EP0760870A1 - Eisenphosphatierung unter verwendung von substituierten monocarbonsäuren - Google Patents

Eisenphosphatierung unter verwendung von substituierten monocarbonsäuren

Info

Publication number
EP0760870A1
EP0760870A1 EP95922451A EP95922451A EP0760870A1 EP 0760870 A1 EP0760870 A1 EP 0760870A1 EP 95922451 A EP95922451 A EP 95922451A EP 95922451 A EP95922451 A EP 95922451A EP 0760870 A1 EP0760870 A1 EP 0760870A1
Authority
EP
European Patent Office
Prior art keywords
phosphating
acid
solution according
iron
acids
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP95922451A
Other languages
English (en)
French (fr)
Other versions
EP0760870B1 (de
Inventor
Karl-Dieter Brands
Melita Krause
Bernd Mayer
Thomas Molz
Annette Willer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Publication of EP0760870A1 publication Critical patent/EP0760870A1/de
Application granted granted Critical
Publication of EP0760870B1 publication Critical patent/EP0760870B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/10Orthophosphates containing oxidants
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • C23C22/36Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/40Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing molybdates, tungstates or vanadates
    • C23C22/42Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing molybdates, tungstates or vanadates containing also phosphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/40Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing molybdates, tungstates or vanadates
    • C23C22/44Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing molybdates, tungstates or vanadates containing also fluorides or complex fluorides

