EP0725195A2 - Méthode et dispositif pour la construction de murs en béton avec emploi de coffrages tendus - Google Patents

Méthode et dispositif pour la construction de murs en béton avec emploi de coffrages tendus Download PDF

Info

Publication number
EP0725195A2
EP0725195A2 EP96105665A EP96105665A EP0725195A2 EP 0725195 A2 EP0725195 A2 EP 0725195A2 EP 96105665 A EP96105665 A EP 96105665A EP 96105665 A EP96105665 A EP 96105665A EP 0725195 A2 EP0725195 A2 EP 0725195A2
Authority
EP
European Patent Office
Prior art keywords
pipe
concrete
concrete wall
spreader
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP96105665A
Other languages
German (de)
English (en)
Other versions
EP0725195A3 (fr
EP0725195B1 (fr
Inventor
René P. Schmid
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rascor Spezialbau GmbH
Original Assignee
Rascor Spezialbau GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rascor Spezialbau GmbH filed Critical Rascor Spezialbau GmbH
Publication of EP0725195A2 publication Critical patent/EP0725195A2/fr
Publication of EP0725195A3 publication Critical patent/EP0725195A3/fr
Application granted granted Critical
Publication of EP0725195B1 publication Critical patent/EP0725195B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/66Sealings
    • E04B1/68Sealings of joints, e.g. expansion joints
    • E04B1/6816Porous tubular seals for injecting sealing material
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G17/00Connecting or other auxiliary members for forms, falsework structures, or shutterings
    • E04G17/06Tying means; Spacers ; Devices for extracting or inserting wall ties
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G17/00Connecting or other auxiliary members for forms, falsework structures, or shutterings
    • E04G17/06Tying means; Spacers ; Devices for extracting or inserting wall ties
    • E04G17/0644Plug means for tie-holes
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G17/00Connecting or other auxiliary members for forms, falsework structures, or shutterings
    • E04G17/06Tying means; Spacers ; Devices for extracting or inserting wall ties
    • E04G17/065Tying means, the tensional elements of which are threaded to enable their fastening or tensioning
    • E04G17/0651One-piece elements
    • E04G17/0652One-piece elements fully recoverable
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G23/00Working measures on existing buildings
    • E04G23/02Repairing, e.g. filling cracks; Restoring; Altering; Enlarging
    • E04G23/0203Arrangements for filling cracks or cavities in building constructions
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G23/00Working measures on existing buildings
    • E04G23/02Repairing, e.g. filling cracks; Restoring; Altering; Enlarging
    • E04G23/0203Arrangements for filling cracks or cavities in building constructions
    • E04G23/0211Arrangements for filling cracks or cavities in building constructions using injection

