EP0736350B1 - Procédé et dispositif de réglage du bombé des cylindres d'une installation de coulée de bandes métalliques - Google Patents

Procédé et dispositif de réglage du bombé des cylindres d'une installation de coulée de bandes métalliques Download PDF

Info

Publication number
EP0736350B1
EP0736350B1 EP96400602A EP96400602A EP0736350B1 EP 0736350 B1 EP0736350 B1 EP 0736350B1 EP 96400602 A EP96400602 A EP 96400602A EP 96400602 A EP96400602 A EP 96400602A EP 0736350 B1 EP0736350 B1 EP 0736350B1
Authority
EP
European Patent Office
Prior art keywords
rolls
gas
casting
crown
strip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96400602A
Other languages
German (de)
English (en)
Other versions
EP0736350A1 (fr
Inventor
Luc Vendeville
Gérard Raisson
Pierre Delassus
Jean-Michel Damasse
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thyssen Stahl AG
USINOR SA
Original Assignee
Thyssen Stahl AG
USINOR SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thyssen Stahl AG, USINOR SA filed Critical Thyssen Stahl AG
Publication of EP0736350A1 publication Critical patent/EP0736350A1/fr
Application granted granted Critical
Publication of EP0736350B1 publication Critical patent/EP0736350B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0637Accessories therefor
    • B22D11/0697Accessories therefor for casting in a protected atmosphere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0622Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars formed by two casting wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations

