EP0169488B1 - Circuit transformateur - Google Patents

Circuit transformateur Download PDF

Info

Publication number
EP0169488B1
EP0169488B1 EP85108921A EP85108921A EP0169488B1 EP 0169488 B1 EP0169488 B1 EP 0169488B1 EP 85108921 A EP85108921 A EP 85108921A EP 85108921 A EP85108921 A EP 85108921A EP 0169488 B1 EP0169488 B1 EP 0169488B1
Authority
EP
European Patent Office
Prior art keywords
voltage
winding
switching state
switch
switches
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP85108921A
Other languages
German (de)
English (en)
Other versions
EP0169488A3 (en
EP0169488A2 (fr
Inventor
Walter Dr. Dipl.-Ing. Mehnert
Ludwig Dr. Dipl.-Ing. Bölkow
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Voigt and Haeffner GmbH
Original Assignee
Voigt and Haeffner GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19853502889 external-priority patent/DE3502889A1/de
Priority claimed from DE19853511182 external-priority patent/DE3511182A1/de
Application filed by Voigt and Haeffner GmbH filed Critical Voigt and Haeffner GmbH
Priority to AT85108921T priority Critical patent/ATE68611T1/de
Publication of EP0169488A2 publication Critical patent/EP0169488A2/fr
Publication of EP0169488A3 publication Critical patent/EP0169488A3/de
Application granted granted Critical
Publication of EP0169488B1 publication Critical patent/EP0169488B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/12Regulating voltage or current wherein the variable actually regulated by the final control device is ac
    • G05F1/24Regulating voltage or current wherein the variable actually regulated by the final control device is ac using bucking or boosting transformers as final control devices
    • G05F1/26Regulating voltage or current wherein the variable actually regulated by the final control device is ac using bucking or boosting transformers as final control devices combined with discharge tubes or semiconductor devices
    • G05F1/30Regulating voltage or current wherein the variable actually regulated by the final control device is ac using bucking or boosting transformers as final control devices combined with discharge tubes or semiconductor devices semiconductor devices only

Definitions

  • the invention relates to a transformer circuit of the type mentioned in the preamble of claim 1.
  • Such a transformer circuit is used, if necessary, to change the amplitude of an alternating supply voltage supplied by a voltage source with the aid of an actuating unit, which can be brought into different switching states, before it is used as a load. AC voltage is applied to a consumer.
  • the transformer of the known control unit comprises, in addition to a first winding, which is seen in series with the load from the voltage source, two further windings, one of which is used only as an adding and the other only as a subtracting winding in that it can be connected alternately to corresponding control voltages with the aid of switches.
  • control unit can be brought into several switching states, a control voltage being applied to one of the two further windings in a first switching state such that the voltage thereby induced in the first winding of the transformer is added to the input voltage, while in a second switching state the second of the two further windings a control voltage is applied such that the voltage thereby induced in the first winding of the transformer is subtracted from the input voltage.
  • control voltages the input voltage of the actuating unit is used in the first switching state and the output voltage of the actuating unit is used in the second switching state.
  • the control unit can be brought into a third, neutral switching state in which no voltage is induced in the first winding of the transformer. So that the first winding in the neutral switching state does not develop a choke effect with a correspondingly high voltage drop, care must be taken that the magnetization of the transformer core is not essentially caused in it by the flooding of the first winding alone.
  • the transformer of the known actuating unit has a short-circuit winding which is short-circuited with the aid of a switch in the third, neutral switching state, while the two further windings are simultaneously disconnected from all control voltages.
  • the output voltage of the actuating unit changes from its old to the new amplitude value without large fluctuations in the output AC voltage.
  • This can not be achieved in the known circuit arrangement, in which the neutral switching state is established with the aid of a short-circuit winding, since criteria must be observed for the closing and opening of the switches, which make it impossible to switch so quickly that after less than a full oscillation period of the load AC voltage, the new amplitude value has been reached in a stable manner.
  • the invention has for its object to provide an improved circuit arrangement in which the neutral switching state can be achieved with less technical effort and in which it is possible to change the amplitude of the output voltage so quickly that the new amplitude value at the latest at the second half-wave of the AC output voltage following the switching process is available in a stable manner.
  • the third, neutral switching state is produced in a transformer which has only a single further winding in that this only further winding is electrically connected in parallel with the first winding.
  • a transformer which has two further windings which are connected in each case with one of their two ends to the front or rear end of the first winding as seen from the voltage source a series circuit consisting of these two further windings is connected in parallel with the first winding;
  • these two further windings lying in series with one another can be regarded as a single winding with a continuous winding sense for the subsequent consideration.
  • the current flowing through the further winding or the two further windings lying in series with one another is also correspondingly small, since these further Windings have a significantly higher impedance than the first winding of the transformer. As a result, the load current flows practically exclusively through this first winding.
  • switches are sufficient for a transformer which has only a single further winding, and three switches are sufficient for a transformer which has two further windings in the manner specified above, in order to be able to bring the relevant actuating unit into the three different switching states mentioned.
  • the third and fourth switches ie the two switches, with which the two ends of the further winding can be connected to the connecting connecting conductor the control unit can be connected, for example, each be designed as a current limiting circuit in such a way that they do not let any current through at all in the open state and only provide a very small, constant resistance to the current flowing through them as long as this current is below a predetermined limit value remains, but prevent the current from rising above this limit.