Definitions

  • the invention relates to a method for erecting a concrete wall using tensioned formwork according to the preamble of claim 1.
  • the invention also relates to a device for performing the method.
  • the generic method is used to erect concrete walls.
  • the formwork panels are arranged parallel to each other with a distance corresponding to the thickness of the concrete wall to be erected.
  • Tension anchors are used for fixing and bracing the formwork panels, whereby pipes, so-called pipe spreaders, are used as formwork spacers and counter anchor elements, which are penetrated by the tension anchors and are supported by so-called conical dents on the inside of the formwork panels.
  • the formwork panels are braced against each other using screw elements that can be screwed onto the ends of the tension anchors outside the formwork, such as large-sized wing screws.
  • the formwork arrangement prepared in this way is then poured on site with concrete.
  • the formwork panels are removed by first unscrewing the screw elements on the ends of the tie anchors and then pulling the tie anchors out of the pipes or pipe braces.
  • the conical dents are still removed from the pipe ends, while the pipe spreads remain as lost parts within the concrete wall, which is thus perforated several times throughout due to the pipe spreads left behind.
  • These wall passages are filled with grouting material, for example with special swelling grout. Filling is conventionally carried out by closing the pipe spreader at one end with a cover, while the potting material is introduced from the other pipe side using a filling syringe. The end cover has a perforation so that displaced air can escape through the filling.
  • the present invention has for its object to provide a method for erecting concrete walls by means of formwork of the type mentioned, with which the pipe brackets or sealing devices to be pressed with potting material can be easily pressed.
  • a preferred device for carrying out the method according to the invention comprises an injection device, which can be inserted into the pipe spreader, in the manner of a so-called packer, which has an injection pipe, the jacket of which is provided with injection openings or injection nozzles.
  • the injection tube is sealed on both sides. The radial sealing and bracing of the packer on both sides to create a sealed injection area in the pipe spreader takes place, for. B. with rubber sleeves on the injection tube.
  • Swelling grout is usually a mixture of Potland cement, finely graded quartz sand and reactive chemical additives that provide the desired swelling effect.
  • a sealing device is described for example in EP-A1 0 418 699. It is a passage as an injection path for a body forming a sealing medium in the joint area on the concrete surface of the one concreting section, from which, after the second concreting section has been built, the sealing medium emerges when the concrete is injected into the joint area between the two concreting work in the joint area .
  • the bodies are channel-shaped structures, as described in EP-A1-0 418 699, or porous hoses according to CH-PS 600 077, which according to DE-GM 83 35 231 can have support bodies in the form of a helical spring, or according to DE -GM 86 08 396 can be a sealing device in the form of an injection hose, which on the one hand eliminates the disadvantage of positioning the hose by means of tabs provided on the hose body and on the other hand have a predetermined breaking point in the longitudinal direction of the hose-like body, through which the sealing medium is to escape into the concrete.
  • the sealing medium is usually pressed directly into the beginning or end of the hose.
  • EP-A1-0 418 699 proposes drilling the channel described in this document after the second concrete section has hardened and stripped through a hole in the hardened concrete and pressing the sealing medium through the hole into the interior of the sealing device .
  • the channel should be equipped with a larger target hollow body at the locations where the bore is to be drilled, so that the drilling of the bore can be carried out more easily and the channel can be hit more safely.
  • the process for loading sealing devices of this type with sealing material is simplified in that the pipe spreads already located in the concrete wall are used for this purpose. It is therefore no longer necessary to drill the concrete from the outside or to create special facilities so that the end or the beginning of an injection hose or injection channel is led outside.
  • Fig. 1 shows the detail of a formwork for erecting a concrete wall before filling in liquid concrete.
  • the formwork has two formwork panels 1 and 2, which are equipped with anchors and are kept at the same distance from each other.
  • the anchors each have a tension anchor 3, z. B. in the form of a threaded steel rod at the end.
  • a tensioning point tube or a pipe spreader 40 Arranged between the formwork panels 1 and 2 is a tensioning point tube or a pipe spreader 40 which is equipped with conical dimples 5 and 5a adjacent to the inner surfaces of the formwork panels 1 and 2 and seated in the openings of the tube spreaders 40.
  • the dents 5, 5a which are supported with an end face over their entire surface on the inner surfaces of the formwork panels 1 and 2, extend with the other ends into the pipe struts 40 and have through bores which are penetrated by the tension anchor 3, which also the pipe struts 40 and one hole each in the formwork panels 1, 2 interspersed.
