EP0119185B1 - Verfahren zur Herstellung von schwer entflammbaren, hochtemperaturbeständigen Polyimidfasern - Google Patents

Verfahren zur Herstellung von schwer entflammbaren, hochtemperaturbeständigen Polyimidfasern Download PDF

Info

Publication number
EP0119185B1
EP0119185B1 EP84890036A EP84890036A EP0119185B1 EP 0119185 B1 EP0119185 B1 EP 0119185B1 EP 84890036 A EP84890036 A EP 84890036A EP 84890036 A EP84890036 A EP 84890036A EP 0119185 B1 EP0119185 B1 EP 0119185B1
Authority
EP
European Patent Office
Prior art keywords
spinning
temperature
polyimide
solution
dry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP84890036A
Other languages
English (en)
French (fr)
Other versions
EP0119185A3 (en
EP0119185A2 (de
Inventor
Klaus Dipl.-Ing. Dr. Weinrotter
Thomas Dipl.-Chem. Dr. Jeszenszky
Heinrich Dr. Schmidt
Siegfried Baumann
Johann Kalleitner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IMI-TECH FIBRES GMBH
Original Assignee
Lenzing AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lenzing AG filed Critical Lenzing AG
Publication of EP0119185A2 publication Critical patent/EP0119185A2/de
Publication of EP0119185A3 publication Critical patent/EP0119185A3/de
Application granted granted Critical
Publication of EP0119185B1 publication Critical patent/EP0119185B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/74Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polycondensates of cyclic compounds, e.g. polyimides, polybenzimidazoles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2904Staple length fiber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2973Particular cross section

