetzt worden ist, d.h.: es sind lediglich die Abstände der Kreuzungspunkte verändert; im Bereich der 3D-Form wird das Gewebe weniger dicht oder netzartig.
Fig 16a (rechts) zeigt einen Gewebeausschnitt, bei dem zusätzliche Fäden in die Oberfläche eingebunden wurden. Die Dichte des Gewebes hängt nicht von der 3D-Form ab. In solcher Ausgestaltung ist das Gewebe z.B. als Brustbereich oder Bruststütze für Damenbekleidung, als Gefäß, als Faserverstärkung für ein Kunststoffteil, z.B. eine Helmschale verwendbar.
16 shows the structure of a woven hemisphere.
16a (left) shows a fabric section according to the prior art, in which no binding technology has been used to compensate for increased crossover point distances or to set certain fabric properties, ie: only the distances between the crossover points have been changed; in the area of the 3D shape, the tissue becomes less dense or mesh-like.
16a (right) shows a tissue section in which additional threads have been integrated into the surface. The density of the fabric does not depend on the 3D shape. In such an embodiment, the fabric can be used, for example, as a breast area or breast support for women's clothing, as a vessel, as a fiber reinforcement for a plastic part, for example a helmet shell.

Am Beispiel von zusätzlich eingebundenen Schußfäden 9 zeigt Fig. 17 die Vortuchbildung. Sie beruht darauf, daß sich in der drei-dimensionalen Gewebezone durch die Verringerung der Schußfadenabstände und die Verdichtung des Gewebes ein Gewebeüberschuß ergibt. Ein Abzugsverfahren, das über der Gewebebreite unterschiedliche Abzugsgeschwindigkeiten realisiert, ist dabei vorteilhaft, da vor allem damit die Vortuchbildung ausgeglichen werden kann.17 shows the example of additionally integrated weft threads 9 Pretreatment. It is based on the fact that in the three-dimensional Fabric zone by reducing weft spacing and densification of the tissue results in excess tissue. A deduction process which realizes different take-off speeds across the fabric width, is advantageous because it helps to compensate for pre-cloth formation can be.

Fig.18 zeigt ein Segelboot mit Segel 30 in der Aufsicht. Auf der vom Wind abgewandten Seite beult sich das Segel in der Form einer Flugzeug-Tragfläche aus. Diese Ausbauchung 29 des Segels im Bereich des Masts 31 ist eine nach dieser Erfindung erzeugte 3D-Form, die ohne Nähte und nachträgliche Verformung hergestellt ist.Fig. 18 shows a sailboat with sail 30 in supervision. On the from The sail bulges in the shape of an airplane wing, facing away from the wind out. This bulge 29 of the sail in the area of the mast 31 is a 3D shape created according to this invention, without seams and subsequent deformation is produced.

Fig.19 zeigt den Schnitt längs eines Kettfadens durch ein drei-dimensionales Gewebe in Form eines Sacks. Ein solcher Sack kann zB. als Air-Bag oder als Formkörper dienen, der gasfömiges, flüssiges, aufschäumendes, festes Material oder Schüttgut gefüllt ist. Durch entsprechende dichte Bindungsart und durch Einbindung vieler zusätzlicher Schuß- bzw. Kettfäden entsteht die sackartige Aufwölbung. Einige Kettfäden 2.1 werden allerdings im Bereich der größten Aufwölbung nicht eingebunden. Vielmehr flottieren diese Kettfäden bei relativ hoher Fadenspannung. Diese flottierenden Kettfaden bilden damit eine Bewegungsbegrenzung für den Air-Bag und gegebn die Form im aufgeblasenen Zustand vor. Fig. 19 shows the section along a warp thread through a three-dimensional Fabric in the form of a sack. Such a sack can, for example. as an air bag or serve as shaped bodies, the gaseous, liquid, foaming, solid Material or bulk goods is filled. By means of an appropriate tight type of binding and by incorporating many additional weft or warp threads bag-like bulge. However, some warp threads 2.1 are in the area largest bulge not involved. Rather, these warp threads float with relatively high thread tension. Form these floating warp threads thus a movement limitation for the air bag and give the shape in the inflated state before.