  • the anchoring is braced using wing screws 6 and 7, which are screwed onto the threads provided on the end of the tension anchor 3 and act on the formwork panels 1 and 2 via large washers 8 and 9.
  • the formwork so tensioned is conventionally poured with liquid concrete. After the concrete has hardened, the formwork panels 1 and 2 are knocked off, with the tensioning anchor 3 together with the tensioning screws 6, 7 and the washers 8, 9 being removed beforehand. The dents 5 and 5a are then pulled out of the concrete wall 20; the pipes 4 remain as lost parts within the concrete wall 20.
  • the finished concrete wall 20 is shown in the area of a lost pipe spreader 40 in FIG. 3.
  • FIGS. 1 and 3 show a pipe spreader 40 according to the invention. The use of this pipe spreader 40 according to the invention is shown in FIGS. 1 and 3.
  • a radially protruding pipe socket 41 is attached to the pipe spreader 40 or to the pipe 40 and has a smaller diameter than the pipe 40, is firmly connected to it and opens into it.
  • the pipe spreader 40 shown in FIG. 2 with a connecting piece 41 is installed at a certain point, the tube 40 being supported on the inside of the formwork panels 1 and 2 by dents 5 and 5a.
  • the tensioning anchors 3, the wing screws 6, 7 and the washers 8 and 9 serve as tensioning means
  • Injection channel 43 is connected to a sealing device 43a known per se from EP-A1-0 418 699, which is U-shaped in cross section, parallel to the shuttering plates 1 and 2, for. B. extends in its entire length and stands with its side walls on a concrete slab 44.
  • a sealing device 43a known per se from EP-A1-0 418 699 which is U-shaped in cross section, parallel to the shuttering plates 1 and 2, for. B. extends in its entire length and stands with its side walls on a concrete slab 44.
  • other identical injection routes known per se can also be connected to the pipe socket 41 in the same way.
  • Fig. 3 the concrete wall 20 is shown, which was created after pouring concrete into the formwork shown in Fig. 1, after hardening of the concrete and after knocking off the formwork panels 1 and 2, after previously the tension anchor 3 together with the tensioning screws 6, 7 and the washers 8 and 9 and the dents 5 and 5a have been removed.
  • An upper pipe 4, the lower pipe 40, the connecting hose 42 and the injection channel 43 remain as lost parts in the concrete wall 20.
  • sealing medium is injected, for example, by means of an injection packer via slots or openings 11 in the pipes 4 and 40 into cavities and cracks outside the pipes 4 and 40 introduced.
  • sealing medium or potting material is introduced into the pipe 40, via the pipe socket 41 and the connecting hose 42 into the injection channel 43, which is completely filled with the pressurized potting material or sealing medium, which over the free longitudinal edges of the channel 43 into the joint area 45 and possibly in Cracks or cavities can emerge, which are present between the concrete wall 20 and the outer region of the injection channel 43.
  • an injection device in the manner of a packer 10 is inserted into the pipe 40 after the casing and the exposed pipe 40 have been knocked off (FIG. 4).
  • the injection device has a tube 13, in the tube jacket openings in the form of, for example, holes 15 and the outside diameter of which is smaller than the inside diameter of the lost tube 40, so that an annular cylindrical space 13a is formed between the packer tube 13 and the lost tube 40 .
  • the packer 10 is inserted with its tube 13 into the sleeve area of the tube spreader 40.
  • the end of the packer tube 13 is through circular disks 13b completed, the diameter of which corresponds to the inner diameter of the lost tube 40. Outside on the disks 13b z. B.
  • sealing plug 16 made of an elastic material.
  • One sealing plug 16 has a central passage which is aligned with a passage in the adjacent disk 13b, a hose 14 being connected to the passage of the sealing plug 16.
  • the two sealing plugs 16 are expandable in the radial direction for bracing against the inner wall of the tube 40.
  • the sealing plugs 16 are configured, for example, like a balloon, and compressed air can be fed to them, not shown, so that the sealing balloon is clamped in the radial direction against the inner wall of the tube.
  • the two sealing plugs 16 can be cylindrical sealing disks which are acted upon by an axially acting compression device, the sealing disk material compressed in the axial direction evading in the radial direction and thus being braced against the inner wall of the tube 40.
  • an end-side sealing of the pipe struts 40 is achieved by the compressed sealing plugs 16.
  • Potting material is fed into the pipe 13 under pressure via the hose line 14. Potting material reaches the pipe socket 41 of the pipe spreader 40 via the holes 15.
  • the packer 10 is pulled out of the pipe 40 after the sealing plugs 16 have been released, and the pipe interior is conventionally, e.g. with an injection packer known per se, filled with potting material, so that the concrete wall in the area of the pipe struts 40 is completely sealed.