Definitions

  • the invention relates to the casting of thin metallurgical products obtained directly from liquid metal. More specifically, it relates to installations for casting thin strips, in particular steel, by solidifying the liquid metal against two close cylinders with horizontal axes, rotated in opposite directions and internally cooled.
  • the thickness profile of the strip depends closely on the shape of the external surfaces of the cylinders in the casting space.
  • this profile of the strip should be rectangular or slightly convex to ensure the smooth running of the cold rolling step and a satisfactory regularity of the thickness of the final product.
  • the generatrices of each cylinder should remain rectilinear or slightly concave, in particular at the level of the neck, ie of the region of the casting space where the cylinders are closest to each other. other. In practice, this is not the case, due to the intense thermal stresses to which the cylinders are subjected.
  • this expansion is usually anticipated by giving the exterior surface of each cylinder a slightly concave profile, having a "domed" in the center of the cylinder, that is to say a difference in radius relative to the edges.
  • the optimum value of this cold convex varies according to the dimensions of the cylinder, and can be, for example, around 0.5 mm. In this way, during the expansion of the cylinder, there is a reduction in this convexity, and the profile of the cylinder in the casting space tends to approach a rectilinear profile.
  • this convex during casting depends on the materials of the cylinders and the cooling system of the cooled ferrule which constitutes the periphery of the cylinder, of the geometry of this ferrule, and also of its method of attachment to the core of the cylinder, which can allow greater or lesser expansion of the ferrule. But it also depends on operating conditions which can vary from one casting to another, or even also during the same casting, such as the height of liquid metal present in the casting space and the intensity of the heat flow extracted from the metal. by the cylinder cooling means.
  • Document JP-A-58-23549 shows an installation for casting a thin strip by depositing liquid metal on a single cylinder.
  • the cylinder is cooled by sending on its surface, upstream of the casting zone, a fluid whose flow can be modulated along the width of the cylinder, so as to control the convexity of the cylinder.
  • Data collected by thickness gauges measuring the thickness of the strip cast at different points are used for this purpose.
  • the object of the invention is to provide operators with a means enabling them to adjust the convexity of the cylinders during casting with sufficient latitude.
  • the subject of the invention is a process for casting a metal strip, in particular steel, according to which the said strip is solidified by adding liquid metal between two counter-rotating cylinders with horizontal axes cooled by internal circulation. of a cooling fluid, defining between them a pouring space, and the external surfaces of which have a roughness, and an inerting of said pouring space is carried out by insufflation of a given quantity of a gas or of a mixture of gases through a cover covering said pouring space, characterized in that the convexity of said cylinders is adjusted by modulating the quantity supplied and / or the nature of said gas or the composition of said gas mixture, at least in the vicinity of the surface of each cylinder upstream from its contact zone with liquid metal.
  • the invention also relates to an installation for casting a metal strip, in particular steel, of the type comprising two counter-rotating cylinders with horizontal axes, cooled by an internal circulation of a cooling fluid, defining between them a casting space intended receiving the liquid metal, and the external surfaces of which have a roughness, a device for blowing a gas or a mixture of gases through a cover covering said pouring space, and means for modulating the quantity blown in and / or the nature of said gas or the composition of said gas mixture at least in the vicinity of the surface of each cylinder upstream from its zone of contact with the liquid metal, characterized in that it comprises means for measuring or calculating the bulge cylinders in said casting space, or a quantity representative of said convexity of the cylinders - in said casting space, and means - for automatically controlling said modulation of the quantity supplied and / or of the nature of said gas as a function of the data collected by said means for measuring or calculating the crown of the cylinders in the casting space, or of a quantity
  • the invention consists in modulating the quantity and / or the composition of the gas present in the immediate vicinity of the surface of each cylinder, just before the latter comes into contact with the meniscus of liquid metal. , or these two parameters, in order to adjust the convexity of the cylinders.
  • the quantity and composition of the gas present in the hollow parts of the surface of the cylinder have a direct influence on the coefficient of heat transfer between the metal and the cylinder. It is through this that we will vary the heat flow extracted from the metal on which the expansion of the cylinder, and therefore its crown, depends. This variation of the crown of the cylinders can be carried out during casting, depending on the particular conditions at the time.
  • A is a heat transfer coefficient, expressed in MW / m 2 .s 0.35 , the value of which depends on the conditions prevailing at the metal-cylinder interface.
  • A depends on the conditions at the metal-cylinder interface.
  • One of the most important features of this interface is the roughness of the surface of the cooled cylinder shell. It has been found that a perfectly smooth ferrule surface and having a uniform thermal conductivity could cause the appearance of defects on the cast strip. The reason is that the effect of contraction of the skin of the strip during its cooling opposes the adhesion forces of this same skin on the shell. This competition is a source of tension inside the skin, which can lead to the appearance of superficial micro-cracks.
  • the recessed areas are filled with the gas which constitutes the boundary layer of the atmosphere overhanging the rotating cylinder, and which the latter carries with it.
  • the gas which filled them is trapped there. It is by means of this gas that the cooled walls of the hollows which are not in contact with the skin will nevertheless participate in the extraction of the heat flux from the metal.
  • the calculated value of the coefficient A takes into account the effect of the roughness of the shell on the overall heat transfer between the metal and the cylinder.
  • the surface of the liquid steel is not exposed to the ambient air, otherwise there would be pollution of the metal by the formation of oxidized inclusions. This formation would also lead to consumption of the most easily oxidizable elements present in the steel.
  • the pouring space is most often capped with a device forming a cover. Under this cover, a gas totally inert towards the liquid metal (for example argon) is blown in the direction of the surface of the liquid steel, or a gas which it is tolerable for it to partially dissolve. in liquid metal (for example nitrogen in the case where a stainless steel is poured into which a low nitrogen content is not particularly sought after), or a mixture of such gases.
  • both of the cylinders and of the cover does not generally bear on the cylinders, but is kept at a very short distance from their surface (a few mm).
  • the disadvantage of such an arrangement is that the cylinders carry with them, in particular in the hollows of their surface, a boundary layer of air whose oxidizing power is unfavorable to the quality of the metal which comes into contact with it at the meniscus. and below.
  • this problem is remedied by carrying out, in addition to the insufflation directed towards the surface of the liquid steel, an insufflation of argon and / or nitrogen in the immediate vicinity of the surface of the cylinders, where it is overhung by the cover.
  • the quantity of gas present in the recesses is also a function of the flow of blown gas, in particular in the immediate vicinity of the cylinders.
  • the quantity of gas remaining present in each recessed range is therefore lower in the case of the use of nitrogen than in the case of the use of argon.
  • nitrogen cannot hinder the penetration of the metal into the hollows as much as argon, and we find us in solidification conditions closer to those of a smooth cylinder.
  • it is argon which essentially constitutes the gaseous boundary layer entrained by the cylinders up to the meniscus, the heat transfer coefficient A between the cylinder and the metal skin during solidification is lower than in the case where the boundary layer is constituted by nitrogen.
  • a 0 can for example vary between 4.2 and 4.8 and K is of the order of 0.025 in the range of lower argon contents or equal to 30%. Beyond this limit, there is a marked decrease in the influence of the argon content on the value of A. In the case of ferritic stainless steels, the influence of the argon content on A is less marked, and it becomes relatively weak in the case of carbon steels.
  • the variant of the process according to the invention in which the crowning of the cylinders is adjusted by varying the nature of the inerting gas or the composition of the inerting gas mixture finds its preferred application in the casting of stainless steels, in particular austenitics.
  • the variant according to which the setting of the convex is obtained only by modulating the gas flow blown is intended more particularly for carbon steels. It is understood that it is also possible to play on both parameters, bit rate and composition.
  • the operator can experimentally determine the value of the thermal flux passing through the cylinder, and deduce therefrom by calculation the value of A, knowing the casting speed. From this value of A, thanks to previous experiences or modeling techniques, for each type of roughness of the cylinders and for each grade category, it deduces the curvature of the cylinder which would be to be expected if the cylinder had a perfectly straight generator when cold.
  • the operator finally deduces the shape correction which it is preferable to apply construction to the cylinder so that, in at least most of the real experimental conditions, it is possible to obtain a cylinder whose generatrices would take, hot , the rectilinear or slightly concave shape desired, just by playing on the composition and / or the flow rate of the inerting gas, in accordance with the invention.
  • the operator has the possibility of using either pure nitrogen or pure argon in order to be able, for a given gas flow rate and casting conditions, to have the choice between two rounded cylinders. But of course, it is preferable to give the possibility of using a mixture of these two gases (or of any other suitable gases) in respective proportions varying at will according to the needs of the setting of the convex, so as to carry out this setting as precisely as possible.
  • the casting installation comprises two cylinders 1, 1 'brought together, energized internally cooled and rotated in opposite directions around their horizontal axes by means not shown, and means for supplying liquid steel 2 into the 'pouring space defined by the external surfaces 3, 3' of the cylinders 1, 1 'and closed laterally by two refractory plates, one of which 4 is visible in FIG. 1.
  • These supply means comprise a nozzle 5 connected to a distributor not shown, and whose lower end plunges under the surface 6 of the liquid steel 2 which contains the casting space.
  • the liquid steel 2 begins its solidification on the external surfaces 3, 3 'of the cylinders 1, 1' by forming skins 7, 7 ', the junction of which at the neck 8, that is to say of the zone where the difference between the cylinders 1, 1 ′ is the smallest, gives rise to a solidified strip 9 a few mm thick, which is continuously extracted from the casting installation.
  • the inerting of the pouring space is provided by a cover 10 crossed by the nozzle 5, and which is supported on two blocks 11, 11 'extending over the entire width of the cylinders 1, 1'.
  • the lower faces 12, 12 'of these blocks 11, 11' are shaped so as to match the curvatures of the external surfaces 3, 3 'of the cylinders 1, 1' and to be defined with them, when the inerting device is in service , a space 13, 13 ′ of width "e" equal to a few mm.
  • the inerting gas is first supplied by a pipe 14 passing through the cover 10 and opening above the surface 6 of the liquid steel 2 present in the casting space.
  • This pipe 14 is connected to a gas tank 15, containing for example nitrogen or argon, and the flow rate and the blowing pressure of which are controlled by a valve 16.
  • a blowing of gas with controlled flow rates and composition is carried out through the blocks 11, 11 ′.
  • a nitrogen tank 17 provided with a valve 18 and an argon tank 19 provided with a valve 20 are connected to a mixing chamber 21. It is from this mixing chamber 21 that the gas or, more generally, the gaseous mixture which, according to the invention, will constitute the boundary layer entrained by the external surfaces of the cylinders 1, 1 ′ up to their zones of contact with the surface 6 of the liquid metal contained in the pouring space which constitute the meniscus.
  • a pipe 22 provided with a valve 23 leaves the mixing chamber 21 and brings a portion of the gas mixture which is there in the block 11, where a slot 24 (or a plurality of close holes, or a porous element) distributes it as uniformly as possible in the space 13 defined by the lower face 12 of the block 11 and the external face 3 of the cylinder 1.
  • the valve 23 makes it possible to adjust the flow rate and the pressure of the mixture gaseous.
  • a symmetrical device, comprising a line 22 'provided with a valve 23' also brings the gas mixture into the block 11 'then, through a slot 24', into the space 13 'separating the block 11' and the cylinder 1 ' .
  • Another variant of the device according to the invention consists, as in the French application 94 14571 already cited, in providing inside each block 11, 11 'a second slot (or another functionally equivalent member) similar to the slot 24 , 24 ', and opening upstream of the latter in the space 13, 13' relative to the progression of the surface 3, 3 'of the cylinder 1, 1'.
  • This second slot directs the gas which comes from it towards the outside of the space 13, 13 ', while the slot 24, 24' directs the gas which leaves there towards the casting space, therefore in the direction of progression. from the surface 3, 3 'of the cylinder 1, 1'.
  • the regulation of the convexity of the cylinders 1, 1' finds it easier.
  • the gas or the gaseous mixture brought into the spaces 13, 13 ′ separating the blocks 11, 11 ′ and the cylinders 1, 1 ′ can be found not only in the state gaseous, as has been implicitly assumed so far, but also in the liquid state.
  • the inerting device which has just been described constitutes only one example of implementation of the invention, and that any other device making it possible to control the composition of the gas present above the casting space, and in particular of the gaseous boundary layer entrained by the external surface of each cylinder up to the meniscus could also be suitable.
  • the operator which is responsible for the operation of the casting installation must have a certain amount of information for s 'ensure that the composition and the flow rate of the inerting gas adopted effectively lead to the desired convexity, and therefore to an adequate quality for the product.
  • one possibility consists in continuously collecting the data (flow rate of cooling water, variation of its temperature between inlet and outlet of the cylinder) making it possible to calculate the heat flux passing through the cylinder, to calculate it at close intervals and to deduce the curvature such as mathematical models and / or prior calibrations make it possible to predict it.
  • Another way of proceeding is to continuously measure the volume of the cylinders in an area as close as possible to the casting space, to deduce therefrom the value of the volume in these contact zones and to adjust the composition of the gas. inerting accordingly.
  • This curved measurement can be carried out using, for example, a set of non-contact shape measurement sensors, such as capacitive sensors or laser sensors, distributed along at least one generator of one of the cylinders. , or better, of two sets of such sensors each installed on a different cylinder.
  • the single figure shows schematically such sensors 25, 25 ', which are connected to a calculation unit 26.
  • This also receives the information cited above which allows it to calculate the heat fluxes passing through the cylinders 1, 1', and it consequently controls the respective openings of the valves 18, 20, in order to regulate the flow rate and the composition of the gas mixture to the values which provide a convex considered optimal to the cylinders 1, 1 ′.
  • the measurement of the thermal profile of the strip along its width, carried out at the outlet of the cylinders, can also give at least qualitative indications on the bulge imposed by the cylinders, since the temperature difference between the center of the strip and the areas closer to the banks is an index of variations in the thickness of the strip.
  • the invention is, of course, not limited to the casting of steel strips, and can be applied to the casting of other metallic materials.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)
  • Metal Rolling (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Forging (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
  • Sorption Type Refrigeration Machines (AREA)
  • Compressor (AREA)
  • Alcoholic Beverages (AREA)

