EP0630853B1 - Equipement de levage hydraulique pour chariots de manutention mûs par batterie ou analogues - Google Patents

Equipement de levage hydraulique pour chariots de manutention mûs par batterie ou analogues Download PDF

Info

Publication number
EP0630853B1
EP0630853B1 EP94103149A EP94103149A EP0630853B1 EP 0630853 B1 EP0630853 B1 EP 0630853B1 EP 94103149 A EP94103149 A EP 94103149A EP 94103149 A EP94103149 A EP 94103149A EP 0630853 B1 EP0630853 B1 EP 0630853B1
Authority
EP
European Patent Office
Prior art keywords
machine
load
speed
hydraulic
lowering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94103149A
Other languages
German (de)
English (en)
Other versions
EP0630853A1 (fr
Inventor
Ralf Dipl.-Ing. Baginski
Hans-Peter Dipl.-Ing. Claussen
Hans-Joachim Dipl.-Ing. Doss
Andreas Dipl.-Ing. Klatt
Jochen Körner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jungheinrich AG
Original Assignee
Jungheinrich AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jungheinrich AG filed Critical Jungheinrich AG
Publication of EP0630853A1 publication Critical patent/EP0630853A1/fr
Application granted granted Critical
Publication of EP0630853B1 publication Critical patent/EP0630853B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F9/00Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes
    • B66F9/06Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes movable, with their loads, on wheels or the like, e.g. fork-lift trucks
    • B66F9/075Constructional features or details
    • B66F9/20Means for actuating or controlling masts, platforms, or forks