  • FIG. 2 shows a further embodiment of a packer 50 for use in pipe spreaders according to the invention, of which the pipe spreaders 4 is shown in FIG. 7, into which the front part of the packer 50 is inserted and which is seated in a concrete wall 20 (not shown) .
  • the packer 50 has a nozzle tube 51 which extends approximately over two thirds of the packer 50 and has externally threaded sections 52 and 52a at the end, of which the nozzle-side threaded section 52 extends approximately over a third of the nozzle tube 51.
  • a nozzle head screw 53 has a through hole 54 with the same diameter as the inside diameter of the tube 51.
  • a blind hole 53 a coaxial with the through hole 54 in the nozzle head screw 53 is provided with an internal thread with which the screw 53 is screwed onto the end of the threaded section 52.
  • a sealing ring 52a is inserted between the annular bottom of the blind hole 53a and an annular end face of the threaded section 52.
  • the Position of the screw 53 on the threaded portion 52 is secured by a lock nut 57, which is seated with its internal thread on the nozzle tube threaded portion 52 and acts on the adjacent end face of the nozzle head screw 53 with its one end face.
  • the nozzle head screw 53 also has in one piece a smaller diameter cylindrical socket 53b which is provided with an external thread 53c.
  • a valve coupling 55 is screwed onto the thread 53c with an internal thread and is provided on the outside at its free end with a profile contour 56 for the connection of a hose coupling, not shown.
  • the tight fit of the coupling 55 on the thread 53c is ensured by a Teflon tape which sits between the threads which are in engagement with one another.
  • a conical coil spring 59 is arranged coaxially to the longitudinal center of the nozzle tube 51.
  • the spring 59 is supported with its larger diameter end on an annular disc 60 which is inserted into an annular groove in the inner wall of the coupling 55; the smaller-diameter other end of the spring 59 biases a ball 61, which closes the inlet of the coupling 55 as a valve under spring tension.
  • first tensioning hose 65 which is made of an elastic material, e.g. B. is made of plastic and sits on the outer surface of the nozzle tube 51.
  • a second identical tensioning hose 66 is also axially spaced from the first tensioning hose 65 on the nozzle tube 51 in front of the thread 52a.
  • a further cladding tube section 67 is arranged on the nozzle tube 51, which defines the distance between the two hoses 65 and 66 and has holes 68 in the jacket, which are expediently aligned with holes 69 which are arranged in the nozzle tube 51.
  • a cylindrical cap 70 is screwed onto the thread 52a of the nozzle tube 51, its annular end edge 71 abutting against the annular end edge of the second tensioning hose 66 adjacent to this edge and closing the passage 51a of the nozzle tube 51.
  • the injection packer 50 is identical to an injection packer known per se, except for the parts of the cladding tube section 67, the second tensioning hose 66 and the cap 70, which are used for filling pipe struts. It is arranged with its axially spaced tensioning hoses 65 and 66 inside the pipe spreader 4.
  • the outer diameter of the cladding tube section 67 is smaller than the inner diameter of the pipe spreader 4, so that an annular cylindrical space 72 is formed which is sealed by the tensioning hoses 65 and 66.
  • the tensioning hoses 65 and 66 are compressed by displacing the tensioning nut 62 in the axial direction, thicken themselves in the radial direction and are pressed against the inner wall of the pipe struts 4. During this rotary movement of the clamping nut 62, the cap 70 forms a counter bearing for the movement of the cladding tubes 64 and 67 and the clamping hoses 65, 66.
  • pipe spreaders 4, 40 which have a connecting piece 41, in order to fill several adjacent pipe spreaders 4, 40 at the same time in one operation with the injection packer inserted into a pipe spreading device, the connecting pieces of the adjacent pipe spreaders 4, 40 40 are connected to one another via hoses and / or pipes and the dent openings of the adjacent pipe spreaders 4, 40 are blocked.
  • a sealing device 43 can also be loaded with a corresponding connection.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Electrochemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Forms Removed On Construction Sites Or Auxiliary Members Thereof (AREA)
  • Manufacturing Of Tubular Articles Or Embedded Moulded Articles (AREA)
  • Moulds, Cores, Or Mandrels (AREA)
  • On-Site Construction Work That Accompanies The Preparation And Application Of Concrete (AREA)
  • Conveying And Assembling Of Building Elements In Situ (AREA)
  • Load-Bearing And Curtain Walls (AREA)
  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Bulkheads Adapted To Foundation Construction (AREA)
  • Rod-Shaped Construction Members (AREA)
  • Working Measures On Existing Buildindgs (AREA)
EP96105665A 1992-05-13 1993-05-13 Méthode pour la construction de murs en béton avec emploi de coffrages tendus Expired - Lifetime EP0725195B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4215731A DE4215731A1 (de) 1992-05-13 1992-05-13 Verfahren zum Errichten von Betonwänden mittels Verschalungen sowie Vorrichtung und Mittel zur Durchführung dieses Verfahrens
DE4215731 1992-05-13
EP93912708A EP0642620B1 (fr) 1992-05-13 1993-05-13 Procede pour edifier des murs en beton avec des coffrages precontraints, ecarteur tubulaire et dispositif permettant la mise en oeuvre dudit procede