Description

  • L'invention concerne la coulée de produits métallurgiques de faible épaisseur obtenus directement à partir de métal liquide. Plus précisément, elle concerne les installations de coulée de bandes minces, notamment en acier, par solidification du métal liquide contre deux cylindres rapprochés à axes horizontaux, mis en rotation en sens contraires et refroidis intérieurement.
  • De telles installations sont décrites, notamment, dans les documents WO-A-9402269 et EP-A-0409645. Ce dernier document forme la base du préambule des revendications indépendantes. Il montre une coulée entre cylindres de bandes minces d'acier, munie d'un couvercle coiffant l'espace de coulée et de moyens pour moduler la composition et/ou le débit du gaz inertant l'espace de coulée. Cette modulation est utilisée pour maîtriser la qualité de surface de la bande.
  • Dans les installations de coulée de minces bandes d'acier entre deux cylindres contrarotatifs, le profil d'épaisseur de la bande -dépend étroitement de la forme que prennent les surfaces externes des cylindres dans l'espace de coulée. Idéalement, ce profil de la bande- devrait être rectangulaire ou légèrement convexe pour assurer un bon déroulement de l'étape de laminage à froid et une régularité satisfaisante de l'épaisseur du produit final. A cet effet, les génératrices de chaque cylindre devraient demeurer rectilignes ou légèrement concaves, notamment au niveau du col, c'est à dire de la région de l'espace de coulée où les cylindres sont-les plus proches l'un de l'autre. Dans la pratique, cela n'est pas le cas, du fait des intenses sollicitations thermiques auxquelles sont soumis les cylindres. C'est ainsi qu'un cylindre qui, à froid, aurait une génératrice parfaitement rectiligne, verrait, sous l'effet de la dilatation, sa surface extérieure devenir convexe. Le profil d'épaisseur de la bande solidifiée étant la reproduction fidèle de la section de l'espace de coulée au niveau du col, on obtiendrait une bande dont l'épaisseur augmenterait significativement et progressivement du centre vers les bords. Cela serait préjudiciable au bon déroulement du laminage à froid de la bande et à la qualité des produits qui en seraient issus.
  • C'est pourquoi on anticipe habituellement cette dilatation en donnant de construction à la surface extérieure de chaque cylindre un profil légèrement concave, présentant au centre du cylindre un "bombé", c'est à dire une différence de rayon par rapport aux bords. La valeur optimale de ce bombé à froid varie selon les dimensions du cylindre, et peut être, par exemple, d'environ 0,5 mm. De cette manière, au cours de la dilatation du cylindre, on assiste à une diminution de ce bombé, et le profil du cylindre dans l'espace de coulée tend à se rapprocher d'un profil rectiligne. La valeur de ce bombé en cours de coulée dépend des matériaux constitutifs des cylindres et du système de refroidissement de la virole refroidie qui constitue la périphérie du cylindre, de la géométrie de cette virole, et également de son mode de fixation sur le noyau du cylindre, qui peut autoriser une plus ou moins grande dilatation de la virole. Mais elle dépend aussi de conditions opératoires pouvant varier d'une coulée à l'autre, voire aussi pendant une même coulée, telles que la hauteur de métal liquide présent dans l'espace de coulée et l'intensité du flux de chaleur extrait du métal par les moyens de refroidissement du cylindre.
  • Il serait important de disposer de moyens donnant à l'opérateur en charge du fonctionnement de la machine de coulée la possibilité d'agir dans une certaine mesure sur le bombé des cylindres, de manière à obtenir en permanence un bombé optimal indépendamment des conditions de coulée et de leurs variations. De plus, on éviterait ainsi de devoir utiliser des paires de cylindres distinctes, ayant chacune un bombé initial différent, pour chaque nuance que l'on désire couler dans des conditions optimales.
  • Un moyen de régler ce bombé pourrait consister à moduler le flux de chaleur extrait du métal en jouant sur le débit de l'eau de refroidissement qui circule à l'intérieur de la virole de chaque cylindre. En fait, les variations du bombé que l'on pourrait obtenir par ce seul moyen seraient minimes, de l'ordre de quelques 1/100 de mm. La raison en est que ce débit d'eau ne tolère d'être modifié que dans de faibles proportions par rapport au débit maximal admissible, sous peine de détériorer trop sensiblement les conditions-dans lesquelles s'effectuent les transferts thermiques entre la virole et l'eau. Il ne serait alors plus possible de contrôler de manière satisfaisante les conditions de solidification du métal.
  • Le document JP-A-58-23549 montre une installation de coulée de bande mince par dépôt de métal liquide sur un cylindre unique. Le cylindre est refroidi par l'envoi sur sa surface, en amont de la zone de coulée, d'un fluide dont le débit peut être modulé le long de la largeur du cylindre, de manière à maîtriser le bombé du cylindre. On utilise à cet effet les données recueillies par des jauges d'épaisseur mesurant l'épaisseur de la bande coulée en différents points.
  • Le but de l'invention est de procurer aux opérateurs un moyen leur permettant de régler avec une latitude suffisante le bombé des cylindres en cours de coulée.
  • A cet effet, l'invention a pour objet un procédé de coulée d'une bande métallique, notamment en acier, selon lequel on effectue la solidification de ladite bande par apport de métal liquide entre deux cylindres contrarotatifs à axes horizontaux refroidis par une circulation interne d'un fluide refroidissant, définissant entre eux un espace de coulée, et dont les surfaces externes présentent une rugosité, et on réalise un inertage dudit espace de coulée par insufflation d'une quantité donnée d'un gaz ou d'un mélange de gaz à travers un couvercle coiffant ledit espace de coulée,
    caractérisé en ce qu'on effectue un réglage du bombé desdits cylindres en modulant la quantité insufflée et/ou la nature dudit gaz ou la composition dudit mélange de gaz, au moins au voisinage de la surface de chaque cylindre en amont de sa zone de contact avec le métal liquide.
  • L'invention a également pour objet une installation de coulée d'une bande métallique, notamment en acier, du type comportant deux cylindres contrarotatifs à axes horizontaux, refroidis par une circulation interne d'un fluide refroidissant, définissant entre eux un espace de coulée destiné à recevoir le métal liquide, et dont les surfaces externes présentent une rugosité, un dispositif d'insufflation d'un gaz ou d'un mélange de gaz à travers un couvercle coiffant ledit espace de coulée, et des moyens pour moduler la quantité insufflée et/ou la nature dudit gaz ou la composition dudit mélange de gaz au moins au voisinage de la surface de chaque cylindre en amont de sa zone de contact avec le métal liquide, caractérisé en ce qu'il comporte des moyens pour mesurer ou calculer le bombé des cylindres dans ledit espace de coulée, ou une grandeur représentative dudit bombé des cylindres- dans ledit espace de coulée, et des moyens- pour commander automatiquement ladite modulation de la quantité insufflée et /ou de la nature dudit gaz en fonction des données recueillies par lesdits moyens de mesure ou de calcul du bombé des cylindres dans l'espace de coulée, ou d'une grandeur représentative dudit bombé.
  • Comme on l'aura compris, l'invention consiste à moduler la quantité et/ou la composition du gaz présent au voisinage immédiat de la surface de chaque cylindre, juste avant que celle-ci n'entre en contact avec le ménisque de métal liquide, soit ces deux paramètres, dans le but de régler le bombé des cylindres. En effet, lorsque les cylindres de coulée ne sont pas lisses mais présentent sur leur surface une rugosité, la quantité et la composition du gaz présent dans les parties en creux de la surface du cylindre ont une influence directe sur le coefficient de transfert thermique entre le métal et le cylindre. C'est par ce biais que l'on va faire varier le flux de chaleur extrait du métal dont dépend la dilatation du cylindre, donc son bombé. Cette variation du bombé des cylindres peut être exécutée en cours de coulée, en fonction des conditions particulières du moment.
  • L'invention sera mieux comprise à la lecture de la description qui suit, donnée en référence à la figure unique annexée. Celle-ci schématise, vue en coupe transversale, une installation de coulée de bandes métalliques entre deux cylindres permettant la mise en oeuvre de l'invention.
  • Comme on l'a dit, la dilatation des cylindres est notamment gouvernée par le flux de chaleur qu'ils extraient du métal présent dans l'espace de coulée. Ainsi, l'expérience a montré aux inventeurs que le flux de chaleur instantané Φi extrait par un cylindre d'une portion de métal donnée avec laquelle il est en contact, exprimé en MW/m2, peut s'écrire: Φ i = A . t i -0,35    ti est le temps écoulé depuis que ladite portion de métal a été mise au contact du cylindre au niveau du ménisque, c'est à dire de la zone où se rencontrent le cylindre et la surface libre du métal liquide présent dans l'espace de coulée. Le fait que Φi diminue lorsque ti augmente traduit la détérioration de la qualité des transferts thermiques au fur et à mesure que la température du métal s'abaisse. A est un coefficient de transfert thermique, exprimé en MW/m2.s0,35, dont la valeur dépend des conditions régnant à l'interface métal-cylindre.