Definitions

  • the invention relates to a hydraulic lifting device for battery-powered industrial trucks or the like according to the preamble of patent claim 1.
  • a volume flow measurement is used to control the motor or generator.
  • a cage induction motor is used as the drive machine.
  • SE-A-84 05 088 it has become known to use a double-closing machine as the drive machine or generator, a part of the series winding being removed when it is operating as a generator in the lowering mode of the lifting device.
  • the lifting cylinder is controlled via a lever-operated valve in the pressure medium line.
  • a control valve arrangement is provided in the pressure medium path, which has a proportional valve, the hoist control in load-lowering mode opening the proportional valve in accordance with a ramp function and, depending on the output current of the DC machine working as a generator, effectively switching the useful brake circuit if the generator output current exceeds a predetermined value.
  • the device described Over a restricted area, the device described therefore also operates via a hydraulic throttle point, so that the potential energy of the load cannot be recovered.
  • transitions occur which are noticeable in a jerky change in the lowering speed.
  • the invention has for its object to provide a hydraulic lifting device for battery-powered industrial trucks, which also enables sensitive lowering without significant hydraulic losses and optimal energy recovery in lowering mode.
  • only one load holding valve is provided in the pressure medium path, which is either open or closed and does not produce any throttling losses in the open position.
  • the lifting device provides a separate field current control device with a setpoint generator, which determines the setpoint for the field current from predetermined relationships between the speed and the armature current.
  • a setpoint generator which determines the setpoint for the field current from predetermined relationships between the speed and the armature current.
  • the control or the setpoint specification for the lifting device takes place by means of an electrical signal, for example via a manually operated potentiometer, a direction indicator also having to be provided, the signals of which indicate the operating process of raising or lowering and which also control the load holding valve.
  • an electrical signal for example via a manually operated potentiometer, a direction indicator also having to be provided, the signals of which indicate the operating process of raising or lowering and which also control the load holding valve.
  • a hydraulic current begins to flow and drives the direct current machine acting as a generator via the hydraulic unit.
  • the control tries to reach this value, whereby the associated circuit breaker for the armature is completely switched through.
  • the circuit breakers for the field winding are operated so that the current is maximum. This creates a maximum braking torque that is sufficient to lower the load at minimum speed if desired.
  • the speed can be set to the desired value, the lifting and lowering speed.
  • the field current setpoint generator determines the setpoint for the field current from the armature current setpoint and the actual speed. This has the advantage that the speed control device can also operate in the operating range in which a higher armature voltage than the battery voltage is necessary in order to reduce the generator with optimal efficiency.
  • a three-phase asynchronous machine can also be used, which is fed accordingly via converters.
  • a speed control device uses a tachometer to determine the actual rotor frequency of the machine and forms a control deviation with a speed setpoint or frequency setpoint in order to achieve the desired speed for both lifting and lowering.
  • the asynchronous machine works as a motor or generator. Electrical energy is fed back into the battery automatically without any special precautions being taken.
  • an embodiment of the invention provides that a sensor is provided on the lifting mast, which determines whether a lowering operation of the movable mast part or the load-carrying means takes place and whose signals are sent to the speed setpoint generator in order to modify the speed setpoint.
  • auxiliary functions are also performed by the hydraulic circuit of the lifting device.
  • a separate unit consisting of a pump and a DC motor is provided for supplying the secondary functions. Otherwise there would be no energy recovery during the lowering process if the hydraulic unit was also used as a pump Supplying the secondary functions should serve. The additional effort for the additional pump unit is justified in view of the optimal energy recovery during lowering operation.
  • the secondary functions require a relatively large volume flow or a high pressure. Since this occurs very rarely, an appropriate design of the additional pump unit would be useless for most applications. It can therefore be considered to use the hydraulic unit as a pump in this case and to temporarily forego recovery during the lowering process when this secondary function is called up.
  • a DC machine 10 drives a hydraulic unit 12, which optionally works as a motor or pump.
  • the pump 12 conveys to a lifting cylinder 18 via a load holding valve 14 and a valve block 16.
  • the lifting cylinder 18 can be a single cylinder or represent a plurality of lifting cylinders with which the movable mast sections and / or the load suspension means can be raised and lowered (the latter is not shown).
  • the load holding valve 14 has a check valve 20.