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
EP93912708.0 Division 1993-05-13
EP93912708A Division EP0642620B1 (fr) 1992-05-13 1993-05-13 Procede pour edifier des murs en beton avec des coffrages precontraints, ecarteur tubulaire et dispositif permettant la mise en oeuvre dudit procede

Publications (3)

Publication Number Publication Date
EP0725195A2 true EP0725195A2 (fr) 1996-08-07
EP0725195A3 EP0725195A3 (fr) 1996-11-13
EP0725195B1 EP0725195B1 (fr) 2000-06-28

Family

ID=6458742

Family Applications (2)

Application Number Title Priority Date Filing Date
EP93912708A Expired - Lifetime EP0642620B1 (fr) 1992-05-13 1993-05-13 Procede pour edifier des murs en beton avec des coffrages precontraints, ecarteur tubulaire et dispositif permettant la mise en oeuvre dudit procede
EP96105665A Expired - Lifetime EP0725195B1 (fr) 1992-05-13 1993-05-13 Méthode pour la construction de murs en béton avec emploi de coffrages tendus

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP93912708A Expired - Lifetime EP0642620B1 (fr) 1992-05-13 1993-05-13 Procede pour edifier des murs en beton avec des coffrages precontraints, ecarteur tubulaire et dispositif permettant la mise en oeuvre dudit procede

Country Status (18)

Country Link
US (2) US5914137A (fr)
EP (2) EP0642620B1 (fr)
AT (2) ATE146249T1 (fr)
CA (1) CA2134473C (fr)
CZ (1) CZ282654B6 (fr)
DE (3) DE4215731A1 (fr)
DK (2) DK0642620T3 (fr)
ES (2) ES2098040T3 (fr)
FI (1) FI104844B (fr)
GE (1) GEP20012563B (fr)
HU (1) HU219269B (fr)
MD (1) MD1885C2 (fr)
NO (2) NO302583B1 (fr)
PL (2) PL172395B1 (fr)
RU (2) RU2126480C1 (fr)
SK (1) SK280036B6 (fr)
UA (1) UA27895C2 (fr)
WO (1) WO1993023640A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0980935A2 (fr) * 1998-08-17 2000-02-23 Köster Bauchemie Gmbh Procédé et dispositif pour le placement de matériaux d'infiltration derrière des éléments de construction
DE102008008570A1 (de) * 2008-02-11 2009-08-13 Rehau Ag + Co Anordnung zum Herstellen einer Anschlussmöglichkeit, insbesondere für einen Sprinkler an einer Beton- oder Stahlbetondecke, und Verfahren hierzu