  • A partir de cette expression du flux de chaleur instantané, on peut calculer le flux de chaleur moyen Φm extrait d'une portion quelconque de la peau en cours de solidification et de refroidissement qui est au contact du cylindre. Cela est réalisé grâce à une intégration de Φi sur l'ensemble de cette peau, dont les diverses portions se distinguent par le temps depuis lequel elles sont au contact du cylindre. Ce temps est compris entre 0 pour une portion de la peau située au niveau du ménisque, et tc pour une portion de la peau qui quitte le cylindre au niveau du col. tc peut être calculé en fonction de la longueur de l'arc de contact entre le métal et le cylindre et de la vitesse de rotation des cylindres. Φm peut donc s'écrire:
  • Par ailleurs, Φm peut être mesuré par l'intermédiaire du débit Q d'eau de refroidissement traversant le cylindre, de la variation de température ΔT de cette eau entre son entrée et sa sortie du cylindre et de la surface de contact S entre le métal et le cylindre, selon: Φ m = Q.ΔT/S
  • Connaissant tc on peut en déduire A par le calcul selon: A = 0,65 Φ m /t c -0.35 = 0,65 Q ΔT / S t c -0,35
  • On a dit que la valeur de A dépendait des conditions à l'interface métal-cylindre. L'une des caractéristiques les plus importantes de cet interface est la rugosité de la surface de la virole refroidie du cylindre. On a constaté qu'une surface de virole parfaitement lisse et ayant une conductivité thermique uniforme pouvait provoquer l'apparition de défauts sur la bande coulée. La raison en est que l'effet de contraction de la peau de la bande pendant son refroidissement s'oppose aux forces d'adhérence de cette même peau sur la virole. Cette compétition est une source de tensions à l'intérieur de la peau, qui peuvent conduire à l'apparition de micro-fissures superficielles. Pour remédier à ces problèmes, il est admis couramment qu'il est préférable d'utiliser des cylindres dont la virole présente une certaine rugosité, c'est à dire une alternance de plages lisses (ou de plages en relief) et de plages en creux par rapport aux précédentes, réparties de manière régulière ou aléatoire. Sur les plages lisses et les plages en relief, la peau métallique adhère normalement à la virole et peut se refroidir rapidement. La largeur des plages en creux est, en revanche, calculée pour que le métal en cours de solidification ne les remplisse que partiellement, et pour que, sous l'effet des forces de tension superficielle, il ne parvienne pas jusqu'au fond de ces creux. A l'aplomb d'au moins les parties centrales de ces creux, le métal ne se trouve donc pas au contact direct d'une surface refroidie. On crée ainsi sur la peau, au droit de ces creux, une série de zones présentant un léger relief, et dont la solidification et le refroidissement sont moins avancés que sur le restant de la peau. Elles constituent, en quelque sorte, une réserve de métal qui présente une certaine élasticité, et peut absorber sans se fissurer les contraintes superficielles liées à la contraction de la peau. Pour obtenir un état de surface satisfaisant de la bande coulée, on a imaginé de ménager différents types de gravures sur les viroles des cylindres, tels que des entrecroisements de rainures à section en vé. Plus récemment, on a proposé de ménager sur la virole des fossettes de forme sensiblement circulaire ou ovale, ne se touchant pas, et ayant un diamètre de 0,1 à 1,2 mm et une profondeur de 5 à 100 µm (voir le document EP 0309247).
  • Avant de venir au contact du métal liquide, les plages en creux sont remplies par le gaz qui constitue la couche limite de l'atmosphère surplombant le cylindre en rotation, et que celui-ci entraîne avec lui. Lorsqu'elles viennent au contact du ménisque et sont alors recouvertes par la peau de métal en cours de solidification, le gaz qui les remplissait s'y trouve emprisonné. C'est par l'intermédiaire de ce gaz que les parois refroidies des creux qui ne sont pas au contact de la peau vont quand même participer à l'extraction du flux thermique à partir du métal. La valeur calculée du coefficient A tient compte de l'effet de la rugosité de la virole sur le transfert thermique global entre le métal et le cylindre.
  • Très généralement, on évite d'exposer la surface de l'acier liquide à l'air ambiant, sinon on assisterait à une pollution du métal par formation d'inclusions oxydées. Cette formation entraînerait en outre une consommation des éléments les plus facilement oxydables présents dans l'acier. Pour isoler la surface de l'air, on coiffe le plus souvent l'espace de coulée d'un dispositif formant couvercle. Sous ce couvercle, on insuffle en direction de la surface de l'acier liquide un gaz totalement inerte vis-à-vis du métal liquide (par exemple de l'argon), ou un gaz dont il est tolérable qu'il se solubilise partiellement dans le métal liquide (par exemple de l'azote dans le cas où on coule un acier inoxydable dans lequel une basse teneur en azote n'est pas particulièrement recherchée), ou un mélange de tels gaz. Pour éviter des problèmes d'usure, tant des cylindres que du couvercle, celui-ci ne prend généralement pas appui sur les cylindres, mais est maintenu à une très faible distance de leur surface (quelques mm). L'inconvénient d'une telle disposition est que les cylindres entraînent avec eux, notamment dans les creux de leur surface, une couche limite d'air dont le pouvoir oxydant est défavorable à la qualité du métal qui vient à son contact au niveau du ménisque et en-dessous. Dans certains cas, on remédie à ce problème en réalisant, en plus de l'insufflation dirigée vers la surface de l'acier liquide, une insufflation d'argon et/ou d'azote au voisinage immédiat de la surface des cylindres, là où celle-ci est surplombée par le couvercle. Elle est effectuée avec un débit réglable, qui doit être suffisant pour provoquer une dilution de la couche limite d'air, de manière à faire perdre à celle-ci l'essentiel de son pouvoir oxydant. C'est cette solution qui est retenue, notamment, dans la demande française FR 94 14571.
  • Du fait des différences existant entre leurs propriétés tant physiques que chimiques, tous les gaz et mélanges gazeux utilisables pour la protection du métal liquide n'ont pas la même influence sur les transferts thermiques entre le métal et le cylindre. C'est ainsi qu'on observe que ces transferts se font plus efficacement lorsqu'on utilise de l'azote comme gaz d'inertage plutôt que de l'argon Une explication vraisemblable de ce phénomène est que, l'argon étant pratiquement insoluble dans l'acier, il demeure en totalité à l'intérieur des plages en creux. Il y forme donc en permanence un matelas gazeux entre le fond des plages en creux et la peau métallique, qui contribue à empêcher une pénétration importante du métal dans les creux. En revanche, l'azote emprisonné dans les creux est en plus ou moins grande partie (selon la nuance coulée) absorbé par le métal lorsque celui-ci n'est pas encore complètement solidifié. De manière générale, la quantité de gaz présente dans les creux est également fonction du débit de gaz insufflé, en particulier au voisinage immédiat des cylindres. Pour un débit de gaz insufflé égal, la quantité de gaz demeurant présente dans chaque plage en creux est donc plus faible dans le cas de l'utilisation d'azote que dans le cas de l'utilisation d'argon. Ainsi, l'azote ne peut pas gêner autant que l'argon la pénétration du métal dans les creux, et on se retrouve dans des conditions de solidification plus proches de celles d'un cylindre lisse. Autrement dit, si c'est de l'argon qui constitue essentiellement la couche limite gazeuse entraînée par les cylindres jusqu'au ménisque, le coefficient de transfert thermique A entre le cylindre et la peau de métal en cours de solidification est plus faible que dans le cas où la couche limite est constituée par de l'azote. Et dans le cas où on utilise un mélange de ces deux gaz, on observe une décroissance de A lorsqu'augmente le pourcentage d'argon dans le mélange insufflé au voisinage de la surface des cylindres, en amont du ménisque, à partir de la valeur A0 que prend A dans le cas de l'azote pur: A = A 0 - K (% Ar)
  • L'expérience montre que, pour différents aciers inoxydables austénitiques et une rugosité des cylindres donnée, A0 peut par exemple varier entre 4,2 et 4,8 et K est de l'ordre de 0,025 dans la gamme des teneurs en argon inférieures ou égales à 30 %. Au delà de cette limite, on note une nette décroissance de l'influence de la teneur en argon sur la valeur de A. Dans le cas des aciers inoxydables ferritiques, l'influence de la teneur en argon sur A est moins marquée, et elle devient relativement faible dans le cas des aciers au carbone. Ces constatations sont à relier aux différences de solubilité de l'azote dans ces différents types de nuances: plus l'azote est soluble dans l'acier, et plus son remplacement partiel ou total dans le gaz d'inertage par un gaz insoluble modifie les conditions à l'interface gaz/métal. Cela signifie que la variante du procédé selon l'invention dans laquelle on règle le bombé des cylindres en jouant sur la nature du gaz d'inertage ou la composition du mélange gazeux d'inertage trouve son application préférée à la coulée des aciers inoxydables, notamment austénitiques. La variante selon laquelle le réglage du bombé est obtenu uniquement en modulant le débit gazeux insufflé s'adresse plus particulièrement aux aciers au carbone. Il est bien entendu qu'il est également possible de jouer à la fois sur les deux paramètres, débit et composition.