BEZUGSZEICHENLISTEREFERENCE SIGN LIST

11
KettspulenWarp spools
22nd
KettfädenWarp threads
33rd
BremsenBrakes
44th
Jacquard-SteuerungJacquard control
55
Kettfaden-PositioniereinrichtungWarp thread positioning device
66
Ösen, EndöseEyelets, end eyelets
77
WebblattReed
88th
Rietstäbe, SprossenReed bars, rungs
99
SchußfadenWeft
1010th
SchußspuleWeft
1111
Zeugbaum, WarenabzugStuff tree, goods deduction
1212th
Gewebe, WarenabzugTissue, goods deduction
1313
Gewebezone, dreidimensionale GewebezoneTissue zone, three-dimensional tissue zone
1414
Brems-SteuerungBrake control
1515
Webblatt-BewegungReed movement
1616
Gattergate
1717th
AufwicklungWinding up
1818th
Harnischfaden, HarnischschnurHarness thread, harness cord
1919th
Litze, WeblitzeHeald, heald
2020th
WebprogrammWeaving program
2121
BremsprogrammBraking program
2222
Jacquard-ProgrammJacquard program
2323
Webblatt-ProgrammReed program
2424th
Webblatt-SteuerungReed control
2525th
AbzugsprogrammDeduction program
2626
Abzug-SteuerungTrigger control
2727
Gewebeebene, Gewebeschicht Tissue level, tissue layer
2828
Gewebeebene, 3D-GewebeschichtFabric plane, 3D fabric layer
2929
AusbauchungBulge
3030th
Segelsail
3131
Mastmast
3232
Führungsstab, PostionierstabManagement staff, postioning staff
3333
Gummizug, GummifadenElastic band, elastic thread
3434
Gummizug, GummifadenElastic band, elastic thread
3535
Gummizug, Gummifaden, Schraubenfeder, FührungsleisteElastic band, elastic thread, coil spring, guide bar
3636
ElektromagnetElectromagnet

Claims (27)