Definitions

  • the invention relates to a new phosphating solution for the so-called non-layer-forming phosphating of reactive metal surfaces, in particular surfaces made of steel, aluminum, zinc or alloys, the main component of which is at least one of the metals iron, aluminum or zinc.
  • the metal surfaces are treated with acidic solutions (pH range between 3.5 and 6) of phosphates, as a result of which a layer of phosphates and / or oxides is formed on the metal surface, the cations of which from the metal surface and do not come from other components of the phosphating bath.
  • the iron phosphate layers have a mass per unit area (layer weight) of above about 0.2 g / m * -.
  • layer weight the corrosion protection effect increases with increasing layer weight.
  • Efforts are therefore made to produce iron phosphate layers which, on the one hand, achieve a layer weight that is as high as possible, for example in the range between approximately 0.5 and approximately 1 g / m * - *, the coverings being said to simultaneously form firmly adhering layers.
  • accelerators are inorganic or organic substances with an oxidizing, more rarely with a reducing effect.
  • Inorganic accelerators are, for example Nitrates, chlorates, bromates, molybdates and tungstates.
  • Known organic accelerators are aromatic nitro compounds such as nitrobenzenesulfonic acid, especially m-nitrobenzenesulfonic acid ("NBS").
  • NBS m-nitrobenzenesulfonic acid
  • An example of an inorganic substance with a rather reducing effect and with good accelerator properties is hydroxylamine and its salts.
  • Phosphating baths containing such accelerator systems are known, for example, from US Pat. No. 5,137,589 and WO93 / 09266. According to the last-mentioned document, particularly good layers are produced when oxidizing and reductive accelerators are combined with one another, here, for example, hydroxylamine with organic nitro compounds, with molybdate or tungsten.
  • the formation of iron phosphate layers is favorably influenced if the phosphating solution contains chelating complexing agents for iron.
  • gluconic acid is particularly suitable for this.
  • CA-874944 further recommends the use of ethylenediaminetetraacetic acid, nitrilotriacetic acid, diethylenetriapentaacetic acid, citric acid, tartaric acid and glucoheptonic acid.
  • the complexing agents mentioned have in common that they represent chelating carboxylic acids with at least 4 C atoms and with at least 3 substituents selected from carboxyl and hydroxyl groups.
  • Modern iron phosphating baths are expected to be able to treat not only iron surfaces but also surfaces made of zinc, aluminum and their alloys. Although no or at most very thin phosphate layers are formed on aluminum and zinc, the paint adhesion is somewhat improved by acid pickling. The influence of this so-called mixed driving style is disadvantageous of the aluminum ions going into solution, which lead to a disturbance in the formation of the iron phosphate layer even from a very low concentration.
  • this "bath poison" can be complexed and thus rendered harmless. Adding fluoride also improves the pickling effect on aluminum surfaces. It has proven to be advantageous if the treatment solutions contain free and / or complex-bound fluoride (W093 / 09266).
  • EP-A-398203 shows that iron phosphating solutions can contain anionic titanium compounds, preferably in a concentration of between 0.05 and 0.2 g / l of dissolved titanium, instead of the usual accelerators.
  • Iron phosphating can be carried out by first cleaning the metal parts in a cleaning solution and then treating the cleaned parts in a phosphating bath.
  • the phosphating bath itself does not have to have a cleaning effect. This procedure provides the better cleaning and phosphating results, but requires a higher number of treatment baths.
  • surfactants preferably non-ionic ones, to the phosphating bath.
  • ethoxylated alcohols having 12 to 22 carbon atoms, other modified aromatic or aliphatic polyethers and salts of complex organic phosphoric acid esters are suitable for this.
  • the object of the invention is to provide an iron phosphating solution with an accelerator system which is ecologically favorable. It was found that ecologically harmless substituted monocarboxylic acids in combination with the co-accelerator nitrobenzenesulfonic acid lead to phosphate layers which meet the technical requirements.
  • the invention accordingly relates to an aqueous solution for phosphating metals with a pH in the range from 3.5 to 6, containing a) 1 to 20 g / 1 of dissolved phosphate, b) 0.02 to 2 g / 1 of nitrobenzenesulfonic acid, c) water and, if desired, further auxiliaries, characterized in that the solution furthermore d) 0.01 to 2 g / 1 of one or several organic monocarboxylic acids of the general formula (I)
  • R H, CH 3 , CH 2 Y, C 2 H 5 , C 2 H 4 Y, C 6 H 5 , C 6 H 4 Y or C 6 H 3 Y 2 ,
  • the amino acids are preferably selected from glycine, alanine, serine, phenylalanine, (hydroxyphenyl) alanine and (dihydroxyphenyl) alanine, with glycine, alanine and serine being particularly preferred.
  • Phosphating solutions are preferably used which contain 0.1 to 0.8 g / 1, preferably 0.2 to 0.4 g / 1, of one or more carboxylic acids of the general formula (I). Particularly favorable phosphating results are achieved with phosphating solutions which contain 0.2 to 0.5 g / 1 nitrobenzenesulfonic acid.
  • the nitrobenzenesulfonic acid (“NBS”) is preferably used.
  • substituted carboxylic acids described by the general formula (I) are generally optically active.
  • the acids are in the form of a racemate or in the R or L form.
  • the acids mentioned can be used as such or as alkali or ammonium salts.
  • the pH of the phosphating solution must be adjusted to the effective range between about 3.5 and about 6.0. This can optionally be done by adding acid, preferably phosphoric acid, or lye, preferably sodium hydroxide solution. Under these pH conditions, the acids mentioned are in some cases in undissociated form according to their respective pK values.
  • the phosphating solution according to the invention can contain further auxiliaries known in the prior art. Examples include:
  • a chelating carboxylic acid with at least 4 carbon atoms and at least 3 substituents selected from carboxyl and hydroxyl groups.
  • chelating carboxylic acids are sugar acids such as gluconic acid, polybasic hydroxycarboxylic acids such as tartaric acid and citric acid and carboxylic acids derived from tertiary amines such as ethylenediaminetetraacetic acid, Diethylenetriaminepentaacetic acid or nitrilotriacetic acid.
  • Gluconic acid is particularly preferred, g) 0.02 to 20 mmol / l molybdate and / or tungstate.
  • these can be salts of the molybdenum acid H MoO 4 and / or the tungsten acid H 2 WO.
  • the anions containing tungsten or molybdenum can also be present in condensed form and can be described for molybdenum, for example, by the general formula [Mo n 0 (3 n + ⁇ )] 2 ⁇ .
  • an anionic titanium compound according to the teaching of EP-A-398203, and / or a corresponding amount of an anionic zirconium compound, in each case based on the amount of the anions.
  • Hexafluorotitanic acid, hexafluorozirconic acid or their alkali metal or ammonium ions are particularly suitable for this.
  • the concentrations of the anions are preferably selected in the range from 0.05 to 0.5 g / l.
  • surfactants preferably nonionic surfactants of the fatty alcohol ethoxylate type.
  • surfactants are particularly necessary if the phosphating solution is to have a cleaning effect at the same time.
  • defoaming substances such as block copolymers of ethylene oxide and propylene oxide.
  • hydrotropes for the formulation of homogeneous concentrates of the treatment solutions. Toluene, xylene or cumene sulfonates, for example, are suitable for this, the hydrotropic effect of which can be supported by the addition of water-soluble complex organic phosphoric acid esters.
  • the iron phosphating baths When incorporated, the iron phosphating baths usually have iron (II) contents of up to about 25 ppm, which have a positive effect on the bathing properties. When it comes to new phosphating solutions, it is it is recommended to add iron (II) ions in the ppm range, for example by adding about 20-50 ppm iron (II) sulfate.
  • Phosphating solutions are further characterized by their "total acid” content, expressed in points.
  • the total acid number is understood to mean the consumption in milliliters of 0.1 N sodium hydroxide solution in order to titrate 10 ml of the solution to the point of transition of phenolphthalein or to a pH of 8.5.
  • Technically customary ranges of total acid are between about 3 and about 7 points, preferably between about 4 and about 6 points.
  • the temperatures of the treatment solutions are usually between about 30 and 70 ° C.
  • the bath temperature depends on the type and amount of soiling and on the treatment time provided.
  • the minimum temperature depends on the foam behavior of the wetting agents used and is preferably selected above the cloud point of the wetting agents.
  • the temperature is usually between 50 and 60 ° C.
  • the workpieces to be treated can be sprayed with the solution or immersed in the solution. Higher layer weights are generally obtained using immersion processes.
  • the required treatment times can be between 15 seconds and 10 minutes, although in practice treatment times rarely fall below 60 seconds and rarely exceed 5 minutes.
  • the invention also relates to a method for phosphating metal surfaces, preferably surfaces made of steel, zinc, aluminum or alloys, the main component of which is at least one of the metals iron, zinc or aluminum, by preferably, the surfaces with the solutions described above with a temperature between 30 and 70 ° C, for a time between 15 seconds and 10 minutes, preferably one to 5 minutes, by immersion in the solution and / or by spraying with the solution.
  • the process parameters are preferably chosen so that phosphate layers with a layer weight in the range from 0.2 to 1 g / m * -, preferably 0.4 to 0.9 g / m * ⁇ and in particular 0.4 to 0.7 g / m * - can be obtained.
  • the process can be used in particular for pretreating metal surfaces before applying an organic coating, preferably selected from the group of paints and varnishes and natural or synthetic rubbers and rubbers.
  • the ready-to-use phosphating solutions can be prepared on site by dissolving the individual components in the required concentration in water.
  • the usual procedure is to prepare concentrates of the phosphating solutions which are diluted to the application concentration on site.
  • Aqueous concentrates are usually adjusted so that the application concentration can be adjusted by dilution with water by a factor between 5 and 200, preferably between 20 and 100.
  • the invention also includes aqueous concentrates from which the phosphating solutions described above can be obtained by appropriate dilution with water.
  • powdered concentrates can be used. Their composition is chosen so that when the powders are dissolved in water in a concentration between 0.2 and 5% by weight, preferably between 0.5 and 3% by weight, the phosphating solutions described above are obtained.
  • Iron phosphating baths can be controlled and regulated on the basis of the pH value, the electrical conductivity or the total acid score.
  • Ridoline R 1250 E (Henkel KGaA), 70 ° C, 2 min, 1 bar, 20 g / 1
  • Layer weights were determined by detaching the phosphate layer with triethanolamine in accordance with DIN 50942.
  • a three-week salt spray test in accordance with DIN 53167 was carried out to test the corrosion resistance.
  • the paint infiltration was measured on a cut after 21 days of testing.
  • the phosphating baths had the composition: 0.79% H3PO4, 85% 0.38% NaOH, 50% 0.014% Na gluconate 0.005% FeS04 x 7 H 2 0
  • the phosphating baths had the composition
  • NBS m-nitrobenzenesulfonic acid • * -)
  • GS total acid (points)
  • the phosphating baths had the following composition:
  • P3-Tensopon R 0555 nonionic surfactant mixture based on fatty alcohol ethoxylate propoxylate, 30% aqueous solution; Henkel KGaA, Düsseldorf)
  • the coating and testing was carried out as in Examples 1 to 3.
  • the coating thickness was approximately 50 ⁇ m. Results are shown in Table 3.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Description