Definitions

  • the invention relates to a method for producing flame-retardant, high-temperature-resistant polyimide fibers by the dry spinning method from a solution in aprotic organic solvents.
  • Heat-resistant polymers have been known for a long time. They contain aromatic groups in their molecular chains, so that highly conjugated binding systems are created which are essential for high temperature resistance. Examples of this are aromatic polyamides and polyimides, in which the temperature resistance could be significantly increased by substituting the aliphatic chain with benzene residues.
  • the mixed polyimides described therein are soluble in polar, aprotic organic solvents, such as dimethylformamide, dimethylacetamide, N-methylpyrrolidone or dimethyl sulfoxide.
  • the polymers are prepared by the solution codification of benzophenonetetracarboxylic acid dianhydride with a mixture of tolylene diisocyanate and diphenylmethane diisocyanate in one of the aforementioned solvents.
  • the polymer can be processed directly from the solutions.
  • DE-A-2 442 203 further describes that fibers can be produced from the solutions, in particular by wet spinning, the fiber cross section being able to be designed differently by selecting the spinning bath.
  • the fiber cross section is round or elliptical.
  • polar aprotic solvent e.g. dimethylformamide, dimethylacetamide, N-methylpyrrolidone or similar
  • the fiber cross section is round or elliptical.
  • z. B. Glycerin in the precipitation bath pseudo hollow fibers with a narrow longitudinal slot and a serrated outside.
  • DE-A-2442 203 only contains general information without any statement about the fiber properties that can be achieved.
  • the object of the invention is to produce fibers from flame-retardant, high-temperature-resistant polyimide polymers according to the dry spinning method, which have improved performance properties, in particular an irregular fiber cross-section, which, with the same basis weight as fibers of round cross-section, ensure much better coverage, a pleasant feel and a high level To have shine.
  • the preparation of the polymers can be carried out by reacting benzophenonetetracarboxylic acid dianhydride, tolylene diisocyanate and diphenylmethane diisocyanate in an aprotic organic solvent, giving a solution of the polymer.
  • the solid powdery polymer can also be brought into solution continuously or discontinuously in an aprotic solvent such as dimethylacetamide, N-methylpyrrolidone, or dimethyl sulfoxide, preferably dimethylformamide.
  • the dissolving temperature is chosen between 30 and 120 ° C, preferably a solution with a content between 25 and 35 wt.% Is prepared.
  • the solution obtained is degassed, can be filtered one or more times and is fed to the spinning head of a dry spinning device via a spinning pump.
  • the individual shaft output can expediently be between 20 and 400 kg fiber / d, preferably between 150 and 300 kg / d.
  • spinning shafts can be combined to form a so-called “spinning machine " .
  • the technical design of the spinning head, the spinning shaft or the entire spinning machine can be similar to that which is common in the dry spinning of acrylic fibers.
  • the cross-sections are irregular and have - to use alphabetical letters as a comparison - strongly profiled shapes such as W, U, C, Y, E, V, T, X.
  • These fiber cross-sectional shapes which also apply to the The following fiber aftertreatment is not a property that has long been desired by textile technicians and which brings about the improvement in use properties mentioned above.
  • the typical fiber bundle cross sections shown in FIG. 1 do not change when different numbers of nozzle holes are used, provided that the nozzle holes are only round.
  • the same typical cross-sectional shapes were obtained when using 100-hole nozzles as well as 200, 400, 600 and 800-hole nozzles.
  • the shaft cables obtained in the manner described by means of dry spinning, spooled in between or deposited in cans are advantageously washed with water at a speed of 2 to 20 m / min at first at temperatures of 80 to 100 ° C. for the aftertreatment, then previved, using a sieve drum or calender dryer dried at temperatures between 120 and 300 ° C until the cable moisture after the dryer is less than 5%, the cable tape is then stretched in one or more stages in a ratio of 1: 2 to 1:10 at temperatures between 315 to 450 ° C, then post-finished with a conventional preparation, crimped in a compression crimping machine at room temperature and finally cut into staple fibers or, in the case of the production of continuous filaments, wound up after the stretching process.
  • the fibers are freed of residual solvent by intensive washing with hot water. Preavivation involves the application of a commercially available antistatic in order to be able to pass the sliver through the dryer without any problems. Maintaining the moisture content of less than 5% after drying is important in order to carry out the subsequent high-temperature drawing without difficulty can. This high temperature drawing is carried out either over heated rolls, a heating table or over a hot air oven, and it can be carried out in one or more stages. Maintaining temperatures between 315 and 450 ° C during stretching is necessary because of the high glass transition point of the polyimide fibers (about 315 ° C).
  • a satisfactory crimp can be applied with conventional stuffer box crimping machines at temperatures ⁇ 100 ° C, which enables the later processing of the staple fibers on conventional textile machines.
  • the re-finishing takes place by means of commercially available finishing agents for synthetic fibers, which can have a cationic and / or anionic and / or non-ionic character.
  • the point in time of the re-activation does not necessarily have to be after the high-temperature stretching, but can also be selected after the crimping.
  • the cutting into staple fibers is done with commercially available cutting machines. In the case of the production of continuous yarns, the cable strips with the desired cable thickness are passed separately through the aftertreatment system and are wound up on spools after the high-temperature stretching and possibly after-aging.
  • the spinning gas temperature at the height of the nozzle package is 295 ° C and at the end of the 8 m long spinning shaft is 115 ° C, the amount of spinning gas is 60 m 3 / h (based on normal conditions).
  • the shaft output is set to 150 kg fiber / d.
  • the spun material with a total titer of 2640 dtex, which has a residual DMF content of 15% by weight, based on polymer solids, is collected on spools and folded into a cable band with a total titer of 184800 dtex.
  • the cable band is then washed in water at 90 ° C, provided with an antistatic finish in a dip tank, dried at 180 ° C using a sieve drum dryer and then stretched over a heating bracket in a ratio of 1: 5.
  • the surface temperature of the heating bracket is 380 ° C.
  • the stretched cable tape is provided with a mixture of cationic / nonionic preparation, crimped in a stuffer box at room temperature and cut into staple fibers of 40 mm in length.
