EP0801159B1 - Schrumpfarme Hybridgarne, Verfahren zu deren Herstellung und deren Verwendung - Google Patents

Schrumpfarme Hybridgarne, Verfahren zu deren Herstellung und deren Verwendung Download PDF

Info

Publication number
EP0801159B1
EP0801159B1 EP97105367A EP97105367A EP0801159B1 EP 0801159 B1 EP0801159 B1 EP 0801159B1 EP 97105367 A EP97105367 A EP 97105367A EP 97105367 A EP97105367 A EP 97105367A EP 0801159 B1 EP0801159 B1 EP 0801159B1
Authority
EP
European Patent Office
Prior art keywords
hybrid
yarns
filaments
matrix
shrinkage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97105367A
Other languages
English (en)
French (fr)
Other versions
EP0801159A2 (de
EP0801159A3 (de
Inventor
Josef Geirhos
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
INVISTA TECHNOLOGIES Sarl
Original Assignee
Arteva Technologies SARL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arteva Technologies SARL filed Critical Arteva Technologies SARL
Publication of EP0801159A2 publication Critical patent/EP0801159A2/de
Publication of EP0801159A3 publication Critical patent/EP0801159A3/de
Application granted granted Critical
Publication of EP0801159B1 publication Critical patent/EP0801159B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/22Yarns or threads characterised by constructional features, e.g. blending, filament/fibre
    • D02G3/40Yarns in which fibres are united by adhesives; Impregnated yarns or threads
    • D02G3/402Yarns in which fibres are united by adhesives; Impregnated yarns or threads the adhesive being one component of the yarn, i.e. thermoplastic yarn
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G1/00Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics
    • D02G1/16Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics using jets or streams of turbulent gases, e.g. air, steam
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/44Yarns or threads characterised by the purpose for which they are designed
    • D02G3/447Yarns or threads for specific use in general industrial applications, e.g. as filters or reinforcement
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02JFINISHING OR DRESSING OF FILAMENTS, YARNS, THREADS, CORDS, ROPES OR THE LIKE
    • D02J13/00Heating or cooling the yarn, thread, cord, rope, or the like, not specific to any one of the processes provided for in this subclass
    • D02J13/001Heating or cooling the yarn, thread, cord, rope, or the like, not specific to any one of the processes provided for in this subclass in a tube or vessel
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2101/00Inorganic fibres
    • D10B2101/02Inorganic fibres based on oxides or oxide ceramics, e.g. silicates
    • D10B2101/06Glass
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2101/00Inorganic fibres
    • D10B2101/02Inorganic fibres based on oxides or oxide ceramics, e.g. silicates
    • D10B2101/08Ceramic
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2101/00Inorganic fibres
    • D10B2101/10Inorganic fibres based on non-oxides other than metals
    • D10B2101/14Carbides; Nitrides; Silicides; Borides
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2101/00Inorganic fibres
    • D10B2101/10Inorganic fibres based on non-oxides other than metals
    • D10B2101/14Carbides; Nitrides; Silicides; Borides
    • D10B2101/16Silicon carbide
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2101/00Inorganic fibres
    • D10B2101/20Metallic fibres
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/02Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides
    • D10B2331/021Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides aromatic polyamides, e.g. aramides
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/04Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyesters, e.g. polyethylene terephthalate [PET]
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/06Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyethers
    • D10B2331/061Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyethers polyetherketones, polyetheretherketones, e.g. PEEK
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/14Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polycondensates of cyclic compounds, e.g. polyimides, polybenzimidazoles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S57/00Textiles: spinning, twisting, and twining
    • Y10S57/908Jet interlaced or intermingled
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2922Nonlinear [e.g., crimped, coiled, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2922Nonlinear [e.g., crimped, coiled, etc.]
    • Y10T428/2924Composite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2922Nonlinear [e.g., crimped, coiled, etc.]
    • Y10T428/2925Helical or coiled
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2973Particular cross section
    • Y10T428/2976Longitudinally varying