"Eisenphosphatierung unter Verwendung von substituierten Monocarbonsäuren"
Die Erfindung betrifft eine neue Phosphatierlösung für die sogenannte nichtschichtbildende Phosphatierung reaktiver MetallOberflächen, insbe¬ sondere Oberflächen aus Stahl, Aluminium, Zink oder Legierungen, deren Hauptkomponente mindestens eines der Metalle Eisen, Aluminium oder Zink darstellt. Bei der nichtschichtbildenden Phosphatierung werden die Me¬ tallOberflächen mit sauren Lösungen (pH-Bereich zwischen 3,5 und 6) von Phosphaten behandelt, wodurch sich auf der MetallOberfläche eine Schicht aus Phosphaten und/oder Oxiden bildet, deren Kationen aus der Metallober¬ fläche und nicht aus weiteren Komponenten des Phosphatierbades stammen. Hierdurch unterscheidet sich die "nichtschichtbildende" Eisenphosphatierung von einer "schichtbildenden" Zinkphosphatierung, bei der Kationen des Phosphatierbades in die Phosphatschicht eingebaut werden. Verfahren zur Eisenphosphatierung sind im Stand der Technik bekannt. Sie werden beispielsweise als Vorbehandlungsverfahren vor einer Lackierung in solchen Fällen eingesetzt, bei denen keine allzu große korrosive Belastung der Bauteile zu erwarten ist.
Um die Korrosionsschutzansprüche zu erfüllen, ist es wünschenswert, daß die Eisenphosphatschichten eine Flächenbezogene Masse (Schichtgewicht) von oberhalb etwa 0,2 g/m*-- aufweisen. Dabei nimmt die Korrosionsschutzwirkung mit steigendem Schichtgewicht prinzipiell zu. Bei höheren Schichtgewich¬ ten, beispielsweise oberhalb etwa 0,8 g/m*-*, besteht jedoch die Gefahr, daß die Schichten pudrig werden und nicht fest auf der MetallOberfläche haf¬ ten. Dies führt zu einer unakzeptabel schlechten Lackhaftung. Man ist da¬ her bestrebt, Eisenphosphatschichten zu erzeugen, die einerseits ein mög¬ lichst hohes Schichtgewicht, beispielsweise im Bereich zwischen etwa 0,5 und etwa 1 g/m*-*, erreichen, wobei gleichzeitig die Beläge festhaftende Schichten bilden sollen.
Es ist bekannt, daß die Schichtausbildung sehr stark durch die Anwesenheit sogenannter "Beschleuniger" beeinflußt wird. Solche Beschleuniger sind anorganische oder organische Substanzen mit oxidierender, seltener mit reduzierender Wirkung. Anorganische Beschleuniger sind beispielsweise Nitrate, Chlorate, Bromate, Molybdate und Wolframate. Bekannte organische Beschleuniger sind aromatische Nitroverbindungen wie beispielsweise Nitrobenzolsulfonsäure, insbesondere m-Nitrobenzolsulfonsäure ("NBS"). Ein Beispiel einer anorganischen Substanz mit eher reduzierender Wirkung und mit guten Beschleunigereigenschaften ist Hydroxylamin und seine Salze. Phosphatierbäder, die solche Beschleunigersysteme enthalten, sind bei¬ spielsweise bekannt aus der US-A-5,137,589 sowie der W093/09266. Gemäß dem letztgenannten Dokument werden besonders gute Schichten erzeugt, wenn man oxidativ und reduktiv wirkende Beschleuniger miteinander kombiniert, hier beispielsweise Hydroxylamin mit organischen Nitroverbindungen, mit Molyb- daten oder Wolframaten.
Bei Verwendung eines Molybdatbeschleunigers erhält man relativ dünne Schichten (0,2 bis 0,5 g/m*--), die meist bläulich schillern. Mit organi¬ schen Beschleunigern können dickere Schichten bis zu 1 g/m*-- erzielt wer¬ den, die in der Regel einen wesentlich besseren Korrosionsschutz gegen Rostunterwanderung bieten. Bei Phosphatschichtgewichten über 0,5 / *^ spricht man von einer Dickschicht-Eisenphosphatierung, bei Schichtgewich¬ ten unter 0,5 g/π.2 von einer Dünnschicht-Eisenphosphatierung.
Weiterhin ist es bekannt, daß die Ausbildung von Eisenphosphatschichten günstig beeinflußt wird, wenn die Phosphatierlösung chelatisierende Kom¬ plexbildner für Eisen enthält. Gemäß der US-A-5,137,589 ist hierfür Glu- consäure besonders geeignet. Die CA-874944 empfiehlt weiterhin die Ver¬ wendung von Ethylendiamintetraessigsäure, Nitrilotriessigsäure, Diethylentria inpentaessigsäure, Citronensäure, Weinsäure und Glucoheptonsäure. Den genannten Komplexbildnern ist gemeinsam, daß sie chelatisierende Carbonsäuren mit mindestens 4 C-Atomen und mit mindestens 3 Substituenten ausgewählt aus Carboxyl- und Hydroxy-Gruppen darstellen.
Von modernen Eisenphosphatierbädern wird erwartet, daß mit ihnen nicht nur Eisenoberflächen, sondern auch Oberflächen aus Zink, Aluminium und deren Legierungen behandelt werden können. Dabei werden auf Aluminium und Zink zwar keine oder höchstens sehr dünne Phosphatschichten gebildet, durch den Beizangriff der Säure wird jedoch die Lackhaftung etwas verbessert. Nach¬ teilig wirkt sich bei dieser sogenannten gemischten Fahrweise der Einfluß der in Lösung gehenden Aluminiumionen aus, die bereits ab einer sehr ge¬ ringen Konzentration zur Störung der Eisenphosphatschichtbildung führen. Durch Zusatz von Fluoriden zu den Phosphatierbädern läßt sich dieses "Badgift" ko plexieren und damit unschädlich machen. Ein Fluoridzusatz verbessert gleichzeitig die Beizwirkung auf Aluminiumoberflächen. Dabei hat es sich als günstig erwiesen, wenn die Behandlungslösungen freies und/oder komplexgebundenes Fluorid enthalten (W093/09266).