  1. A method for weaving a three-dimensionally formed fabric zone (13), characterized in that, within the fabric zone (13), the fabric is subjected to a forced change of its inner structure by controlled use of different binding point densities, for thereby generating a controlled three-dimensional bulging of the fabric zone (13), with the number of the binding points being changed by changing the number of tied warp threads (2) and weft threads (9), respectively, and/or by changing the type of the binding.
  2. The method according to claim 1, characterized by performing, within the fabric zone (13), in addition to the change of the number of the binding points, a change of the distances of the crossing points in the warp thread direction by generating different take-off speeds of individual warp threads (2), and/or a change of the distances of the crossing points in the weft thread direction by changing the lateral distances of the warp threads (2).
  3. The method according to claim 2, characterized in that, within the fabric zone (13), the change of the distances of the crossing points is wholly or partially compensated for by the change of the number of the binding points.
  4. The method according to any one of claims 1-3, characterized in that the change of the number of the tied threads is performed in that threads which float in the fabric adjacent to the fabric zone (13), are tied in the region of the fabric zone (13).
  5. The method according to any one of the preceding claims, characterized in that the change of the number of the tied threads is performed in that threads are tied in the region of the fabric zone (13) which have their length adapted to the fabric zone (13).
  6. The method according to claim 4, characterized in that, in case of multi-layered fabrics, for changing the number of the tied threads in the region of the fabric zone (13) of the fabric layer (28), threads from the fabric layer (27) are transferred into the fabric layer (28) and are tied in the fabric layer (28).
  7. The method according to any one of the preceding claims, characterized in that, for changing the number of the tied threads in the region of the fabric zone (13), use is made of a binding type with changed, preferably enlarged, density of the binding points and a correspondingly changed and respectively larger number of thread loops.
  8. The method according to any one of the preceding claims, characterized in that the changes of the binding type and/or of the number of the tied threads are performed, in addition to the purpose of a three-dimensional bulging of the fabric zone, also for setting mechanical and/or physical properties of the fabric zone (13), particularly for setting any one of the following properties: strength, elongation behavior or resistance to displacement, fabric thickness, atmospheric resistance, permeability, filtration properties, optical effects such as appearance, permeability to light, patterning, translucence.
  9. The method according to any one of the preceding claims, characterized in that the fabric at least in one region of the fabric zone (13) comprises two layers, which layers have a mutual distance and respectively form a hollow space between them.
  10. The method according to claim 9, characterized in that so-called binding warp threads (2.1) are tied in a regularly or irregularly alternating manner between the upper and the lower layer with a predetermined floating length.
  11. The method according to claim 9 or 10, characterized in that the hollow spaces between the fabric layers are filled by a liquid material, a liquid foamable material or a solid material.
  12. The method according to any one of claims 1-11, characterized in that the fabric zone (13) is formed within a two-dimensional fabric, with the two-dimensional fabric enclosing the fabric zone (13) wholly or partially, preferably in an annular configuration.
  13. The method according to any one of claims 1-12, characterized in that the fabric zone (13) has the shape of a cylinder which is open on one end side and on the other end side is provided with a flat or semispherical end portion and preferably with a centric opening.
  14. The method according to any one of claims 1-12, characterized in that the fabric zone (13) has the shape of a spherical bowl or semi-sphere.
  15. The method according to any one of claims 1-14, characterized in that, within the fabric zone (13), threads of a first material and threads of a second material are interwoven with each other.
  16. The method according to claim 15, characterized in that the weft threads (9) and/or the warp threads (2) have fibers or threads of a second material admixed thereto, particularly by covering, flocking or mixing.
  17. The method according to claim 15 or 16, characterized in that the fibers or threads of the second material are reshaped by thermal or chemical treatment to form a cohesive matrix having the threads of the first material distributed therein.
  18. The method according to any one of the preceding claims, characterized in that, for producing a shaped body, the fabric zone (13) is coated and/or soaked with the liquid phase of a curable synthetic material.
  19. A shaped body of a synthetic material, particularly a container, a bowl, a helmet shell, a rim, provided with a fiber reinforcement arranged as a fabric with a three-dimensional fabric zone (13), characterized in that the fabric zone (13) is bulged by the controlled use of different varying point densities, with the varying binding point density being obtained by changing the number of tied warp threads (2) and respectively weft threads (9) and/or by changing the type of the binding according to any one of claims 1-17.
  20. A woven piece of clothing, particularly a brassiere or breast support or an orthopedic or medical support fabric comprising a three-dimensional fabric zone (13) adapted to the shape of the body, characterized in that the fabric zone (13) is bulged by the controlled use of varying binding point densities, with the varying binding point density being obtained by changing the number of tied warp threads (2) and respectively weft threads (9) and/or by changing the type of the binding according to any one of claims 1-17.
  21. A hollow profile comprising a fabric with a three-dimensional fabric zone (13), particularly an air bag, characterized in that the fabric zone (13) is bulged by the controlled use of varying binding point densities, with the varying binding point density being obtained by changing the number of tied warp threads (2) and respectively weft threads (9) and/or by changing the type of the binding according to any one of claims 1-17, and that the fabric zone (13) is connected to a further parallel fabric which particularly in the region of the fabric zone (13) comprises an upper and a lower layer, wherein the layers have a mutual distance and respectively form a hollow space between them, and wherein so-called binding warp threads are tied in a regularly or irregularly alternating manner between the upper and the lower layer with a predetermined floating length.
  22. A sail comprising a region (31) provided to bulge out on the side facing away from the wind and to bulge out particularly in the shape of an airfoil profile, characterized in that said region (31) is a fabric zone (13) bulged by the controlled use of varying binding point densities, with the varying binding point density being obtained by changing the number of tied warp threads (2) and respectively weft threads (9) and/or by changing the type of the binding according to any one of claims 1-17.
  23. A hat comprising a bowl-shaped three-dimensional fabric zone (13) and a two-dimensional woven brim wholly or partially enclosing the three-dimensional fabric zone (13), characterized in that the three-dimensional fabric zone is bulged by the controlled use of varying binding point densities, with the varying binding point density being obtained by changing the number of tied warp threads (2) and respectively weft threads (9) and/or by changing the type of the binding according to any one of claims 1-17, and is woven to form an integral piece with the two-dimensionally woven brim.
  24. A weaving machine comprising a creel (16) with warp bobbins (1) from which the warp threads (2) can be pulled off individually at differently controllable speeds, further comprising a respective brake (3) for each of the warp threads (2), a product take-off device (11) arranged to take off the completed fabric (12) and divided into conveying segments provided to be driven for respectively one warp thread or a group of warp threads (2) separately from each other with a varying and controllable speed; and a jacquard device; characterized in that the jacquard device is provided with a control unit (4) arranged to change the number of tied threads and/or the type of the binding for performing the method according to any one of claims 1-17.
  25. The weaving machine according to claim 24, characterized by a distributing means (7) arranged downstream of the jacquard device for continuously controlled adjustment of the lateral warp thread distances, particularly a weaving reed (7) with its reed dents (8) being continuously and substantially steadily adjustable relatively to each other during the weaving process, or a weaving reed (7) with fixed dents (8) which in the vertical direction are arranged to converge in a fan-like manner, with the weaving reed arranged to be moved horizontally and to be moved substantially continuously up and down as well as to be positioned according to the weft thread insertion.
  26. The weaving machine according to claim 24 or 25, characterized by a guide means (5) for guiding the warp threads (2) into the guide eyelets (6) of the jacquard device which is controllable in such a manner according to the position of the distributing means (7) that the warp threads (2) pass through the guide eyelets (6) of the jacquard device and through the distributing means (7) without substantial reversal.
  27. The weaving machine according to claim 24, 25 or 26, characterized by a brake control unit (14) by which each of the brakes (3) assigned to the individual warp threads (2) is controllable individually in a predetermined manner, preferable according to a program.
EP96911971A 1995-04-06 1996-03-29 Method of weaving a three-dimensionally shaped fabric zone Revoked EP0819188B1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE19512554 1995-04-06
DE19512554 1995-04-06
DE19540628 1995-10-31
DE19540628 1995-10-31
PCT/EP1996/001397 WO1996031643A1 (en) 1995-04-06 1996-03-29 Method of weaving a three-dimensionally shaped fabric zone