  • the transition from the first to the second switching state or from the second to the first switching state then takes place simply in such a way that the two switches opened in the previous switching state are also closed, which corresponds to a transition to the third switching state, and only then do the switches opened, which must be open in the new switching state. Because of their current limiting properties, the third and fourth switches prevent impermissibly high short-circuit currents from flowing in the third switching state.
  • the third and fourth switches ie the two switches with which the two ends of the further winding can be connected to the connection connecting conductor of the actuating unit, are not directly connected to this connection. Lead the connecting conductor. Instead, the third and fourth switches are directly connected to each other in a galvanically conductive manner by a further conductor and is a circuit arrangement between this further conductor and the connecting connecting conductor provided that on the one hand connects the two conductors in an electrically conductive manner and on the other hand prevents the flow of an impermissibly large current from one of these two conductors to the other.
  • this circuit arrangement can be a switch which is always opened when the actuating unit is to be brought into its third switching state, in which an impermissibly high short-circuit current would otherwise flow via this switch.
  • switches can only be opened at very specific times, so that the optimum switching speed cannot yet be achieved with them.
  • an automatically operating current limiting circuit is preferably used as the circuit arrangement, which opposes the current flowing through it with only a very small, constant resistance, as long as this current is less than a predetermined limit value.
  • the current limiting circuit steadily increases its resistance so that the current cannot exceed the predetermined limit.
  • this continuous limiting process has the advantage that there are no voltage peaks in the output voltage of the actuating unit.
  • the limit value is chosen so that it is only slightly greater than the current which must flow through the further winding in the first or second switching state and also through the current limiting circuit lying in series with the further winding in these two switching states.
  • the transition from the first to the second switching state is preferably carried out here in such a way that first the second switch is closed, which connects the second end of the further winding to the end of the first winding on the output side. Since in the first switching state the first switch is closed, which connects the first end of the further winding with the input-side end of the first winding, and since this first switch initially remains closed, the two windings are temporarily electrically parallel to one another and the actuating unit is located in the third switching state.
  • the current limiting circuit prevents an inadmissibly high short-circuit current from flowing through the closed second switch and the fourth switch, which is also still closed and which connects the second end of the further winding to the further conductor and thus also to the connecting connecting conductor.
  • the switching process is then continued in such a way that the fourth switch is opened and then the third switch is closed, which connects the first end of the further winding to the further conductor. Even with this switch position, the actuating unit is in the third switching state, since the first and the second switch are still closed. An impermissibly high short-circuit current could now flow through the first and third switches, but this is prevented again by the current limiting circuit. Finally, the first switch is then opened so that the actuating unit changes to the second switching state.
  • the two switches with which the two free ends of the two further windings can be connected to the connecting connecting conductor are also preferably connected directly to one another in a galvanically conductive manner by a further conductor, and is A circuit arrangement of the type described above is provided between the further conductor and the connecting connecting conductor, which circuit configuration is preferably again in the form of a current limiting circuit.
  • the previously open switch is first closed during the transition from the first to the second switching state or from the second to the first switching state, as a result of which the actuating unit temporarily changes to the third switching state; the current limiting circuit in turn prevents the flow of an impermissibly high short-circuit current.
  • the switch which was closed in the previous switching state is then opened, as a result of which the control unit changes to the new switching state.
  • the current limiting circuit can advantageously be designed such that it switches over to at least one second current limiting value can be significantly lower than the first current limit value, preferably zero. In this way, the further winding or series connection of two further windings lying in parallel with the first winding of the transformer is practically completely separated from the input voltage U E and there is no longer any short-circuit current at the connecting connecting conductor.
  • An automatically operating current limiting circuit has the advantage over a switch, in addition to the already mentioned avoidance of switching peaks, that it prevents the current flowing through it from exceeding the predetermined limit value without any delay.
  • the limit value to which the current limiting circuit limits the current flowing through it can not only be switched back and forth between two values but can be changed continuously in a predetermined range. This makes it possible, on the one hand, to limit the short-circuit current flowing in the third switching state to an uncritical value, and, on the other hand, to control or regulate the currents which flow through the relevant further winding in the first or second switching state, if necessary.
  • an actuating unit comprises a transformer with a single further winding and four switches, of which the first and second are designed as triac and the third and fourth as current limiting circuits, then when switching from the first (second) to the second (first) switching state the to open switch at the start of switching, ie the second (first) and third (fourth) switches are closed immediately and without any delay, as a result of which the actuating unit changes to the third switching state. To get from this into the second (first) switching state, the first (second) and fourth (third) switch must be opened. Since it is assumed here that the first (second) switch is a triac, this is only possible if the short-circuit current flowing through it and the further winding has a zero crossing.
  • the third (fourth) switch can then be closed with a certain time safety margin and only then is it possible to open the first (second) switch, for which a zero current crossing must again be waited for.
  • a waiting time of two half-periods can result in the worst case. If the actuator is held in the third switching state for a long time, the third and fourth switches can be opened. If a transition to the first (or second) switching state is then to take place, the fourth (third) switch must first be closed, which can happen at any time; then the second (first) switch is opened, for which a zero current crossing must again be waited for.