  • a bypass to the hydraulic unit 12 and a filter 22 contains a check valve 24.
  • Hydraulics Medium is in the tank 26.
  • a bypass to the tank 26 is formed via a pressure relief valve 28, which contains a further filter 30.
  • valve block 32 which is fed by a hydraulic pump 34, which in turn is driven by a DC motor 36.
  • a number of secondary functions 38 are supplied via the valve block 32.
  • the performance of the unit 34, 36 is relatively small in relation to that of the hydraulic unit 12 or DC machine 10.
  • a pressure relief valve 38 is connected to the bypass described.
  • the valve block 16 is designed such that it optionally connects the load holding valve 14 to the lifting cylinder 18 or to an auxiliary consumer 40.
  • the externally excited direct current motor 10 drives the pump 12 and conveys fluid from the tank 26 via the filter 22 and the ball valve 20 and the valve block 16 into the lifting cylinder 18.
  • the load is supported on the ball valve 20 of the load holding valve 14, so that sagging of the load is prevented.
  • the series-circuit motor 36 connected via a contactor to the battery voltage drives the pump 34, which conveys the fluid from the tank 26 to the secondary functions 38 via the manually controlled valve block 32.
  • the return flow takes place via the filter 30 into the tank 26.
  • the lifting function and the secondary functions do not influence one another.
  • the load holding valve 14 In lowering mode, the load holding valve 14 is switched electrically and directs the load pressure stored in the lifting cylinder to the hydraulic unit 12, which is operated as a motor in the opposite direction of rotation to the lifting function.
  • the externally excited DC machine 10 operates in generator mode, the speed being directly proportional to the lowering speed, which neglects the leakage losses in the hydraulic unit 12 once.
  • the changeover valve 16 and the supply and discharge hoses Apart from the load holding valve 14, the changeover valve 16 and the supply and discharge hoses, there are no further hydraulic components in the lowering branch which can lead to additional pressure losses and thus to a reduction in efficiency.
  • the mast has a free lift cylinder and two mast lift cylinders, the oil volume of the mast lift cylinder is emptied first during the lowering process.
  • a sensor 42 is assigned to the lifting cylinder or the mast, by means of which it is indicated when a switch is made from the mast lifting to the free lifting during the lowering process.
  • an attachment for example, can be supplied with the pressure medium flow of the pump 12 in parallel with the lifting cylinder 18.
  • the volume flow is divided via valve 16, which can be designed as a load-sensing valve.
  • the lowering function must be interrupted.
  • the valve 16 blocks the volume flow from the lifting cylinder 18.
  • the externally excited DC machine 10 which was operated as a generator during the lowering function, now reverses and drives the hydraulic unit 12, for example at a constant speed.
  • the hydraulic unit 12 supplies the volume flow required to supply the additional function 40.
  • Fig. 7 shows a hand lever 44 which can be pivoted to the left and right, the extent of the pivoting being indicated by -X or + X. He actuates a potentiometer, indicated at 46, which generates a signal P as a function of the deflection.
  • the signal P is shown in FIG. 4.
  • the deflection-dependent signals in FIG. 4 do not differ by the sign, therefore a pair of microswitches (not shown) are assigned to the lever 44, which specify the sign of the signal P. This is indicated by the signals S1 and S2 in FIGS. 5 and 6, respectively.
  • a speed setpoint generator 44 calculates a speed setpoint n set from the signals P, S1 and S2, the absolute value of P determining the absolute value of n set and the signals S1 and S2 the corresponding sign. If a signal is received from the encoder 42, the speed setpoint is modified accordingly in order to maintain a constant lowering speed. (This will be discussed in more detail below).
  • a speed sensor 46 a connected to the direct current machine 10 supplies an actual speed value n Act to a target actual value comparison 48, and the control deviation is given to a speed controller 50. It forms a setpoint for the armature current IAset , which is compared in a setpoint actual value comparison 52 with the armature current actual value I AIst . The control deviation arrives at an armature current controller 56 and from there to a control value transmitter indicated by 58.
  • Relationships between speed and armature current are stored in a value table 60.
  • the setpoint is converted from the data in table 60 for field winding I FSoll calculated. It is essential that the armature current setpoint I Aset is used for the calculation.
  • the setpoint I FSoll is compared in an actual setpoint comparison 64 with the field current actual value, the control deviation being given to a field current controller 66 which generates a corresponding actuating signal in the actuating value transmitter 68.
  • the regulators 56, 66 are designed as digital regulators and generate pulse-width-modulated voltages via downstream power units 58, 68, by means of which the predefined current values I A target and I F target are regulated .
  • the input current for calculating the field current setpoint I FSoll in addition to the actual speed n is the armature current setpoint I ASoll , it is also possible to work in an operating range in which a higher armature voltage than the battery voltage U Batt would be necessary in order to regenerate with optimal efficiency lower, as will be described.