Publications (2)

Publication Number Publication Date
EP0819188A1 EP0819188A1 (en) 1998-01-21
EP0819188B1 true EP0819188B1 (en) 2000-06-21

Family

ID=26014099

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96911971A Revoked EP0819188B1 (en) 1995-04-06 1996-03-29 Method of weaving a three-dimensionally shaped fabric zone

Country Status (7)

Country Link
US (1) US6000442A (en)
EP (1) EP0819188B1 (en)
JP (1) JPH11505296A (en)
CN (1) CN1183123A (en)
AT (1) ATE194019T1 (en)
DE (1) DE59605463D1 (en)
WO (1) WO1996031643A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004048331A1 (en) * 2004-10-05 2006-04-06 Volkswagen Ag Dashboard for a motor vehicle
DE102006050533A1 (en) * 2006-10-26 2008-04-30 Volkswagen Ag Internal cladding for vehicles comprises fabric woven from non-conductive, elastic fibers, into which spiral, conductive fibers are woven so that they cross at right angles
DE102011121883A1 (en) 2011-12-21 2013-06-27 Volkswagen Aktiengesellschaft Method for preparation of molded unit, involves applying polymeric matrix material, and applying positive and negative charge carriers to fiber semi-finished product and electrode in tool respectively for fixing product at tool
EP2865797A1 (en) * 2013-10-25 2015-04-29 Gustav Gerster GmbH & Co. KG Narrow woven fabric with predeterminable curvature
DE102014107129B3 (en) * 2014-05-20 2015-07-02 Deutsche Institute Für Textil- Und Faserforschung Denkendorf Tissue part and method for producing a three-dimensional preform part