  • the fibers which have a final titer of 2.2 dtex, have a strength of 28 cN / tex, the fiber elongation is 34%, the loop strength 15 cN / tex, the knot strength 20 cN / tex, the boiling shrinkage is 0.4%.
  • the fibers have a pronounced lobed or serrated shape in cross section (as shown in FIG. 1) and the LOI value, measured on a knitted stocking with a weight per unit area of 150 g / m 2 , is 37% 0 2 . If the fibers are exposed to a temperature of 260 ° C for a period of 250 hours, the specified fiber data will not change, ie the fiber is thermostable at the specified temperature. The water absorption of the fibers is 20 ° C and 65% relative humidity 2.7%.
  • the spinning gas temperature at the height of the nozzle pack is 320 ° C and at the end of the spinning shaft 120 ° C, the amount of spinning gas is 70 m 3 / h (based on normal conditions).
  • the shaft output is set to 200 kg fiber / d.
  • the spun material with a total titre of 7140 dtex, which has a residual DMF content of 17% by weight, based on polymer solids, is collected on spools and folded into a cable band with a total titre of 357,000 dtex.
  • the cable band is washed, pre-treated, dried and then stretched in two stages over heated rollers.
  • the total stretch ratio is 1: 7, the surface temperature of the heated rolls is 340 ° C.
  • the cable tape is crimped at room temperature in a compression crimping chamber, then treated with a nonionic finishing agent by spraying and cut into staple fibers.
  • the fibers which have a final titer of 1.7 dtex, have a strength of 30 cN / tex, the fiber elongation is 30%, the boiling shrinkage is 0.45%.
  • the fibers show in cross section the characteristic shape shown in FIG. 1 or described in Example 1.
  • the further treatment of the solution is as in Example 1.
  • the solution is spun using a 240-hole nozzle, the nozzle hole shape is circular and has a hole diameter of 175 kt m.
  • the spinning solution temperature is 60 ° C before entering the nozzle pack.
  • the spinning gas temperature at the level of the nozzle package is 260 ° C and at the end of the spinning shaft 110 ° C, the amount of spinning gas is 55 m 3 / h (based on normal conditions).
  • the shaft output is set to 130 kg fiber / d.
  • the spun material with a total titre of 6240 dtex which has a residual DMF content of 20% by weight, based on polymer solids, is collected on bobbins and several bobbins are submitted to the aftertreatment process.
  • the individual cable tapes, each with a total titer of 6240 dtex, are passed through the post-treatment process separately, i.e. washed, pre-aged and dried.
  • the drawing takes place in one step in a hot air oven, the drawing ratio be carries 1: 4.7.
  • the air temperature during stretching is 420 ° C.
  • the stretched cable tapes are then individually wound on cross-wound bobbins as an endless filament bundle.
  • the individual filaments, which have a final titer of 5.5 dtex, have a strength of 24 cN / tex, the fiber elongation is 40%, the boiling shrinkage is 0.3%.
  • the filaments show in cross section the characteristic shape shown in FIG. 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Artificial Filaments (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zur Herstellung von schwer entflammbaren, hochtemperaturbeständigen Polyimidfasern nach der Trockenspinnmethode aus einer Lösung in aprotischen organischen Lösungsmitteln.
  • Hitzebeständige Polymerisate sind seit längerem bekannt. Sie enthalten in ihren Molekülketten aromatische Gruppen, so dass hochkonjungierte Bindungssysteme entstehen, die für die Hochtemperaturbeständigkeit wesentlich sind. Beispiele dafür sind aromatische Polyamide und Polyimide, bei denen durch Substitution der aliphatischen Kette durch Benzolreste die Temperaturbeständigkeit wesentlich erhöht werden konnte.
  • Ein Hindernis für die technische Anwendung dieser Verbindungen stellt die Tatsache dar, dass sie in der Regel weder in Lösungsmitteln löslich noch schmelzbar sind. Ihre Formgebung kann daher nicht, wie bei anderen Kunststoffen, durch Extrusion, Schmelzspinnen, Trockenspinnen, Nassspinnen oder ähnliche Vorgänge erfolgen.
  • Um diese Schwierigkeiten zu umgehen, hat man vorgeschlagen, durch Kondensation eines Tetracarbonsäuredianhydrids mit einem Diamin unter relativ milden Bedingungen zuerst eine Polyamidsäure herzustellen, bei der die jeweilige Amingruppe erst mit jeweils einer der zwei zur Verfügung stehenden Carboxylgruppen des Anhydrids reagiert. Diese Polyamidsäure ist löslich und aus ihren Lösungen lassen sich Folien, Filme oder auch Fasern formen. Anschliessend wird durch Erhitzen aus diesen Produkten das Lösungsmittel entfernt und durch weiteres Erhitzen die Reaktion zum Polyimid durchgeführt.
  • Diese Vorgangsweise hat jedoch schwerwiegende Nachteile, indem die Zwischenstufe gegen hydrolytischen Abbau sehr empfindlich ist und bei der endgültigen Kondensation zum Polyimid nochmals Wasser freigesetzt wird, welches aus dem Inneren der Formkörper (Folien, Filme, Fasern) nur durch Diffusion entweichen kann. Wird diese Reaktion zu schnell durchgeführt, so bildet der entstehende Wasserdampf im Inneren der Formkörper Hohlräume, die für die Gebrauchseigenschaften schädlich sind.
  • Ein weiterer bekannter Vorschlag zur Gewinnung von schwer entflammbaren hochtemperaturbeständigen Polymeren findet sich in der DE-C-2143 080. Die dort beschriebenen Mischpolyimide sind in polaren, aprotischen organischen Lösungsmitteln, wie Dimethylformamid, Dimethylacetamid, N-Methylpyrrolidon oder Dimethylsulfoxid löslich. Die Polymere werden durch Lösungskodensation von Benzophenontetracarbonsäuredianhydrid mit einer Mischung aus Toluylendiisocyanat und Diphenylmethandiisocyanat in einem der vorerwähnten Lösungsmittel hergestellt. Aus den Lösungen kann das Polymer direkt weiterverarbeitet werden. In der DE-A-2 442 203 wird weiters beschrieben, dass aus den Lösungen insbesondere durch Nassspinnen Fasern hergestellt werden können, wobei durch Auswahl des Spinnbades der Faserquerschnitt verschieden ausgebildet werden kann. Bei Verwendung von Wasser mit wechselnden Anteilen von polarem aprotischem Lösungsmittel (z.B. Dimethylformamid, Dimethylacetamid, N-Methylpyrrolidon oder ähnliche) ist der Faserquerschnitt rund bzw. elliptisch. Bei Verwendung von z. B. Glycerin im Fällbad entstehen Pseudohohlfasern mit einem schmalen Längsschlitz und einer gezähnten Aussenseite. Hinsichtlich Trockenspinnen finden sich in der DE-A-2442 203 lediglich allgemeine Hinweise ohne Aussage über dabei erzielbare Fasereigenschaften.
  • Die Herstellung von Polyimidfasern nach dem Trockenspinnverfahren aus Lösungen, welche Polymere, gebildet aus Benzophenontetracarbonsäuredianhydrid und einer Mischung aus Toluylendiisocyanat und Diphenylmethandiisocyanat. enthalten, ist demnach bis heute nicht zufriedenstellend gelöst. Infolge der Einsparung von Koagulationsbädern und der einfacheren Rückgewinnbarkeit der Spinnlösungsmittel beim Trokkenspinnen ist die Faserherstellung nach der Trockenspinnmethode auch aus dem Gesichtspunkt der Wirtschaftlichkeit günstiger als mittels Nassspinnen.