  • L'opérateur peut déterminer expérimentalement la valeur du flux thermique traversant le cylindre, et en déduire par le calcul la valeur de A, connaissant la vitesse de coulée. A partir de cette valeur de A, grâce à des expériences antérieures ou des techniques de modélisation, pour chaque type de rugosité des cylindres et pour chaque catégorie de nuance, il déduit le bombé du cylindre qui serait à attendre si le cylindre avait à froid une génératrice parfaitement rectiligne. L'opérateur en déduit enfin la correction de forme qu'il est préférable d'appliquer de construction au cylindre pour que, dans au moins la plupart des conditions expérimentales réelles, il soit possible d'obtenir un cylindre dont les génératrices prendraient, à chaud, la forme rectiligne ou légèrement concave souhaitée, rien qu'en jouant sur la composition et/ou le débit du gaz d'inertage, conformément à l'invention.
  • Pour modifier la nature du gaz d'inertage, l'opérateur a la possibilité d'utiliser soit de l'azote pur, soit de l'argon pur afin de pouvoir, pour un débit de gaz et des conditions de coulée données, avoir le choix entre deux bombés de cylindres. Mais bien entendu, il est préférable de se donner la possibilité d'utiliser un mélange de ces deux gaz (ou de tous autres gaz adaptés) dans des proportions respectives variables à volonté selon les besoins du réglage du bombé, de manière à effectuer ce réglage le plus précisément possible.
  • Un exemple non limitatif de dispositif permettant la mise en oeuvre de l'invention est schématisé sur la figure unique. Classiquement, l'installation de coulée comprend deux cylindres 1, 1' rapprochés, énergiquement refroidis intérieurement et mis en rotation en sens contraires autour de leurs axes horizontaux par des moyens non représentés, et des moyens d'amenée d'acier liquide 2 dans l'espace de coulée défini par les surfaces externes 3, 3' des cylindres 1, 1' et obturé latéralement par deux plaques en réfractaire dont l'une 4 est visible sur la figure 1. Ces moyens d'amenée comprennent une busette 5 connectée à un répartiteur non représenté, et dont l'extrémité inférieure plonge sous la surface 6 de l'acier liquide 2 que renferme l'espace de coulée. L'acier liquide 2 débute sa solidification sur les surfaces externes 3, 3' des cylindres 1, 1' en y formant des peaux 7, 7', dont la jonction au niveau du col 8, c'est à dire de la zone où l'écart entre les cylindres 1, 1' est le plus faible, donne naissance à une bande solidifiée 9 de quelques mm d'épaisseur, que l'on extrait en continu de l'installation de coulée. L'inertage de l'espace de coulée est assuré par un couvercle 10 traversé par la busette 5, et qui prend appui sur deux blocs 11, 11' s'étendant sur toute la largeur des cylindres 1, 1'. Les faces inférieures 12, 12' de ces blocs 11, 11' sont conformées de manière à épouser les courbures des surfaces externes 3, 3' des cylindres 1, 1' et à définir avec elles, lorsque le dispositif d'inertage est en service, un espace 13, 13' de largeur "e" égale à quelques mm. L'insufflation de gaz d'inertage est d'abord assurée par une conduite 14 traversant le couvercle 10 et débouchant au-dessus de la surface 6 de l'acier liquide 2 présent dans l'espace de coulée. Cette conduite 14 est connectée à un réservoir de gaz 15, contenant par exemple de l'azote ou de l'argon, et dont le débit et la pression d'insufflation sont contrôlés par une vanne 16.
  • D'autre part, pour la mise en oeuvre du procédé selon l'invention, une insufflation de gaz de débits et de composition contrôlés est effectuée à travers les blocs 11, 11'. Un réservoir d'azote 17 muni d'une vanne 18 et un réservoir d'argon 19 muni d'une vanne 20 sont connectés à une chambre de mélange 21. C'est à partir de cette chambre de mélange 21 qu'est prélevé le gaz ou, plus généralement, le mélange gazeux qui va , selon l'invention, constituer la couche limite entraînée par les surfaces externes des cylindres 1, 1' jusqu'à leurs zones de contact avec la surface 6 du métal liquide contenu dans l'espace de coulée qui constituent le ménisque. A cet effet, une conduite 22 munie d'une vanne 23 part de la chambre de mélange 21 et amène une portion du mélange gazeux qui s'y trouve dans le bloc 11, où une fente 24 (ou une pluralité de trous rapprochés, ou un élément poreux) le répartit d'une manière aussi uniforme que possible dans l'espace 13 défini par la face inférieure 12 du bloc 11 et la face externe 3 du cylindre 1. La vanne 23 permet de régler le débit et la pression du mélange gazeux. Un dispositif symétrique, comprenant une conduite 22' munie d'une vanne 23' amène également le mélange gazeux dans le bloc 11' puis, par une fente 24', dans l'espace 13' séparant le bloc 11' et le cylindre 1'.
  • En variante, on peut aussi prévoir pour chaque bloc 11, 11' des dispositifs d'alimentation en gaz totalement indépendants l'un de l'autre, de manière à pouvoir régler séparément les compositions des mélanges gazeux présents dans les espaces 13, 13', et donc le bombé de chacun des cylindres 1, 1'. On peut ainsi tenir compte d'une éventuelle différence dans les conditions de refroidissement de chacun des cylindres 1, 1'. D'autre part, on peut également choisir de prélever aussi le gaz insufflé sous le couvercle 10 dans la chambre de mélange 21, et lui conférer ainsi la même composition que le mélange gazeux devant former la couche limite à la surface des cylindres 1, 1'.
  • Une autre variante du dispositif selon l'invention consiste, comme dans la demande française 94 14571 déjà citée, à prévoir à l'intérieur de chaque bloc 11, 11' une deuxième fente (ou un autre organe fonctionnellement équivalent) similaire à la fente 24, 24', et débouchant en amont de celle-ci dans l'espace 13, 13' par rapport à la progression de la surface 3, 3' du cylindre 1, 1'. Cette deuxième fente oriente le gaz qui en est issu vers l'extérieur de l'espace 13, 13', alors que la fente 24, 24' oriente le gaz qui en sort vers l'espace de coulée, donc dans la direction de progression de la surface 3, 3' du cylindre 1, 1'. On obtient ainsi une meilleure étanchéité de l'espace 13, 13' vis-à-vis du milieu extérieur, d'où une maîtrise plus fine de la composition de la couche limite La régulation du bombé des cylindres 1, 1' s'en trouve facilitée.
  • De même, le gaz ou le mélange gazeux amené dans les espaces 13, 13' séparant les blocs 11, 11' et les cylindres 1, 1' peut se trouver non seulement à l'état gazeux, comme on l'a implicitement supposé jusqu'ici, mais aussi à l'état liquide. On peut également prévoir de le réchauffer en régulant sa température.
  • Il doit être entendu que le dispositif d'inertage qui vient d'être décrit ne constitue qu'un exemple de mise en oeuvre de l'invention, et que tout autre dispositif permettant de maîtriser la composition du gaz présent au-dessus de l'espace de coulée, et notamment de la couche limite gazeuse entraînée par la surface externe de chaque cylindre jusqu'au ménisque pourrrait également convenir.
  • Afin de maîtriser le bombé des cylindres en cours de coulée selon le procédé de l'invention, l'opérateur (ou les automatismes) qui est responsable du fonctionnement de l'installation de coulée doit disposer d'un certain nombre d'informations pour s'assurer que la composition et le débit du gaz d'inertage adoptés conduisent effectivement au bombé désiré, et donc à une qualité adéquate pour le produit. A cet effet, une possibilité consiste à recueillir en permanence les données (débit de l'eau de refroidissement, variation de sa température entre entrée et sortie du cylindre) permettant de calculer le flux thermique traversant le cylindre, à le calculer à intervalles rapprochés et à en déduire le bombé tel que des modèles mathématiques et/ou des étalonnages préalables permettent de le prévoir. Une autre façon de procéder est de mesurer en permanence le bombé des cylindres dans une zone aussi proche que possible de l'espace de coulée, d'en déduire la valeur du bombé dans ces zones de contact et de régler la composition du gaz d'inertage en conséquence. Cette mesure du bombé peut être réalisée à l'aide, par exemple, d'un ensemble de capteurs de mesure de forme sans contact, tels que des capteurs capacitifs ou des capteurs à laser, répartis selon au moins une génératrice d'un des cylindres, ou mieux, de deux ensembles de tels capteurs implantés chacun sur un cylindre différent. La figure unique schématise de tels capteurs 25, 25', qui sont connectés à une unité de calcul 26. Celle-ci reçoit également les informations citées plus haut qui lui permettent de calculer les flux thermiques traversant les cylindres 1, 1', et elle commande en conséquence les ouvertures respectives des vannes 18, 20, afin de régler le débit et la composition du mélange gazeux aux valeurs qui procurent un bombé jugé optimal aux cylindres 1, 1'. La mesure du profil thermique de la bande selon sa largeur, effectuée en sortie des cylindres, peut également donner des indications au moins qualitatives sur le bombé que lui ont imposé les cylindres, car l'écart de température entre le centre de la bande et des zones plus proches des rives est un indice des variations de l'épaisseur de la bande. Enfin, on peut installer en aval des cylindres un dispositif de mesure directe de l'épaisseur de la bande et de ses variations selon sa largeur, tel que des jauges à rayons X, grâce auquel on pourra observer directement les effets du bombé des cylindres sur la bande, et, si nécessaire, corriger le bombé par le procédé selon l'invention.
  • On peut aussi envisager de conjuguer le procédé selon l'invention à une maîtrise du bombé par le débit d'eau de refroidissement des cylindres. On a dit précédemment qu'il était difficile d'obtenir seulement par cette dernière méthode des variations de grande amplitude du bombé. Mais elle peut être utilisée pour compléter finement un réglage plus grossier du bombé préalablement effectué par action sur le débit et/ou la composition du gaz d'inertage.
  • L'invention n'est, bien entendu, pas limitée à la coulée de bandes d'acier, et peut être appliquée à la coulée d'autres matériaux métalliques.