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6419263B1 (en) * 1998-05-11 2002-07-16 The B. F. Goodrich Company Seatbelt system having seamless inflatable member
AU7296398A (en) 1997-05-11 1998-12-08 B.F. Goodrich Company, The Seatbelt system having seamless inflatable member
DE19803656C2 (en) 1998-01-30 2000-02-17 Milliken Europ Nv Band-shaped textile product and method for producing a body reinforced with the textile product
US6892767B2 (en) * 1999-07-19 2005-05-17 Toyo Boseki Kabushiki Kaisha Uncoated air bag fabric
US6398253B1 (en) * 1999-09-01 2002-06-04 Trw Occupant Restraint Systems Gmbh & Co. Kg Gas bag protective device
DE60206629T2 (en) * 2001-07-17 2006-06-22 Price Shepshed Ltd., Newark HOSE AND METHOD FOR THE PRODUCTION THEREOF
BE1014721A5 (en) * 2002-03-22 2004-03-02 Wiele Michel Van De Nv AND METHOD FOR loom weaving fabrics with pile loops.
US6886858B2 (en) 2002-07-26 2005-05-03 Key Safety Systems, Inc. Air bag assembly with tethers in a woven cushion and method of construction
US20040100080A1 (en) * 2002-11-27 2004-05-27 Depue Todd Expandable skin for safety restraint system
CN1317437C (en) * 2004-05-10 2007-05-23 中材科技股份有限公司 Process for weaving three-dimensional fabrics with special-shaped cross-section and special-purpose heald wire
US7670969B2 (en) * 2004-11-19 2010-03-02 Albany Engineered Composites, Inc. Fabricating symmetric and asymmetric shapes with off-axis reinforcement from symmetric preforms
WO2006080027A1 (en) * 2005-01-28 2006-08-03 Devson Singh Yengkhom A seamless garment
DE102005019228A1 (en) * 2005-04-20 2006-11-02 Takata-Petri (Ulm) Gmbh Fabric for an airbag
ES2259569B1 (en) * 2005-09-28 2007-06-16 Loncar, S.L. LAMINAR SUPPORT FOR IMPACT ABSORPTION BY HUMAN SHOCK.
US20070200329A1 (en) * 2006-02-27 2007-08-30 Key Safety Systems, Inc. Woven air bag with integrally woven 3-D tethers
FR2911615B1 (en) * 2007-01-18 2011-11-25 Custon Laminates Mfg MATERIALS FOR THE CONFECTION OF SAILS AND SAILS MADE WITH THIS TYPE OF MATERIALS.
FR2913053B1 (en) * 2007-02-23 2009-05-22 Snecma Sa PROCESS FOR MANUFACTURING A GAS TURBINE CASE OF COMPOSITE MATERIAL AND CARTER THUS OBTAINED
US8834552B2 (en) * 2007-12-27 2014-09-16 Cook Medical Technologies Llc Stent graft having floating yarns
FR2926821B1 (en) * 2008-01-29 2010-04-02 Deschamps A & Fils Ets WOVEN STRUCTURE AND PANEL OR CONTAINER COMPRISING SUCH A STRUCTURE
FR2926822B1 (en) * 2008-01-29 2010-05-28 Deschamps A & Fils Ets WEAVING METHOD AND WEAVING FABRIC FOR IMPLEMENTING SAID METHOD
EP2383377B1 (en) * 2010-04-29 2012-09-26 Groz-Beckert KG Loom and method for three dimensional weaving
US8696741B2 (en) * 2010-12-23 2014-04-15 Maquet Cardiovascular Llc Woven prosthesis and method for manufacturing the same
CN104160079B (en) * 2011-12-14 2016-02-10 斯奈克玛 There is the jacquard weaving machine optimizing warp count
JP5880280B2 (en) * 2012-05-25 2016-03-08 株式会社豊田自動織機 Textile substrate and fiber reinforced composite material
US9725833B2 (en) * 2012-07-12 2017-08-08 United Technologies Corporation Woven structure and method for weaving same
JP6562952B2 (en) * 2014-05-09 2019-08-21 ザ ノース フェイス アパレル コーポレイションThe North Face Apparel Corp. Single woven fabric construction in multiple zones
US9719196B2 (en) * 2015-04-07 2017-08-01 Mahmoud M Salama Interlocking weave for high performance fabrics
JP2017518443A (en) 2015-04-30 2017-07-06 ザ ノース フェイス アパレル コーポレイションThe North Face Apparel Corp. Baffle construction for insulation filling material
CN105239256B (en) * 2015-09-06 2017-04-19 西安工程大学 Three-dimensional multilayer pneumatic picking loom
US10052789B2 (en) 2015-11-25 2018-08-21 General Electric Company Methods of processing ceramic fiber
US9815736B2 (en) 2015-11-25 2017-11-14 General Electric Company Apparatus and methods for processing ceramic fiber
CN107042030B (en) * 2016-02-06 2019-11-12 谢建民 Filter cloth and its manufacturing method, filter assemblies and its manufacturing method
US10905188B2 (en) * 2016-07-19 2021-02-02 Bradford C. Jamison Plexus of filaments with linked members
JP6760101B2 (en) * 2017-01-20 2020-09-23 トヨタ紡織株式会社 Bag woven airbag
CN209555469U (en) * 2017-04-28 2019-10-29 爱世伴公司 The heddle (heald) system and actuator system of loom and loom
US20190076632A1 (en) * 2017-09-14 2019-03-14 Amrita Vishwa Vidyapeetham Suturable woven implants from electrospun yarns for sustained drug release in body cavities
US20190344743A1 (en) * 2018-05-14 2019-11-14 Ford Global Technologies, Llc Seatbelt assembly
CN108950833B (en) * 2018-07-26 2019-12-17 珠海建轩服装有限公司 Sector jacquard fabric and weaving method and application thereof
CN109402831B (en) * 2018-12-18 2020-10-23 中材科技股份有限公司 Hollow sandwich fabric with profiling function
KR102102435B1 (en) * 2019-09-04 2020-04-20 한국건설기술연구원 Apparatus for manufacturing textile grid for improving adhesion, and method for manufacturing textile grid using the same
CN112680863B (en) * 2020-12-11 2022-05-10 江苏恒力化纤股份有限公司 3D fabric and preparation method thereof
CN113403727B (en) * 2021-07-02 2022-11-29 大连工业大学 Method for weaving variable-diameter three-dimensional woven tubular fabric by using common weaving machine
US20230110539A1 (en) * 2021-10-13 2023-04-13 Meta Platforms, Inc. Methods and apparatus for fabricating curved elastic bands and articles incorporating curved elastic bands