Definitions

  • the present invention relates to new hybrid yarns, which are characterized by a special low thermal shrinkage.
  • Such yarns can be advantageously to composite materials or to textile fabrics, such as Process occasionally.
  • Hybrid games i.e. yarns made of reinforcement and matrix filaments, are in themselves known. Such yarns are used, for example, as preliminary products for production of composite materials. This is usually done with a textile Fabric made from the hybrid game; the matrix filaments of this Hybrid games are then created by melting or melting into a matrix transferred, which embeds or flows around the reinforcing filaments and builds the network together with them.
  • the matrix filaments are generally not subject to high requirements in terms of strength and other mechanical properties, as these are melted anyway in later processing steps. It is therefore no longer necessary an elaborate aftertreatment in the production of such filaments spinning, like stretching or fixing. Show matrix filaments therefore inherently a significant thermal shrinkage, which is in the later processing steps can adversely affect the product.
  • Such yarns are so-called two-component loop yarns with high strength and low shrinkage.
  • Such yarns were especially for the Developed for use as sewing thread and for example in EP-B-363,798 described.
  • such yarns usually do not have any Matrix filaments from deep-melting filaments, but are made Filaments of one type but different strengths, in a core-sheath structure are arranged, built.
  • the yarns according to the invention are characterized by a relatively large size Temperature interval from very low thermal shrinkage.
  • the present invention relates to containing low-shrinkage hybrid yarns Reinforcing filaments and matrix filaments made of thermoplastic polymers, the a lower melting point than the melting or decomposition point of the Have reinforcing filaments, and are characterized in that the thermal shrink, at a load of 0.0004 cN / dtex and an air temperature of 160 ° C of less than 2% and at an air temperature of 200 ° C of less than or equal to 5%, in particular less than or equal to Is 3%, and that the static shrinkage force at Temperatures of up to 200 ° C up to 0.01cN / dtex.
  • the mechanical properties of the hybrid yarns according to the invention are shown in Dependence of the composition, such as type and proportion of the reinforcing filaments or the matrix filaments depending on the physical structure of the yarn, such as. Degree of turbulence, can be varied within wide limits. Usually is the proportion of the matrix filaments 5 to 60% by weight, preferably 10 to 50% by weight, based on the weight of the hybrid yarn.
  • hybrid yarn is at its broadest within the scope of this description Understand meaning. Every combination is therefore included Reinforcement filaments and to understand the matrix filaments defined above.
  • Hybrid yarn types are filament yarns made of different Types of filaments that are intermingled or by another Technology, such as twisting, are combined. All these Hybrid games are characterized by the presence of two or more types of Filaments characterized, with at least one filament type Reinforcing filament and at least one filament type is a matrix filament in the sense of the definitions given above.
  • Intermingling or commingling techniques are particularly preferred manufactured hybrid yarns; it can be a loop game act, but preferably smooth yarns.
  • the flat yarns according to the invention are distinguished by a particularly good one Processability with area-forming technologies and good fabric samples out.
  • the subject shrinkage is a burden of 0.0004 CN / dtex and a temperature of 160 ° C less than or equal to 2%, in particular less than or equal to 1%.
  • the number of swirling points in the hybrid games according to the invention leaves can be set in a wide range by the choice of the swirling conditions.
  • Preferred hybrid yarns have a intermingling distance of less than 60 mm, preferably less than 30 mm; this value refers to a Measurement with the Rothschild Entanglement Tester 2050 needle tester.
  • the matrix filaments of the hybrid yarns according to the invention consist of thermoplastic polymers. These preferably have a melting point, which is at least 30 ° C below the melting or destruction point of each reinforcement filament used.
  • Reinforcing filaments can be a variety of filaments Trade materials. In addition to organic polymers, inorganic Materials are used. Reinforcement filaments in the sense of this Description mean filaments which are in the desired textile Flat structures or composite material take on a reinforcing function. In a first preferred embodiment, the reinforcement filaments are made of Single filaments built that have an initial module of more than 50 GPa exhibit.
  • Preferred reinforcing filaments of this type are made of glass; Carbon; Metals or metal alloys, such as steel, aluminum or tungsten; Non-metals, like boron; Metal, semi-metal or non-metal oxides, carbides or nitrides, such as Aluminum oxide, zirconium oxide, boron nitride, boron carbide, silicon carbide, silicon dioxide (Quartz); Ceramics, or high-performance polymers (i.e.
  • Fibers that have no or only low stretch a very high initial modulus and a very high one Tensile strength such as liquid crystalline polyester (LCP), poly (bisbenzimidazo-benzophenanthrolines (BBB), poly (amide imides) (PAI), Polybenzimidazoles (PBI), poly (p-phenylene benzobisoxazoles (PBO), poly (p-phenylene benzobistiazoles) (PBT), polyether ketones (PEK, PEEK, PEEKK), Polyetherimides (PEI), polyether sulfones (PESU), polyimides (PI), poly- (p-phenylenes) (PPP), polyarylene sulfides (PPS), polysulfones (PSU), polyolefins, such as polyethylene (PE) or polypropylene (PP), and aramids (HMA), such as poly- (m-phenylene-isophthalamide), Poly (m-phenylene terephthalamide), poly (p-phen
  • reinforcement and Matrix filaments used which are made of polymeric materials from a Polymer class, for example from polyolefins, from polyamides or preferably consist of polyesters.
  • the single filaments of the reinforcing filaments have an initial modulus of more than 10 GPa.
  • Reinforcement filaments for this Embodiments are preferably high-strength and low-shrinkage Polyester filament yarns, in particular with a yarn count of less than or equal to 1100 dtex, a tenacity greater than or equal to 55 cN / tex, one Maximum tensile strength expansion of greater than or equal to 12% and a hot air shrinkage (measured at 200 ° C) of less than or equal to 9%.
  • the measurement of the maximum tensile force and the maximum tensile force elongation used upcoming polyester game is based on DIN 53 830, part 1.
  • Matrix filaments in the hybrid games according to the invention consist of or contain thermoplastic polymers. It can be any melt-spinnable thermoplastics act as long as the manufactured therefrom Melt filaments at a temperature that is lower than the melting or Decomposition temperature of the reinforcing filaments used in the respective case.
  • Matrix filaments made from polybutylene terephthalate and / or from are preferred Polyethylene terephthalate and / or from chemically modified Polyethylene terephthalate.
  • Matrix filaments made from a thermoplastic are very particularly preferred modified polyester, especially a modified polyethylene terephthalate used; the modification lowers the melting point in the Comparison with the filament made of unmodified polyester.
  • modified polyesters of this type contain the recurring structural units of the formulas I and II -O-OC-Ar 1 -CO-OR 1 - -O-OC-R 2 -CO-OR 3 - wherein Ar 1 represents a divalent mononuclear or polynuclear aromatic radical, the free valences of which are in the para position or in a parallel or coaxial position with respect to one another, preferably 1,4-phenylene and / or 2,6-naphthylene , R 1 and R 3 independently of one another represent divalent aliphatic or cycloaliphatic radicals, in particular radicals of the formula -C n H 2n -, in which n is an integer between 2 and 10, in particular ethylene, or a radical derived from cyclohexanedimethanol, and R 2 represents a divalent aliphatic, cycloaliphatic or mononuclear or polynuclear aromatic radical, the free valences of which are in the meta position
  • Very particularly preferred modified polyesters of this type contain 40 to 95 mol% of the repeating structural units of the formula I and 60 to 5 mol% of the repeating structural units of the formula II, in which Ar 1 is 1,4-phenylene and / or 2,6-naphthylene, R 1 and R 3 are ethylene and R 2 is 1,3-phenylene.
  • matrix filaments are used Use that consist of a thermoplastic and elastomeric polymer or contain this. It can also be any melt-spinnable and elastomeric thermoplastics act as long as the filaments made from them melt at a temperature that is lower than the melting or Decomposition temperature of the reinforcing filaments used in the respective case.
  • a "elastomeric polymer” means a polymer understand whose glass transition temperature is less than 0 ° C, preferably is less than 23 ° C.
  • thermoplastic and elastomeric polymers are elastomeric polyamides, polyolefins, polyesters and polyurethanes. Such polymers are known per se.
  • any radicals mean divalent aliphatic radicals, including branched and in particular straight-chain
  • alkylene for example alkylene with two to twenty, preferably with two to ten carbon atoms.
  • examples of such radicals are ethane-1,2-diyl, Propane-1,3-diyl, butane-1,4-diyl, pentane-1,5-diyl, hexane-1,6-diyl or octane-1,8-diyl.
  • radicals in the structural formulas defined above mean divalent cycloaliphatic radicals, they are to be understood as meaning groups which contain carbocyclic radicals having five to eight, preferably six, ring carbon atoms. Examples of such radicals are cyclohexane-1,4-diyl or the group -CH 2 -C 6 H 10 -CH 2 -.
  • any radicals mean divalent aromatic residues, these are single- or multi-core aromatic Hydrocarbon radicals or heterocyclic-aromatic radicals, the one or can be multi-core. Show in the case of heterocyclic aromatic radicals these in particular one or two oxygen, nitrogen or sulfur atoms in the aromatic core.
  • Polynuclear aromatic radicals can be condensed with one another or via C-C bonds or via bridge groups, such as -O-, -S-, -CO- or -CO-NH- groups be connected.
  • the valence bonds of the divalent aromatic radicals can be in para or are in a comparable coaxial or parallel position to each other, or also in a meta or comparable angular position to each other.
  • valence bonds that are in coaxial or parallel position stand are directed in opposite directions.
  • An example of coaxial, opposite directional bonds are the biphen-4,4'-diyl bonds.
  • An example of parallel, oppositely directed bonds are the naphthalene 1,5 or 2,6 bonds, while the naphthalene-1,8 bonds are rectified in parallel.
  • Examples of preferred divalent aromatic radicals, their valence bonds in a para- or comparable coaxial or parallel position to each other are mononuclear aromatic radicals with free para to each other Valences, especially 1,4-phenylene or dinuclear fused aromatic Residues with parallel, oppositely directed bonds, in particular 1,4-, 1,5- and 2,6-naphthylene, or dinuclear linked via a C-C bond aromatic residues with coaxial, oppositely directed bonds, especially 4,4'-biphenylene.
  • Examples of preferred divalent aromatic radicals are in a meta or comparable angular position to each other mononuclear aromatic residues with meta-constant free valences, in particular 1,3-phenylene or dinuclear condensed aromatic radicals bonds oriented at an angle to one another, in particular 1,6- and 2,7-naphthylene, or dinuclear aromatic residues linked via a C-C bond with angled bonds, in particular 3,4'-biphenyls.
  • substituents are alkyl, alkoxy or halogen.
  • Alkyl radicals include branched and in particular straight-chain alkyl understand, for example alkyl with one to six carbon atoms, in particular Methyl.
  • Alkoxy radicals include branched and in particular straight-chain alkoxy understand, for example alkoxy with one to six carbon atoms, especially methoxy.
  • radicals are halogen, these are, for example Fluorine, bromine or especially chlorine.
  • the matrix filaments used in the hybrid yarn according to the invention can be made from thermoplastic polymers, which are usually intrinsic Have viscosity of at least 0.5 dl / g, preferably 0.6 to 1.5 dl / g.
  • the intrinsic viscosity is measured in a solution of the thermoplastic Polymers in dichloroacetic acid at 25 ° C.
  • these polyesters usually have an intrinsic Viscosity of at least 0.5 dl / g, preferably 0.6 to 1.5 dl / g.
  • the measurement the intrinsic viscosity is as described above.
  • the hybrid yarns according to the invention usually have a yarn count of 6000 to 150 dtex, preferably from 4500 to 150 dtex.
  • the single fiber titer of the reinforcing filaments and the matrix filaments moves usually in the range of 2 to 10 dtex, preferably 4 to 8 dtex.
  • the cross sections of the reinforcing filaments and the matrix filaments can be arbitrary; for example elliptical, bi- or multilobal, ribbon-shaped or preferably round.
  • thermoplastic polymers are produced according to known methods Process by polycondensation of the corresponding bifunctional Monomer components.
  • polyesters usually come Dicarboxylic acids or dicarboxylic acid esters and the corresponding Diol components for use.
  • Such thermoplastic and optionally elastomeric polyesters, polyurethanes, polyamides and polyolefins are already known.
  • the blowing is carried out by means of a fluid in a swirl nozzle, e.g. Water or in particular by a gas which is inert to the roving strands, in particular by air that may be humidified.
  • a fluid in a swirl nozzle e.g. Water or in particular by a gas which is inert to the roving strands, in particular by air that may be humidified.
  • the filament material of the blowing nozzle is also involved in the blowing fed at greater speed than withdrawn from it.
  • the Excess speed of the feed compared to the deduction, expressed in Percentages based on the take-off speed are called the Overfeed.
  • the blow-blowing process known per se is used modified in such a way that before shrinking the shrinkable Matrix filaments in the intermingling nozzle partially or completely shrink is triggered by heating.
  • the advance of this roving component before The heating step must therefore be chosen larger in the process than without one such heating step.
  • the selected advance when entering the Swirl nozzle and the selected swirl conditions can be Loop hybrid yarns or, in particular, hybrid plain yarns are obtained.
  • Conventional swirl nozzles can be used for swirling.
  • the intermingling distance or the intermingling density is primarily determined by the pressure of the swirling medium and the selected nozzle type certainly.
  • a suitable swirl pressure can be selected for a specific nozzle type.
  • the working pressure is expediently in the range from 1 to 8 bar, preferably from 1.5 to 6 bar, in particular from 1.5 to 3 bar.
  • the triggering of the shrinkage of the matrix roving before entering the Swirling nozzle can be done according to methods known per se. For example by heating with godets, by contact with a heating rail or a heating pin, without contact by passing through a heating device, for example by a device as described in EP-A-579,092 or through a steam stuffer box process.
  • High-strength multifilament yarns can either already be used as reinforcement can be presented to the interlacing device or the multifilament yarns can stretched immediately before entering the swirl nozzle and if necessary be fixed.
  • Reinforcement rovings are preferably used which have a maximum tensile force, based on the final titer, of at least 60 cN / tex.
  • Further preferred reinforcement programs have a maximum tensile strength extension of 0.5 to 25%.
  • the mechanical properties of the matrix examples are not very high Requirements. These at least have the swirling step survive.
  • the primary hybrid yarn After leaving the intermingling nozzle, the primary hybrid yarn subtracted, whereby usually only a low voltage may occur.
  • the primary hybrid yarn train a small or high proportion of loops.
  • the primary yarn can have a low or high proportion of loops are heated with shrinkage approval. The loops pull together and the yarn structure is largely smoothed.
  • already in the Swirl nozzles created smooth games are usually pulled off directly and spooled.
  • the swirling of the hybrid game from reinforcement and matrix filaments of the above described first embodiment is preferably carried out by means of a special warm swirling process, which is described in EP-B-0,455,193.
  • the heating can be by godets and / or Heating tube done while the low melting thermoplastic Single filaments of polyester are also preheated to shrink trigger, and are fed to the higher swirl nozzle.
  • the resulting smooth, high thread closure hybrid games are easy to use on the web.
  • the hybrid games according to the invention can be according to methods known per se textile fabrics are processed. Examples include tissues, Knitted fabrics, knitted fabrics and, in particular, scrims. Such textile fabrics can by melting the matrix component in composite materials be transferred or stabilized.
  • the invention also relates to the use of the hybrid yarns for these purposes.
  • the reinforcement roving was made by a delivery plant consisting of three godets fed directly to a swirl nozzle. In some trials, between the Delivery gods interposed a heater. It was a device for the contactless heating of running threads, as they in EP-A-569,082.
  • the matrix program was made up of a delivery plant consisting of two godets and an intermediate heating device also the texturing nozzle fed. Instead of or in addition to the intermediate heating device the delivery godets were heated.
  • the heater was one Device for the contactless heating of running threads, as in the EP-A-579,092.
  • the temperatures of the godets of the delivery plants were between 80 and 130 ° C.
  • the primary hybrid yarn was subtracted another godet, the surface speed of the Galette was adjusted so that the yarn structure on the textile Performance characteristics has been optimized. Details on how to run the Procedures can be found in the table below.
  • the properties of the hybrid yarns obtained are shown in a further Table 2. Manufacturing conditions of the hybrid yarns Example No. Reinforcement roving (type; titer dtex) Matrix roving (type; titer dtex) tradition Heater / godet temperature reinforcing roving (° C) Heater / godet temperature Mat roving (° C) Reinforced.
  • Example 1 Analogously to Example 1, hybrid games were produced by swirling. High-strength PET multifilament yarns with a titre of 1100 dtex were used as reinforcement and filament yarns with a titre of 280 dtex based on isophthalic acid-modified PET as matrix rovings. Details of the manufacturing conditions are listed in Table 3. The properties of the yarns obtained are shown in Table 4. Manufacturing conditions of the hybrid yarns Example No. tradition Heater / godet temperature reinforcing roving (° C) Heater / godet temperature Mat roving (° C) Reinforced.
  • Example 1 Analogously to Example 1, hybrid games were produced by swirling. Glass multifilament yarns of 3000 dtex titre were used as reinforcement rovings and filament yarns of 750 dtex titre based on isophthalic acid-modified PET were used as matrix roving yarns. Details of the manufacturing conditions are listed in Table 5. The properties of the yarns obtained are shown in Table 6. Manufacturing conditions of the hybrid yarns Example No. tradition Heater / godet temperature reinforcing roving (° C) Heater / godet temperature Mat roving (° C) Reinforced.
  • a low-shrinkage hybrid yarn with reinforcing yarn made of PET and with matrix yarn made of isophthalic acid-modified PET was produced.
  • the yarn titer was 1380 dtex.
  • This game was loaded with different preload weights and treated for 15 minutes in a forced air oven at an air temperature of 100 ° C or 160 ° C.
  • the following thermal shrinkage values were measured: Preload weight (cN) 0.16 0.5 0.8 1.5 3 Thermal shrink at 100 ° C 33.5 2.3 1 0.5 0.5 Thermal shrink at 160 ° C 0.4 0.3 0.3 0.2 0.1
  • low-shrinkage hybrid yarns were made from reinforcing pregam from PET and from matrix roving from different isophthalic acid-modified PET types.
  • the manufacturing conditions were the same in each case.
  • the matrix programs differed in the melting range of the PET type.
  • the proportion of the matrix component in the hybrid games was 15 to 20% by volume.
  • the delivery of the matrix roving was between 50 and 100%.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Artificial Filaments (AREA)