Claims (10)

  1. Procédé de coulée d'une bande métallique, notamment en acier, selon lequel on effectue la solidification de ladite bande par apport de métal liquide entre deux cylindres contrarotatifs à axes horizontaux refroidis par une circulation interne d'un fluide refroidissant, définissant entre eux un espace de coulée, et dont les surfaces externes présentent une rugosité, et on réalise un inertage dudit espace de coulée par insufflation d'une quantité donnée d'un gaz ou d'un mélange de gaz à travers un couvercle coiffant ledit espace de coulée, caractérisé en ce qu'on effectue un réglage du bombé desdits cylindres en modulant la quantité insufflée et/ou la nature dudit gaz ou la composition dudit mélange de gaz, au moins au voisinage de la surface de chaque cylindre en amont de sa zone de contact avec le métal liquide.
  2. Procédé selon la revendication 1, caractérisé en ce qu'on complète ledit réglage du bombé en agissant sur le débit dudit fluide refroidissant.
  3. Installation de coulée d'une bande métallique (9), notamment en acier, du type comportant deux cylindres (1, 1') contrarotatifs à axes horizontaux, refroidis par une circulation interne d'un fluide refroidissant, définissant entre eux un espace de coulée destiné à recevoir le métal liquide (2), et dont les surfaces externes (3, 3') présentent une rugosité, un dispositif (14, 15, 16) d'insufflation d'un gaz ou d'un mélange de gaz à travers un couvercle (10) coiffant ledit espace de coulée, et des moyens (17, 18, 19, 20, 21, 22, 22', 23, 23', 24, 24') pour moduler la quantité insufflée et/ou la nature dudit gaz ou la composition dudit mélange de gaz au moins au voisinage de la surface (3, 3') de chaque cylindre (1, 1') en amont de sa zone de contact avec le métal liquide (2), caractérisé en ce qu'il comporte des moyens (25, 25', 26) pour mesurer ou calculer le bombé des cylindres (1, 1') dans ledit espace de coulée, ou une grandeur représentative dudit bombé des cylindres (1, 1') dans ledit espace de coulée, et des moyens (26) pour commander automatiquement ladite modulation de la quantité insufflée et/ou de la nature dudit gaz en fonction des données recueillies par lesdits moyens (25, 25', 26) de mesure ou de calcul du bombé des cylindres (1, 1') dans l'espace de coulée, ou d'une grandeur représentative dudit bombé.
  4. Installation selon la revendication 3, caractérisée en ce que ledit couvercle (10) comporte deux blocs (11, 11') dont la face inférieure (12, 12') de chacun définit un espace avec la surface externe (3, 3') de l'un desdits cylindres (1, 1'), lesdits blocs (11, 11') s'étendant sur toute la largeur desdits cylindres (1, 1'), et des moyens (24, 24') pour insuffler ledit gaz ou ledit mélange de gaz modulé en quantité et/ou en nature ou composition à l'intérieur dudit espace.
  5. Installation selon la des revendication 3 ou 4, caractérisée en ce que ledit mélange de gaz est un mélange d'azote et d'argon.
  6. Installation selon l'une des revendications 3 à 5, caractérisée en ce que les moyens de mesure du bombé des cylindres (1, 1') comportent au moins un ensemble de capteurs de mesure de forme (25, 25') disposés selon une génératrice d'un des cylindres (1, 1').
  7. Installation selon l'une des revendications 3 à 6, caractérisée en ce que lesdits moyens de calcul (26) du bombé des cylindres (1, 1') comportent des moyens pour mesurer le flux thermique traversant les cylindres (1, 1').
  8. Installation selon l'une des revendications 3 à 7, caractérisée en ce que ladite grandeur représentative du bombé des cylindres (1, 1')est le profil d'épaisseur de la bande (9) selon sa largeur.
  9. Installation selon la revendication 8, caractérisée en ce qu'elle comporte des moyens de mesure des variations de température de ladite bande (9) selon sa largeur.
  10. Installation selon la revendication 9, caractérisée en ce qu'elle comporte des moyens de mesure directe du profil d'épaisseur de ladite bande (9) selon sa largeur.
EP96400602A 1995-04-07 1996-03-22 Procédé et dispositif de réglage du bombé des cylindres d'une installation de coulée de bandes métalliques Expired - Lifetime EP0736350B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9504139A FR2732627B1 (fr) 1995-04-07 1995-04-07 Procede et dispositif de reglage du bombe des cylindres d'une installation de coulee de bandes metalliques
FR9504139 1995-04-07

Publications (2)

Publication Number Publication Date
EP0736350A1 EP0736350A1 (fr) 1996-10-09
EP0736350B1 true EP0736350B1 (fr) 2001-09-19

Family

ID=9477854

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96400602A Expired - Lifetime EP0736350B1 (fr) 1995-04-07 1996-03-22 Procédé et dispositif de réglage du bombé des cylindres d'une installation de coulée de bandes métalliques

Country Status (23)