  • Es wurde auch bereits vorgeschlagen, beim Trocken- oder Schmelzspinnen von textilen Synthesefasern diesen einen gewünschten gelappten oder gezähnten Querschnitt zu verleihen, indem man Düsenlöcher mit einem entsprechenden Querschnitt, beispielsweise in Sternform, verwendet. So wird z. B. in der DE-A-3 040 970 beschrieben, dass querschnittsmodifizierte Acrylfasern nach dem Trockenspinnverfahren durch besondere geometrische Ausführung der Düsenlöcher - mittels sogenannter Profildüsenlöcher - erhalten werden können. Abgesehen von der schwierigen und teuren Herstellung der komplizierten Düsenöffnungen ergibt sich auch der Nachteil, dass solche Düsen wesentlich schneller korrodieren als Düsen mit rundem Querschnitt. Trotzdem wurde dieser Nachteil in Kauf genommen, um bessere Gebrauchseigenschaften der Fasern, insbesondere eine Verbesserung des Anschmutzverhaltens, eine Erhöhung der Farbbrillanz, die Erzielung eines angenehmen Griffes und eine Verbesserung des Warenausfalls bei textilen Anwendungen zu erhalten.
  • Üblicherweise werden bei Verwendung von runden Düsenlöchern beim Schmelzspinnen runde und beim Trockenspinnen von Lösungen hantelförmige Faserquerschnitte erhalten. Somit war auch beim Einsatz von Polyimid-Lösungen in einem herkömmlichen Trockenspinnverfahren kein anderes Ergebnis zu erwarten.
  • Die Erfindung stellt sich die Aufgabe, Fasern aus schwer entflammbaren, hochtemperaturbeständigen Polyimidpolymeren nach der Trockenspinnmethode herzustellen, die verbesserte Gebrauchseigenschaften, insbesondere einen unregelmässigen Faserquerschnitt, aufweisen, die bei gleichem Flächengewicht wie Fasern von rundem Querschnitt eine wesentlich bessere Deckung gewährleisten, einen angenehmen Griff und hohen Glanz haben.
  • Diese Aufgabe wird bei einem Verfahren der eingangs definierten Art ausgehend von Polyimidpolymeren mit einer Zusammensetzung der allgemeinen Formel
    Figure imgb0001
    wobei R teilweise als eine Gruppe der Formel
    Figure imgb0002
    und der Rest als eine Gruppe der Formel
    Figure imgb0003
    vorliegt, erfindungsgemäss dadurch gelöst, dass der Trockenspinnprozess in einem Spinnschacht durchgeführt wird, wobei eine 20 bis 40%ige Lösung des Polyimids aus Düsen mit rundem Querschnitt, Lochzahlen von 20 bis 800 und einem Düsenlochdurchmesser von 100 bis 300 µm versponnen wird, eine Spritzgeschwindigkeit zwischen 20 und 100 m/min, eine Abzugsgeschwindigkeit zwischen 100 und 800 m/min, eine Spinngasmenge zwischen 40 und 100 m2/h unter Normalbedingungen und eine Spinngastemperatur zwischen 200 und 350 °C angewendet werden, die dabei erhaltenen Schachtkabel mit einem Restlösungsmittelgehalt von 5 bis 25 Gew.% - bezogen auf den Polymerfeststoff - und mit einem Einzelfilamenttiter zwischen 3,5 und 35 dtex in heissem Wasser gewaschen, dann auf einen Feuchtigkeitsgehalt von weniger als 5% getrocknet, anschliessend hochtemperaturverstreckt und gegebenenfalls gekräuselt und zu Stapelfasern geschnitten werden.
  • Die Herstellung der Polymeren kann, wie bekannt, durch Umsetzen von Benzophenontetracarbonsäuredianhydrid, Toluylendiisocyanat und Diphenylmethandiisocyanat in einem aprotischen organischen Lösungsmittel vorgenommen werden, wobei man eine Lösung des Polymeren erhält. Man kann das feste pulverförmige Polymere aber auch kontinuierlich oder diskontinuierlich in einem aprotischen Lösungsmittel wie Dimethylacetamid, N-Methylpyrrolidon, oder Dimethylsulfoxid, vorzugsweise Dimethylformamid, in Lösung bringen. Die Lösetemperatur wird zwischen 30 und 120°C gewählt, vorzugsweise wird eine Lösung mit einem Gehalt zwischen 25 und 35 Gew. % bereitet. Die erhaltene Lösung wird entgast, kann ein- oder mehrmals filtriert werden und wird über eine Spinnpumpe dem Spinnkopf einer Trockenspinneinrichtung zugeführt.
  • Die Einzelschachtleistung kann zweckmässig zwischen 20 und 400 kg Faser/d, vorzugsweise zwischen 150 und 300 kg/d, betragen.
  • Je nach Auslegung der Anlage können mehrere Spinnschächte zu einer sogenannten «Spinnmaschine" kombiniert werden.
  • Die technische Ausführung des Spinnkopfes, des Spinnschachtes bzw. der gesamten Spinnmaschine kann ähnlich jener sein, die beim Trockenspinnen von Acrylfasern üblich ist.
  • Unter Einhaltung der angegebenen Spinnbedingungen erhält man erfindungsgemäss beim Trokkenspinnen aus Runddüsen in völlig überraschender Weise stark gelappte und unregelmässig gezähnte Faserquerschnitte.
  • In Fig. 1 sind typische Faserquerschnitte eines auf diese Weise erhaltenen Schachtkabels dargestellt.
  • Obwohl die Einzelfilamente etwa gleiche Fasertiter aufweisen, sind die Querschnitte unregelmässig und besitzen-um alphabetische Buchstaben als Vergleich heranzuziehen - stark profilierte Formen wie W, U, C, Y, E, V, T, X. Diese Faserquerschnittsformen, welche sich auch bei der folgenden Fasernachbehandlung nicht ändern, sind eine von Textiltechnikern seit langem gewünschte Eigenschaft, welche die oben erwähnte Verbesserung der Gebrauchseigenschaften mit sich bringt. Die in Fig. 1 gezeigten, typischen Faserbündelquerschnitte ändern sich nicht bei Anwendung unterschiedlicher Düsenlochanzahlen, sofern die Düsenlöcher nur rund sind. So wurden die gleichen typischen Querschnittsformen sowohl beim Einsatz von 100-Loch-Düsen, als auch von 200-, 400-, 600- und 800-Loch-Düsen erhalten.
  • Die in beschriebener Weise mittels Trockenspinnen erhaltenen, zwischendurch aufgespulten oder in Kannen abgelegten Schachtkabel werden zur Nachbehandlung vorteilhaft mit Einzugsgeschwindigkeiten von 2 bis 20 m/min zunächst bei Temperaturen von 80 bis 100°C mit Wasser gewaschen, dann voraviviert, über einen Siebtrommel-oder Kalandertrockner bei Temperaturen zwischen 120 und 300°C getrocknet, bis die Kabelfeuchte nach dem Trockner weniger als 5% beträgt, das Kabelband wird anschliessend ein- oder mehrstufig im Verhältnis 1:2 bis 1:10 bei Temperaturen zwischen 315 bis 450°C verstreckt, anschliessend mit einer üblichen Präparation nachaviviert, in einer Stauchkräuselmaschine bei Raumtemperatur gekräuselt und schliesslich zu Stapelfasern geschnitten bzw. im Falle der Herstellung von Endlosfilamenten nach dem Verstreckvorgang aufgespult.
  • Durch die intensive Wäsche mit heissem Wasser werden die Fasern vom Restlösungsmittel befreit. Die Voravivierung beinhaltet den Auftrag eines handelsüblichen Antistatikums, um das Faserband problemlos durch den Trockner führen zu können. Die Einhaltung des Feuchtigkeitsgehaltes von weniger als 5% nach der Trocknung ist wichtig, um die darauffolgende Hochtemperaturverstreckung ohne Schwierigkeiten durchführen zu können. Diese Hochtemperaturverstreckung wird entweder über beheizte Walzen, einen Heiztisch oder über einen Heissluftofen durchgeführt, und sie kann einstufig oder mehrstufig erfolgen. Die Einhaltung der Temperaturen zwischen 315 und 450°C während der Verstreckung ist wegen des hohen Glasumwandlungspunktes der Polyimidfasern (etwa 315°C) notwendig.
  • Trotz des hohen Glasumwandlungspunktes der Polymeren kann mit herkömmlichen Stauchkammerkräuselmaschinen bei Temperaturen <100°C eine befriedigende Kräuselung aufgebracht werden, welche die spätere Weiterverarbeitung der Stapelfasern auf üblichen Textilmaschinen ermöglicht. Die Nachavivierung erfolgt mittels handelsüblicher Avivagen für Synthesefasern, welche kationischen und/oder anionischen und/oder nichtionogenen Charakter haben können. Der Zeitpunkt der Nachavivierung muss nicht unbedingt nach der Hochtemperaturverstreckung, sondern kann auch nach der Kräuselung gewählt werden. Das Schneiden zu Stapelfasern erfolgt mit handelsüblichen Schneidmaschinen. Im Falle der Herstellung von Endlosgarnen werden die Kabelbänder mit der gewünschten Kabelstärke getrennt durch die Nachbehandlungsanlage geführt und nach der Hochtemperaturverstreckung und eventuell einer Nachavivierung auf Spulen aufgewikkelt.