  • the transformer has two further windings, each of which can be connected to the further conductor by means of a switch and via this and a current limiting circuit to the connecting connecting conductor, in the worst case one must also use triacs as a switch Wait half a period until the corresponding switch can be opened when changing from the third to the first or second switching state. It is again irrelevant whether the actuating unit has been in the third switching state for a long time or if it briefly runs through when switching from the first, to the second or from the second to the first switching state.
  • the invention provides instead of using triacs electronic switches which can not only be closed at any time but also opened again.
  • V-MOS transistors are available, two of which must be connected in series with their source-drain paths with opposite polarity in order to create one To build AC voltage switch. With these switches, there are no waiting times until the next zero current crossing when opening.
  • a switching criterion that is independent of the zero crossing of the short-circuit current can be used for the opening processes, which each lead from the third switching state to the first or second switching state, which leads to the smallest possible change in the current in the further winding lying on its control voltage after the switching process .
  • the time interval of the zero crossing becomes according to the invention of the last-mentioned current from the zero crossing of the input AC voltage measured and stored at an earlier point in time in which the actuating unit is in the relevant switching state.
  • the above-mentioned favorable switching time can then be determined on the basis of a zero crossing of the input AC voltage.
  • a fourth switching state can be produced for an actuating unit, the transformer of which has only a single further winding, in that the switches of the actuating unit are actuated in such a way that the circuit of the other Winding has a high resistance value, which provides a high resistance value even after transformation down on the side of the first winding.
  • the entire magnetization of the transformer core is caused by the flooding of the first winding.
  • a voltage drop depends on the size of this flow and thus on the size of the load current at the first winding. This throttling effect of the first winding in the fourth switching state can be used to limit the power supplied to the load to a safe level when a short circuit occurs at the load.
  • each of the two actuating units connected in series, the transformers of which are dimensioned so that each of the two actuating units, both in an adding and in a subtracting manner, is capable of effecting approximately half of the total voltage change that is to be applied by the actuating unit pair.
  • the pair of actuating units should be able to change the input voltage by ⁇ ⁇ U P
  • each of the two actuating units alone can change the input voltage supplied to them by approximately ⁇ ⁇ U P / 2.
  • the turn ratios of the two transformers are matched to one another in such a way that the effects of the two actuating units compensate one another when the actuating unit pair is in a third switching state combination;
  • this third switching state combination for example, the first actuating unit, ie closer to the supply voltage source, is in the first and the second actuating unit in the second switching state. It then applies to the output voltage of the actuator pair
  • the fourth switching state combination remains unused for a pair of actuating units, in which the first actuating unit is in the second switching state and the second actuating unit is in the first switching state.
  • each of the two actuating units of the pair of actuating units can be brought into the third switching state on its own.
  • each of the two actuating units is designed in accordance with one of the above-described embodiments such that it can be brought into the third switching state on its own; you can see the above in every control unit mentioned current limiting circuit or current limiting circuits before, with the help of V-MOS transistor switches an extremely fast, in several steps switching from each switching state combination of the actuator pair in any other switching state combination can be carried out.
  • the third switching state combination has the advantage over the other switching state combination that, if necessary, a transition to the first or the second switching state combination can take place in two equally large change steps, the first of which can be carried out without any delay, that the second or the first actuating unit is brought into its third switching state by closing the switch in question.
  • the transition from the first to the second or from the second to the first switching state combination likewise takes place in two steps, of which the first can be carried out immediately and the second at the latest within the next half cycle of the AC voltage.
  • the first step consists in bringing both actuating units into their third switching state simultaneously by closing the corresponding switches; in the second step, the two actuating units are each converted into their second or their first switching state by opening the corresponding switches.
  • transformer circuit consisting of one or more such pairs of actuating units (which can then cause different voltage changes) is used as a voltage regulator or voltage constant, it can also be used to meet the extremely high requirements in terms of switching speed and switching accuracy, such as those used in the Power supply of data processing systems are provided.
  • stages which either consist of individual actuating units, each of which can be brought into the third switching state, or consist of the actuating unit pairs described above (in one arrangement also both types can be mixed), to connect in series and to select the voltage differences ⁇ ⁇ U1, ..., ⁇ ⁇ U n , which can generate n such stages, from each other.
  • the percentage values that result when each of these voltage differences is divided by the supply voltage divided by 100 are in relation to one another in the form of integer powers of three. This applies to the smallest voltage difference ⁇ ⁇ U min that can be generated by one of the stages: so the voltage differences of the other stages are chosen so that they are approximately equal to ⁇ 3A%, ⁇ 9A% etc. of the supply voltage U V.
  • a "+” means that one or both actuating units of a pair are in the first switching state in the relevant stage, so that the amplitude of the supply voltage is increased by 9A%, 3A% or A% while a "-" means a corresponding reduction and "O” symbolizes the third switching state of an individual control unit or the switching state combination 3 (see Table 1) of the relevant control unit pair, in which or in which the amplitude of the input AC voltage is passed on unchanged becomes.
  • the right column shows the total changes in amplitude that can be achieved by the respective combination of the switching states of all stages. Only rounded values are given, which do not take into account that the input voltage of the stages closer to the load can change depending on the switching state of the preceding stages.