Country Link
US (1) US5787967A (fr)
EP (1) EP0736350B1 (fr)
JP (1) JP4016297B2 (fr)
KR (1) KR100425968B1 (fr)
CN (1) CN1066364C (fr)
AT (1) ATE205760T1 (fr)
AU (1) AU698709B2 (fr)
BR (1) BR9601286A (fr)
CA (1) CA2173391C (fr)
CZ (1) CZ289395B6 (fr)
DE (1) DE69615250T2 (fr)
DK (1) DK0736350T3 (fr)
ES (1) ES2160782T3 (fr)
FR (1) FR2732627B1 (fr)
MX (1) MX9601307A (fr)
PL (1) PL180531B1 (fr)
PT (1) PT736350E (fr)
RO (1) RO115944B1 (fr)
RU (1) RU2147969C1 (fr)
SK (1) SK282371B6 (fr)
TR (1) TR199600294A2 (fr)
UA (1) UA43352C2 (fr)
ZA (1) ZA962428B (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2581150A1 (fr) 2011-10-12 2013-04-17 Siemens Aktiengesellschaft Dispositif de laminage par coulée avec refroidissement cryogène des laminoirs par coulée
EP2633929A1 (fr) 2012-03-01 2013-09-04 Siemens Aktiengesellschaft Modélisation d'une installation de laminoirs par coulée

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2746333B1 (fr) 1996-03-22 1998-04-24 Usinor Sacilor Procede de coulee continue d'une bande d'acier inoxydable austenitique sur une ou entre deux parois mobiles dont les surfaces sont pourvues de fossettes, et installation de coulee pour sa mise en oeuvre
AT408198B (de) * 1998-03-25 2001-09-25 Voest Alpine Ind Anlagen Verfahren zum stranggiessen eines dünnen bandes sowie vorrichtung zur durchführung des verfahrens
US6474402B1 (en) * 1999-07-02 2002-11-05 Armco Inc. Segmented roll for casting metal strip
CH692184A5 (de) * 2000-12-30 2002-03-15 Main Man Inspiration Ag Verfahren zum Betreiben einer Bandgiessmaschine sowie ein Mantelring für eine Giessrolle zur Durchführung des Verfahrens.
KR100605706B1 (ko) * 2001-08-28 2006-08-01 주식회사 포스코 쌍롤식 박판주조공정에서의 주편 에지부 핫밴드 방지방법
AT411026B (de) * 2001-11-30 2003-09-25 Voest Alpine Ind Anlagen Verfahren zum stranggiessen
US6588493B1 (en) 2001-12-21 2003-07-08 Nucor Corporation Model-based system for determining casting roll operating temperature in a thin strip casting process
KR100584751B1 (ko) * 2001-12-22 2006-05-30 주식회사 포스코 쌍롤식 박판주조기의 주조롤표면 가스층두께 조절장치
AT412072B (de) * 2002-10-15 2004-09-27 Voest Alpine Ind Anlagen Verfahren zur kontinuierlichen herstellung eines dünnen stahlbandes
US7484551B2 (en) * 2003-10-10 2009-02-03 Nucor Corporation Casting steel strip
CN1647870B (zh) * 2004-01-20 2010-04-14 李华伦 金属薄板双辊异步铸轧机
US7891407B2 (en) * 2004-12-13 2011-02-22 Nucor Corporation Method and apparatus for localized control of heat flux in thin cast strip
US8312917B2 (en) * 2004-12-13 2012-11-20 Nucor Corporation Method and apparatus for controlling the formation of crocodile skin surface roughness on thin cast strip
US20060124271A1 (en) * 2004-12-13 2006-06-15 Mark Schlichting Method of controlling the formation of crocodile skin surface roughness on thin cast strip
JP4572685B2 (ja) * 2005-01-14 2010-11-04 株式会社Ihi 双ロール鋳造機
WO2007129373A1 (fr) * 2006-04-26 2007-11-15 Ihi Corporation Machine de coulée à deux rouleaux
KR100835241B1 (ko) * 2006-12-29 2008-06-05 주식회사 포스코 박판 주조 장치
KR100800292B1 (ko) * 2006-12-29 2008-02-04 주식회사 포스코 박판 주조 장치
JP2008213014A (ja) * 2007-03-07 2008-09-18 Ihi Corp ストリップ形状厚さ制御方法
AU2008100847A4 (en) * 2007-10-12 2008-10-09 Bluescope Steel Limited Method of forming textured casting rolls with diamond engraving
BRPI0909191A2 (pt) * 2008-03-19 2016-11-01 Nucor Corp aparelho para fundição de tira com posicionamento do rolete de fundição
US20090236068A1 (en) 2008-03-19 2009-09-24 Nucor Corporation Strip casting apparatus for rapid set and change of casting rolls
US20090288798A1 (en) * 2008-05-23 2009-11-26 Nucor Corporation Method and apparatus for controlling temperature of thin cast strip
US8607847B2 (en) * 2008-08-05 2013-12-17 Nucor Corporation Method for casting metal strip with dynamic crown control
JP5621390B2 (ja) * 2010-08-03 2014-11-12 株式会社Ihi 双ロール式連続鋳造装置の鋳造ロール形状制御方法及び装置
JP2012218036A (ja) * 2011-04-11 2012-11-12 Ihi Corp 鋳片鋳造方法及び鋳片鋳造装置
WO2013075092A1 (fr) * 2011-11-17 2013-05-23 Nucor Corporation Procédé de coulage en continu d'une fine bande d'acier
KR101945322B1 (ko) * 2014-11-28 2019-04-17 지멘스 메탈스 테크놀로지스 베르뫼겐스베르발퉁스 게엠베하 크라운 제어에 의한 금속 스트립 주조 방법
US9975170B2 (en) * 2014-12-11 2018-05-22 Posco Method for manufacturing duplex stainless steel sheet having high nitrogen content and good surface quality
JP2016147297A (ja) * 2015-02-13 2016-08-18 株式会社Ihi 連続鋳造装置
JP6524689B2 (ja) * 2015-02-13 2019-06-05 株式会社Ihi 連続鋳造装置
JP6524688B2 (ja) * 2015-02-13 2019-06-05 株式会社Ihi 連続鋳造装置
US20170144218A1 (en) * 2015-11-20 2017-05-25 Nucor Corporation Method for casting metal strip with crown control
CN110087798B (zh) * 2016-12-26 2022-02-11 普锐特冶金技术日本有限公司 密封方法、密封装置以及具备该密封装置的连续铸造装置
CN107116189B (zh) * 2017-06-26 2023-03-21 太原科技大学 一种镁合金铸轧供液系统及其合金液液位控制方法
CN107377912A (zh) * 2017-09-01 2017-11-24 佛山市科立天源冶金技术有限公司 一种油气润滑铸造系统
EP4023358A1 (fr) 2021-01-05 2022-07-06 Speira GmbH Coulée de bande d'aluminium sans agent de démoulage
CN113681805B (zh) * 2021-08-25 2023-04-14 郴州市银河工具有限公司 一种薄膜生产用铸片成型冷却装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5823549A (ja) * 1981-07-31 1983-02-12 Nippon Steel Corp 溶融金属急冷法により製造される薄帯板の巾方向板厚制御法
JPS6035221B2 (ja) * 1982-10-12 1985-08-13 石川島播磨重工業株式会社 金属帯板連続鋳造方法及びその装置
JPS6033857A (ja) * 1983-08-02 1985-02-21 Ishikawajima Harima Heavy Ind Co Ltd 帯板製造装置用ロ−ル
JPS629755A (ja) * 1985-07-06 1987-01-17 Hitachi Zosen Corp 薄板連続鋳造設備におけるツインロ−ル型モ−ルドの運転制御方法
JPS645646A (en) * 1987-06-26 1989-01-10 Ishikawajima Harima Heavy Ind Detecting instrument for heat crown in twin rolls
JP2544459B2 (ja) * 1988-10-12 1996-10-16 新日本製鐵株式會社 双ロ―ル式連続鋳造機のロ―ル形状制御装置
JPH07102429B2 (ja) * 1989-05-20 1995-11-08 新日本製鐵株式会社 薄物連続鋳造におけるクラウン制御方法
ES2083982T3 (es) * 1989-07-14 1996-05-01 Hunter Eng Co Regulacion de la flexion en una maquina de colada entre rodillos.
US5626183A (en) * 1989-07-14 1997-05-06 Fata Hunter, Inc. System for a crown control roll casting machine
JPH072130Y2 (ja) * 1989-07-20 1995-01-25 三菱重工業株式会社 双ドラム式帯板連続鋳造装置
US5103895A (en) * 1989-07-20 1992-04-14 Nippon Steel Corporation Method and apparatus of continuously casting a metal sheet
JPH0729184B2 (ja) * 1989-12-27 1995-04-05 新日本製鐵株式会社 薄肉鋳片の連続鋳造装置
JPH0751256B2 (ja) * 1990-11-22 1995-06-05 三菱重工業株式会社 連鋳機の板厚検出方法および装置
JPH05269552A (ja) * 1992-03-24 1993-10-19 Hitachi Zosen Corp 移動鋳型壁を持つ連続鋳造設備における湯面保護カバー
AU4294493A (en) * 1992-07-21 1994-02-14 Bhp Steel (Jla) Pty Limited Strip caster
JPH0751807A (ja) * 1993-08-18 1995-02-28 Nippon Steel Corp 双ロール式連続鋳造方法
JPH0768349A (ja) * 1993-09-01 1995-03-14 Nippon Steel Corp クラッド薄肉鋳片の連続鋳造方法および装置
JPH0788599A (ja) * 1993-09-27 1995-04-04 Nippon Steel Corp 双ロール式連続鋳造機の鋳造ロールの形状制御方法
JPH07276004A (ja) * 1994-04-11 1995-10-24 Nippon Steel Corp 双ロール式連続鋳造法における鋳片クラウン及び板厚制御方法
FR2727338A1 (fr) * 1994-11-30 1996-05-31 Usinor Sacilor Dispositif de coulee continue entre cylindres a capotage d'inertage