Description

Die vorliegende Erfindung betrifft neue Hybridgarne, die sich durch einen besonders niedrigen Thermoschrumpf auszeichnen. Derartige Garne lassen sich in vorteilhafter Weise zu Verbundwerkstoffen oder zu textilen Flächengebilden, wie Gelegen verarbeiten.
Hybridgame, also Garne aus Verstärkungs- und Matrixfilamenten, sind an sich bekannt. Derartige Garne dienen beispielsweise als Vorprodukte zur Herstellung von Verbundwerkstoffen. Dazu wird üblicherweise zunächst ein textiles Flächengebilde aus dem Hybridgam hergestellt; die Matrixfilamente dieser Hybridgame werden anschließend durch Auf- oder Anschmelzen in eine Matrix übergeführt, welche die Verstärkungsfilamente einbettet oder umfließt und zusammen mit diesen den Verbund aufbaut.
An die Matrixfilamente werden im allgemeinen keine hohen Anforderungen bezüglich der Festigkeit und anderer mechanischer Eigenschaften gestellt, da diese ohnehin in späteren Verarbeitungsschritten aufgeschmolzen werden. Somit entfällt bei der Herstellung derartiger Filamente eine aufwendige Nachbehandlung nach dem Verspinnen, wie das Verstrecken oder das Fixieren. Matrixfilamente weisen daher von Haus aus einen erheblichen Thermoschrumpf auf, der sich bei den späteren Verarbeitungsschritten nachteilig auf das Produkt auswirken kann.
Es besteht ein Bedarf an Hybridgarnen, die einen geringen Schrumpf aufweisen. Derartige Garne schrumpfen naturgemäß nicht oder nur in einem sehr geringen Ausmaße beim Erhitzen zwecks Ausbildung der Matrix. Folglich wird die Lage der Verstärkungsfilamente beim Erzeugen der Matrix nicht oder nur unwesentlich gestört. Auch wird mit diesen neuen Gamen die Herstellung von Gelegen wesentlich vereinfacht. Bislang mußten beim Fixieren der übereinandergelegten Garne bei der Gelegeherstellung aufwendige Maßnahmen getroffen werden, um den durch das Erhitzen ausgelösten Schrumpf der Garne abzufangen und das Primärgelege zu stabilisieren. Mit den neuen Hybridgarnen können diese Maßnahmen weitgehend entfallen.
Es sind zwar sogenannte Zweikomponenten-Schlingengarne mit hoher Festigkeit und geringem Schrumpf bekannt. Derartige Garne wurden insbesondere für den Einsatz als Nähgarne entwickelt und beispielsweise in der EP-B-363,798 beschrieben. Derartige Garne weisen allerdings üblicherweise keine Matrixfilamente aus tieferschmelzenden Filamenten auf, sondern sind aus Filamenten eines Typs aber unterschiedlicher Festigkeiten, die in einer Kern-Mantel-Struktur angeordnet sind, aufgebaut.
Es wurde jetzt ein Verfahren zur Herstellung von schrumpfarmen Hybridgarnen gefunden, daß zu Produkten mit dem oben geschilderten Eigenschaftsprofil führt. Die erfindungsgemäßen Garne zeichnen sich durch einen über ein relativ großes Temperaturintervall sehr niedrigen Thermoschrumpf aus.
Die vorliegende Erfindung betrifft schrumpfarme Hybridgarne enthaltend Verstärkungsfilamente und Matrixfilamente aus thermoplastischen Polymeren, die einen tieferen Schmelzpunkt als der Schmelz- oder Zersetzungspunkt der Verstärkungsfilamente aufweisen, und dadurch gekennzeichnet sind daß der Thermoschrumpf, bei einer Belastung von 0,0004 cN/dtex und einer Lufttemperatur von 160°C von kleiner a leich 2% und bei einer Luftemperatur von 200 °C von kleiner/gleich 5 %, insbesondere kleiner/gleich 3% ist, und daß die statische Schrumpfkraft bei Temperaturen von bis zu 200°C bis zu 0,01cN/dtex beträgt.
Zur Ermittlung des Thermoschrumpfes der erfindungsgemäßen Hybridgarne werden an den beiden Enden von sechs Garnproben von jeweils 60 cm Länge Schlaufen gebildet und diese Garnproben an ihren Schlaufen an einer Schrumpfstange eingehängt. Diese Garnproben werden jeweils mit einem Gewicht einer Vorspannkraft von 0,0004 cN/dtex ausgesetzt. Die Schrumpfstange mit den Gamproben wird in einen Umluftofen eingehängt und sodann 15 Minuten lang mit Heißluft definierter Temperatur behandelt. Die Längenänderung der Garnprobe vor und nach dem Erhitzen in % stellt den Thermoschrumpf dar.
Die mechanischen Eigenschaften der erfindungsgemäßen Hybridgarne sind in Abhängigkeit der Zusammensetzung, wie Art und Anteil der Verstärkungsfilamente oder der Matrixfilamente in Abhängigkeit des physikalischen Aufbaus der Garne, wie z.B. Grad der Verwirbelung, in weiten Grenzen variierbar. Üblicherweise beträgt der Anteil der Matrixfilamente 5 bis 60 Gew.%, vorzugsweise 10 bis 50 Gew. %, bezogen auf das Gewicht des Hybridgarns.
Der Begriff "Hybridgarn" ist im Rahmen dieser Beschreibung in seiner breitesten Bedeutung zu verstehen. Darunter ist demnach jede Kombination enthaltend Verstärkungsfilamente und die oben definierten Matrixfilamente zu verstehen.
Beispiele für mögliche Hybridgarntypen sind Filamentgarne aus verschiedenen Typen von Filamenten, welche miteinander verwirbelt oder mittels einer anderen Technologie, wie beispielsweise Zwirnen, miteinander kombiniert sind. Alle diese Hybridgame sind durch die Anwesenheit von zwei oder mehreren Typen von Filamenten gekennzeichnet, wobei mindestens eine Filamenttype ein Verstärkungsfilament und mindestens eine Filamenttype ein Matrixfilament im Sinne der oben gegebenen Definitionen darstellt.
Besonders bevorzugt eingesetzt werden durch Intermingling- oder Commingling-Techniken hergestellte Hybridgarne; dabei kann es sich um Schlingengame handeln, vorzugsweise jedoch um Glattgarne.
Die erfindungsgemäßen Glattgarne zeichnen sich durch eine besonders gute Verarbeitbarkeit mit flächenbildenden Technologien sowie durch gute Stoffmuster aus. In Ausgestaltung der Erfindung ist der Themoschrumpf sei einer Belastung von 0,0004 CN/dtex und einer Temperatur von 160°C kleiner/gleich 2%, insbesondere kleiner /gleich 1%.
Zur Messung der statischen Schrumpfkraft werden je fünf Garnproben von 60 cm Länge unter einer Vorspannung von 0,01 cN/dtex in zwei Klemmen eingespannt. Anschließend wird die eingespannte Garnprobe mit Luft der gewünschten Temperatur eine Minute lang behandelt. Die bei Erwärmung in Fadenlängsrichtung auftretende Kraft ist die statische Schrumpfkraft und erreicht nach einem kurzen Zeitintervall einen Sättigungswert.
Die Anzahl der Verwirbelungspunkte in den erfindungsgemäßen Hybridgamen läßt sich durch die Wahl der Verwirbelungsbedingungen in weiten Bereichen einstellen. Je höher der Anteil an der mechanisch relativ labilen Matrixkomponente ist, umso weniger intensiv läßt sich die Verwirbelung ausführen und demzufolge ist der Abstand der Verwirbelungspunkte bei derartigen Garnen normalerweise relativ groß.
Bevorzugte Hybridgarne weisen einen Verwirbelungsabstand von weniger als 60 mm, vorzugsweise weniger als 30 mm auf; dieser Wert bezieht sich auf eine Messung mit dem Nadeltestgerät Rothschild Entanglement Tester 2050.
Die Matrixfilamente der erfindungsgemäßen Hybridgarne bestehen aus thermoplastischen Polymeren. Diese weisen vorzugsweise einen Schmelzpunkt auf, der mindestens 30 °C unter dem Schmelz- oder Zerstetzungspunkt der jeweils eingesetzten Verstärkungsfilamtente liegt.
Bei den in den erfindungsgemäßen Hybridgamen zum Einsatz kommenden Verstärkungsfilamenten kann es sich um Filamente aus einer Vielzahl von Materialien handeln. Neben organischen Polymeren können auch anorganische Materialien zum Einsatz kommen. Verstärkungsfilamente im Sinne dieser Beschreibung bedeuten Filamente, welche in dem angestrebten textilen Flächengebilde bzw. Verbundwerkstoff eine verstärkende Funktion übernehmen. In einer ersten bevorzugten Ausführungsform sind die Verstärkungsfilamente aus Einzelfilamenten aufgebaut, die einen Anfangsmodul von mehr als 50 GPa aufweisen.
Bevorzugte Verstärkungsfilamente dieses Typs bestehen aus Glas; Kohlenstoff; Metallen bzw. Metallegierungen, wie Stahl, Aluminium oder Wolfram; Nichtmetallen, wie Bor; Metall-, Halbmetall- oder Nichtmetalloxiden, -carbiden oder nitriden, wie Aluminiumoxid, Zirkonoxid, Bornitrid, Borcarbid, Siliziumcarbid, Siliziumdioxid (Quarz); Keramik, oder Hochleistungspolymeren (d.h. Fasern, die ohne oder nur bei geringer Verstreckung einen sehr hohen Anfangsmodul und eine sehr hohe Reißfestigkeit liefern), wie flüssigkristallinen Polyestem (LCP), Poly-(bisbenzimidazo-benzophenanthrolinen (BBB), Poly-(amid-imiden) (PAI), Polybenzimidazolen (PBI), Poly-(p-phenylenbenzo-bisoxazolen (PBO), Poly-(p-phenylenbenzo-bisthiazolen) (PBT), Polyetherketonen (PEK, PEEK, PEEKK), Polyetherimiden (PEI), Polyethersulfonen (PESU), Polyimiden (PI), Poly-(p-phenylenen) (PPP), Polyarylensulfiden (PPS), Polysulfonen (PSU), Polyolefinen, wie Polyethylen (PE) oder Polypropylen (PP), und Aramiden (HMA), wie Poly-(m-phenylen-isophthalamid), Poly-(m-phenylen-terephthalamid), Poly-(p-phenylenisophthalamid), Poly-(p-phenylen-terephthalamid), oder aus organischen Lösungsmitteln, wie N-Methylpyrrolidon, spinnbare Aramide abgeleitet von Terephthalsäuredichlorid und einer Mischung von zwei oder mehr aromatischen Diaminen, beispielsweise der Kombination p-Phenylendiamin, 1,4-Bis-(4-aminophenoxy)-benzol, 3,3'-Dimethylbenzidin, oder p-Phenylendiamin, 1,4-Bis-(4-aminophenoxy)-benzol, 3,4'-Diaminodiphenylether, oder p-Phenylendiamin, m-Phenylendiamin, 1,4-Bis-(4-aminophenoxy)-benzol.