  • a stage is made up of two actuating units which form a pair, then, as an alternative to the arrangement just explained, only two switching state combinations can be used for each pair of actuating units Use is made, for example, of the switching state combination O, in which the output voltage is equal to the input voltage, and the combination “-”, in which the output voltage is lower than the input voltage by n ⁇ A%, where n is different for each pair of actuating units takes an integer value.
  • control unit pairs can also be provided, which can only assume the two switching state combinations O and + n ⁇ A%.
  • transformer circuit according to the invention consisting of two, three or more stages does not consist in the fact that nine, twenty-seven or more output voltages should be able to be generated one after the other starting from a fixed supply voltage originating from a voltage source.
  • a circuit arrangement comprises, in addition to a transformer circuit with a corresponding number of stages, a sensor arrangement which measures the amplitude of the supply voltage and / or the amplitude of the load voltage, a comparator arrangement which compares the sensor signal or signals with one or more reference values and, in the event of deviations, corresponding difference signals generates, as well as a switch control that compares these difference signals, for example, with a permanently programmed table of difference signal values. From this comparison, the switch controller determines the combination n+ or n ⁇ of switching states (see Table 2) that is required to compensate for the deviation of the supply voltage from the nominal value, so that the load voltage remains within the specified range S L ⁇ ⁇ %.
  • a corresponding integer multiple of A% is subtracted from the supply voltage and the load voltage is thus kept in the desired range S L ⁇ ⁇ %.
  • the transition from the nth combination to the (n + 1) ⁇ th combination takes place at a certain switching threshold SW n - / (n + 1) - ie a fixed amplitude value of the supply voltage. If the positive deviation continues to decrease, the transition from the (n + 1) ⁇ th combination to the n ⁇ th combination of switching states takes place in the opposite direction at approximately the same switching threshold. It is advantageous to separate the last two switching thresholds from one another by means of a small voltage difference. The "hysteresis" achieved in this way prevents an excessive switching cycle in cases in which the supply voltage U V has a value for a long time which is equal to a switching threshold and fluctuates slightly around this value.
  • the switching thresholds are preferably set such that when the amplitude of the supply voltage passes the value of the switching threshold in question without a sudden change, the amplitude values U Lvor and U Lnach are symmetrical to the setpoint.
  • U Lvor is the amplitude of the load voltage before the switching process and U Lnach is the amplitude of the load voltage after the switching process.
  • the percentage value A is constant, but is not related to the target value S L but to the amplitude of the input voltage of the respective stage.
  • the size of U Lvor and U Lnach therefore depends on which combination of switching states a transition to an adjacent combination takes place.
  • A should be as large as possible so that as few actuators as possible are required to cover a given fluctuation range ⁇ , but on the other hand A should not be chosen too large, because otherwise the desired control accuracy ⁇ will not can be observed.
  • A is preferably chosen so that it is between 1.6 ⁇ ⁇ and 1.8 ⁇ ⁇ .
  • the switching thresholds can be used regardless of whether the circuit arrangement works as a voltage constant or as a voltage regulator, i.e. whether the load voltage U L is kept at a setpoint value S L which is equal to the nominal value of the supply voltage emitted by the voltage source or at a target value that differs from this nominal value.
  • switching thresholds are also independent of whether the supply voltage or the load voltage is measured with the sensor arrangement.
  • the difference between the above switching thresholds and the desired value S L can be contained directly in the table used by the switch control, with which the difference signal supplied by the comparator is compared.
  • the switch control In the second case, the switch control must determine from the approximation of the amplitude of the load voltage to one of the values U Lvor and U Lnach and / or knowledge of the currently valid combination of switching states, to which switching threshold the supply voltage is approaching and which switchover is therefore undertaken got to.
  • the sensor arrangement measures the amplitude of the alternating voltages in front of and behind the transformer circuit.
  • the changes in both the supply voltage U V and the load voltage U L are then detected and evaluated in such a way that the switches of the actuating units are controlled in such a way that the amplitude of the voltage supplied to the load is as constant as possible.
  • a transformer circuit according to the invention can advantageously be used in multiphase systems with or without a neutral conductor.
  • at least one control unit is provided for each phase, the first winding of which lies in the respective phase conductor in such a way that the load current flowing on this phase conductor flows through it, while the connecting connecting conductor of each control unit with the neutral conductor of the multiphase system connected is.
  • the multiphase system does not have a neutral conductor leading from the voltage source to consumption, the first windings of the actuating units which are provided for a specific phase are switched back into the phase conductor and all the connecting connecting conductors are connected to one another, thereby creating an artificial zero -Conductor is formed, which can be at any potential.
  • the actuating units provided for the different phases can be arranged in a daisy-chained circuit.
  • FIG. 1 shows an AC voltage source 1, which emits a supply voltage U V , which is fed to the input connections 2, 3 of an actuating unit 4 as an input voltage U E.
  • An output voltage U A appears at the output connections 5, 6 of the actuating unit 4 and is supplied to a load 7 as a load voltage U L.
  • the control unit 4 With the help of the control unit 4, the amplitude of the output voltage U A can be changed compared to the amplitude of the input voltage U E.
  • the control unit 4 comprises a transformer 8, the first winding 9 of which is connected between the input terminal 2 and the output terminal 5, while the input terminal 3 is directly electrically connected to the output terminal 6 by means of the connecting connecting conductor 10. In this way, seen from the voltage source 1, the first winding 9 is connected in series with the load 7.