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2581150A1 (fr) 2011-10-12 2013-04-17 Siemens Aktiengesellschaft Dispositif de laminage par coulée avec refroidissement cryogène des laminoirs par coulée
US9457397B2 (en) 2011-10-12 2016-10-04 Siemens Aktiengesellschaft Roll casting method with cryogenic cooling of casting rolls
EP2633929A1 (fr) 2012-03-01 2013-09-04 Siemens Aktiengesellschaft Modélisation d'une installation de laminoirs par coulée
WO2013127982A1 (fr) 2012-03-01 2013-09-06 Siemens Aktiengesellschaft Modélisation d'une installation de coulée en continu

Also Published As

Publication number Publication date
AU5034096A (en) 1996-10-17
AU698709B2 (en) 1998-11-05
US5787967A (en) 1998-08-04
FR2732627A1 (fr) 1996-10-11
ATE205760T1 (de) 2001-10-15
CN1147432A (zh) 1997-04-16
CA2173391A1 (fr) 1996-10-08
DK0736350T3 (da) 2001-11-26
CZ289395B6 (cs) 2002-01-16
PL313657A1 (en) 1996-10-14
JP4016297B2 (ja) 2007-12-05
CA2173391C (fr) 2008-12-30
SK282371B6 (sk) 2002-01-07
BR9601286A (pt) 1998-01-13
UA43352C2 (uk) 2001-12-17
TR199600294A2 (tr) 1996-10-21
KR960037173A (ko) 1996-11-19
DE69615250T2 (de) 2002-06-27
DE69615250D1 (de) 2001-10-25
EP0736350A1 (fr) 1996-10-09
PT736350E (pt) 2002-03-28
RU2147969C1 (ru) 2000-04-27
RO115944B1 (ro) 2000-08-30
CN1066364C (zh) 2001-05-30
SK43396A3 (en) 1998-01-14
FR2732627B1 (fr) 1997-04-30
KR100425968B1 (ko) 2004-06-14
JPH08281388A (ja) 1996-10-29
CZ100296A3 (en) 1996-10-16
PL180531B1 (pl) 2001-02-28
ES2160782T3 (es) 2001-11-16
MX9601307A (es) 1997-04-30
ZA962428B (en) 1996-10-01

Similar Documents

Publication Publication Date Title
EP0736350B1 (fr) Procédé et dispositif de réglage du bombé des cylindres d'une installation de coulée de bandes métalliques
EP0036342B1 (fr) Procédé de contrôle du refroidissement du produit coulé dans une installation de coulée continue
EP0796685B1 (fr) Procédé de coulée continue d'une bande d'acier inoxydable austenitique sur une ou entre deux parois mobiles dont les surfaces sont pourvues de fossettes, et installation de coulée pour sa mise en oeuvre
EP0230433B1 (fr) Procede et machine de coulee continue d'un produit metallique mince
US4945974A (en) Apparatus for and process of direct casting of metal strip
FR2738761A1 (fr) Coulee d'une bande de metal
FR2952633A3 (fr) Formage en continu de structures de precision sur un ruban de verre
EP0092477A1 (fr) Procédé et dispositif de fabrication d'un lingot d'acier creux
EP0743114B2 (fr) Procédé de lubrification des parois d'une lingotière de coulée continue des métaux et lingotière pour sa mise en oeuvre
EP0901851B1 (fr) Face laterale pour l'obturation de l'espace de coulee d'une installation de coulee continue de bandes metalliques entre cylindres, et installation de coulee ainsi equipee
FR2679803A1 (fr) Procede permettant d'ameliorer l'etat de surface et la regularite d'epaisseur d'une bande mince metallique coulee sur une roue.
CA2109184C (fr) Procede d'injection automatisee de gaz dans une installation multicoulee de metaux equipee de lingotieres a rehausse
EP0709151B1 (fr) Surface de coulée d'une lingotière de coulée continue des métaux à paroi mobile
CA2019927A1 (fr) Procede et dispositif de coulee continue entre cylindres de produits metalliques minces aptes au laminage a froid direct
EP0370934B1 (fr) Procédé et ensemble d'alimentation en métal fondu de la lingotière d'une installation de coulée continue d'ébauches minces
CA2251007C (fr) Procede de coulee continue des metaux et installation de coulee pour sa mise oeuvre
FR2607738A3 (fr) Dispositif pour l'alimentation en metal en fusion des lingotieres de coulee continue
CA2017043A1 (fr) Dispositif d'alimentation en metal liquide d'une installation de coulee continue de produits minces et procede pour sa mise en oeuvre
BE448516A (fr)
FR2618704A3 (fr) Procede et dispositif d'alimentation d'une lingotiere de coulee continue de produits minces
FR2547518A1 (fr) Procede et installation de fabrication de toles d'acier par coulee continue
CA2013853A1 (fr) Procede et dispositif d'obtention de produits metalliques minces par coulee continue
BE518790A (fr)
BE430134A (fr)
BE348963A (fr)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL PT SE

17P Request for examination filed

Effective date: 19961023

17Q First examination report despatched

Effective date: 19990429

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THYSSEN STAHL AKTIENGESELLSCHAFT

Owner name: USINOR

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL PT SE

REF Corresponds to:

Ref document number: 205760

Country of ref document: AT

Date of ref document: 20011015

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: FRENCH

REF Corresponds to:

Ref document number: 69615250

Country of ref document: DE

Date of ref document: 20011025

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2160782

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20011201

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20010402047

Country of ref document: GR

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20011207

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20110310

Year of fee payment: 16

Ref country code: DK

Payment date: 20110310

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20110317

Year of fee payment: 16

Ref country code: FR

Payment date: 20110317

Year of fee payment: 16

Ref country code: LU

Payment date: 20110415

Year of fee payment: 16

Ref country code: FI

Payment date: 20110310

Year of fee payment: 16

Ref country code: IT

Payment date: 20110316

Year of fee payment: 16

Ref country code: AT

Payment date: 20110228

Year of fee payment: 16

Ref country code: CH

Payment date: 20110314

Year of fee payment: 16

Ref country code: SE

Payment date: 20110311

Year of fee payment: 16

Ref country code: PT

Payment date: 20110309

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20110217

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20110316

Year of fee payment: 16

Ref country code: BE

Payment date: 20110311

Year of fee payment: 16

Ref country code: GB

Payment date: 20110316

Year of fee payment: 16

Ref country code: ES

Payment date: 20110414

Year of fee payment: 16

BERE Be: lapsed

Owner name: *USINOR

Effective date: 20120331

Owner name: *THYSSEN STAHL A.G.

Effective date: 20120331

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20120924

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20121001

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120323

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120322

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120924

REG Reference to a national code

Ref country code: GR

Ref legal event code: ML

Ref document number: 20010402047

Country of ref document: GR

Effective date: 20121008

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 205760

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120322

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20121130

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69615250

Country of ref document: DE

Effective date: 20121002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120322

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120331

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120322

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120322

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120402

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120322

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121008

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120331

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20130710

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121002