  • Die Bedingungen, die im erfindungsgemässen Verfahren in den einzelnen Stufen einzuhalten sind, sind in der folgenden Aufstellung übersichtlich zusammengefasst:
    Figure imgb0004
    Die nach dem erfindungsgemässen Verfahren hergestellten, trockengesponnenen Polyimidfasern zeichnen sich durch folgende Eigenschaften aus:
    • - Schwerentflammbarkeit: die Fasern besitzen einen LOI (Limiting Oxygen Index) nach ASTM D-2863 von >33% 02.
    • - Die Fasern schmelzen nicht, sondern zersetzen sich bei Temperaturen > 450 °C.
    • - Thermostabilität: die bisherigen Messungen zeigen,, dass die nach obigem Verfahren hergestellten Polyimidfasern Dauertemperaturbelastungen bis 260°C standhalten, ohne ihre Fasereigenschaften merklich einzubüssen. - Textilmechanische Faserdaten:
    • - ausgezeichnetes Arbeitsvermögen; (ein typisches Kraft/Dehnungs-Diagramm ist in Fig. 2 dargestellt)
    • - sehr gute Knoten- und Schlingenfestigkeit;
    • - niedriger Faserschrumpf in kochendem Wasser « 0,5%);
    • - unregelmässiger, gelappter bzw. gezähnter Faserquerschnitt;
    • - begrenztes Wasseraufnahmevermögen;
    • - hoher Glanz;
    • - angenehmer, wollähnlicher Griff:
    • - Endfasertiter variabel von 0,6 bis 10 dtex.
    • - Farbe: die natürliche Farbe der nach obigem Verfahren hergestellten Polyimidfaser ist goldgelb.
  • Das erfindungsgemässe Verfahren ist in folgenden Beispielen näher erläutert:
  • Beispiel 1:
  • 9 kg Polyimid der allgemeinen Formel (I) werden in 24,3 kg Dimethylformamid 30 min bei einer Temperatur von 30°C unter Rühren in einem Behälter gelöst. Anschliessend wird das Gemisch durch 40-minütiges Erhitzen auf 60°C in eine Spinnlösung übergeführt, bei einem Druck von 507 mbar entgast, filtriert und über eine Zahnradpumpe dem Spinnkopf eines Trockenspinnschachtes zugeführt. Die Verspinnung erfolgt über eine 240-Lochdüse, die Düsenlochform ist kreisrund und besitzt einen Lochdurchmesser von 175 µm. Die Spinnlösungstemperatur beträgt vor dem Eintritt in das Düsenpaket 70°C. Die Spinngastemperatur beträgt in Höhe des Düsenpaketes 295°C und am Ende des 8 m langen Spinnschachtes 115°C, die Spinngasmenge 60 m3/h (bezogen auf Normalbedingungen). Die Schachtleistung wird auf 150 kg Faser/d eingestellt. Das Spinngut vom Gesamttiter 2640 dtex, welches einen Rest-DMF-Gehalt von 15 Gew. %, bezogen auf Polymerfeststoff, aufweist, wird auf Spulen gesammelt und zu einem Kabelband vom Gesamttiter 184800dtex gefacht. Das Kabelband wird anschliessend in Wasser von 90 °C gewaschen, in einer Tauchwanne mit einer Antistatik-Avivage versehen, bei 180°C über einen Siebtrommeltrockner getrocknet und anschliessend über einen Heizbügel im Verhältnis 1:5 verstreckt. Die Oberflächentemperatur des Heizbügels beträgt 380°C. Das verstreckte Kabelband wird mit einer Mischung von kationaktiver/nichtionogener Präparation versehen, in einer Stauchkammer bei Raumtemperatur gekräuselt und zu Stapelfasern von 40 mm Länge geschnitten. Die Fasern, welche einen Endtiter von 2,2 dtex aufweisen, besitzen eine Festigkeit von 28 cN/tex, die Faserdehnung beträgt 34%, die Schlingenfestigkeit 15 cN/tex, die Knotenfestigkeit 20 cN/tex, der Kochschrumpf ist 0,4%.
  • Die Fasern zeigen im Querschnitt ausgeprägte gelappte bzw. gezähnte Form (wie in Fig. 1 dargestellt) und der LOI-Wert, gemessen an einem Strickstrumpf mit einem Flächengewicht von 150 g/m2, beträgt 37% 02. Werden die Fasern über einen Zeitraum von 250 Stunden einer Temperatur von 260°C ausgesetzt, ändern sich die angegebenen Faserdaten nicht, d. h. die Faser ist bei der angegebenen Temperatur thermostabil. Die Wasseraufnahme der Fasern liegt bei 20°C und 65% relativer Luftfeuchtigkeit bei 2,7%.
  • Beispiel 2:
  • 11 kg Polyimid der in Beispiel 1 beschriebenen Zusammensetzung werden in 25 kg Dimethylformamid 40 min bei einer Temperatur von 50°C unter Rühren in einem Behälter gelöst. Anschliessend wird das Gemisch durch einstündiges Erhitzen auf 80°C in eine 31,5%ige Spinnlösung übergeführt, bei einem Druck von 467 mbar entgast, filtriert und über eine Zahnradpumpe dem Spinnkopf eines Trockenspinnschachtes zugeführt. Die Verspinnung erfolgt über eine 600-Lochdüse, die Düsenlochform ist kreisrund und besitzt einen Lochdurchmesser von 150 µm. Die Spinnlösungstemperatur beträgt vor dem Eintritt in das Düsenpaket 90°C. Die Spinngastemperatur beträgt in der Höhe des Düsenpaketes 320°C und am Ende des Spinnschachtes 120°C, die Spinngasmenge 70 m3/h (bezogen auf Normalbedingungen). Die Schachtleistung wird auf 200 kg Faser/d eingestellt. Das Spinngut vom Gesamttiter 7140 dtex, welches einen Rest-DMF-Gehalt von 17 Gew.%, bezogen auf Polymerfeststoff, aufweist, wird auf Spulen gesammelt und zu einem Kabelband von Gesamttiter 357 000 dtex gefacht. Das Kabelband wird, wie in Beispiel 1 beschrieben, gewaschen, voraviviert, getrocknet und anschliessend über beheizte Walzen zweistufig verstreckt. Das Gesamtstreckverhältnis ist 1:7, die Oberflächentemperatur der beheizten Walzen beträgt 340°C. Das Kabelband wird bei Raumtemperatur in einer Stauchkräuselkammer gekräuselt, anschliessend mit einer nichtionogenen Avivage durch Sprühavivierung behandelt und zu Stapelfasern geschnitten.
  • Die Fasern, welche einen Endtiter von 1,7 dtex aufweisen, besitzen eine Festigkeit von 30 cN/tex, die Faserdehnung beträgt 30%, der Kochschrumpf ist 0,45%.
  • Die Fasern zeigen im Querschnitt die in Fig. 1 dargestellte bzw. in Beispiel 1 beschriebene, charakteristische Form.
  • Beispiel 3:
  • Eine 25%ige Lösung von Polyimid (Zusammensetzung siehe Beispiel 1) in DMF, welche bei der Polykondensationsreaktion erhalten wurde, wird filtriert und direkt in den Entgasungsbehälter gefüllt. Die weitere Behandlung der Lösung erfolgt wie in Beispiel 1. Die Verspinnung der Lösung erfolgt über eine 240-Lochdüse, die Düsenlochform ist kreisrund und besitzt einen Lochdurchmesser von 175 ktm. Die Spinnlösungstemperatur beträgt vor dem Eintritt in das Düsenpaket 60°C. Die Spinngastemperatur beträgt in Höhe des Düsenpaketes 260°C und am Ende des Spinnschachtes 110°C, die Spinngasmenge 55 m3/h (bezogen auf Normalbedingungen). Die Schachtleistung wird auf 130 kg Faser/d eingestellt. Das Spinngut vom Gesamttiter 6240 dtex, welches einen Rest-DMF-Gehalt von 20 Gew. %, bezogen auf Polymerfeststoff, aufweist, wird auf Spulen gesammelt und mehrere Spulen dem Nachbehandlungsprozess vorgelegt. Die einzelnen Kabelbänder, welche je einen Gesamttiter von 6240 dtex aufweisen, werden getrennt durch den Nachbehandlungsprozess geführt, also gewaschen, voraviviert und getrocknet. Die Verstreckung erfolgt in einem Schritt in einem Heissluftofen, das Verstreckverhältnis beträgt 1:4,7. Die Lufttemperatur beim Verstrecken beträgt 420 °C. Die verstreckten Kabelbänder werden anschliessend einzeln auf Kreuzspulen als Endlosfilamentbündel gewickelt. Die Einzelfilamente, welche einen Endtiter von 5,5 dtex aufweisen, besitzen eine Festigkeit von 24 cN/tex, die Faserdehnung beträgt 40%, der Kochschrumpf ist 0,3%.
  • Die Filamente zeigen im Querschnitt die in Fig. 1 dargestellte, charakteristische Form.