  • the transformer 8 has a further winding 11 which is magnetically coupled to the first winding 9 via the iron core 12 of the transformer 8.
  • Two switches 150, 152 and 151, 153 are connected to the two ends 13, 14 of the further winding 11.
  • switch 150 If the switch 150 is closed, it connects the end 13 of the further winding 11 to the input terminal 2, to which the one end of the first winding 9 is also connected. If the switch 151 is closed, it connects the other end 14 of the further winding 11 to the output terminal 5, to which the other end of the first winding 9 is connected.
  • the switch 152 If the switch 152 is closed, it connects the end 13 of the further winding 11 to a line 155, with which the switch 153 also connects the other end 14 of the further winding 11 in the closed state.
  • a circuit arrangement 157 is provided between the line 155 and the connecting connecting conductor 10, which can be a simple controllable off / on switch, but is preferably formed by a current limiting circuit, as will be explained in more detail below with reference to FIG. 3 .
  • the actuating unit 4 can be brought into four different switching states.
  • the first switching state in which the switches 150 and 153 are closed, the input voltage U E is applied to the further winding 11 and the current limiting circuit 157 lying in series therewith. Since the limit value to which the current limiting circuit 157 limits the current flowing through it is selected to be greater than the current which flows through the further winding 11 in this first switching state, the voltage drop across the current limiting circuit 157 is very small and it is practically the whole Input voltage U E at the further winding 11 as a control voltage.
  • the winding sense of the windings 9, 11 defined by the points 19, 20 is selected so that the voltage ⁇ U 1, which is induced in this first switching state by the further winding 11 in the first winding 9, is added to the input voltage U E.
  • the switches 150 and 153 are open and the switches 151 and 152 are closed, as a result of which the output voltage U A of the actuating unit is connected to the further winding 11 and the current limiting circuit 157 which is in series with it again 4 is laid. Since the current flowing through the further winding 11 in this second switching state is approximately equal to the current flowing through the further winding 11 in the first switching state, this current is also below that Limit value of the current limiting circuit 157, so that its resistance is very small even in this second switching state and practically the entire output voltage U A is applied to the further winding 11. The winding direction of the further winding 11 is reversed compared to the first switching state.
  • a third switching state of the actuating unit 4 at least the two switches 150 and 151 are closed, so that the further winding 11 with antiparallel winding direction to the first winding 9 and electrically parallel to this first winding 9 is at the same voltage as this.
  • the transformer 8 is therefore short-circuited and the currents flowing in the two antiparallel windings 9, 11 each try to build up a magnetic field; however, these fields face each other and almost cancel each other out.
  • the current limiting circuit 157 can be dispensed with, ie the conductor 155 can be connected directly to the connecting connecting conductor 10 in a galvanically conductive manner.
  • this has the consequence that when switching, for example from the second switching state shown in FIG. 1 to the first switching state, the switches 151, 152 must first be opened, and that the switches 150 only when these switches are open with certainty , 153 can be closed.
  • the current limiting circuit 157 It enables the setting unit 4 to be brought into the third switching state first, in a switching process by which the setting unit is to be switched from the second switching state shown in FIG. 1, for example, which is done by closing the first switch 150. A short time later, the third switch 152 is then opened and the fourth switch 153 is then closed. The actuating unit remains in the third switching state since the first switch 150 and the second switch 151 are closed during this time. Short-circuiting of the two windings 9 and 11 by the further conductor 155 is avoided in that the two switches 152 and 153 are not closed at the same time.
  • the current limiting circuit 157 prevents the flow of an inadmissibly large short-circuit current from the connection 5 or connection 2 to the connection connecting conductor 10 via the simultaneously closed switches 151, 153 or the simultaneously closed switches 150, 152.
  • the switch 151 is then opened as the last step of the switching process, as a result of which the actuating unit changes from the third switching state to the first switching state.
  • the actuating unit 4 also briefly passes through the third switching state whenever it is intended to change from the first to the second or from the second to the first switching state. If the actuating unit 4 is to be kept in the third switching state for a longer period of time, the switches 152 and / or 153 are opened so that no more currents can flow from the input connection 2 or from the output connection 5 to the connection connecting conductor 10 and the power loss is thus further reduced .
  • a fourth switching state all four switches 150 to 153 are open, so that the circuit of the further winding 11 has a high resistance value, which provides a high resistance value even after transformation down on the side of the first winding 9. A voltage drop dependent on the size of the load current thus occurs at the first winding.
  • This throttling effect of the first winding 9 in the fourth switching state can be used to limit the power supplied to the load to a safe level at least until a short circuit occurs at the load until further switch-off measures have been taken.
  • the switches 150 to 153 are actuated by a switch control 23, which controls the switches via lines 158, 159, 160 and 161.
  • the switch controller 23 can obtain the information required for this from a comparator (not shown in FIG. 1) which compares the load voltage U L and / or the supply voltage U V with setpoints and outputs corresponding difference signals in the event of deviations.
  • the transformer 8 of the actuating unit 4 comprises a short-circuit winding 28 which can be short-circuited with the aid of a switch 29 which is parallel to it.
  • This switch 29 is also controlled by the switch control 23 via a line 30. According to the invention, this only occurs when certain faults occur in the switches 150 to 153 or in the current limiting circuit 157, as will be explained in more detail below.