Aus der EP-A-398203 geht hervor, daß Eisenphosphatierlösungen anstelle der üblichen Beschleuniger anionische Titanverbindungen, vorzugsweise in einer Konzentration zwischen 0,05 und 0,2 g/1 gelöstes Titan, enthalten können.
Bei der Eisenphosphatierung kann so verfahren werden, daß man die Metall- teile zunächst in einer Reinigerlösung reinigt und anschließend die ge¬ reinigten Teile in einem Phosphatierbad behandelt. In diesem Fall muß das Phosphatierbad selbst keine Reinigungswirkung aufweisen. Dieses Vorgehen liefert die besseren Reinigungs- und Phosphatierergebnisse, erfordert je¬ doch eine höhere Anzahl von Behandlungsbädern. Alternativ hierzu ist es möglich, verschmutzte Metallteile in einem Bad gleichzeitig zu reinigen und zu Phosphatieren. In diesem Fall ist es notwendig, dem Phosphatierbad Tenside, vorzugsweise nichtionische, zuzusetzen. Gemäß der W093/09266 sind hierfür beispielsweise ethoxylierte Alkohole mit 12 bis 22 C-Atomen, an¬ dere modifizierte aromatische oder aliphatische Polyether sowie Salze komplexer organischer Phosphorsäureester geeignet.
Die Erfindung stellt sich die Aufgabe, eine Eisenphosphatierlösung mit einem ökologisch günstig zu bewertendem Beschleunigersystem zur Verfügung zu stellen. Dabei wurde gefunden, daß ökologisch unbedenkliche substitu¬ ierte Monocarbonsäuren in Verbindung mit dem Cobeschleuniger Nitrobenzol¬ sulfonsäure zu Phosphatschichten führen, die den technischen Ansprüchen entsprechen.
Die Erfindung betrifft demnach eine wäßrige Lösung zum Phosphatieren von Metallen mit einem pH-Wert im Bereich von 3,5 bis 6, enthaltend a) 1 bis 20 g/1 gelöstes Phosphat, b) 0,02 bis 2 g/1 Nitrobenzolsulfonsäure, c) Wasser und erwünschtenfalls weitere Hilfsstoffe, dadurch gekennzeichnet, daß die Lösung außerdem d) 0,01 bis 2 g/1 einer oder mehrerer organischer Monocarbonsäuren der allgemeinen Formel (I)
H
R - C - (CH )n - C00H (I)
enthält, wobei
R = H, CH3, CH2Y, C2H5, C2H4Y, C6H5, C6H4Y oder C6H3Y2,
X und Y unabhängig voneinander NH oder 0H und n = 0, 1 oder 2 bedeuten.
Je nach Wahl des Substituenten X beschreibt obige Formel (I) entweder Aminosäuren (X = NH2) oder Hydroxycarbonsäuren (X = 0H). Bei der Wahl von Aminosäuren sind α-Aminosäuren bevorzugt. Sie werden durch die allgemeine Formel (1) dadurch beschrieben, daß der Index n = 0 ist. Vorzugsweise werden die Aminosäuren ausgewählt aus Glycin, Alanin, Serin, Phenylalanin, (Hydroxyphenyl)alanin und (Dihydroxyphenyl)alanin, wobei Glycin, Alanin und Serin besonders bevorzugt sind.
Die durch X = 0H charakterisierten Hydroxycarbonsäuren der allgemeinen Formel (I) sind vorzugsweise ausgewählt aus Glycolsäure und Milchsäure.
Vorzugsweise werden Phosphatierlösungen eingesetzt, die 0,1 bis 0,8 g/1, vorzugsweise 0,2 bis 0,4 g/1 einer oder mehrerer Carbonsäuren der allge¬ meinen Formel (I) enthalten. Besonders günstige Phosphatierergebnisse werden mit Phosphatierlösungen erzielt, die 0,2 bis 0,5 g/1 Nitrobenzolsulfonsäure enthalten. Dabei wird bevorzugt die -Nitrobenzolsulfonsäure ("NBS") eingesetzt.
Die durch die allgemeine Formel (I) beschriebenen substituierten Carbon¬ säuren sind in der Regel optisch aktiv. Für den erfindungsgemäßen Einsatz ist es unerheblich, ob die Säuren als Racemat oder als R- bzw. L-Form vorliegen.
Die genannten Säuren einschließlich der Phosphorsäure können als solche oder als Alkali- oder Ammoniumsalze eingesetzt werden. Dabei muß der pH- Wert der Phosphatierlösung auf den wirksamen Bereich zwischen etwa 3,5 und etwa 6,0 eingestellt werden. Dies kann gegebenenfalls durch Zugabe von Säure, vorzugsweise Phosphorsäure, oder von Lauge, vorzugsweise Natron¬ lauge, erfolgen. Unter diesen pH-Wertbedingungen liegen die genannten Säuren gemäß ihren jeweiligen pK-Werten teilweise in nichtdissoziierter Form vor.
Die erfindungsgemäße Phosphatierlösung kann weitere, im Stand der Technik bekannte, Hilfsstoffe enthalten. Beispielsweise genannt seien:
e) 0,05 bis 3 g/1 freies und/oder komplexgebundenes Fluorid. Dabei ist es gemäß der W093/09266 empfehlenswert, daß die Lösung sowohl freies als auch komplexgebundenes Fluorid enthält. Als Quelle für freies Fluorid kommen beispielsweise Flußsäure sowie Alkalimetall- und/oder Ammoni¬ umfluoride in Betracht, als Quelle für komplexgebundenes Fluorid bei¬ spielsweise Tetrafluoroborate, Hexafluorotitanate, Hexafluorozirkona- te, Hexafluorosilicate oder jeweils deren Säuren.