  • the armature of the externally excited DC machine 10 is connected to a battery 52 via a half bridge 50 consisting of the Mosfets T1 and T2.
  • Diodes 54, 56 are antiparallel to the Mosfets T1 and T2.
  • the field winding 58 is located in the diagonal branch of the bridge circuit 60 at the terminals of the battery 52, the bridge circuit consisting of the Mosfets T3 to T6 to which diodes 62 to 68 are antiparallel.
  • the Mosfets T1 and T2 are controlled cyclically, i.e. Mosfet T1 is off when T2 is on and vice versa.
  • the size of the current flow thus results from the pulse duty factor for the Mosfets T1 and T2.
  • Mosfet T1 works as a step-down converter in motorized lifting operation
  • Mosfet T2 works as a step-up converter in generator-based lowering operation.
  • the signal S2 causes the load holding valve 14 to open, whereby hydraulic volume flows through the hydraulic unit 12 and drives the DC machine 10. Due to the constant control deviation that occurs in this way, an I A target is given to the target actual value comparison 52, and the armature current controller 56 ensures that the armature is short-circuited via Mosfet T2. In addition, the field winding 58 is supplied with maximum field current. The speed value that is now set is so small that the lowest possible lowering speed that is set is sufficient to ensure sensitive travel of the lifting cylinder 18.
  • the controller 56 withdraws the pulse width of the MOSFET T2 from 100% control until the desired speed n target is set.
  • the Mosfet T2 now operates in step-up mode at every pulse width ⁇ 100%, and energy is fed back into the battery 52.
  • a speed setpoint generator 44a generates a rotor frequency setpoint f 2soll from the signals P, S1 and S2 for a three-phase asynchronous machine 10a, which can be used in the circuit shown there instead of the separately excited DC machine according to FIG.
  • the signal P fed into the setpoint generator 44a corresponds to the extent of the deflection, for example of the hand lever according to FIG. 7.
  • the sign of the signal is indicated by microswitches (not shown) which are assigned to the hand lever 44. The sign is therefore determined by the signals S1 and S2.
  • a speed sensor 46a connected to the machine 10a supplies an actual speed value n ist , which is passed to an arithmetic stage 84 which, according to the number of pole pairs p of the machine 10a, is the actual value f 2ist of the rotor frequency calculated.
  • the actual frequency value is given to the target actual value comparison 48a, and the control difference reaches a speed controller 70.
  • the speed controller 70 generates a setpoint for the active component i qsoll of the complex current space vector i.
  • the active component i qsoll is proportional to the torque of the asynchronous machine 10a.
  • the value i dsoll is the target value of the reactive component of the current space vector i, which is proportional to the magnetizing current of the asynchronous machine.
  • the setpoint for the slip frequency f ssoll is determined at 86 from the setpoint of the active component i qsoll of the current space vector i.
  • a table can be stored in 86 which establishes the relationship between the active current and the slip frequency. It is also conceivable to store an equivalent circuit diagram of the asynchronous machine in 86 and to use it to determine the respective slip frequency relatively precisely.
  • the determined slip frequency f ssoll is added to the actual rotor frequency value f 2act at 85. This results in the stator frequency setpoint f 1set which is fed to a rotary transformation 74.
  • the current space vector i resulting from i qsoll , i dsoll and f 1soll is transformed to the string sizes , and the setpoints result for the string currents i usoll and i vsoll .
  • the respective control differences which result from subtracting the respective actual current values i uist and i vist at the addition points 75 and 77, are given to the current controllers 76 and 78, which output the manipulated variables for the phase voltages U usoll and U vsoll .
  • the setpoint of the third phase voltage U wsoll can be calculated from the condition that the sum of all three voltages must be zero at the addition point 79.
  • the three voltage setting values are now converted into pulse width modulation signals in block 82, which control a power section 81 in such a way that the desired current values result in the asynchronous machine 10a.
  • one strand of the asynchronous machine 10a is located at a connection point of a pair of Mosfets which are connected in series and are connected to the battery voltage U Batt and are denoted by T1 to T6.
  • the transistors T1 to T6 are operated with a sine-weighted pulse width and are counter-cyclically controlled in pairs.
  • the control of the three pairs of transistors is designed so that the sine-weighted pulse widths with which the transistor pairs are controlled are given a phase shift of 120 ° to the transistor pairs in the frequency of the sine weighting. With this control, a rotating rotating field is generated in the asynchronous machine 10a, which is variable in frequency and voltage.
  • the signal S 2 causes Opening the load holding valve 14 (FIG. 1), whereby hydraulic medium flows through the hydraulic unit and this drives the asynchronous machine 10a.
  • the controller now adjusts to the lower control limit, the lowest possible stator field frequency, which is approximately 0.2 Hz. Due to the slip in the asynchronous machine 10a there is a constant control deviation. The speed value that is set is so small that the lowest possible lowering speed that is set is sufficient to ensure smooth travel of the lifting cylinder 18 (FIG. 1).