  • the current limiting circuit 157 in the actuating unit 4 can be omitted without the delays in the switching process mentioned above having to occur.
  • the two switches 152, 153 which are then directly connected again to the connecting connecting conductor 10, are each designed as a current limiting circuit, the limit value of which can be switched back and forth between the value zero and a value other than zero . If such a current limiting circuit is switched to the limit value zero, this corresponds to the open state of a switch. If, on the other hand, it is switched to the limit value other than zero, it only opposes the current flowing through it with a very small, constant resistance, as long as this current remains significantly below the limit value. This limit becomes so chosen that it is greater than the current that must flow through the further winding 11 and the relevant switch 153 or 152 in the first or in the second switching state.
  • the switchover from the first to the second switching state or from the second to the first switching state takes place in such a way that the two previously open switches are closed simultaneously and a short time later the two switches which are open in the new switching state are opened simultaneously have to. If switches 150 and 151 are implemented with the aid of triacs, this opening process must be used until the next zero crossing of the current which flows through the relevant switch 150 or 151 before opening.
  • the actuating unit can be brought into the fourth switching state by opening all four switches 150 to 153 simultaneously.
  • FIG. 2 shows a transformer circuit with an actuating unit 34, the structure of which differs from that of the actuating unit 4, but which in principle has the same functions.
  • the actuating unit 34 in turn comprises a transformer 8, the first winding of which is connected between the input connection 2 and the output connection 5, while the other input connection 3 is connected via the connection connecting conductor 10 is directly electrically connected to the other output terminal 6.
  • the transformer 8 here has two further windings 35, 36, one of which, as an additional winding 35, is firmly connected at one end to the end of the first winding 9 in a galvanically conductive manner, which with the Input terminal 2 is directly electrically conductively connected, while the other end of the adding winding 35 can be connected or disconnected from a line 185 by means of a switch 180, which in turn is connected to the connecting connecting conductor 10 via a current limiting circuit 157.
  • the other of the two windings is fixed as a subtracting further winding 36 with one end and is directly galvanically conductively connected to the end of the first winding 9, which is directly galvanically conductively connected to the output terminal 5 of the actuating unit 34, while the other end of the further subtracting Winding 36 can be connected or disconnected from line 185 by means of a switch 181.
  • the sense of winding of the three windings 9, 35 and 36, which are magnetically coupled to one another via the core 12, is identified by points 19, 20 and 21.
  • the limit value of the current limiting circuit 157 is selected to be greater than the currents which are generated in the first switching state by the adding winding 35 or in the second switching state by the subtracting one Winding 36 flow.
  • a current limiting circuit 157 is again provided here between the conductor 185 and the connecting connecting conductor 10 , which could in principle be replaced by a controllable on / off switch.
  • protection times would then have to be introduced and special verification circuits would have to be provided for switching from one switching state to the other so that it is absolutely certain that switches 180 and 181 are closed at the same time as long as the switch connecting lines 185 and 10 is closed.
  • a current limiting circuit is therefore preferably used again as circuit arrangement 157, which automatically and without time delay prevents a further increase in the current flowing through it if this current threatens to exceed a predetermined limit value.
  • the actuating unit 34 can also be brought into a fourth switching state, as shown in FIG. 2.
  • this switching state the two switches 180 and 181 are opened at the same time, as a result of which a strong throttling action of the first winding 9 occurs again, which can be used to limit the short-circuit current in the event of a load short circuit.
  • Switching from the first to the second or from the second to the first switching state takes place in such a way that the one of the two switches 180, 181 that was previously open is closed, and only then is the switch closed until then opened.
  • the actuating unit 34 therefore also briefly passes through the third switching state with each transition from the first to the second or from the second to the first switching state.
  • the current limiting circuit 157 is controlled via two lines 163 by the switch controller 23 so that its limit value is significantly smaller Value, preferably takes the value zero.
  • the current limiting circuit 157 then acts like an open switch and practically only the very small short-circuit current flows, which is driven by the small voltage drop across the first winding 9 in the two further windings 35, 36.
  • the switches 180, 181 are controlled by the switch controller 23 via the lines 164, 165.
  • the transformer 8 of the actuating unit 34 also has a short-circuit winding 28 which can be short-circuited via a switch 29 which is controlled by the switch controller 23 via a line 30.
  • a fuse 167 can also be provided in the setting unit 4 shown in FIG. 1, which is connected in series with the current limiting circuit 157.
  • FIG. 3 shows a current limiting circuit 157, as can be used in the actuating units 4, 34 in FIGS. 1 and 2.
  • This current limiting circuit has two current connections 187, 188, one of which is connected directly to line 155 or line 185 and the other to the connecting connecting conductor 10 in a directly electrically conductive manner.
  • a series circuit is arranged between the two current connections 187, 188 and consists of the source-drain path of a first V-MOS transistor 190, two resistors 192, 193 and the source-drain path of a second V-MOS transistor 191 .
  • Parallel to this series connection are between the two power connections 187, 188 two diodes 198, 199 connected in series with one another, whose forward directions are opposite to each other.
  • the connection point 196 of the two diodes 198, 199 is electrically connected to the connection point 195 of the two resistors 192, 193.