f) 0,1 bis 6 g/1 einer chelatisierenden Carbonsäure mit mindestens 4 C- Atomen und mindestens 3 Substituenten ausgewählt aus Carboxyl- und Hydroxy-Gruppen. Beispiele solcher chelatisierender Carbonsäuren sind Zuckersäuren wie Gluconsäure, mehrbasische Hydroxycarbonsäuren wie Weinsäure und Citronensäure sowie von tertiären Aminen abgeleitete Carbonsäuren wie Ethylendiamintetraessigsäure, Diethylentriaminpentaessigsäure oder Nitrilotriessigsäure. Gluconsäure ist besonders bevorzugt, g) 0,02 bis 20 mMol/1 Molybdat und/oder Wolframat. Dabei kann es sich im einfachsten Falle um Salze der Molybdänsäure H Moθ4 und/oder der Wolframsäure H2W0 handeln. Die wolfram- oder molybdänhaltigen Anionen könne aber auch in kondensierter Form vorliegen und für Molybdän bei¬ spielsweise durch die allgemeine Formel [Mon0(3n+ι)]2~ beschrieben werden.
h) 0,02 bis 1 g/1 einer anionischen Titanverbindung gemäß der Lehre der EP-A-398203, und/oder eine entsprechende Menge einer anionischen Zirkonverbindung, jeweils bezogen auf die Menge der Anionen. Hierfür sind insbesondere Hexafluorotitansäure, Hexafluorozirkonsäure oder deren Alkalimetall- oder Ammoniumionen geeignet. Vorzugsweise wählt man die Konzentrationen der Anionen im Bereich 0,05 bis 0,5 g/1.
i) bis zu 40 g/1, vorzugsweise 0,2 bis 1 g/1 und insbesondere 0,3 bis 0,5 g/1 Tenside, vorzugsweise nichtionische Tenside vom Typ der Fettalko- holethoxylate. Solche Tenside sind insbesondere dann erforderlich, wenn die Phosphatierlösung gleichzeitig reinigend wirken soll. Je nach Schaumneigung der Tenside, die vorzugsweise möglichst gering sein soll, kann es erforderlich sein, zusammen mit den Tensiden entschäu¬ mend wirkende Substanzen wie beispielsweise Blockcopolymere aus Ethy- lenoxid und Propylenoxid zu verwenden. Weiterhin kann es, insbesondere bei höheren Tensidgehalten, erforderlich sein, zur Formulierung homo¬ gener Konzentrate der Behandlungslösungen sogenannte Hydrotrope ein¬ zusetzen. Hierfür sind beispielsweise Toluol-, Xylol- oder Cumolsulfonate geeignet, deren hydrotrope Wirkung durch Zugabe wasserlöslicher komplexer organischer Phosphorsäureester unterstützt werden kann.
k) 0,05 bis 5 g/1 Nitrat.
In eingearbeitetem Zustand weisen die Eisenphosphatierbäder üblicherweise Eisen(II)-Gehalte bis zu etwa 25 ppm auf, die die Badeigenschaften positiv beeinflussen. Beim Neuansatz der Phosphatierlösungen ist es empfehlenswert, Eisen(II)-Ionen im ppm-Bereich zuzusetzen, beispielsweise durch Zusatz von etwa 20-50 ppm Eisen(II)sulfat.
Phosphatierlösungen werden weiterhin durch ihren Gehalt an "Gesamtsäure", ausgedrückt in Punkten, charakterisiert. Dabei versteht man unter der Punktzahl der Gesamtsäure den Verbrauch in Millilitern an 0,1 N Natron¬ lauge, um 10 ml der Lösung bis zum Umschlagspunkt von Phenolphthalein bzw. bis zu einem pH-Wert von 8,5 zu titrieren. Technisch übliche Bereiche der Gesamtsäure liegen zwischen etwa 3 und etwa 7 Punkten, vorzugsweise zwi¬ schen etwa 4 und etwa 6 Punkten.
Die Temperaturen der Behandlungslösungen liegen üblicherweise zwischen etwa 30 und 70 °C. Die Badtemperatur richtet sich besonders bei reinigend wirkenden Bädern nach Art und Menge der Verschmutzung sowie nach der vor¬ gesehenen Behandlungszeit. Die Minimaltemperatur hängt von dem Schaumver¬ halten der eingesetzten Netzmittel ab und wird vorzugsweise oberhalb des Trübungspunktes der Netzmittel gewählt. In der Regel liegt die Temperatur zwischen 50 und 60 °C. Dabei können die zu behandelnden Werkstücke mit der Lösung bespritzt oder in die Lösung eingetaucht werden. Höhere Schichtge¬ wichte werden in der Regel mit Tauchverfahren erhalten. Je nach Applika¬ tionsart und nach Substrat können die erforderlichen Behandlungszeiten zwischen 15 Sekunden und 10 Minuten liegen, wobei in der Praxis jedoch Behandlungszeiten von 60 Sekunden selten unterschritten und 5 Minuten selten überschritten werden.
Demnach betrifft die Erfindung auch ein Verfahren zur Phosphatierung von MetallOberflächen, vorzugsweise von Oberflächen aus Stahl, Zink, Aluminium oder Legierungen, deren Hauptkomponente mindestens eines der Metalle Ei¬ sen, Zink oder Aluminium darstellt, indem man die Oberflächen mit den vorstehend beschriebenen Lösungen, vorzugsweise mit einer Temperatur zwi¬ schen 30 und 70 °C, für eine Zeit zwischen 15 Sekunden und 10 Minuten, vorzugsweise eine bis 5 Minuten, durch Eintauchen in die Lösung und/oder durch Bespritzen mit der Lösung in Kontakt bringt. Die Verfahrensparameter wählt man vorzugsweise so, daß Phosphatschichten mit einem Schichtgewicht im Bereich 0,2 bis 1 g/m*--, vorzugsweise 0,4 bis 0,9 g/m*^ und insbesondere 0,4 bis 0,7 g/m*-- erhalten werden. Das Verfahren läßt sich insbesondere einsetzen zur Vorbehandlung von Me¬ tallOberflächen vor dem Aufbringen einer organischen Beschichtung, vor¬ zugsweise ausgewählt aus der Gruppe der Farben und Lacke und der natürli¬ chen oder synthetischen Gummis und Kautschuke.