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Structural Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Civil Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mechanical Engineering (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Control Of Direct Current Motors (AREA)
  • Forklifts And Lifting Vehicles (AREA)

Claims (7)

  1. Mécanisme élévateur hydraulique pour des chariots de manutention à batterie avec au moins un vérin hydraulique de levage (18), avec un groupe hydraulique (12) fonctionnant en tant que pompe lors du levage de la charge, alimentant le vérin de levage (18) en fluide hydraulique et fonctionnant en tant que moteur lors de l'abaissement de la charge, ledit groupe hydraulique étant entraîné par le fluide hydraulique refoulé par le vérin de levage (18), avec une machine à courant continu (10), accouplée au groupe hydraulique (12) fonctionnant en tant que moteur électrique lors du levage de la charge et en tant que génératrice lors de l'abaissement de la charge, avec un dispositif de freinage à récupération alimenté par la machine à courant continu (10) lors de l'abaissement de la charge, avec un dispositif à vannes comprenant une vanne de maintien de la charge (14) situé dans le trajet du fluide hydraulique entre le vérin de levage (18) et le groupe hydraulique (12), avec un dispositif de commande commandant le dispositif à vannes, comportant un capteur de direction, et un dispositif de réglage de vitesse intervenant sur la vitesse de rotation de la machine à courant continu (10), caractérisé en ce que le dispositif à vannes ne présente qu'une seule vanne de maintien de la charge (14) sans pertes d'étranglement en position ouverte, en ce que la génératrice à courant continu (10) est à excitation séparée et présente un dispositif de réglage séparé du courant inducteur (66, 68) avec un générateur de valeur de consigne (62) qui détermine à partir de rapports prédéfinis entre la vitesse de rotation réelle (nIst) et le courant d'induit (IASoll) en fonction du dispositif de commande, affectant la valeur de consigne du courant inducteur (IFSoll), le dispositif de réglage affectant à la bobine d'inducteur (58a) et à l'induit des interrupteurs de puissance pouvant être commandés (MosFets T1 à T6), dont la disposition et la commande définissent la valeur et la direction du courant passant par l'induit et la bobine d'inducteur, et en ce que le dispositif de réglage de la vitesse prend en charge le maintien de la charge sur la plage de travail entière pendant le fonctionnement de levage et d'abaissement de la charge.
  2. Dispositif selon la revendication 1, caractérisé en ce que le générateur de valeur de consigne de la vitesse de rotation pour le dispositif de réglage de la vitesse est un potentiomètre (46) dont l'élément de réglage (44) est pourvu de micro-interrupteurs engendrant des signaux de direction (S1, S2).
  3. Dispositif selon la revendication 1 ou 2, caractérisé en ce que le générateur de valeur de consigne de courant inducteur (62) détermine la valeur de consigne du courant inducteur (IFSoll) à partir du courant d'induit (IASoll) et la vitesse de rotation réelle(nIst).
  4. Dispositif selon l'une quelconque des revendications 1 à 3, caractérisé en ce que l'induit est connecté par un demi-pont (50) composé de Mosfets (T1, T2) à la batterie (52), des diodes (54, 56) étant connectées aux Mosfets (T1, T2) selon un montage antiparallèle, les Mosfets (T1, T2) étant commandés cycliquement.
  5. Dispositif selon l'une quelconque des revendications 1 à 4, caractérisé en ce que la bobine d'inducteur (58) est connectée dans la branche diagonale d'un pont composé de quatre Mosfets (T3 à T6), des diodes (62 à 68) étant connectées aux Mosfets (T3 à T6) selon un montage antiparallèle et les Mosfets étant commandés cycliquement.
  6. Mécanisme élévateur hydraulique pour des chariots de manutention à batterie avec au moins un vérin de levage, avec un groupe hydraulique fonctionnant en tant que pompe lors du levage de la charge, alimentant le vérin de levage en fluide hydraulique et fonctionnant en tant que moteur lors de l'abaissement de la charge, ledit groupe hydraulique étant entraîné par le fluide hydraulique refoulé par le vérin de levage, avec une machine électrique, accouplée au groupe hydraulique, fonctionnant en tant que moteur lors du levage de la charge et en tant que génératrice lors de l'abaissement de la charge, avec un dispositif de freinage à récupération alimenté par la machine lors de l'abaissement de la charge, avec un dispositif à vannes situé dans le trajet du fluide hydraulique entre le vérin de levage et le groupe hydraulique, avec un dispositif de commande commandant le dispositif à vannes avec un capteur de direction (44) pour le levage et l'abaissement, qui comporte un dispositif de réglage de vitesse intervenant sur la vitesse de la machine, caractérisé en ce que le dispositif à vannes ne présente qu'une seule vanne de maintien de la charge sans pertes d'étranglement en position ouverte, en ce que la machine (10) présente une machine asynchrone à courant triphasé (10a) alimentée par l'intermédiaire d'un chargeur de fréquence, avec un dispositif de réglage de la vitesse pour le réglage de la fréquence du stator en fonction de l'écart du réglage déterminé à partir de la valeur réelle de la vitesse de rotation et la valeur de consigne de vitesse prédéfinie et en ce que le dispositif de réglage de la vitesse prend en charge, en fonctionnement de levage et d'abaissement, le maintien de la charge sur la plage de travail entière.
  7. Dispositif selon l'une quelconque des revendications 1 à 6, pour un mât de levage, comprenant au moins une partie mobile du mât, dont le moyen de suspension de la charge est réglable en hauteur sur la partie mobile du mât, caractérisé en ce qu'un capteur (42) est prévu sur le mât de levage qui détecte si une opération d'abaissement de la partie mobile du mât (levage par mât) ou du moyen de suspension de la charge (levage libre) est réalisée et dont les signaux sont transférés sur le générateur de valeur de consigne de vitesse (44) pour modifier le signal de valeur de consigne de la vitesse (nSoll).
EP94103149A 1993-05-28 1994-03-03 Equipement de levage hydraulique pour chariots de manutention mûs par batterie ou analogues Expired - Lifetime EP0630853B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4317782A DE4317782C2 (de) 1993-05-28 1993-05-28 Hydraulische Hubvorrichtung für batteriegetriebene Flurförderzeuge oder dergleichen
DE4317782 1993-05-28

Publications (2)

Publication Number Publication Date
EP0630853A1 EP0630853A1 (fr) 1994-12-28
EP0630853B1 true EP0630853B1 (fr) 1997-10-08