Besonders bevorzugt werden Verstärkungsfilamente aus Glas, Kohlenstoff oder aromatischem Polyamid.
In einer zweiten besonders bevorzugten Ausführungsform kommen Verstärkungsund Matrixfilamente zum Einsatz, die aus polymeren Materialien aus einer Polymerklasse, beispielsweise aus Polyolefinen, aus Polyamiden oder vorzugsweise aus Polyestern bestehen.
In dieser Ausführungsform weisen die Einzelfilamente der Verstärkungsfilamente einen Anfangsmodul von mehr als 10 GPa auf. Verstärkungsfilamente für diese Ausführungsform sind vorzugsweise hochfeste und schrumpfarme Polyesterfilamentgarne, insbesondere mit einem Gamtiter von kleiner gleich 1100 dtex, einer Feinheitsfestigkeit von größer gleich 55 cN/tex, einer Höchstzugkraftdehnung von größer gleich 12 % und einem Heißluftschrumpf (gemessen bei 200 °C) von kleiner gleich 9 %.
Die Messung der Höchstzugkraft und der Höchstzugkraftdehnung der zum Einsatz kommenden Polyestergame erfolgt in Anlehnung an DIN 53 830, Teil 1.
Matrixfilamente in den erfindungsgemäßen Hybridgamen bestehen aus oder enthalten thermoplastische Polymere. Dabei kann es sich um beliebige schmelzspinnbare Thermoplaste handeln, solange die daraus hergestellten Filamente bei einer Temperatur schmelzen, die niedriger ist als die Schmelz- oder Zersetzungstemperatur der im jeweiligen Fall eingesetzten Verstärkungsfilamente.
Bevorzugt werden Matrixfilamente aus Polybutylenterephthalat und/oder aus Polyethylenterephthalat und/oder aus chemisch modifiziertem Polyethylenterephthalat.
Ganz besonders bevorzugt werden Matrixfilamente aus einem thermoplastischen modifizierten Polyester, insbesondere einem modifizierten Polyethylenterephthalat eingesetzt; die Modifizierung bewirkt ein Absenken des Schmelzpunktes im Vergleich mit dem Filament aus unmodifiziertem Polyester.
Besonders bevorzugte modifizierte Polyester dieses Typs enthalten die wiederkehrenden Struktureinheiten der Formeln I und II -O-OC-Ar1-CO-O-R1- -O-OC-R2-CO-O-R3- worin Ar1 einen zweiwertigen ein- oder mehrkernigen aromatischen Rest darstellt, dessen freie Valenzen sich in para-Stellung oder in einer zu dieser Stellung vergleichbaren parallelen oder koaxialen Stellung zueinander befinden, vorzugsweise 1,4-Phenylen und/oder 2,6-Naphthylen darstellt, R1 und R3 unabhängig voneinander zweiwertige aliphatische oder cycloaliphatische Reste darstellen, insbesondere Reste der Formel -CnH2n-, worin n eine ganze Zahl zwischen 2 und 10 ist, insbesondere Ethylen, oder einen von Cyclohexandimethanol abgeleiteten Rest darstellen, und R2 einen zweiwertigen aliphatischen, cycloaliphatischen oder ein- oder mehrkernigen aromatischen Rest darstellt, dessen freie Valenzen sich in meta-Stellung oder in einer zu dieser Stellung vergleichbaren gewinkelten Stellung zueinander befinden, vorzugsweise 1,3-Phenylen darstellt.
Ganz besonders bevorzugte modifizierte Polyester dieses Typs enthalten 40 bis 95 Mol % der wiederkehrenden Struktureinheiten der Formel I und 60 bis 5 Mol % der wiederkehrenden Struktureinheiten der Formel II, worin Ar1 1,4-Phenylen und/oder 2,6-Naphthylen ist, R1 und R3 Ethylen bedeuten und R2 1,3-Phenylen ist.
In einer weiteren bevorzugten Ausführungsform kommen Matrixfilamente zum Einsatz, die aus einem thermoplastischen und elastomeren Polymeren bestehen oder dieses enthalten. Dabei kann es sich ebenfalls um beliebige schmelzspinnbare und elastomere Thermoplaste handeln, solange die daraus hergestellten Filamente bei einer Temperatur schmelzen, die niedriger ist als die Schmelz- oder Zersetzungstemperatur der im jeweiligen Fall eingesetzten Verstärkungsfilamente.
Unter "elastomerem Polymer" ist im Rahmen dieser Beschreibung ein Polymer zu verstehen, dessen Glasübergangstemperatur weniger als 0 °C, vorzugsweise weniger als 23 °C beträgt.
Bevorzugte Beispiele für thermoplastische und elastomere Polymere sind elastomere Polyamide, Polyolefine, Polyester und Polyurethane. Derartige Polymere sind an sich bekannt.
Bedeuten in den oben definierten Strukturformeln irgendwelche Reste zweiwertige aliphatische Reste, so ist darunter verzweigtes und insbesondere geradkettiges Alkylen zu verstehen, beispielsweise Alkylen mit zwei bis zwanzig, vorzugsweise mit zwei bis zehn Kohlenstoffatomen. Beispiele für derartige Reste sind Ethan-1,2-diyl, Propan-1,3-diyl, Butan-1,4-diyl, Pentan-1,5-diyl, Hexan-1,6-diyl oder Octan-1,8-diyl.
Bedeuten in den oben definierten Strukturformeln irgendwelche Reste zweiwertige cycloaliphatische Reste, so sind darunter Gruppen zu verstehen, die carbocyclische Reste mit fünf bis acht, vorzugsweise sechs Ringkohlenstoffatomen enthalten. Beispiele für derartige Reste sind Cyclohexan-1,4-diyl oder die Gruppe -CH2-C6H10-CH2-.
Bedeuten in den oben definierten Strukturformeln irgendwelche Reste zweiwertige aromatische Reste, so handelt es sich dabei um ein- oder mehrkemige aromatische Kohlenwasserstoffreste oder um heterocyclisch-aromatische Reste, die ein- oder mehrkernig sein können. Im Falle von heterocyclisch-aromatischen Resten weisen diese insbesondere ein oder zwei Sauerstoff-, Stickstoff- oder Schwefelatome im aromatischen Kern auf.
Mehrkernige aromatische Reste können miteinander kondensiert sein oder über C-C-Bindungen oder über Brückengruppen, wie -O-, -S-, -CO- oder -CO-NH- Gruppen miteinander verbunden sein.
Die Valenzbindungen der zweiwertigen aromatischen Reste können sich in paraoder in vergleichbarer koaxialer oder paralleler Position zueinander befinden, oder auch in meta- oder in vergleichbarer gewinkelter Position zueinander.
Die Valenzbindungen, die in koaxialer oder parallel zueinander befindlicher Stellung stehen, sind entgegengesetzt gerichtet. Ein Beispiel für koaxiale, entgegengesetzt gerichtete Bindungen sind die Biphen-4,4'-diyl Bindungen. Ein Beispiel für parallel, entgegegesetzt gerichtete Bindungen sind die Naphthalin-1,5- oder -2,6-Bindungen, während die Naphthalin-1,8-Bindungen parallel gleichgerichtet sind.
Beispiele für bevorzugte zweiwertige aromatische Reste, deren Valenzbindungen sich in para- oder in vergleichbarer koaxialer oder paralleler Position zueinander befinden, sind einkernige aromatische Reste mit zueinander para-ständigen freien Valenzen, insbesondere 1,4-Phenylen oder zweikernige kondensierte aromatische Reste mit parallelen, entgegengesetzt gerichteten Bindungen, insbesondere 1,4-, 1,5- und 2,6-Naphthylen, oder zweikernige über eine C-C Bindung verknüpfte aromatische Reste mit koaxialen, entgegengesetzt gerichteten Bindungen, insbesondere 4,4'-Biphenylen.
Beispiele für bevorzugte zweiwertige aromatische Reste, deren Valenzbindungen sich in meta- oder in vergleichbarer gewinkelter Position zueinander befinden, sind einkernige aromatische Reste mit zueinander meta-ständigen freien Valenzen, insbesondere 1,3-Phenylen oder zweikernige kondensierte aromatische Reste mit zueinander gewinkelt gerichteten Bindungen, insbesondere 1,6- und 2,7-Naphthylen, oder zweikernige über eine C-C Bindung verknüpfte aromatische Reste mit zueinander gewinkelt gerichteten Bindungen, insbesondere 3,4'-Biphenylen.
Alle diese aliphatischen, cycloaliphatischen oder aromatischen Reste können mit inerten Gruppen substituiert sein. Darunter sind Substituenten zu verstehen, die die ins Auge gefaßte Anwendung nicht negativ beeinflussen.
Beispiele für solche Substituenten sind Alkyl, Alkoxy oder Halogen.
Unter Alkylresten ist verzweigtes und insbesondere geradkettiges Alkyl zu verstehen, beispielsweise Alkyl mit ein bis sechs Kohlenstoffatomen, insbesondere Methyl.
Unter Alkoxyresten ist verzweigtes und insbesondere geradkettiges Alkoxy zu verstehen, beispielsweise Alkoxy mit ein bis sechs Kohlenstoffatomen, insbesondere Methoxy.