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US579164A (en) * 1897-03-23 mcauliffe
FR814429A (en) * 1936-12-03 1937-06-23 Successeurs De G Deglas & Cie Fabrics of which the warp threads and weft threads are corrugated, and method of manufacture
US2655950A (en) * 1948-06-30 1953-10-20 Bates Mfg Co Terry weave fabric
US3132671A (en) * 1956-11-20 1964-05-12 Raymond Dev Ind Inc Methods of and apparatus for weaving shaped fabrics and articles woven thereby
US3360014A (en) * 1965-07-28 1967-12-26 Allied Chem Textile containers
US3340919A (en) * 1965-12-15 1967-09-12 Johnson & Johnson Bag
US3807754A (en) * 1972-01-03 1974-04-30 Uniroyal Inc Passive restraint systems for vehicle occupants
FR2213363A1 (en) * 1973-01-08 1974-08-02 Lorichon Gerard Loom has reed with non-parallel teeth - which are spaced by a greater amount at one of their ends than the other
JPS51133574A (en) * 1975-04-11 1976-11-19 Permes Einlagestoff Zonal core fabric
JPS63182446A (en) * 1987-01-16 1988-07-27 株式会社 川島織物 Curtain cloth
US4825912A (en) * 1987-07-23 1989-05-02 Ciba-Geigy Corporation Apparatus for weaving spheriodially contoured fabric
JPH0692218B2 (en) * 1987-12-11 1994-11-16 旭化成工業株式会社 Shock absorbing bag and manufacturing method thereof
US4848412A (en) * 1988-02-23 1989-07-18 Milliken Research Corporation Patterned woven fabric
GB8903559D0 (en) * 1989-02-16 1989-04-05 Marling Ind Plc Air bag
US5685347A (en) * 1989-02-16 1997-11-11 Airbags International Limited Circular air bag made of two simultaneously woven fabrics
DE3915085C2 (en) * 1989-05-09 1998-05-07 Buesgen Wilhelm Alexander Dr I Device for producing a three-dimensional fabric
US5011183A (en) * 1990-06-08 1991-04-30 Stern & Stern Industries, Inc. Bag, airbag, and method of making the same
JP3222158B2 (en) * 1990-09-08 2001-10-22 アクゾ ノーベル ナムローゼ フェンノートシャップ Method of manufacturing a woven fabric for the filter part of an airbag
DE4137082C2 (en) * 1991-11-12 1995-08-31 Wilhelm Buesgen Gmbh & Co Kg Device for varying the warp thread spacing in the production of two- or three-dimensional textile fabrics
JPH05156545A (en) * 1991-12-10 1993-06-22 Takata Kk Non-coat woven fabric and its production
JP3036215B2 (en) * 1992-03-18 2000-04-24 タカタ株式会社 Airbag
JPH06156174A (en) * 1992-11-30 1994-06-03 Takata Kk Air bag
US5277230A (en) * 1993-02-22 1994-01-11 Milliken Research Corporation Double twillwoven air bag fabric
EP0639484B1 (en) * 1993-03-03 1998-11-25 Teijin Limited Filter cloth for air bag
ATE170574T1 (en) * 1993-07-31 1998-09-15 Akzo Nobel Nv METHOD FOR PRODUCING UNCOATED TECHNICAL FABRIC