Family

ID=6489127

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94103149A Expired - Lifetime EP0630853B1 (fr) 1993-05-28 1994-03-03 Equipement de levage hydraulique pour chariots de manutention mûs par batterie ou analogues

Country Status (3)

Country Link
US (1) US5505043A (fr)
EP (1) EP0630853B1 (fr)
DE (2) DE4317782C2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011053958A1 (de) 2011-09-27 2013-03-28 Still Gmbh Hydraulikanlage eines Flurförderzeugs

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1280604B1 (it) * 1995-11-02 1998-01-23 Sme Elettronica Spa Gruppo di potenza per l'alimentazione di attuatori idraulici
IT1283752B1 (it) * 1996-04-19 1998-04-30 Fiat Om Carrelli Elevatori Sistema di sollevamemto ed abbassamento del supporto del carico di un carrello elevatore elettrico.
DE19709475A1 (de) * 1997-03-07 1998-09-10 Rexroth Mannesmann Gmbh Hydraulische Hubvorrichtung
US20030102179A1 (en) * 1997-05-28 2003-06-05 Achten Peter Augustinus Johannes Hydraulic drive system with constant pressure in pressure conduit
US6370970B1 (en) * 1998-03-18 2002-04-16 Satoshi Hosokawa Cargo handling machine including force control
JP2002522710A (ja) * 1998-08-06 2002-07-23 マネスマン レックスオート アクチェンゲゼルシャフト ハイドロ変圧器
JP2000136806A (ja) * 1998-11-04 2000-05-16 Komatsu Ltd 圧油のエネルギー回収装置および圧油のエネルギー回収・再生装置
DE19921629B4 (de) * 1999-05-10 2005-05-25 Dambach Lagersysteme Gmbh Hydraulische Hubvorrichtung
DE10010670C2 (de) * 2000-03-04 2003-11-06 Jungheinrich Ag Hydraulische Hubvorrichtung für batteriebetriebene Flurförderzeuge
EP1188709B1 (fr) * 2000-09-18 2006-11-02 Still Gmbh Dispositif de levage
DE10048215A1 (de) * 2000-09-28 2002-04-11 Still Wagner Gmbh & Co Kg Hydraulische Hubvorrichtung
JP2004003612A (ja) * 2002-04-09 2004-01-08 Komatsu Ltd シリンダ駆動システム及びそのエネルギ回生方法
US7075257B2 (en) * 2002-10-18 2006-07-11 Black & Decker Inc. Method and device for braking a motor
US7023159B2 (en) * 2002-10-18 2006-04-04 Black & Decker Inc. Method and device for braking a motor
JP4667801B2 (ja) * 2004-09-10 2011-04-13 日本輸送機株式会社 油圧システム及びこれを備えたフォークリフト
WO2006090709A1 (fr) * 2005-02-25 2006-08-31 Mitsubishi Heavy Industries, Ltd. Systeme de regeneration de la capacite de gestion de la charge pour vehicule industriel a batteries d'accumulateurs
JP4727653B2 (ja) * 2005-02-25 2011-07-20 三菱重工業株式会社 バッテリ式産業車両の荷役回生方法及び荷役回生システム
US7600612B2 (en) * 2005-04-14 2009-10-13 Nmhg Oregon, Llc Hydraulic system for an industrial vehicle
DE102006003414B3 (de) * 2006-01-24 2007-08-02 Sauer-Danfoss Gmbh & Co Ohg Hydraulische Schaltungsanordnung
JP4072183B1 (ja) * 2006-11-09 2008-04-09 三菱重工業株式会社 作業車両および作業車両の動力制御方法
DE102006060351B8 (de) * 2006-12-20 2008-07-24 Sauer-Danfoss Gmbh & Co Ohg Hydraulische Schaltungsanordnung mit Energierückgewinnung
US20090091301A1 (en) * 2007-10-08 2009-04-09 Sauer-Danfoss Inc. Load lowering regenerative energy system with capacitor charge and discharge circuit and method of operating the same
DE102009041236B4 (de) 2009-09-11 2018-08-16 Daimler Ag Antriebsstrangvorrichtung
US20110198141A1 (en) * 2010-02-16 2011-08-18 Genie Industries, Inc. Hydraulic electric hybrid drivetrain
US9045930B2 (en) * 2010-04-23 2015-06-02 Parker-Hannifin Corporation Electric circuit with speed control and diode separation for use with an electrically actuatable mechanism
CN102241379B (zh) * 2010-05-13 2014-05-07 济南谨恒节能技术有限公司 节能型行走式液压搬运机械
US20120023924A1 (en) * 2010-07-30 2012-02-02 Genie Industries, Inc. Variable hydraulic system
DE102011016542A1 (de) * 2011-04-08 2012-10-11 Jungheinrich Aktiengesellschaft Flurförderzeug, insbesondere Schubmaststapler mit einem Hubgerüst
JP5352663B2 (ja) * 2011-12-26 2013-11-27 株式会社豊田自動織機 フォークリフトの油圧制御装置
CN102633213B (zh) 2012-04-28 2014-10-22 安徽合力股份有限公司 能量再生式叉车液压系统
DE102012017004A1 (de) * 2012-08-28 2014-03-06 Hydac Technology Gmbh Hydraulisches Energierückgewinnungssystem
JP5835249B2 (ja) * 2013-02-27 2015-12-24 株式会社豊田自動織機 フォークリフトの油圧制御装置
JP6269170B2 (ja) * 2013-06-17 2018-01-31 株式会社豊田自動織機 荷役車両の油圧駆動装置
DE102015115817A1 (de) * 2015-09-18 2017-03-23 Jungheinrich Aktiengesellschaft Verfahren zur Ansteuerung einer Hub-Hydraulik an einem Flurförderzeug
CN106545531A (zh) * 2015-09-18 2017-03-29 哈尔滨飞机工业集团有限责任公司 一种飞机增压供压系统
CA2998893A1 (fr) * 2017-03-23 2018-09-23 The Raymond Corporation Systemes et methodes de stabilisation de mat sur un vehicule de transport de materiau
DE102017111705A1 (de) * 2017-05-30 2018-12-06 Voith Patent Gmbh Luftpressereinheit und Verfahren zum Betreiben eines Luftpressers
CN108975235B (zh) * 2017-05-31 2020-11-06 北谷电子有限公司 升降装置动力系统及其控制方法
TWI730281B (zh) 2018-01-03 2021-06-11 美商米沃奇電子工具公司 電動工具中之電子制動技術
DE202019005838U1 (de) 2019-12-20 2022-06-14 Dana Motion Systems Italia S.R.L. Hydrauliksystem mit Energierückgewinnung
EP3839269A1 (fr) 2019-12-20 2021-06-23 Dana Motion Systems Italia S.R.L. Système hydraulique avec récupération d'énergie