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4215731A1 (de) * 1992-05-13 1993-11-18 Rene P Schmid Verfahren zum Errichten von Betonwänden mittels Verschalungen sowie Vorrichtung und Mittel zur Durchführung dieses Verfahrens
DE19515816C1 (de) * 1995-04-29 1997-02-13 Gerd Dipl Ing Pleyers Vorrichtung zur Durchführung eines Bohrlochinjektionsverfahrens
KR200198979Y1 (ko) * 2000-04-27 2000-10-02 김천만 콘크리트 구조물의 균열 보수용 패커
US6526721B1 (en) * 2000-05-26 2003-03-04 Brian D. Nash Fluid-impervious barrier/keyway form support apparatus, system and related method
KR100441935B1 (ko) * 2001-06-07 2004-07-30 한광모 배면방수 그라우팅용 거푸집 간격유지장치
NO333274B1 (no) * 2005-11-03 2013-04-29 John A Simonsen Avstandsstag for sammenfoyning av en stopeforskalings motstaende sideseksjoner.
US8475499B2 (en) * 2006-07-14 2013-07-02 DePuy Synthes Products, LLC. Rod to rod connectors and methods of adjusting the length of a spinal rod construct
US20090056258A1 (en) * 2007-08-28 2009-03-05 Currier Donald W Forming Apparatus and System
ITVI20100233A1 (it) * 2010-08-11 2012-02-12 Legnotre Ind Spa Sistema modulare per la composizione di un pannello per casseforme
MD4161C1 (ro) * 2011-01-10 2012-10-31 Николае Попеску Procedeu de executare a construcţiei monolite, a complexului de construcţii monolite şi echipament tehnologic pentru realizarea acestuia
WO2013020041A1 (fr) * 2011-08-03 2013-02-07 Composite Technologies Corporation Attache de coffrage à extrémité effilée
US9771728B2 (en) * 2012-05-23 2017-09-26 Dennard Charles Gilpin Device for forming a void in a concrete foundation
AU2014218520B2 (en) * 2013-02-21 2018-09-27 Laing O'rourke Australia Pty Ltd Method for casting a construction element
DE102013206576A1 (de) * 2013-04-12 2014-10-16 Peri Gmbh Dichtungsstopfen
CN103334501B (zh) * 2013-06-26 2014-10-08 青岛建安建设集团有限公司 一种建筑外墙螺栓孔防渗施工方法
DE102014224971A1 (de) 2014-12-05 2016-06-09 Peri Gmbh Dichtungsstopfen zum Verschließen eines Ankerlochs einer Betonwand
DE102015212466A1 (de) 2015-07-03 2017-01-05 Peri Gmbh Schließelement
CN105298121B (zh) * 2015-09-30 2018-08-07 深圳市广胜达建设有限公司 铝合金模板系统连接用预埋件
ITUB20160199A1 (it) * 2016-01-14 2017-07-14 Flex House Srl Elemento distanziatore per cassero a perdere per la realizzazione di pareti e cassero a perdere incorporante tale elemento distanziatore
MD1073Z (ro) * 2016-01-26 2017-04-30 Григорий КАТАНОЙ Dispozitiv pentru tencuirea suprafeţelor construcţiilor şi turnarea şapei sub pardoseală
MD1074Z (ro) * 2016-02-17 2017-04-30 Григорий КАТАНОЙ Dispozitiv pentru tencuirea suprafeţelor construcţiilor şi turnarea şapei sub pardoseală
MD1086Z (ro) * 2016-06-08 2017-05-31 Григорий КАТАНОЙ Dispozitiv pentru tencuirea suprafeţelor construcţiilor
DE102017108167A1 (de) * 2017-04-18 2018-10-18 Roland Wolf Vorrichtung zum nachträglichen Stabilisieren von wasserdurchlässigen Fugenkammerrissen in Brücken, Tunneln und Gebäuden
CN110593142A (zh) * 2019-09-21 2019-12-20 北京凯新浩达工程技术有限公司 一种桥梁修复方法
CN110808564B (zh) * 2019-11-08 2021-02-09 南京聚联输变电安装有限责任公司 混凝土电缆沟施工工艺
CN113622559B (zh) * 2021-09-03 2022-02-18 耀华建设管理有限公司 一种基于bim的民用建筑装配式墙体及其施工方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2532675A1 (fr) * 1982-09-02 1984-03-09 Chandellier Antoine Elements, dispositifs et procede pour boucher les trous laisses dans les murs par les gaines de reglage des coffrages
DE8904243U1 (fr) * 1989-04-06 1989-10-05 Max Frank Gmbh & Co Kg, 8448 Leiblfing, De
DE8915525U1 (fr) * 1989-09-08 1990-09-27 Pflieger, Lieselotte, 7405 Dettenhausen, De
EP0418699A1 (fr) * 1989-09-08 1991-03-27 René P. Schmid Appareil d'étanchéité de joints de reprise de bétonnage et procédé pour remplir l'appareil