Die anwendungsfertigen Phosphatierlösungen können durch Auflösen der ein¬ zelnen Komponenten in der erforderlichen Konzentration in Wasser vor Ort hergestellt werden. Üblicherweise geht man jedoch so vor, daß man Konzen¬ trate der Phosphatierlösungen herstellt, die vor Ort auf die Anwendungs¬ konzentration verdünnt werden. Wäßrige Konzentrate stellt man üblicher¬ weise so ein, daß die Anwendungskonzentration durch Verdünnen mit Wasser um einen Faktor zwischen 5 und 200, vorzugsweise zwischen 20 und 100, eingestellt werden kann. Demnach umfaßt die Erfindung auch wäßrige Kon¬ zentrate, aus denen durch entsprechendes Verdünnen mit Wasser die vorste¬ hend beschriebenen Phosphatierlösungen erhalten werden können.
Alternativ zu flüssig-wäßrigen Konzentraten können pulverförmige Konzen¬ trate zum Einsatz kommen. Ihre Zusammensetzung wird so gewählt, daß man beim Auflösen der Pulver in Wasser in einer Konzentration zwischen 0,2 und 5 Gew.-%, vorzugsweise zwischen 0,5 und 3 Gew.-% die vorstehend beschrie¬ benen Phosphatierlösungen erhält.
Eisenphosphatierbäder können anhand des pH-Wertes, der elektrischen Leit¬ fähigkeit oder über die Punktzahl Gesamtsäure kontrolliert und geregelt werden.
Zur Erhöhung des Korrosionsschutzes von Eisenphosphatschichten können diese einer passivierenden Nachbehandlung unterzogen werden. Hierfür ste¬ hen chromhaltige und chromfreie Nachpassivierungsmittel zur Verfügung. Voraussetzung für eine gute Qualität der nachfolgenden Lackierung ist die gründliche Nachspülung der phosphatierten Teile, unabhängig davon, ob sie nachpassiviert wurden oder nicht. Hierzu werden die Teile ein- bis zweimal mit Brauchwasser und zum Schluß mit vollentsalztem Wasser gespült. Beispiele
Zur Überprüfung der Phosphatierbäder wurden Stahlbleche (Stl405) nach folgendem Verfahrensgang behandelt:
1. alkalische Reinigung (Spritzen)
RidolineR 1250 E (Henkel KGaA), 70 °C, 2 min, 1 bar, 20 g/1
2. Spülen
3. Eisenphosphatierung (Spritzen) 50 °C, 2,5 min, 1 bar
Badzusammensetzung: siehe Einzelbeispiele
4. Spülen
5. Spülen, vollentsalztes Wasser
6. Trocknen
7. Für Korrosionsprüfung: Pulverbeschichten mit Pulverlack PE/EP 400 der Fa. Herberts, 10 min bei 180 °C gehärtet.
Schichtgewichte wurden durch Ablösen der Phosphatschicht mit Triethanol- amin gemäß DIN 50942 bestimmt. Zur Prüfung der Korrosionsbeständigkeit wurde ein dreiwöchiger Salzsprühtest gemäß DIN 53167 durchgeführt. Dabei wurde die Lackunterwanderung an einem Schnitt nach 21 Tagen Prüfdauer ausgemessen.
Beispiele 1 bis 6. Vergleichsbeispiele 1 bis 3
Die Phosphatierbäder hatten die Zusammensetzung: 0,79 % H3PO4, 85 % 0,38 % NaOH, 50 % 0,014 % Na-Gluconat 0,005 % FeS04 x 7 H20
Beschleuniger gemäß Tabelle 1
Nach Zugabe des Beschleunigers wurde der pH-Wert mit 50 %iger Natronlauge auf den in Tab. 1 angegebenen Wert eingestellt. Beispiele 7 bis 10
Die Phosphatierbäder hatten die Zusammensetzung
400 ppm m-Nitrobenzolsulfonsäure 240 ppm Milchsäure 125 ppm Gluconsäure 10 ppm Eisen(II)
Phosphorsäure, Natronlauge: Tabelle 2; pH: 4,5
Tabelle 1: Mengenvariation des Beschleunigersystems NBS- /MiIchsäure
Versuch- ppm NBS1) ppm Milchsäure pH GS2) Schichtgew. Aussehen Lackdicke Lackunter¬
Nr. im Bad im Bad g/m2 (μ) wanderung (mm)
Vergl. 1 - - 4,5 5,3 0,22 grau
Vergl. 2 300 - 4,5 5,3 1,0 pud ig
Vergl. 3 - 300 4,5 5,3 0,18 grau
Beisp. 1 500 300 4,5 5,3 0,67 bläulich 48 3,9
Beisp. 2 400 240 4,2 3,1 0,77 bläulich 52 4,5
Beisp. 3 300 240 4,5 3,1 0,86 bläulich 45 5,1
Beisp. 4 300 180 4,5 3,1 0,68 bläulich
Beisp. 5 200 960 4,5 5,3 0,52 etwas pudrig
Beisp. 6 400 960 4,5 3,2 1,17 pudrig
1) NBS = m-Nitrobenzolsulfonsäure •*-) GS = Gesamtsäure (Punkte)
Tabelle 2: Variation von Phosphat und Gesamtsäure
Versuch- H3PO485%ig NaOH 50%ig GS Schichtgew. Aussehen Nr. g/i g/i g/m2
Beisp.7 4,6 2,2 2,5 0,77 graublau, fest
Beisp.8 7,9 3,8 3,7 0,84 bläulich irisierend fest
Beisp.9 6,2 3,0 4,2 0,84 bläulich irisierend fest
Beisp.10 9,3 4,47 7,2 0,59 grau wenig ab¬ wischbar
Beispiele 11 bis 14. Vergleichsbeispiel 4 bis 6
Die Phosphatierbäder hatten die Zusammensetzung:
0,5 % Phosphorsäure 75 %ig 0,02 % Gluconsäure 50 %ig
0,1 % Na-Cumolsulfonat
0,1 % P3-TensoponR 0555 (nichtionisches Tensidgemisch auf Basis Fettal¬ kohol-Ethoxylat-Propoxylat, 30 %ige wäßrige Lösung; Henkel KGaA, Düsseldorf)
0,005 % FeS04 x ?H20 Beschleuniger gemäß Tabelle 3
mit 50 %iger Natronlauge auf pH = 5,0 eingestellt.
Lackiert und geprüft wurde wie in den Beispielen 1 bis 3. Die Lackdicke betrug etwa 50 μm. Ergebnisse sind in Tabelle 3 enthalten.
Tabelle 3: Beschleuniger und Phosphatiereroebnisse
Versuch- Beschleuniger Schichtgew. Lackunterwanderung,
Nr. g/m2 mm
Vergl.4 300 ppm NBS
200 ppm Hydroxylamin 0,64 2,1
Vergl.5 300 ppm NBS 0,61 5,5
Vergl.6 400 ppm NBS 0,64 6,5
Beisp.11 300 ppm NBS 0,56 2,1 300 ppm Glycin
Beisp.12 400 ppm NBS 0,58 1,7 200 ppm Glycin
Beisp.13 300 ppm NBS
200 ppm Milchsäure 0,56 1,9
Beisp.14 300 ppm NBS
300 ppm Milchsäure 0,58 1,7