  • each of the two transistors 190, 191 has a diode characteristic, i.e. its blocking effect can only develop in one direction
  • the two transistors 190, 191 are arranged such that their forward directions are parallel to the forward direction of the diodes 198 and 199 lying in the parallel branch and thus opposed to one another.
  • an alternating current can also be limited in the required manner with the aid of this current limiting circuit 157.
  • the diodes 198, 199 are selected so that the voltage drop across them when the rated current flows is smaller than the corresponding voltage drop across the parallel V-MOS transistor 190 and 191, respectively. Since each diode 198 and 199 is not only the one parallel to it V-MOS transistor 190 or 191 but also bypasses its associated series resistor 192 or 193, the half-waves of the alternating current to be limited either flow via diode 198 and further via resistor 193 and V-MOS transistor 191 or via the diode 199 and further via the resistor 192 and the V-MOS transistor 190.
  • the alternating current in each half-wave can be limited as required by one of the two V-MOS transistors 190 and 191; on the other hand it is avoided that the half-waves also the second Resistor and the second V-MOS transistor must flow through, which are only necessary for limiting the half-waves with the other sign.
  • the power loss occurring in the current limiting circuit 157 can thus be kept particularly small.
  • the gate voltage for the two transistors 190, 191 supplied from the switch controller 23 via the two lines 163 is applied between the connection point 195 of the two resistors 192, 193 and the two gate connections of the transistors 190, 191.
  • the size of this gate voltage is selected so that the current flowing from one of the two connections 187, 188 to the respective other connection cannot exceed a predetermined limit value.
  • the gate voltage supplied via the lines 163 is chosen to be so low that it is below the threshold voltage U TH of the V- MOS transistors 190, 191, which thus practically no longer allow current to flow through their source / drain path.
  • switches 150 to 153 or 180 and 181 triacs can be used as switches. However, this means that these switches can only be opened when the current flowing through them passes through a zero crossing. It has already been pointed out that according to the invention, switches which are initially open until then are closed when changing from one switching state to the other. Then Both the actuating unit 4 and the actuating unit 34 are each in their third switching state. The respective short-circuit current then flows through the switches 150, 151 or 152, 153 or 180, 181 and it can only be switched to the subsequent first or second switching state when this short-circuit current passes through a zero crossing.
  • the further winding 11 or one of the two further windings 35, 36 is connected to its control voltage U E or U A , which as a rule attempts to force the flow of a current against the current flowing up to that point Short-circuit current is out of phase, that is, at the point in time at which the respective switch is opened, has no zero crossing.
  • Fig. 4 are shown in a diagram the curve of an oscillation period of the input voltage U E , the short-circuit current I K flowing in the third switching state, the current I 1 flowing in the first switching state and the current I 2 flowing in the second switching state.
  • the amplitude of the short-circuit current I K is shown greatly enlarged for the sake of clarity.
  • control unit 4 or 34 is in the third switching state, from which during the first half period of the input voltage U E shown in FIG. 4, ie between the times t 1 and t 1, the transition is made into the first switching state should.
  • switch 151 must be opened in the embodiment according to FIG. 1 and switch 181 in the embodiment according to FIG. 2. Since these switches are traversed by the short-circuit current I K , they can, if they are implemented with the help of triacs, only be opened at the time t4 in which the short-circuit current I K passes through a zero crossing. 4 that at this point in time the current I 1, which should flow through the further winding 11 or the further winding 35 immediately following the opening of the switches, has a value which is equal to the zero crossing value of the short-circuit current I K which has flowed through this further winding 11 or 35 before opening, is considerably different.
  • the compensation current I G is added to the current driven by the input voltage U E through the further winding 11 or 35. Since the transformer 8 is dimensioned so that the current that normally flows through a further winding connected to its control voltage is just below of the saturation limit, the transformer is driven into saturation by this compensation current I G. This has the consequence that there is a voltage drop in the switching process just described, the leads to the fact that the transition from the old to the new voltage amplitude is not completely smooth, but that voltage peaks are impressed on the first half-wave of the output voltage U A following the switching operation.
  • switches 150 to 153 and 180, 181 also be constructed with V-MOS transistors instead of triacs, two of which are again connected in series with opposite polarity. These transistors have the advantage that the switch they form can be opened regardless of the size of the current flowing through them. It is therefore no longer necessary to wait for the next zero crossing of the short-circuit current I K , but the transition from the third to the first or second switching state can take place at a much more favorable time.
  • the optimal switching times would be the times t2 or t3, because in them the short-circuit current I K , which flows in the other windings in question before switching, is equal to the current after the switching process in the respective other Winding should flow.
  • the time intervals ⁇ 1 and ⁇ 2 which have the replacement times t2 'and t3' from the nearest zero crossing of the input voltage U E , are load-dependent, they cannot be stored once and for all in the switch control 23. Instead, they are measured whenever the actuating unit 4 or 34 is in the first or second switching state, and the measured values are stored. If the next switch from the third switching state to the first or second switching state is to be made, the switching time t2 'or the switching time t2' or, starting from the time which has elapsed since the zero crossing t 1 of the input voltage U E and which the switching process is to follow. the switching time t3 'can be easily specified.
  • the voltage change 2 ⁇ U occurring in total can be carried out in two steps; the first step, in which the output voltage is changed by ⁇ U, takes place immediately, ie simultaneously with the generation of the switchover signal. This is done in that the control unit is switched to the third switching state by closing one or more switches that were open until then.