Bedeuten irgendwelche Reste Halogen, so handelt es sich dabei beispielsweise um Fluor, Brom oder insbesondere um Chlor.
Die im erfindungsgemäßen Hybridgarn verwendeten Matrixfilamente können aus thermoplastischen Polymeren aufgebaut sein, die üblicherweise eine intrinsische Viskosität von mindestens 0,5 dl/g, vorzugsweise 0,6 bis 1,5 dl/g aufweisen. Die Messung der intrinsischen Viskosität erfolgt in einer Lösung des thermoplastischen Polymeren in Dichloressigsäure bei 25 °C.
Werden im erfindungsgemäß einzusetzenden Hybridgarn Verstärkungsfilamente aus Polyestem verwendet, weisen diese Polyester üblicherweise eine intrinsische Viskosität von mindestens 0,5 dl/g, vorzugsweise 0,6 bis 1,5 dl/g auf. Die Messung der intrinsischen Viskosität erfolgt wie voranstehend beschrieben.
Die erfindungsgemäßen Hybridgarne weisen üblicherweise Garntiter von 6000 bis 150 dtex auf, vorzugsweise von 4500 bis 150 dtex.
Der Einzelfasertiter der Verstärkungsfilamente und der Matrixfilamente bewegt sich üblicherweise im Bereich von 2 bis 10 dtex, vorzugsweise 4 bis 8 dtex.
Die Querschnitte der Verstärkungsfilamente und der Matrixfilamente können beliebig sein; beispielsweise ellipsenförmig, bi- oder multilobal, bändchenförmig oder vorzugsweise rund.
Die Herstellung der thermoplastischen Polymeren erfolgt nach an sich bekannten Verfahren durch Polykondensation der entsprechenden bifunktionellen Monomerkomponenten. Im Falle der Polyester kommen üblicherweise Dicarbonsäuren oder Dicarbonsäureester und die entsprechenden Diolkomponenten zum Einsatz. Derartige thermoplastische und gegebenenfalls elastomere Polyester, Polyurethane, Polyamide und Polyolefine sind bereits bekannt.
Es wurde weiterhin gefunden, daß die Herstellung der erfindungsgemäßen Hybridgame mittels spezieller Blasverwirbelungsverfahren möglich ist.
Die Blasverwirbelung erfolgt mittels eines Fluids in einer Verwirbelungsdüse, z.B. Wasser oder insbesondere durch ein gegenüber den Vorgarnsträngen inertes Gas, insbesondere durch Luft, das gegebenenfalls befeuchtet ist.
Bei der Blasverwirbelung wird bekanntlich das Filamentmaterial der Blasdüse mit größerer Geschwindigkeit zugeführt als aus ihr abgezogen. Der Geschwindigkeitsüberschuß der Zuführung gegenüber dem Abzug, ausgedrückt in Prozenten bezogen auf die Abzugsgeschwindigkeit, bezeichnet man als die Voreilung.
Durch unterschiedliche Voreilungen von Vorgarnsträngen lassen sich blasverwirbelte Schlingen- oder Glattgarne herstellen.
In diesen Verfahren wird das an sich bekannte Blasverwirbelungsverfahren dahingehend modifiziert, daß vor dem Einlaufen der hochschrumpffähigen Matrixfilamente in die Verwirbelungsdüse deren Schrumpf teilweise oder vollständig durch Erhitzen ausgelöst wird. Die Voreilung dieser Vorgarnkomponente vor dem Erhitzungsschritt ist bei dem Verfahren also größer zu wählen als ohne einen solchen Erhitzungsschritt. Je nach gewählter Voreilung beim Einlauf in die Verwirbelungsdüse und den gewählten Verwirbelungsbedingungen lassen sich Schlingenhybridgarne oder insbesondere Hybridglattgarne erhalten.
Zur Verwirbelung können herkömmliche Verwirbelungsdüsen verwendet werden. Der Verwirbelungsabstand bzw. die Verwirbelungsdichte wird in erster Linie durch den Druck des Verwirbelungsmediums und den jeweils gewählten Düsentyp bestimmt. Um einen erwünschten Verwirbelungsabstand zu erzielen, muß für einen bestimmten Düsentyp ein entsprechender Verwirbelungsdruck gewählt werden. Zweckmäßigerweise liegt der Arbeitsdruck im Bereich von 1 bis 8 bar, vorzugsweise von 1,5 bis 6 bar, insbesondere von 1,5 bis 3 bar.
Die Erfindung betrifft auch ein Verfahren zur Herstellung der oben definierten schrumpfarmen Hybridgarne umfassend die Maßnahmen
  • a) Zuführen von zwei oder mehreren sich mit unterschiedlichen Geschwindigkeiten bewegenden Vorgarnsträngen zu einer Verwirbelungsdüse, wobei zumindest eine Teil der Vorgarnstränge (Verstärkungsvorgam) aus Verstärkungsfilamenten besteht und ein weiterer Teil der Vorgamstränge (Matrixvorgarn) aus tieferschmelzenden Matrixfilamenten aus thermoplastischen Polymeren besteht, die einen Thermoschrumpf bei 200 °C von mehr als 20 % aufweisen,
  • b) Erwärmen des Matrixvorgarnes während des Zuführens in die Verwirbelungsdüse auf eine derartige Temperatur, daß zumindest ein Teil des Schrumpfes ausgelöst wird,
  • c) Verwirbeln der Vorgamstränge in der Verwirbelungsdüse unter derartigen Bedingungen, daß sich ein primäres Hybridgarn ausbildet,
  • d) Abziehen des erhaltenen primären Hybridgames gegebenenfalls unter Zulassung von Schrumpf undloder zusätzliches, vorzugsweise berührungsloses Erhitzen.
  • Das Auslösen des Schrumpfes des Matrixvorgarnes vor dem Einlaufen in die Verwirbelungsdüse kann nach an sich bekannten Methoden erfolgen. Beispielsweise durch Erhitzen mittels Galetten, durch Kontakt mit einer Heizschiene bzw. einem Heizstift, berührungslos durch Durchleiten durch eine Heizvorrichtung, beispielsweise durch eine Vorrichtung, wie in der EP-A-579,092 beschrieben oder durch ein Dampfstauchkammerverfahren.
    Als Verstärkungsvorgame können entweder bereits hochfeste Multifilamentgarne der Verwirbelungsvorrichtung vorgelegt werden oder die Multifilamentgarne können unmittelbar vor dem Einlauf in die Verwirbelungsdüse verstreckt und gegebenenfalls fixiert werden.
    Vorzugsweise werden Verstärkungsvorgarne eingesetzt, die eine Höchstzugkraft, bezogen auf den Endtiter, von mindestens 60 cN/tex aufweisen.
    Weitere bevorzugte Verstärkungsvorgarne weisen einen Thermoschrumpf bei 200°C von 2 bis 8 % auf.
    Weitere bevorzugte Verstärkungsvorgame weisen eine Höchstzugkraftdehnung von 0,5 bis 25 % auf.
    An die mechanischen Eigenschaften der Matrixvorgame werden keine hohen Anforderungen gestellt. Diese müssen zumindest den Verwirbelungsschritt überstehen.
    Nach dem Verlassen der Verwirbelungsdüse wird das primäre Hybridgarn abgezogen, wobei üblicherweise höchstens eine geringe Spannung auftreten darf. Je nach den Differenzen in der Voreilung der Vorgarne und den Verwirbelungsbedingungen in der Düse kann sich ein Primärhybridgarn mit keinem, geringem oder hohem Anteil von Schlingen ausbilden. Wird ein Glattgarn gewünscht, so kann das Primärgarn mit geringem oder hohem Anteil von Schlingen unter Schrumpfzulassung erhitzt werden. Dabei ziehen sich die Schlingen zusammen und die Garnstruktur wird weitgehend geglättet. Bereits in der Verwirbelungsdüse entstandene Glattgame werden üblicherweise direkt abgezogen und aufgespult.
    Die Verwirbelung der Hybridgame aus Verstärkungs- und Matrixfilamenten der oben beschriebenen ersten Ausführungsform erfolgt vorzugsweise mittels eines speziellen Warm-Verwirbelungsverfahrens, das in EP-B-0,455,193 beschrieben ist. Hierbei werden zur Vermeidung von Filamentbrüchen beim Verwirbeln die Verstärkungsfilamente vor deren Verwirbeln bis nahe dem Erweichungspunkt erwärmt (bei Glas ca. 600 °C). Die Erwärmung kann durch Galetten und/oder Heizrohr erfolgen, während die niedrigschmelzenden thermoplastischen Einzelfilamente aus Polyester ebenfalls vorerwärmt werden, um den Schrumpf auszulösen, und der übergeordneten Verwirbelungsdüse zugeführt werden. Die resultierenden glatten, mit hohem Fadenschluß ausgestatteten Hybridgame sind problemlos webtauglich.
    Es wurde gefunden, daß die Herstellung der Hybridgarne aus Verstärkungs- und Matrixfilamenten der oben beschriebenen zweiten Ausführungsform überraschenderweise nach an sich üblichen Verwirbelungstechniken, beispielsweise durch Intermingling- oder Commingling-Techniken erfolgen kann, wie beispielsweise in Chemiefasern/Textilindustrie, (7/8) 1989, T 185-7 beschrieben; allerdings durch den oben beschrieben Erhitzungsschritt des Matrixvorgarnes modifziert.
    Die erfindungsgemäßen Hybridgame können nach an sich bekannten Verfahren zu textilen Flächengebilden verarbeitet werden. Beispiele dafür sind Gewebe, Gestricke, Gewirke und insbesondere Gelege. Derartige textile Flächengebilde können durch Aufschmelzen der Matrixkomponente in Verbundwerkstoffe übergeführt oder stabilisiert werden.
    Die Erfindung betrifft auch die Verwendung der Hybridgarne zu diesen Zwecken.
    Die nachfolgenden Beispiele verdeutlichen die Erfindung ohne diese zu begrenzen.
    Beispiele 1) Herstellung von schrumpfarmen Hybridgamen