Claims

Patentansprüche
1. Wäßrige Lösung zum Phosphatieren von Metallen mit einem pH-Wert im Bereich von 3,5 bis 6, enthaltend a) 1 bis 20 g/1 gelöstes Phosphat, b) 0,02 bis 2 g/1 Nitrobenzolsulfonsäure, c) Wasser und erwünschtenfalls weitere Hilfsstoffe, dadurch gekennzeichnet, daß die Lösung außerdem d) 0,01 bis 2 g/1 einer oder mehrerer organischer Monocarbonsäuren der allgemeinen Formel (I)
enthält, wobei
R = H, CH3, CH2Y, C2H5, C2H4Y, C6H5, C6H Y oder C6H3Y2,
X und Y unabhängig voneinander NH oder 0H und n = 0, 1 oder 2 bedeuten.
2. Phosphatierlösung nach Anspruch 1, dadurch gekennzeichnet, daß in der allgemeinen Formel (I) n = 0 und X = NH2 sind und die hierdurch cha¬ rakterisierten alpha-Aminosäuren vorzugsweise ausgewählt sind aus Glycin, Alanin, Serin, Phenylalanin, (Hydroxyphenyl)alanin und (Dihy- droxyphenyl)alanin, wobei Glycin, Alanin und Serin besonders bevorzugt sind.
3. Phosphatierlösung nach Anspruch 1, dadurch gekennzeichnet, daß in der allgemeinen Formel (I) X = 0H ist und die hierdurch charakterisierten Hydroxycarbonsäuren vorzugsweise ausgewählt sind aus Glykolsäure und Milchsäure. 4. Phosphatierlösung nach einem oder mehreren der Ansprüche 1 bis 3, da¬ durch gekennzeichnet, daß sie 0,1 bis 0,8 g/1, vorzugsweise 0,2 bis 0,
4 g/1 einer oder mehrerer Carbonsäuren der allgemeinen Formel (I) enthält.
5. Phosphatierlösung nach einem oder mehreren der Ansprüche 1 bis 4, da¬ durch gekennzeichnet, daß sie 0,2 bis 0,5 g/1 Nitrobenzolsulfonsäure enthält.
6. Phosphatierlösung nach einem oder mehreren der Ansprüche 1 bis 5, da¬ durch gekennzeichnet, daß sie als Nitrobenzolsulfonsäure -Nitroben- zolsulfonsäure enthält.
7. Phosphatierlösung nach einem oder mehreren der Ansprüche 1 bis 6, da¬ durch gekennzeichnet, daß sie einen oder mehrere der folgenden Hilfs¬ stoffe enthält: e) 0,05 bis 3 g/1 freies und/oder komplex gebundenes Fluorid, f) 0,1 bis 6 g/1 einer chelatisierenden Carbonsäure mit mindestens vier C-Atomen und mindestens drei Substituenten ausgewählt aus Carboxyl- und Hydroxy-Gruppen, g) 0,02 bis 20 mMol/1 Molybdat und/oder Wolframat, h) 0,02 bis 1 g/1 einer anionischen Titan- oder Zirkonverbindung, i) bis zu 40 g/1, vorzugsweise 0,2 bis 1 g/1, insbesondere 0,3 bis
0,5 g/1 Tenside, k) 0,05 bis 5 g/1 Nitrat.
8. Verfahren zur Phosphatierung von MetallOberflächen, vorzugsweise von Oberflächen aus Stahl, Zink, Aluminium oder Legierungen, deren Haupt¬ komponente mindestens eines der Metalle Eisen, Zink oder Aluminium darstellt, indem man die Oberflächen mit Lösungen nach einem oder mehreren der Ansprüche 1 bis 7, vorzugsweise bei einer Temperatur zwischen 30 und 70 °C, für eine Zeit zwischen 15 Sekunden und 10 Mi¬ nuten, vorzugsweise 1 bis 5 Minuten durch Eintauchen in die Lösung und/oder durch Bespritzen mit der Lösung in Kontakt bringt. 9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, daß man Phosphat¬ schichten mit einem Schichtgewicht im Bereich 0,2 bis 1 g/m2, vor¬ zugsweise 0,4 bis 0,
9 g/m2 erzeugt.
10. Verfahren nach einem oder beiden Ansprüche 8 und 9 zur Vorbehandlung von MetallOberflächen vor dem Aufbringen einer organischen Beschich¬ tung, vorzugsweise ausgewählt aus der Gruppe der Farben und Lacke und der natürlichen oder synthetischen Gummis und Kautschuke.
11. Wäßriges Konzentrat, das beim Verdünnen mit Wasser um einen Faktor zwischen 5 und 200, vorzugsweise zwischen 20 und 100, eine Phospha¬ tierlösung gemäß einem oder mehreren der Ansprüche 1 bis 7 ergibt.
12. Pulverförmiges Mittel, das beim Auflösen in Wasser in einer Konzen¬ tration zwischen 0,2 und 5 Gew.-%, vorzugsweise zwischen 0,5 und 3 Gew.-%, eine Phosphatierlösung gemäß einem oder mehreren der Ansprüche 1 bis 7 ergibt.
EP95922451A 1994-05-21 1995-05-12 Eisenphosphatierung unter verwendung von substituierten monocarbonsäuren Expired - Lifetime EP0760870B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4417965A DE4417965A1 (de) 1994-05-21 1994-05-21 Eisenphosphatierung unter Verwendung von substituierten Monocarbonsäuren
DE4417965 1994-05-21
PCT/EP1995/001815 WO1995032319A1 (de) 1994-05-21 1995-05-12 Eisenphosphatierung unter verwendung von substituierten monocarbonsäuren

Publications (2)

Publication Number Publication Date
EP0760870A1 true EP0760870A1 (de) 1997-03-12
EP0760870B1 EP0760870B1 (de) 1998-10-28

Family

ID=6518757

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95922451A Expired - Lifetime EP0760870B1 (de) 1994-05-21 1995-05-12 Eisenphosphatierung unter verwendung von substituierten monocarbonsäuren

Country Status (9)

Country Link
US (1) US5919318A (de)
EP (1) EP0760870B1 (de)
JP (1) JPH10500452A (de)
AT (1) ATE172757T1 (de)
CA (1) CA2190991A1 (de)
DE (2) DE4417965A1 (de)
DK (1) DK0760870T3 (de)
ES (1) ES2124558T3 (de)
WO (1) WO1995032319A1 (de)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19808440C2 (de) * 1998-02-27 2000-08-24 Metallgesellschaft Ag Wässrige Lösung und Verfahren zur Phosphatierung metallischer Oberflächen sowie eine Verwendung der Lösung und des Verfahrens
US6695931B1 (en) 1999-05-24 2004-02-24 Birchwood Laboratories, Inc. Composition and method for metal coloring process
US6576346B1 (en) * 1999-05-24 2003-06-10 Birchwood Laboratories, Inc. Composition and method for metal coloring process
CN1352702A (zh) 1999-05-28 2002-06-05 汉高两合股份公司 磷化处理的金属表面的后钝化
DE10109480A1 (de) * 2001-02-28 2002-09-05 Volkswagen Ag Verfahren zur Beschichtung einer Aluminiumoberfläche
GB2374088A (en) * 2001-03-29 2002-10-09 Macdermid Plc Conversion treatment of zinc and zinc alloy surfaces
US20030172998A1 (en) * 2002-03-14 2003-09-18 Gerald Wojcik Composition and process for the treatment of metal surfaces
US6899956B2 (en) 2002-05-03 2005-05-31 Birchwood Laboratories, Inc. Metal coloring process and solutions therefor
US20040118483A1 (en) * 2002-12-24 2004-06-24 Michael Deemer Process and solution for providing a thin corrosion inhibiting coating on a metallic surface
US7964044B1 (en) 2003-10-29 2011-06-21 Birchwood Laboratories, Inc. Ferrous metal magnetite coating processes and reagents
US7144599B2 (en) 2004-07-15 2006-12-05 Birchwood Laboratories, Inc. Hybrid metal oxide/organometallic conversion coating for ferrous metals
JP5593532B2 (ja) * 2008-07-30 2014-09-24 ディップソール株式会社 亜鉛又は亜鉛合金めっき上にクロムフリー化成皮膜を形成するための化成処理水溶液及びそれより得られたクロムフリー化成皮膜
DE102014005444A1 (de) * 2014-04-11 2015-10-15 Audi Ag Verfahren zur Passivierung einer metallischen Oberfläche
CA3041934A1 (en) * 2016-11-23 2018-05-31 Chemetall Gmbh Composition and method for the chromium-free pretreatment of aluminium surfaces
EP3502311A1 (de) * 2017-12-20 2019-06-26 Henkel AG & Co. KGaA Verfahren zur korrosionsschützenden und reinigenden vorbehandlung von metallischen bauteilen