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH600077A5 (en) * 1976-04-06 1978-06-15 Peter Kaufmann Seal for gaps in concrete structures
CH643623A5 (de) * 1980-03-05 1984-06-15 Aquarius Fuer Dichte Bauten Ag Schlauchartige dichtungsvorrichtung fuer betonfugen.
DE8335231U1 (de) * 1983-12-08 1984-03-08 De Neef Chemie S.A. N.V., 3100 Heist o/d Berg Betonfugen-Dichtungsvorrichtung
DE3512470C2 (de) * 1985-04-04 1996-01-04 Kunibert Ing Grad Koob Injektionsschlauch für Arbeitsfugen an Betonbauwerken
US5257486A (en) * 1991-04-23 1993-11-02 Adhesives Technology Corporation 1987 Nozzle for injecting a sealant into a crack
US5171892A (en) * 1991-07-02 1992-12-15 E. I. Du Pont De Nemours And Company Chiral phospholanes via chiral 1,4-diol cyclic sulfates
DE4123067A1 (de) * 1991-07-12 1993-01-14 Betonbau Zubehoer Handel Verfahren zum abdichten von fugen an bauwerken
DE4215731A1 (de) * 1992-05-13 1993-11-18 Rene P Schmid Verfahren zum Errichten von Betonwänden mittels Verschalungen sowie Vorrichtung und Mittel zur Durchführung dieses Verfahrens

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2532675A1 (fr) * 1982-09-02 1984-03-09 Chandellier Antoine Elements, dispositifs et procede pour boucher les trous laisses dans les murs par les gaines de reglage des coffrages
DE8904243U1 (fr) * 1989-04-06 1989-10-05 Max Frank Gmbh & Co Kg, 8448 Leiblfing, De
DE8915525U1 (fr) * 1989-09-08 1990-09-27 Pflieger, Lieselotte, 7405 Dettenhausen, De
EP0418699A1 (fr) * 1989-09-08 1991-03-27 René P. Schmid Appareil d'étanchéité de joints de reprise de bétonnage et procédé pour remplir l'appareil

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0980935A2 (fr) * 1998-08-17 2000-02-23 Köster Bauchemie Gmbh Procédé et dispositif pour le placement de matériaux d'infiltration derrière des éléments de construction
EP0980935A3 (fr) * 1998-08-17 2001-03-21 Köster Bauchemie Gmbh Procédé et dispositif pour le placement de matériaux d'infiltration derrière des éléments de construction
DE102008008570A1 (de) * 2008-02-11 2009-08-13 Rehau Ag + Co Anordnung zum Herstellen einer Anschlussmöglichkeit, insbesondere für einen Sprinkler an einer Beton- oder Stahlbetondecke, und Verfahren hierzu

Also Published As

Publication number Publication date
ES2098040T3 (es) 1997-04-16
FI104844B (fi) 2000-04-14
DK0642620T3 (da) 1996-12-30
HU219269B (en) 2001-03-28
DE59304752D1 (de) 1997-01-23
SK280036B6 (sk) 1999-07-12
ATE194203T1 (de) 2000-07-15
ES2149400T3 (es) 2000-11-01
FI945366A (fi) 1995-01-09
FI945366A0 (fi) 1994-11-14
EP0725195A3 (fr) 1996-11-13
PL171625B1 (pl) 1997-05-30
DK0725195T3 (da) 2000-08-28
PL172395B1 (en) 1997-09-30
ATE146249T1 (de) 1996-12-15
NO975647L (no) 1994-11-10
MD1885C2 (ro) 2002-10-31
EP0725195B1 (fr) 2000-06-28
RU2102568C1 (ru) 1998-01-20
WO1993023640A1 (fr) 1993-11-25
NO944279L (no) 1994-11-10
NO975647D0 (no) 1997-12-04
GEP20012563B (en) 2001-10-25
CZ274194A3 (en) 1995-03-15
RU94045978A (ru) 1996-10-10
MD960322A (en) 1997-07-31
DE59310069D1 (de) 2000-08-03
HU9403080D0 (en) 1994-12-28
CA2134473C (fr) 1999-01-26
NO311585B1 (no) 2001-12-10
UA27895C2 (uk) 2000-10-16
MD1885B2 (en) 2002-03-31
NO944279D0 (no) 1994-11-10
RU2126480C1 (ru) 1999-02-20
NO302583B1 (no) 1998-03-23
DE4215731A1 (de) 1993-11-18
CA2134473A1 (fr) 1993-11-25
CZ282654B6 (cs) 1997-08-13
EP0642620B1 (fr) 1996-12-11
US6159399A (en) 2000-12-12
HUT71547A (en) 1995-12-28
US5914137A (en) 1999-06-22
EP0642620A1 (fr) 1995-03-15
SK136994A3 (en) 1995-04-12