Claims (3)

1. Verfahren zur Herstellung von schwer entflammbaren, hochtemperaturbeständigen Polyimidfasern mit einer Zusammensetzung der allgemeinen Formel
Figure imgb0005
wobei R teilweise als eine Gruppe der Formel
Figure imgb0006
und der Rest als eine Gruppe der Formel
Figure imgb0007
vorliegt,
nach der Trockenspinnmethode aus einer Lösung in aprotischen organischen Lösungsmitteln, dadurch gekennzeichnet, dass der Trockenspinnprozess in einem Spinnschacht durchgeführt wird, wobei eine 20 bis 40%ige Lösung des Polyimids aus Düsen mit rundem Querschnitt, Lochzahlen von 20 bis 800 und einem Düsenlochdurchmesser von 100 bis 300 µm versponnen wird, eine Spritzgeschwindigkeit zwischen 20 und 100 m/min, eine Abzugsgeschwindigkeit zwischen 100 und 800 m/ min, eine Spinngasmenge zwischen 40 und 100 m3/h (bezogen auf Normalbedingungen) und eine Spinngastemperatur zwischen 200 und 350°C angewendet werden, die dabei erhaltenen Schachtkabel mit einem Restlösungsmittelgehalt von 5 bis 25 Gew.% - bezogen auf den Polymerfeststoff - und mit einem Einzelfilamenttiter zwischen 3,5 und 35 dtex in heissem Wasser gewaschen, dann auf einen Feuchtigkeitsgehalt von weniger als 5% getrocknet, anschliessend hochtemperaturverstreckt und gegebenenfalls gekräuselt und zu Stapelfasern geschnitten werden.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die erhaltenen aufgespulten oder in Kannen abgelegten Schachtkabel zur Nachbehandlung mit Einzugsgeschwindigkeiten von 2 bis 20 m/min zunächst bei Temperaturen von 80 bis 100°C mit Wasser gewaschen, dann voraviviert, über einen Siebtrommel- oder Kalandertrockner bei Temperaturen zwischen 120 und 300°C getrocknet werden, bis die Kabelfeuchte nach dem Trockner weniger als 5% beträgt, das Kabelband anschliessend ein- oder mehrstufig im Verhältnis 1:2 bis 1:10 bei Temperaturen zwischen 315 und 450°C verstreckt, anschliessend mit einer üblichen Präparation nachaviviert, in einer Stauchkräuselmaschine bei Raumtemperatur gekräuselt und schliesslich zu Stapelfasern geschnitten bzw. im Falle der Herstellung von Endlosfilamenten nach dem Verstreckvorgang aufgespult wird.
3. Verfahren nach einem oder beiden der Ansprüche 1 und 2, dadurch gekennzeichnet, dass eine Lösung des Polyimids in Dimethylacetamid, Dimethylsulfoxid, N-Methylpyrrolidon oder vorzugsweise in Dimethylformamid versponnen wird.
EP84890036A 1983-03-09 1984-03-01 Verfahren zur Herstellung von schwer entflammbaren, hochtemperaturbeständigen Polyimidfasern Expired EP0119185B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT0082083A AT377016B (de) 1983-03-09 1983-03-09 Verfahren zur herstellung von schwer entflammbaren, hochtemperaturbestaendigen polyimidfasern
AT820/83 1983-03-09