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2045499A (en) * 1934-06-04 1936-06-23 Metal Finishing Res Corp Method of and material for coating metal surfaces
US2657156A (en) * 1948-07-23 1953-10-27 Parker Rust Proof Co Phosphate coating composition and process
GB741050A (en) * 1952-07-01 1955-11-23 Pyrene Co Ltd Improvements in the formation of phosphate coatings on metal surfaces
US2809906A (en) * 1952-11-25 1957-10-15 Wyandotte Chemicals Corp Phosphating compositions
BE525399A (de) * 1952-12-31
US2776917A (en) * 1956-07-10 1957-01-08 Gillette Co Article with corrosion-inhibited surface and composition for coating said surface
CA874944A (en) * 1969-04-08 1971-07-06 Hooker Chemical Corporation Composition and process for coating metal
DE2506349A1 (de) * 1975-02-14 1976-08-26 Kluthe Kg Chem Werke Phosphatierungsmittel und verfahren zu seiner anwendung
US4017335A (en) * 1975-10-30 1977-04-12 Economics Laboratory, Inc. Liquid phosphatizing composition and use thereof
DE2622276A1 (de) * 1976-05-19 1977-12-08 Hoechst Ag Verfahren zur phosphatierung von metallen
JPS5549172A (en) * 1978-10-03 1980-04-09 Kawasaki Steel Corp Surface treatment method of tin-free steel
DE3325974A1 (de) * 1983-07-19 1985-01-31 Gerhard Collardin GmbH, 5000 Köln Verfahren und universell anwendbare mittel zum beschleunigten aufbringen von phosphatueberzuegen auf metalloberflaechen
DE3408577A1 (de) * 1984-03-09 1985-09-12 Metallgesellschaft Ag, 6000 Frankfurt Verfahren zur phosphatierung von metallen
US5073196A (en) * 1989-05-18 1991-12-17 Henkel Corporation Non-accelerated iron phosphating
JPH0696773B2 (ja) * 1989-06-15 1994-11-30 日本ペイント株式会社 金属表面のリン酸亜鉛皮膜形成方法
US5137589A (en) * 1990-02-09 1992-08-11 Texo Corporation Method and composition for depositing heavy iron phosphate coatings
US5143562A (en) * 1991-11-01 1992-09-01 Henkel Corporation Broadly applicable phosphate conversion coating composition and process

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9532319A1 *

Also Published As

Publication number Publication date
JPH10500452A (ja) 1998-01-13
DE59504085D1 (de) 1998-12-03
ATE172757T1 (de) 1998-11-15
CA2190991A1 (en) 1995-11-30
DE4417965A1 (de) 1995-11-23
DK0760870T3 (da) 1999-07-12
WO1995032319A1 (de) 1995-11-30
US5919318A (en) 1999-07-06
EP0760870B1 (de) 1998-10-28
ES2124558T3 (es) 1999-02-01

Similar Documents

Publication Publication Date Title
EP0760870B1 (de) Eisenphosphatierung unter verwendung von substituierten monocarbonsäuren
EP2817434B1 (de) Vorbehandlung von zinkoberflächen vor einer passivierung
DE69533755T2 (de) Zusammensetzung und verfahren zur behandlung von konversions-beschichteten metalloberflächen
EP1254279A2 (de) Korrosionsschutzmittel und korrosionsschutzverfahren für metalloberflächen
EP0213567B1 (de) Verfahren zum Aufbringen von Phosphatüberzügen
EP0261519B1 (de) Schichtbildende Passivierung bei Multimetall-Verfahren
EP1114202A1 (de) Verfahren zur phosphatierung, nachspülung und kathodischer elektrotauchlackierung
DE2100021A1 (de) Verfahren zum Aufbringen von Phos phatschichten auf Stahl, Eisen und Zinkoberflachen
EP0134895B1 (de) Verfahren und Mittel zum beschleunigten und schichtverfeinernden Aufbringen von Phosphatüberzügen auf Metalloberflächen
WO1992017628A1 (de) Verfahren zum phosphatieren von metalloberflächen
EP0031103B1 (de) Verfahren zur Vorbehandlung von Metalloberflächen vor dem Phosphatieren
EP1292719A1 (de) Haftvermittler in konversionslösungen
EP0889977B1 (de) Zinkphosphatierung mit geringen gehalten an kupfer und mangan
EP0111223A1 (de) Verfahren zur Phosphatierung von Metalloberflächen sowie hierfür geeignete Badlösungen
DE2031358A1 (en) Protective coatings on iron, zinc or aluminium - formed by treatment with acid solns contg complex fluorides, free fluorine
WO2014037088A1 (de) Behandlungslösung und verfahren zur beschichtung von metalloberflächen
DE2521737C3 (de) Verfahren und Lösung zum Phosphatieren von Eisen- und Stahloberflächen
EP1019564A1 (de) Verfahren zur phosphatierung von stahlband
DE2239581A1 (de) Loesung und verfahren zum aufbringen von ueberzuegen auf zink oder zinklegierungen
DE19958192A1 (de) Verfahren zur Phosphatierung, Nachspülung und kathodischer Elektrotauchlackierung
DE10115161A1 (de) Reiniger für Magnesium, Aluminium und deren Legierungen
EP3336219B1 (de) Verfahren zur korrosionsschützenden und reinigenden vorbehandlung von metallischen bauteilen
DE4421501A1 (de) Phosphatierung unter Verwendung von Oxysäuren von Schwefel oder Phosphor in niederen Oxidationsstufen
DE19541285C2 (de) Verfahren und Mittel zur Phosphatierung von Metalloberflächen
DE2338290C3 (de) Lösung und Verfahren zur Phosphatierung von Weißblech

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19961113

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB IT LI SE

17Q First examination report despatched

Effective date: 19970213

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB IT LI SE

REF Corresponds to:

Ref document number: 172757

Country of ref document: AT

Date of ref document: 19981115

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59504085

Country of ref document: DE

Date of ref document: 19981203

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19981126

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN P. & C. S.N.C.

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2124558

Country of ref document: ES

Kind code of ref document: T3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19990514

Year of fee payment: 5

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000531

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20010514

Year of fee payment: 7

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20020508

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20020513

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020531

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030512

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030512

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20030512

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20070508

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20070710

Year of fee payment: 13

BERE Be: lapsed

Owner name: *HENKEL K.G.A.A.

Effective date: 20080531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080513

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20110523

Year of fee payment: 17

Ref country code: ES

Payment date: 20110617

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20110518

Year of fee payment: 17

Ref country code: DE

Payment date: 20110505

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120512

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20130131

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59504085

Country of ref document: DE

Effective date: 20121201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121201

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20130820

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120513