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004048331A1 (en) * 2004-10-05 2006-04-06 Volkswagen Ag Dashboard for a motor vehicle
DE102006050533A1 (en) * 2006-10-26 2008-04-30 Volkswagen Ag Internal cladding for vehicles comprises fabric woven from non-conductive, elastic fibers, into which spiral, conductive fibers are woven so that they cross at right angles
DE102011121883A1 (en) 2011-12-21 2013-06-27 Volkswagen Aktiengesellschaft Method for preparation of molded unit, involves applying polymeric matrix material, and applying positive and negative charge carriers to fiber semi-finished product and electrode in tool respectively for fixing product at tool
DE102011121883B4 (en) 2011-12-21 2024-03-07 Volkswagen Aktiengesellschaft Method and device for producing a molded part
EP2865797A1 (en) * 2013-10-25 2015-04-29 Gustav Gerster GmbH & Co. KG Narrow woven fabric with predeterminable curvature
DE102014107129B3 (en) * 2014-05-20 2015-07-02 Deutsche Institute Für Textil- Und Faserforschung Denkendorf Tissue part and method for producing a three-dimensional preform part
EP2947189A1 (en) 2014-05-20 2015-11-25 Deutsche Institute für Textil- und Faserforschung Denkendorf Textile section and method for creating a three dimensional preform part

Also Published As

Publication number Publication date
EP0819188A1 (en) 1998-01-21
WO1996031643A1 (en) 1996-10-10
CN1183123A (en) 1998-05-27
US6000442A (en) 1999-12-14
JPH11505296A (en) 1999-05-18
ATE194019T1 (en) 2000-07-15
DE59605463D1 (en) 2000-07-27