Publications (3)

Publication Number Publication Date
EP0119185A2 EP0119185A2 (de) 1984-09-19
EP0119185A3 EP0119185A3 (en) 1986-11-26
EP0119185B1 true EP0119185B1 (de) 1989-01-18

Family

ID=3500501

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84890036A Expired EP0119185B1 (de) 1983-03-09 1984-03-01 Verfahren zur Herstellung von schwer entflammbaren, hochtemperaturbeständigen Polyimidfasern

Country Status (6)

Country Link
US (1) US4801502A (de)
EP (1) EP0119185B1 (de)
JP (1) JPS59168120A (de)
AT (1) AT377016B (de)
CA (1) CA1229209A (de)
DE (1) DE3476227D1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT17296U1 (de) * 2019-07-23 2021-11-15 Evonik Fibres Gmbh Polyimidfasern für die Heißgasfiltration

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4758649A (en) * 1986-05-21 1988-07-19 Kuraray Co., Ltd. Heat resistant organic synthetic fibers and process for producing the same
AT391710B (de) * 1988-02-26 1990-11-26 Chemiefaser Lenzing Ag Schwer entflammbare hochtemperaturbestaendige polyimidfasern und formkoerper daraus
AT395188B (de) * 1989-04-13 1992-10-12 Chemiefaser Lenzing Ag Verfahren zur herstellung schwer entflammbaren, hochtemperaturbestaendigen, papierartigen materials auf basis von polyimidfasern
JPH0247308A (ja) * 1988-08-03 1990-02-16 Kyoto Kogei Seni Univ 導電性アルミナ質繊維及びその製造方法
US5051210A (en) * 1988-08-03 1991-09-24 Kyoto Institute Of Technology Alumina fiber and a method of producing the same
FI89526C (fi) * 1988-11-29 1993-10-11 Chemiefaser Lenzing Ag Svaorantaendbara, hoegtemperaturbestaendiga pappersartade material baserade pao termostabila polymerer
AT392974B (de) * 1989-07-13 1991-07-25 Chemiefaser Lenzing Ag Mischpolyimide sowie verfahren zu ihrer herstellung
AT395178B (de) * 1990-10-15 1992-10-12 Chemiefaser Lenzing Ag Schwer entflammbare, hochtemperaturbestaendige polyimidfasern, sowie verfahren zu ihrer herstellung
AT399882B (de) * 1993-11-03 1995-08-25 Chemiefaser Lenzing Ag Monoaxial verstreckter formkörper aus polytetrafluorethylen und verfahren zu seiner herstellung
JPH07310232A (ja) * 1994-05-13 1995-11-28 Toyobo Co Ltd バグフィルター用ポリアミドイミド繊維
RU2062309C1 (ru) * 1994-08-01 1996-06-20 Мусина Тамара Курмангазиевна Нити, выполненные из полностью ароматического полиимида, и способ их получения
US6610242B1 (en) 2000-11-13 2003-08-26 Malcolm Swanson Method for treating polymeric fiber mats and for making filters from such treated fiber mats
US6782185B2 (en) 2002-07-03 2004-08-24 Sumitomo Electric Industries, Ltd. Optical variable attenuator and optical module
US20050129764A1 (en) * 2003-12-11 2005-06-16 Vergez Juan A. Osmotic device containing licofelone
US20060248651A1 (en) * 2005-05-05 2006-11-09 Creative Bedding Technologies, Inc. Stuffing, filler and pillow
JP5086764B2 (ja) * 2007-10-17 2012-11-28 株式会社カネカ 非熱可塑性不織布及びその利用、並びに当該非熱可塑性不織布の製造方法。
JP5529542B2 (ja) 2007-10-26 2014-06-25 株式会社カネカ ポリイミド繊維集合体、吸音材料、断熱材料、難燃マット、濾布、耐熱服、不織布、航空機用途断熱吸音材、及び耐熱性バグフィルター
JP5254593B2 (ja) * 2007-11-05 2013-08-07 株式会社カネカ 非熱可塑性ポリイミド繊維を含む繊維集合体を含む断熱・吸音材および航空機
WO2010043705A1 (en) * 2008-10-17 2010-04-22 Solvay Advanced Polymers, L.L.C. Fiber or foil from polymers with high tg and process for their manufacture
US8952122B2 (en) 2009-07-03 2015-02-10 Rhodia Operations Modified polyamide, preparation method thereof and article obtained from said polyamide
KR101898455B1 (ko) * 2016-03-31 2018-09-13 가부시키가이샤 아이.에스.티 폴리이미드 섬유 및 폴리이미드 섬유의 제조 방법
CN111254505B (zh) * 2020-02-19 2021-10-08 江苏恒科新材料有限公司 一种大有光聚酯纤维及其纺丝所用的喷丝板及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1603108A (de) * 1968-06-04 1971-03-22
CA1035496A (en) * 1973-10-12 1978-07-25 Upjohn Company (The) High temperature resistant aromatic copolyimide fibers
US3985934A (en) * 1974-07-26 1976-10-12 The Upjohn Company Polyimide fiber having a serrated surface and a process of producing same
JPS56159314A (en) * 1980-05-09 1981-12-08 Ube Ind Ltd Preparation of polyimide fiber
JPS57205517A (en) * 1981-06-11 1982-12-16 Ube Ind Ltd Preparation of polyimide hollow fiber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT17296U1 (de) * 2019-07-23 2021-11-15 Evonik Fibres Gmbh Polyimidfasern für die Heißgasfiltration