    Auf einem Spulengatter wurde eine Spule mit Verstärkungsvorgam und eine Spule mit Matrixvorgam vorgelegt. Die Natur der Vorgame sowie die verwendeten Gamtiter sind in der nachstehenden Tabelle 1 aufgeführt.
    Das Verstärkungsvorgarn wurde über ein Lieferwerk bestehend aus drei Galetten direkt einer Verwirbelungsdüse zugeführt. In einigen Versuchen wurde zwischen die Liefergaletten eine Heizvorrichtung dazwischengeschaltet. Dabei handelte es sich um eine Vorrichtung zum berührungslosen Beheizen von laufenden Fäden, wie sie in der EP-A-569,082 beschrieben worden ist.
    Das Matrixvorgam wurde über ein Lieferwerk bestehend aus zwei Galetten und einer dazwischen angeordneten Heizvorrichtung ebenfalls der Texturierdüse zugeführt. Anstelle oder zusätzlich zur dazwischengeschalteten Heizvorrichtung wurden die Liefergaletten erhitzt. Bei der Heizvorrichtung handelte es sich um eine Vorrichtung zum berührungslosen Beheizen von laufenden Fäden, wie sie in der EP-A-579,092 beschrieben worden ist.
    Das Verhältnis der Überlieferung vor der Verwirbelungsdüse und dem nachgeschalteten Abzugswerk bei den Verstärkungsvorgarnen und bei den Matrixvorgarnen werden ebenfalls in der unten aufgeführten Tabelle angegeben.
    Die Temperaturen der Galetten der Lieferwerke betrugen wahlweise zwischen 80 und 130 °C.
    Nach dem Verlassen der Verwirbelungsdüse wurde das primäre Hybridgarn mittels einer weiteren Galette abgezogen, wobei die Oberflächengeschwindigkeit der Galette so eingeregelt wurde, daß die Garnstruktur auf die textilen Gebrauchseigenschaften optimiert wurde. Einzelheiten zur Durchführung des Verfahrens finden sich in der nachfolgenden Tabelle.
    In einer weiteren Tabelle 2 werden die Eigenschaften der erhaltenen Hybridgarne dargestellt.
    Herstellungsbedingungen der Hybridgarne
    Beispiel Nr. Verstärkungsvorgarn (Typ; Titer dtex) Matrixvorgarn (Typ; Titer dtex) Überlieferung Heizer-/Galettentemperatur Verst.vorgarn (°C) Heizer-/Galetten temperatur Matr.vorgarn (°C)
    Verst. vorgarn Matrix vorgarn (%)
    1 PET 1100 mod.PET 280 - 60 - 110 (Gal)
    2 PET 550 mod.PET 280 - 30 - 110 (Gal)
    3 Glas 3000 mod.PET 840 - 30 500 110 (Gal)
    4 Glas 3000 mod.PET 840 - 10 - 160
    5 Glas 3000 mod.PET 830 - 30 500 110 (Gal)
    6 Glas 3000 mod.PET 750 - 60 500 210 60 (Gal)
    7 Aramid 1100 mod.PET 280 - 50 100 (Gal) 110 (Gal)
    8 C-Faser 3000 mod.PET 840 - 50 110 (Gal) 110 (Gal)
    PET = Polyethylenterephthalat
    mod.PET = isophthalsäure-modifiziertes PET
    Eigenschaften der Hybridgarne
    Beispiel Nr. eff. Titer (dtex) Festigkeit (cN/tex) Dehnung (%) Schrumpf bei 200°C Schrumpf bei 160 °C
    1 1600 50,2 18,1 3,5 1,1
    2 930 37,9 21,8 3,9 1,0
    3 4067 45,9 0,7 0 0
    4 3880 46,5 0,8 0 0
    5 4180 36,7 0,8 0,5 0
    6 4590 39,8 0,8 3,1 0,6
    7 1583 124,6 3,6 0,3 0
    8 3219 56,1 1,3 0,1 0
    2) Herstellung von schrumpfarmen Hybridgarnen (Variation der Voreilung des Matrixvorgarnes)
    Analog zu Beispiel 1 wurden Hybridgame durch Verwirbeln hergestellt. Als Verstärkungsvorgame wurden hochfeste PET-Multifilamentgarne des Titers 1100 dtex eingesetzt und als Matrixvorgarne Filamentgame des Titers 280 dtex auf der Basis von isophthalsäure-modifiziertem PET. Einzelheiten zu den Herstellungsbedingungen sind in Tabelle 3 aufgelistet. Die Eigenschaften der erhaltenen Garne sind in Tabelle 4 dargestellt.
    Herstellungsbedingungen der Hybridgarne
    Beispiel Nr. Überlieferung Heizer-/Galettentemperatur Verst.vorgarn (°C) Heizer-/Galetten temperatur Matr.vorgarn (°C)
    Verst. vorgarn Matrix vorgarn
    9 - - - -
    10 - 10 % 100 (Gal) 110 (Gal)
    11 - 20 % 100 (Gal) 110 (Gal)
    12 - 30 % 100 (Gal) 110 (Gal)
    13 - 40 % 100 (Gal) 110 (Gal)
    14 - 50 % 100 (Gal) 110 (Gal)
    15 - 60 % 100 (Gal) 110 (Gal)
    Eigenschaften der Hybridgarne
    Beispiel Nr. eff. Titer (dtex) Festigkeit (cN/tex) Dehnung (%) Schrumpf bei 200°C Schrumpf bei 160 °C
    9 1430 56,4 18,9 8,9 7
    10 1455 55,8 18,0 5,4 1,9
    11 1483 55,3 18,1 4,4 1,5
    12 1517 53,7 18,2 4,2 1,4
    13 1537 53,5 18,6 3,9 0,6
    14 1577 50,5 17,9 3,7 1,1
    15 1600 50,2 18,1 3,5 1,1
    Diese Beispiele zeigen, daß der Schrumpf des verwirbelten Garnes sich bei der Vergrößerung der Voreilung des Matrixvorgames verringert.
    3) Herstellung von schrumpfarmen Hybridgarnen (Variation der Voreilung und der Erhitzung des Matrixvorgarnes)
    Analog zu Beispiel 1 wurden Hybridgame durch Verwirbeln hergestellt. Als Verstärkungsvorgarne wurden Glas-Multifilamentgame des Titers 3000 dtex eingesetzt und als Matrixvorgarne Filamentgame des Titers 750 dtex auf der Basis von isophthalsäure-modifiziertem PET. Einzelheiten zu den Herstellungsbedingungen sind in Tabelle 5 aufgelistet. Die Eigenschaften der erhaltenen Garne sind in Tabelle 6 dargestellt.
    Herstellungsbedingungen der Hybridgarne
    Beispiel Nr. Überlieferung Heizer-/Galettentemperatur Verst.vorgarn (°C) Heizer-/Galetten temperatur Matr.vorgarn (°C)
    Verst. vorgarn Matrix vorgarn
    16 - - - 210
    17 - 10 % - 210
    18 - 20 % - 210
    19 - 30 % - 210
    20 - 40 % - 210
    21 - 50 % - 210 + 60 (Gal)
    22 - 60 % - 210 + 60 (Gal)
    Eigenschaften der Hybridgarne
    Beispiel Nr. eff. Titer (dtex) Festigkeit (cN/tex) Dehnung (%) Schrumpf bei 200°C Schrumpf bei 160 °C
    16 4181 36,1 1,1 65,5 n.b.
    17 4250 34,4 0,7 33,4 n.b.
    18 4310 28,7 0,9 29,5 n.b.
    19 4380 27,5 0,7 25,1 n.b.
    20 4450 29,3 1,1 18,8 n.b.
    21 4515 30,8 1,3 7,5 3,8
    22 4590 39,8 0,8 3,1 0,9
    n.b. = nicht bestimmt
    Diese Beispiele zeigen, daß der Schrumpf des verwirbelten Garnes sich bei der Vergrößerung der Voreilung sowie einer verstärkten Erhitzung des Matrixvorgames verringert.
    4) Bestimmung des Schrumpfes eines Hybridgarnes bei unterschiedlicher Vorspannkraft
    In Analogie zu den oben beschriebenen Beispielen wurde ein schrumpfarmes Hybridgam mit Verstärkungsvorgam aus PET und mit Matrixvorgarn aus isophthalsäure-modifiziertem PET hergestellt. Der Garntiter betrug 1380 dtex. Dieses Gam wurde mit unterschiedlichen Vorspanngewichten belastet und jeweils für 15 Minuten im Umluftofen bei einer Lufttemperatur von 100 °C bzw. von 160 °C behandelt. Es wurden folgende Thermoschrumpfwerte gemessen:
    Vorspanngewicht (cN) 0,16 0,5 0,8 1,5 3
    Thermoschrumpf bei 100°C 33,5 2,3 1 0,5 0,5
    Thermoschrumpf bei 160°C 0,4 0,3 0,3 0,2 0,1
    5) Bestimmung des Verwirbelungsabstandes von Hybridgames mit unterschiedlichem Anteil an Matrixkomponente
    In Analogie zu den oben beschriebenen Beispielen wurden verschiedene schrumpfarme Hybridgarne mit Verstärkungsvorgarn aus hochfestem PET und mit Matrixvorgam aus isophthalsäure-modifiziertem PET hergestellt. Die Garne unterschieden sich durch den Mengenanteil der Matrixkomponente und durch einen unterschiedlichen Verwirbelungsgrad. Der Verwirbelungsabstand wurde mittels eines Rothschild Entanglement Testers ermittelt. Es wurden folgende Werte gemessen:
    Volumen % Matrix im Hybridgarn 90 90 80 80 70 70 60 60 50 50
    intensiv verwirbelt + - + - + - + - + -
    flach verwirbelt - + - + - + - + - +
    Verwirbelungsabstand (mm) 57 101 41 87 32 70 28 59 19 51
    6) Charakterisierung von Eigenschaften von Hybridgarnen mit einer Matrixkomponente mit unterschiedlichem Schmelzpunkt
    In Analogie zu den oben beschriebenen Beispielen wurden schrumpfarme Hybridgarne aus Verstärkungsvorgam aus PET und aus Matrixvorgarn aus unterschiedlichen isophthalsäure-modifizierten PET-Typen hergestellt. Die Herstellungsbedingungen waren jeweils gleich. Die Matrixvorgame unterschieden sich im Schmelzbereich des PET-Typs. Der Anteil der Matrixkomponente in den Hybridgamen betrug jeweils 15 bis 20 Vol %. Die Überlieferung des Matrixvorgarnes lag zwischen 50 und 100 %. Einige Eigenschaften der hergestellten Hybridgarne sind in der folgenden Tabelle aufgelistet.
    Hybridgarn Probe A B C
    Schmelzbereich mod.PET Komponente (°C) ca. 130 ca. 170 ca. 225
    Garntiter (dtex) 1330 1313 1558
    Thermoschrumpf bei 160°C 0,7 0,9 0,9
    Thermoschrumpf bei 200°C 1,3 1,8 1,9
    Höchstzugkraftdehnung (%) 16 16,5 15,8
    Höchstzugkraft (cN/tex) 51 52,5 48,8
    Es ist zu erkennen, daß sich Hybridgame mit unterschiedlichen Schmelzbereichen der Matrixkomponente aber vergleichbaren mechanischen Eigenschaften herstellen lassen.