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3488521A (en) * 1966-02-04 1970-01-06 Eaton Yale & Towne Control for varying the phase of a triggering signal for a controlled rectifier
SE320471B (fr) * 1969-03-31 1970-02-09 Asea Ab
US3675099A (en) * 1971-07-02 1972-07-04 Gen Motors Corp Induction motor regenerative braking system
GB1380223A (en) * 1973-04-18 1975-01-08 Marotta Scientific Controls Power and speed control for double-acting cylinder-and piston motor
US3947744A (en) * 1974-10-21 1976-03-30 Allis-Chalmers Corporation Electric truck having elevated load potential energy recovery with means to adjust rate of carriage descent
DE2618046A1 (de) * 1976-04-24 1977-11-10 Sven O I Jonsson Verfahren und vorrichtung zur ausnutzung gespeicherter potentieller energie beim entladen von waren
JPS5396152A (en) * 1977-02-03 1978-08-23 Oil Drive Kogyo Ltd Ram type hydraulic elevator
GB1576435A (en) * 1977-06-15 1980-10-08 Shinko Electric Co Ltd Fork lift truck with balance weight using batteries as power source
JPS56122774A (en) * 1980-02-26 1981-09-26 Oirudoraibu Kogyo Kk Oil pressure elevator
JPS6032586A (ja) * 1983-07-29 1985-02-19 Toshiba Corp チヨツパ制御装置
JPS61196787A (ja) * 1985-02-25 1986-08-30 Fanuc Ltd 誘導電動機のトルク制御方式
JPS61254086A (ja) * 1985-04-30 1986-11-11 Mitsubishi Electric Corp 交流エレベ−タの制御装置
DE3602510A1 (de) * 1986-01-28 1987-07-30 Steinbock Gmbh Hydraulisches hubwerk
US4649326A (en) * 1986-06-30 1987-03-10 Motorola Inc. High voltage MOS SCR and power MOSFET "H" switch circuit for a DC motor
JPS63140689A (ja) * 1986-12-01 1988-06-13 Nippon Yusoki Co Ltd 電動機制御装置
JPS63174591A (ja) * 1987-01-12 1988-07-19 Fujitec Co Ltd 交流エレベ−タの制御装置
JPH0261088A (ja) * 1988-08-26 1990-03-01 Johoku Riken Kogyo:Kk 部品のねじ孔のマスキング手段
JP2740954B2 (ja) * 1988-11-29 1998-04-15 株式会社日立製作所 電気車駆動装置
US5210475B1 (en) * 1989-05-09 1996-04-23 United Technologies Automotive Circuit sensing circuit for use with a current controlling device in a power delivery circuit
US5012722A (en) * 1989-11-06 1991-05-07 International Servo Systems, Inc. Floating coil servo valve
US5189940A (en) * 1991-09-13 1993-03-02 Caterpillar Inc. Method and apparatus for controlling an implement
JPH05155551A (ja) * 1991-12-04 1993-06-22 Mitsubishi Electric Corp 油圧エレベーターの制御装置
US5332954A (en) * 1992-03-30 1994-07-26 Solaria Research Enterprises Ltd. Optimal DC motor/controller configuration