Also Published As

Publication number Publication date
JPS59168120A (ja) 1984-09-21
US4801502A (en) 1989-01-31
DE3476227D1 (en) 1989-02-23
AT377016B (de) 1985-01-25
ATA82083A (de) 1984-06-15
EP0119185A3 (en) 1986-11-26
CA1229209A (en) 1987-11-17
JPS6327444B2 (de) 1988-06-03
EP0119185A2 (de) 1984-09-19

Similar Documents

Publication Publication Date Title
EP0119185B1 (de) Verfahren zur Herstellung von schwer entflammbaren, hochtemperaturbeständigen Polyimidfasern
DE1494692A1 (de) Verfahren zur Herstellung von geformten Gegenstaenden aus Loesungen von vollstaendig aromatischen Polyamiden
DE2948298C2 (de)
EP0044534A2 (de) Hochmodul-Polyacrylnitrilfäden und -fasern sowie Verfahren zu ihrer Herstellung
DE2402444A1 (de) Garne mit mattem aussehen auf der basis von synthetischen polymeren und verfahren zu ihrer herstellung
DD145642A5 (de) Acrylnitrilpolymerfasern und verfahren zur herstellung derselben
EP0726974B1 (de) Verfahren zur herstellung cellulosischer formkörper
DE3105360C2 (de) Verfahren zur Herstellung hochfester Fäden aus Polyacrylnitril
DE3535368C2 (de) Polyacrylnitrilfaser mit hoher Festigkeit und hohem Elastizitätsmodul
DE2922809A1 (de) Acrylfasern mit grosser schrumpfung und verfahren zu ihrer herstellung
DE1286684B (de) Verfahren zur Herstellung von Faeden, Fasern oder Folien durch Nass- oder Trockenverspinnen einer Acrylnitrilpolymerisatmischung
EP0481953A2 (de) Schwer entflammbare, hochtemperaturbeständige Polyimidfasern, sowie Verfahren zu ihrer Herstellung
EP0283831A1 (de) Verfahren zur Herstellung von Garnen durch das Schmelzspinnen von Polyethylenterephthalat
DE2356329A1 (de) Synthetische hochpolymere masse zur herstellung von textilem material
DE60315314T2 (de) Herstellungsverfahren von polyamidgarn und polyamidgarn
EP0918893B1 (de) Cellulosische mikrofaser
DE1278066B (de) Verfahren zur Herstellung von Faeden, die ueberwiegend aus Polyvinylchlorid hochsyndiotaktischen Grades bestehen
DE2653851A1 (de) Flammfeste acrylfasern und verfahren zu ihrer herstellung
DE2023527B2 (de) Fasern und faeden aus mit 2,2dimethylpropandiol-1,3 modifiziertem polyaethylenterephthalat
DE3885277T2 (de) Verfahren zur Behandlung von schrumpffähigen Fasern.
EP0178293B1 (de) Verfahren zur Herstellung von Cellulosefäden bzw. -fasern sowie Einrichtung zur Durchführung des Verfahrens
DE1785137C3 (de) Verfahren zur Herstellung von verstreckten hochmolekularen kristallinen-Polycarbonatfäden
WO1997036028A1 (de) Verfahren zur herstellung von cellulosischen fasern mit verringerter fibrillierungsneigung
DE2442203C3 (de) Mischpolyimidfasern und -fäden sowie Verfahren zu ihrer Herstellung
AT341070B (de) Schmelzspinnverfahren zur herstellung von geformten gegenstanden aus einem acrylnitrilpolymerisat

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE FR GB IT NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB IT NL

17P Request for examination filed

Effective date: 19870206

17Q First examination report despatched

Effective date: 19880202

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LENZING AKTIENGESELLSCHAFT

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT NL

REF Corresponds to:

Ref document number: 3476227

Country of ref document: DE

Date of ref document: 19890223

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: SOCIETA' ITALIANA BREVETTI S.P.A.

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

NLS Nl: assignments of ep-patents

Owner name: IMI-TECH FIBRES GMBH

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030226

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20030228

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030311

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20030314

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20040229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20040301

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

NLV7 Nl: ceased due to reaching the maximum lifetime of a patent

Effective date: 20040301