    Claims (16)

    1. Hybridgarne enthaltend Verstärkungsfilamente und Matrixfilamente aus thennoplastischen Polymeren, die einen tieferen Schmelzpunkt als die Verstärkungsfilamente aufweisen, dadurch gekennzeichnet, dass der Thermoschrumpf bei einer Belastung von 0,0004 cN/dtex und einer Luftemperatur von 160°C kleuren/gleich 2% und einer Lufttemperatur von 200 °C kleiner/gleich 5 %, insbesondere kleiner/gleich 3 % ist, und dass die statische Schrumpfkraft bei Temperaturen von bis zu 200 °C bis zu 0,01 cN/dtex beträgt.
    2. Hybridgame nach Anspruch 1, dadurch gekennzeichnet, dass der Thermoschrumpf bei einer Belastung von 0,0004 cN/dtex und einer Temperatur von 160 °C kleiner/gleich 1 % ist.
    3. Hybridgarne nach Anspruch 1, dadurch gekennzeichnet, daß diese einen Verwirbelungsabstand von weniger als 60 mm, vorzugsweise weniger als 30 mm aufweisen, wobei dieser Wert sich auf eine Messung mit dem Rothschild Entanglement Nadeltestgerät 2050 bezieht.
    4. Hybridgarne nach Anspruch 1, dadurch gekennzeichnet, daß es sich um Glattgarne handelt.
    5. Hybridgarne nach Anspruch 1, dadurch gekennzeichnet, daß die Matrixfilamente aus thermoplastischen Polymeren einen Schmelzpunkt aufweisen, der mindestens 30 °C unter dem Schmelz- oder Zersetzungspunkt der Verstärkungsfilamtente liegt.
    6. Hybridgarne nach Anspruch 1, dadurch gekennzeichnet, daß die Verstärkungsfilamente einen Anfangsmodul von größer als 50 Gpa aufweisen, und vorzugsweise aus Glas, Kohlenstoff oder aromatischem Polyamid bestehen.
    7. Hybridgame nach Anspruch 1, dadurch gekennzeichnet, daß die Verstärkungsfilamente einen Anfangsmodul von größer als 10 GPa aufweisen und aus Polyester, insbesondere aus Polyethylenterephthalat, bestehen.
    8. Hybridgarne nach Anspruch 1, dadurch gekennzeichnet, daß die Matrixfilamente aus Polybutylenterephthalat und/oder aus Polyethylenterephthalat und/oder aus chemisch modifiziertem Polyethylenterephthalat bestehen.
    9. Hybridgarne nach Anspruch 1, dadurch gekennzeichnet, daß Verstärkungsfilamente und Matrixfilamente aus einer Polymerklasse bestehen, vorzugsweise aus Kombinationen Polyamid/Polyamid, Polyolefin/Polyolefin oder insbesondere aus Polyester/Polyester.
    10. Hybridgame nach Anspruch 1, dadurch gekennzeichnet, daß die Matrixfilamente aus einem chemisch modifizierten Polyethylenterephthalat enthaltend die wiederkehrenden Struktureinheiten der Formeln I und II bestehen -O-OC-Ar1-CO-O-R1- -O-OC-R2-CO-O-R3- worin Ar1 einen zweiwertigen ein- oder mehrkemigen aromatischen Rest darstellt, dessen freie Valenzen sich in para-Stellung oder in einer zu dieser Stellung vergleichbaren parallelen oder koaxialen Stellung zueinander befinden, vorzugsweise 1,4-Phenylen und/oder 26-Naphthylen darstellt, R1 und R3 unabhängig voneinander zweiwertige aliphtische oder cycloaliphatische Reste darstellen, insbesondere Reste der Formel -CnH2n-, worin n eine ganze Zahl zwischen 2 und 10 ist, insbesondere Ethylen, oder einen von Cyclohexandimethanol agbeleiteten Rest darstellen, und R2 einen zweiwertigen aliphatischen, cycloaliphatischen oder ein- oder mehrkernigen aromatischen Rest darstellt, dessen freie Valenzen sich in meta-Stellung oder in einer zu dieser Stellung vergleichbaren gewinkelten Stellung zueinander befinden, vorzugsweise 1,3-Phenylen darstellt.
    11. Hybridgarne nach Anspruch 10, dadurch gekennzeichnet, daß die Matrixfilamente aus einem chemisch modifizierten Polyethylenterephthalat bestehen, das 40 bis 95 Mol % der wiederkehrenden Struktureinheiten der Formel I und 60 bis 5 Mol % der wiederkehrenden Struktureinheiten der Formel II enthält, worin Ar1 1,4-Phenylen und/oder 2,6-Naphthylen ist, R1 und R3 Ethylen bedeuten und R2 1,3-Phenylen ist.
    12. Hybridgame nach Anspruch 1, dadurch gekennzeichnet, daß die Matrixfilamente aus einem thermoplastischen und elastomeren Polymeren bestehen, insbesondere aus einem Polyurethan, einem Polyamid oder vorzugsweise aus einem Polyester.
    13. Verfahren zur Herstellung der schrumpfarmen Hybridgame nach Anspruch 1 umfassend die Maßnahmen
      a) Zuführen von zwei oder mehreren sich mit unterschiedlichen Geschwindigkeiten bewegenden Vorgamsträngen zu einer Verwirbelungsdüse, wobei zumindest eine Teil der Vorgamstränge (Verstärkungsvorgam) aus Verstärkungsfilamenten besteht und ein weiterer Teil der Vorgamstränge (Matrixvorgarn) aus tieferschmelzenden Matrixfilamenten aus thermoplastischen Polymeren besteht, die einen Thermoschrumpf bei 200 °C von mehr als 20 % aufweisen,
      b) Erwärmen des Matrixvorgames während des Zuführens in die Verwirbelungsdüse auf eine derartige Temperatur, daß zumindest ein Teil des Schrumpfes ausgelöst wird,
      c) Verwirbeln der Vorgarnstränge in der Verwirbelungsdüse unter derartigen Bedingungen, daß sich ein primäres Hybridgam ausbildet, und
      d) Abziehen des erhaltenen primären Hybridgarnes gegebenenfalls unter Schrumpf und/oder zusätzlichem Erhitzen.
    14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, daß die Unterschiede in der Voreilung der in die Verwirbelungsdüse einlaufenden Vorgarne so gewählt werden, daß sich beim Verwirbeln ein Hybridglattgarn ausbildet.
    15. Verfahren nach Anspruch 13, dadurch gekennzeichnet, daß die Unterschiede in der Voreilung der in die Verwirbelungsdüse einlaufenden Vorgarne so gewählt werden, daß sich beim Verwirbeln ein Hybridschlingengam ausbildet, dessen Schlingen durch Auslösen des Schrumpfes in einer oder mehreren darauffolgenden Erhitzungsstufen wieder weitgehend geglättet werden.
    16. Verwendung der schrumpfarmen Hybridgarne nach Anspruch 1 zur Herstellung von Verbundwerkstoffen oder von textilen Flächengebilden, insbesondere zur Herstellung von Gelegen.
    EP97105367A 1996-04-09 1997-04-01 Schrumpfarme Hybridgarne, Verfahren zu deren Herstellung und deren Verwendung Expired - Lifetime EP0801159B1 (de)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    DE19613965A DE19613965A1 (de) 1996-04-09 1996-04-09 Schrumpfarme Hybridgarne, Verfahren zu deren Herstellung und deren Verwendung
    DE19613965 1996-04-09

    Publications (3)

    Publication Number Publication Date
    EP0801159A2 EP0801159A2 (de) 1997-10-15
    EP0801159A3 EP0801159A3 (de) 1998-09-16
    EP0801159B1 true EP0801159B1 (de) 2003-09-03

    Family

    ID=7790769

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP97105367A Expired - Lifetime EP0801159B1 (de) 1996-04-09 1997-04-01 Schrumpfarme Hybridgarne, Verfahren zu deren Herstellung und deren Verwendung

    Country Status (6)

    Country Link
    US (2) US5879800A (de)
    EP (1) EP0801159B1 (de)
    JP (1) JPH1096133A (de)
    KR (1) KR970070267A (de)
    CN (1) CN1165211A (de)
    DE (2) DE19613965A1 (de)