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011053958A1 (de) 2011-09-27 2013-03-28 Still Gmbh Hydraulikanlage eines Flurförderzeugs

Also Published As

Publication number Publication date
EP0630853A1 (fr) 1994-12-28
DE4317782C2 (de) 1996-01-18
US5505043A (en) 1996-04-09
DE59404249D1 (de) 1997-11-13
DE4317782A1 (de) 1994-12-01

Similar Documents

Publication Publication Date Title
EP0630853B1 (fr) Equipement de levage hydraulique pour chariots de manutention mûs par batterie ou analogues
EP0669281B1 (fr) Dispositif de levage hydraulique pour chariots de manutention actionnés par batterie
EP0230884B1 (fr) Dispositif de levage hydraulique
EP1305876B1 (fr) Procede pour reguler une machine electrique au moyen d'un onduleur pulse
DE4208114C2 (de) Steuereinrichtung für einen bidirektionalen pulsbreitenmodulierten Stromrichter
DE69109534T2 (de) Optimierungssystem für Fahrmotoren von Gabelstaplern.
DE10151177B4 (de) Vorrichtung zur Steuerung einer mittels eines Motors betriebenen Servolenkeinrichtung
EP3581428B1 (fr) Freinage par court-circuit d'un module laser llm
DE19922441A1 (de) Verfahren und Vorrichtung zum Betreiben eines Magnetfahrzeugs
EP2027646A1 (fr) Excitation avec des onduleurs a faibles pertes par commutation
EP0908413A2 (fr) Chariot élévateur avec un dispositif de prise de la charge et procédé pour descendre le dispositif de prise de la charge
DE4416173C2 (de) Hydraulische Hubvorrichtung für batteriebetriebene Flurförderzeuge oder dergleichen
EP0169488B1 (fr) Circuit transformateur
EP0935336A2 (fr) Méthode et dispositif de commande d' un moteur synchron
DE4442151A1 (de) Schaltungsanordnung zum Steuern eines elektronisch kommutierten Motors
DE4324464C2 (de) Hydraulische Hubvorrichtung für batteriebetriebene Flurförderzeuge
DE102004030326B4 (de) Elektronisch kommutierter Motor
DE9309525U1 (de) Hydraulische Hubvorrichtung für batteriegetriebene Flurförderzeuge o.dgl.
DE19600186A1 (de) Eisenbahnweichenmechanismus
DE102004042256A1 (de) Gleichspannungszwischenkreis
DE4333706C1 (de) Hydraulische Hubvorrichtung für batteriebetriebene Flurförderzeuge
DE112019007292T5 (de) Dc/dc-wandler und leistungswandler
DE3338318C2 (fr)
EP1119098A2 (fr) Méthode de commande d'un circuit convertisseur d'une machine à réluctance commuttée
EP0007510B1 (fr) Montage pour la marche en alimentation et/ou la marche en freinage pour les véhicules avec moteur à courant continue en serie à collecteur

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT SE

17P Request for examination filed

Effective date: 19950217

17Q First examination report despatched

Effective date: 19960614

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT SE

REF Corresponds to:

Ref document number: 59404249

Country of ref document: DE

Date of ref document: 19971113

ITF It: translation for a ep patent filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19980105

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20070306

Year of fee payment: 14

EUG Se: european patent has lapsed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080304

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20090326

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20090225

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20101130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100303

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20130318

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20130508

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59404249

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20140302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20140302

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20140304