Similar Documents

Publication Publication Date Title
EP0819188B1 (en) Method of weaving a three-dimensionally shaped fabric zone
EP0981660B1 (en) Fabric with a variable width
EP2383377B1 (en) Loom and method for three dimensional weaving
EP2754548B1 (en) Method for producing preforms for fibre reinforced composites
DE2500365C2 (en) Method and device for the production of cushions from foamed plastic with a textile composite cover
DE10005202B4 (en) Process and apparatus for the continuous component and process-oriented production of reinforcing structure semi-finished products for fiber-plastic composite materials
DE60010676T2 (en) SHINY TISSUE, METHOD AND WEB MACHINE FOR THE CONTINUOUS PRODUCTION OF SUCH A TISSUE
EP1278901B1 (en) Device for producing at least two tubular belt bands that can be turned inside out
WO2013167362A1 (en) Textile part, composite-material element with textile part, and production method for the same
WO2013127460A1 (en) Fabric for use in composite materials and method for producing said fabric and a composite material body
EP3310952B1 (en) Two-dimensional fabric and method for the production thereof
EP3332053A1 (en) Multilayer fabric and corresponding production method
EP0036498A1 (en) Method for supplying a sheet of warp yarns to a machine for producing textile products
EP2364670A1 (en) Device for producing a curvature in a vascular prosthetis
DE102012101016A1 (en) Method for manufacturing profiled fiber reinforced semifinished products for producing fiber reinforced material, involves processing fabric acted upon with pressure and temperature for forming a fiber reinforced semifinished product
EP1375715B1 (en) Method and double-plush loom for making patterned pile fabric
DE102007038931A1 (en) Thread layer sewing material i.e. laminar textile for producing of spatial armoring structures for e.g. concrete part, has warp threads whose lengths between two weft threads are variable in warping and fill directions in lattice structure
DE102013003439A1 (en) Method for producing round woven hose with variable diameter, involves varying diameter of tubular fabric by continuously raising or lowering webrings on circular loom while simultaneously changing diameter of webrings
DE102011106865A1 (en) Continuous production method for producing fiber-reinforced plastic profiles of any cross-sectional shape using web technology, involves forming a hollow textile structure and preparing the end section of hollow textile structure
DE102018217421B4 (en) Weaving machine for producing folds, in particular pleated folds, and/or loops in fabric, and method for producing such a fabric
EP1375714B1 (en) Method for manufacturing a pile fabric
DE4126709A1 (en) Mfg. airbag fabric with different zones - by varying pick counts and warp end counts and/or weave constructions
DE102022121877B3 (en) DEVICE AND METHOD FOR PRODUCTION OF SEAMLESS CIRCULAR PIECE WITH VARIABLE DIAMETER
EP2465982A1 (en) Fabric for use in composite materials and method for producing the fabric and a composite material
EP0767261B1 (en) Double weft weaving process for double velvet and device for the selective control of the pile yarns

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19971027

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE FR GB IT LI

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19990611

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR GB IT LI

REF Corresponds to:

Ref document number: 194019

Country of ref document: AT

Date of ref document: 20000715

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SCHMAUDER & PARTNER AG PATENTANWALTSBUERO

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59605463

Country of ref document: DE

Date of ref document: 20000727

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20000726

ITF It: translation for a ep patent filed

Owner name: PORTA CHECCACCI & ASSOCIATI S.P.A.

ET Fr: translation filed
PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

26 Opposition filed

Opponent name: BOSTON SCIENTIFIC CORPORATION

Effective date: 20010321

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20030424

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20030425

Year of fee payment: 8

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040331

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

APAA Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOS REFN

PLAQ Examination of admissibility of opposition: information related to despatch of communication + time limit deleted

Free format text: ORIGINAL CODE: EPIDOSDOPE2

PLAR Examination of admissibility of opposition: information related to receipt of reply deleted

Free format text: ORIGINAL CODE: EPIDOSDOPE4

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: BOSTON SCIENTIFIC CORPORATION

Effective date: 20010321

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20050414

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20050419

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20050425

Year of fee payment: 10

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: BUESGEN, ALEXANDER

RIN2 Information on inventor provided after grant (corrected)

Inventor name: BUESGEN, ALEXANDER

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060331

Year of fee payment: 11

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

27W Patent revoked

Effective date: 20060124

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Free format text: 20060124