    Families Citing this family (16)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    WO2001078957A2 (en) * 2000-04-14 2001-10-25 Ihc Rehabilitation Products Method of forming a composite part with complex carbon fiber architecture by resistive heating
    US7119036B2 (en) * 2001-02-09 2006-10-10 E. I. Du Pont De Nemours And Company Protective apparel fabric and garment
    US6365556B1 (en) * 2001-02-22 2002-04-02 New Hampshire Ball Bearings, Inc. Self-lubricating liner using poly (p-phenylene-2,6-benzobisoxazole) fiber
    CN100422410C (zh) 2001-05-05 2008-10-01 苏拉有限及两合公司 用于生产低收缩直丝纱的方法和设备
    US6715191B2 (en) * 2001-06-28 2004-04-06 Owens Corning Fiberglass Technology, Inc. Co-texturization of glass fibers and thermoplastic fibers
    US7413214B2 (en) * 2002-01-08 2008-08-19 Milliken & Company Airbag made from low tenacity yarns
    WO2005090662A2 (de) * 2004-03-18 2005-09-29 Diolen Industrial Fibers B.V. Verfahren zum mischen von filamentgarnen
    DE102005034394A1 (de) * 2005-07-22 2007-02-01 Airbus Deutschland Gmbh Fixierfaden zum Heften von Verstärkungsfasern
    FR2928154B1 (fr) * 2008-03-03 2011-05-06 E Bourgeois Ets Bande transporteuse en fils de polysulfure de phenylene
    US8474115B2 (en) 2009-08-28 2013-07-02 Ocv Intellectual Capital, Llc Apparatus and method for making low tangle texturized roving
    US20120220179A1 (en) * 2009-11-17 2012-08-30 Kurashiki Boseki Kabushiki Kaisha Spun yarn and intermediate for fiber-reinforced resin, and molded article of fiber-reinforced resin using the same
    JP6297311B2 (ja) * 2013-11-20 2018-03-20 旭化成株式会社 布帛
    US10145040B2 (en) * 2014-12-12 2018-12-04 E I Du Pont De Nemours And Company Knit reinforcing fabric
    KR101694611B1 (ko) * 2015-03-31 2017-01-09 주식회사 라지 텍스처링노즐을 구비한 섬유합사장치
    CN107130329B (zh) * 2017-04-28 2019-03-29 东华大学 基于热熔丝粘接制备稳定结构拉胀复合纱的装置及方法
    CN107227525A (zh) * 2017-08-14 2017-10-03 太仓市天茂化纤有限公司 一种高强度高模量舒适混纺纤维

    Family Cites Families (19)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    GB153927A (en) * 1919-05-19 1920-11-19 Llewellyn Wynn Williams Improvements in or relating to railway signalling apparatus
    US3423809A (en) * 1967-11-15 1969-01-28 Du Pont Process for forming differential shrinkage bulked yarn
    IT1108000B (it) * 1977-11-08 1985-12-02 Barmag Barmer Maschf Procedimento per la produzione di un filato increspato da fibre aperte(open end)a multifilamenti
    GB8310072D0 (en) * 1983-04-14 1983-05-18 Coats Ltd J & P Synthetic yarn
    EP0327600A1 (de) * 1987-08-26 1989-08-16 Heltra Incorporated Zweikomponenten-garn unterschiedlicher herkunft
    EP0351201A3 (de) * 1988-07-13 1991-01-09 Hoechst Celanese Corporation Nichtschrumpffähiges Mischgarn
    DE3834139A1 (de) * 1988-10-07 1990-04-19 Hoechst Ag Zweikomponenten-schlingennaehgarn und verfahren zu seiner herstellung
    JPH03130427A (ja) * 1989-10-11 1991-06-04 Teijin Kakoshi Kk 改善されたドレープ風合を呈するポリエステル系混繊糸
    DE4013946A1 (de) * 1990-04-30 1991-10-31 Hoechst Ag Verwirbeltes multifilamentgarn aus hochmodul-einzelfilamenten und verfahren zum herstellen eines solchen garnes
    US5434123A (en) * 1990-09-13 1995-07-18 Ishihara Sangyo Kaisha, Ltd. Herbicidal composition comprising glyphosate and 1-(4,6-dimethoxypyrimidin-2-yl)-3-(3-trifluoromethyl-2-pyridylsulfonyl)urea
    EP0526003A3 (en) * 1991-07-03 1993-03-17 Smith & Nephew Inc. Elastomeric articles
    JP2652918B2 (ja) * 1991-09-26 1997-09-10 東レ株式会社 複合捲縮糸及び織物
    DE4137406A1 (de) * 1991-11-14 1993-05-19 Basf Ag Hybridgarn aus polyamidfasern und verstaerkungsfasern
    EP0586951B1 (de) * 1992-08-26 1999-10-06 Hoechst Aktiengesellschaft Feintitrige Zweikomponenten-Schlingengarne hoher Festigkeit, Verfahren zu deren Herstellung und deren Verwendung als Nähgarne und Stickgarne
    EP0664352B1 (de) * 1994-01-20 1999-03-17 Hoechst Aktiengesellschaft Zweikomponenten-Schlingengarne, Verfahren zu deren Herstellung und deren Verwendung als Nähgarne und Stickgarne
    ES2154710T3 (es) * 1994-12-16 2001-04-16 Hoechst Trevira Gmbh & Co Kg Hilo hibrido y material textil deformable permanentemente encogible y encogido, fabricado a partir del mismo, su fabricacion y utilizacion.
    DE19506038A1 (de) * 1995-02-22 1996-08-29 Hoechst Trevira Gmbh & Co Kg Verformbare, hitzestabilisierbare textile Schlingenpolware
    DE19513506A1 (de) * 1995-04-10 1996-10-17 Hoechst Ag Hybridgarn und daraus hergestelltes permanent verformbares Textilmaterial, seine Herstellung und Verwendung
    DE19537702A1 (de) * 1995-10-11 1997-04-17 Hoechst Trevira Gmbh & Co Kg Gewebe und Gelege mit einstellbarer Gas- und/oder Flüssigkeitsdichtigkeit enthaltend Hybridgarne, Verfahren zu deren Weiterverarbeitung, textile Flächengebilde mit vorbestimmter Gas- und/durch Flüssigkeitsdurchlässigkeit und deren Verwendung

    Also Published As

    Publication number Publication date
    EP0801159A2 (de) 1997-10-15
    DE59710673D1 (de) 2003-10-09
    US6109016A (en) 2000-08-29
    KR970070267A (ko) 1997-11-07
    JPH1096133A (ja) 1998-04-14
    EP0801159A3 (de) 1998-09-16
    CN1165211A (zh) 1997-11-19
    DE19613965A1 (de) 1997-10-16
    US5879800A (en) 1999-03-09

    Similar Documents

    Publication Publication Date Title
    EP0801159B1 (de) Schrumpfarme Hybridgarne, Verfahren zu deren Herstellung und deren Verwendung
    EP0718425B1 (de) Zweikomponenten-Schlingengarne aus Aramidfilamenten, Verfahren zu deren Herstellung und deren Verwendung
    DE69513510T2 (de) Hohlfilamente und garne aus nylan und verfahren zu ihrer herstellung
    DE2747803C2 (de)
    EP0363798B1 (de) Zweikomponenten-Schlingennähgarn und Verfahren zu seiner Herstellung
    DE69024074T2 (de) Herstellung von Aramidfasern
    EP0119185B1 (de) Verfahren zur Herstellung von schwer entflammbaren, hochtemperaturbeständigen Polyimidfasern
    CH313960A (de) Verfahren zur Herstellung von reissfesten Fasern oder Fäden aus einem synthetischen Polyester
    DE1955887B2 (de) Gekraeuselte zweikomponentenfaeden und ihre verwendung
    DE69518988T2 (de) Verfahren zur herstellung eines polyesterendlosfilamentgarnes, verwendung des filamentgarnes und davon hergestelltes cord
    DE69216430T2 (de) Verfahren zur herstellung von polyamid-garn mit hoher festigkeit und niedrigem schrumpf
    EP0173221B1 (de) Hochfestes Polyestergarn und Verfahren zu seiner Herstellung
    DE1944042A1 (de) Textiles Verstaerkungsmaterial und Verfahren zu seiner Herstellung
    DE68910285T2 (de) Papiermacherfilz.
    EP0223301B1 (de) Verfahren zur Herstellung eines Schussfadens aus Polyester-POY
    DE3105360C2 (de) Verfahren zur Herstellung hochfester Fäden aus Polyacrylnitril
    DE69715867T2 (de) Ultra-orientierte kristalline filamente und verfahren eu ihrer herstellung
    EP0586951A1 (de) Feintitrige Zweikomponenten-Schlingengarne hoher Festigkeit, Verfahren zu deren Herstellung und deren Verwendung als Nähgarne und Stickgarne
    DE2520733B2 (de) Verbesserung der gummihaftung von hochtemperaturfesten aromatischen poly- 1,3,4-oxadiazolfaeden
    DE4401513A1 (de) Zweikomponenten-Schlingengarne, Verfahren zu deren Herstellung und deren Verwendung als Nähgarne und Stickgarne
    DE69400480T2 (de) Poly (p-phenylenterephthalamid) fasern mit hoher bruchdehnung
    DE3508955A1 (de) Verfahren zum schnellspinnstrecken synthetischer garne
    DE4430633A1 (de) Zweikomponenten-Schlingengarne, Verfahren zu deren Herstellung und deren Verwendung als Nähgarne und Stickgarne
    EP0664352B1 (de) Zweikomponenten-Schlingengarne, Verfahren zu deren Herstellung und deren Verwendung als Nähgarne und Stickgarne
    KR910005543B1 (ko) 대전방지 코스펀사

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A2

    Designated state(s): BE CH DE FR GB IT LI NL

    PUAL Search report despatched

    Free format text: ORIGINAL CODE: 0009013

    AK Designated contracting states

    Kind code of ref document: A3

    Designated state(s): BE CH DE FR GB IT LI NL

    17P Request for examination filed

    Effective date: 19990316

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: ARTEVA TECHNOLOGIES S.A.R.L.

    17Q First examination report despatched

    Effective date: 20011129

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): BE CH DE FR GB IT LI NL

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    REF Corresponds to:

    Ref document number: 59710673

    Country of ref document: DE

    Date of ref document: 20031009

    Kind code of ref document: P

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20031215

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20040408

    Year of fee payment: 8

    ET Fr: translation filed
    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20040604

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: 732E

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PFA

    Owner name: INVISTA TECHNOLOGIES S.A.R.L.

    Free format text: ARTEVA TECHNOLOGIES S.A.R.L.#TALSTRASSE 80#8001 ZUERICH (CH) -TRANSFER TO- INVISTA TECHNOLOGIES S.A.R.L.#TALSTRASSE 80#8001 ZUERICH (CH)

    NLT1 Nl: modifications of names registered in virtue of documents presented to the patent office pursuant to art. 16 a, paragraph 1

    Owner name: INVISTA TECHNOLOGIES S.A.R.L.

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20051101

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: CD

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20080312

    Year of fee payment: 12

    Ref country code: CH

    Payment date: 20080415

    Year of fee payment: 12

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: BE

    Payment date: 20080616

    Year of fee payment: 12

    Ref country code: IT

    Payment date: 20080428

    Year of fee payment: 12

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: NL

    Payment date: 20080403

    Year of fee payment: 12

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20080402

    Year of fee payment: 12

    BERE Be: lapsed

    Owner name: *INVISTA TECHNOLOGIES S.A.R.L.

    Effective date: 20090430

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20090401

    NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

    Effective date: 20091101

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20091231

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20090430

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20090430

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20091101

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20090401

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20091222

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20090430

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20090401