Similar Documents

Publication Publication Date Title
EP0725195B1 (fr) Méthode pour la construction de murs en béton avec emploi de coffrages tendus
EP0629750B1 (fr) Procédé pour l'étanchéification d'un joint par injection d'un milieu d'étanchéité
EP0546128B1 (fr) Procede et tuyau d'injection pour la pose de boulons d'ancrage
WO2009115307A1 (fr) Cheville autoforeuse protégée contre la corrosion, et bloc d'éléments de cheville, et leur procédé de fabrication
DE1226516B (de) Verfahren zum zweistufigen Einbetonieren von Gebirgsanker und ein Anker hierfuer
DE4127249C1 (fr)
DE3204417A1 (de) Verfahren zum setzen eines felsnagels
DE3339125A1 (de) Zweiteilige keilverankerung fuer spannglieder und vorrichtung mit einer hydraulikpresse zur montage eines festankers aus einer solchen keilverankerung
AT511240B1 (de) Verfahren zum erstellen eines bauwerkes und mauerwerk-verankerungssystem
EP0348870B1 (fr) Construction constituée par l'assemblage d'éléments préfabriqués en béton armé utilisant la technique du béton précontraint
DE3405976A1 (de) Anker fuer betonschalungen
DE3838880C1 (en) Method of producing a grouted anchor, and grouted anchor for carrying out the method
DE4220684C2 (de) Verfahren und Vorrichtung zum Sanieren von Altmauerwerk
DE3404074C2 (fr)
CH564654A5 (en) Ground anchor for bore mounting - has deformable body for making friction contact with borehole wall
EP0863353A2 (fr) Dispositif d'ancarge
DE3529850C2 (fr)
DE8600358U1 (de) Packer
DE2617758A1 (de) Verfahren zum einbringen von kunststoff-fuellungen in waende, mauern, fassadenwaende u.dgl. und vorrichtung zur durchfuehrung dieses verfahrens
DE19632982A1 (de) Injektionsschlauch
WO1992020879A1 (fr) Procede et element d'etanchement d'un joint dans un element de construction
DE3637853C1 (en) Process for grouting cracks in a double-leaf masonry structure, and apparatus for carrying out the process
DE19515816C1 (de) Vorrichtung zur Durchführung eines Bohrlochinjektionsverfahrens
EP2249070A1 (fr) Passage de conduit à travers un mur de bâtiment
CH713190A2 (de) Vorrichtung und Verfahren zur Verbindung von zwei Bauteilen in einer bestimmten relativen Ausrichtung sowie damit erstelltes Betonbauwerk.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19960410

AC Divisional application: reference to earlier application

Ref document number: 642620

Country of ref document: EP

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE DK ES FR GB IT LI NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE DK ES FR GB IT LI NL SE

17Q First examination report despatched

Effective date: 19990420

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

RTI1 Title (correction)

Free format text: PROCESS FOR ERECTING CONCRETE WALLS BY MEANS OF BRACED SHUTTERINGS

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AC Divisional application: reference to earlier application

Ref document number: 642620

Country of ref document: EP

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 194203

Country of ref document: AT

Date of ref document: 20000715

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20000628

ET Fr: translation filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: TROESCH SCHEIDEGGER WERNER AG

REF Corresponds to:

Ref document number: 59310069

Country of ref document: DE

Date of ref document: 20000803

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

ITF It: translation for a ep patent filed

Owner name: ORGANIZZAZIONE D'AGOSTINI

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2149400

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20050516

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20060512

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060516

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20060530

Year of fee payment: 14

Ref country code: AT

Payment date: 20060530

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20060531

Year of fee payment: 14

Ref country code: IT

Payment date: 20060531

Year of fee payment: 14

Ref country code: FR

Payment date: 20060531

Year of fee payment: 14

Ref country code: DK

Payment date: 20060531

Year of fee payment: 14

Ref country code: BE

Payment date: 20060531

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20060721

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20060728

Year of fee payment: 14

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20060516

BERE Be: lapsed

Owner name: *RASCOR SPEZIALBAU G.M.B.H.

Effective date: 20070531

EUG Se: european patent has lapsed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20070513

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071201

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20071201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070531

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070531

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070513

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20080131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070531

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070513

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070514

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070513