  • the second half of the required change is then accomplished within a period of time, which in the worst case is equal to half an oscillation period of the input voltage U E. Assuming that U E has an oscillation frequency of 50 Hz, the overall change can be accomplished within a maximum of 10 ms. Then the output voltage U A has a stable new value.
  • an actuating unit is to be switched to the first or second switching state after it has been in the third switching state for a long time. Since only one or two switches have to be opened during such a transition, after the changeover signal has been generated it is only necessary to wait until the next favorable switching time t2 'or t3' occurs. Since each of these points in time is available twice per AC voltage period, a time period corresponding to the length of a half cycle of the AC voltage must therefore be waited in the worst case before switching can take place. Although the change in the output voltage takes place in a single step, the magnitude of this change is only half the size of the total change which is made during the transition from the first to the second or from the second to the first switching state.
  • a particularly fast and precise switchover occurs when two of the actuating units 34 described above are connected in series to form a pair of actuating units.
  • FIG. 5 shows a transformer circuit which serves as a single-phase voltage constant for the voltage U L supplied to the load 7. It is assumed that a set value S L is specified for the amplitude of the alternating voltage supplied to the load 7, which is set to 100% below, and from which the voltage actually applied to the load 7 may deviate by a maximum of ⁇ ⁇ %. Furthermore, it is assumed that the supply voltage U V supplied by the AC voltage source 1 can deviate in amplitude by ⁇ ⁇ % from the nominal value U Vnom . In principle, the setpoint S L the load voltage U L is equal to the nominal value U Vnom of the supply voltage U V or different from this nominal value.
  • the transformer circuit according to the invention enables the load voltage U L to be regulated to a desired value S L , which is, for example, at or near the limit of the intended control range.
  • S L a desired value
  • this is only useful if deviations in the supply voltage can only occur in one direction. If, for example, the supply voltage is generated from a battery arrangement with the aid of an inverter, this requirement is met without further ado, since the direct battery voltage and thus also the amplitude of the alternating voltage generated therefrom only prolonged operation with progressive discharge of the battery arrangement, but not can increase.
  • a transformer circuit according to the invention which consists of three stages 55, 56, 57 connected in series with one another, each of which either from an actuating unit 4 or 34, according to FIG. 1 or from can be formed a pair of actuators, which is composed of two actuators 34, 34 'according to FIG. 2.
  • Steps 55, 56, 57 are controlled with the aid of a switch control 23, which is connected to each step 55, 56, 57 via a pair of lines 61, 62 connected is.
  • an actuating unit 34 or an actuating unit pair 34, 34 ' symbolize the lines 158, 159, 160, 161 and 30 (see FIG. 1), lines 163, 164, 165 and 30 (see FIG. 2), or twice lines 163, 164, 165 and 30 (see FIG. 2).
  • the switch control 23 issues the switching commands to the switches of the stages 55, 56, 57 via the lines 61 and receives the information generated by the sensor windings 43 about the phase position of the magnetic flux in the first windings 9 of the transformers 8 and thus via the lines 62 the favorable closing times and periods for the switches. Furthermore, a first comparator 63 is provided, which receives a reference voltage U ref1 at one of its two inputs, which represents the setpoint S L for the load voltage U L. The other of its two inputs is supplied with the output signal of a first sensor 64, which measures the load voltage U L. Via the line 65, the comparator 63 outputs a differential signal to the switch controller 23, which indicates whether and how far the load voltage U L from the target value S L from the original.
  • the switch control 23 changes the switching states of the stages 55, 56, 57, which then impress a new amplitude change on the supply voltage U V and thus the load voltage U L within the permissible control range Hold ⁇ ⁇ %.
  • a second comparator 66 is provided which compares a reference voltage U ref2 corresponding to the nominal value U Vnom of the supply voltage U V with the output signal of a second sensor 67 which measures this supply voltage U V.
  • the differential signal emitted by the second comparator 66 is likewise fed via line 68 to the switch control 23, which can thus operate not only in the control mode but also in the control mode or in a combination of both.
  • the switch controller 23 preferably comprises a microprocessor for processing the information coming in via the lines 62, 68 and 65 and for converting this information into corresponding switching commands.
  • the stages 55, 56, 57 are constructed in such a way that each stage increases the input voltage supplied to it in a first switching state or in a first switching state combination by a predetermined percentage, in a second switching state or in a second switching state -Combination reduced by approximately the same percentage rate and passed on unchanged in a third switching state or in a third switching state combination.
  • switching state combinations also referred to simply as the first, second or third switching state.
  • the specified percentages by which the individual stages can change the input voltage supplied in each case differ from stage to stage and are preferably approximately in relation to one another in the form of integer powers of three.
  • the last stage 57 which is closest to the load 7, can change the input voltage supplied to it, for example, by ⁇ A% or pass it on almost unchanged.
  • the middle stage 56 can change the input voltage supplied to it by approximately ⁇ 3A% or pass it on almost unchanged, and the foremost stage 55 closest to the voltage source 1 can change the input voltage supplied to it by approximately ⁇ 9A% or pass it on almost unchanged.
  • each stage 55, 56, 57 is formed by a pair of actuators 34, 34 '
  • this is shown in more detail in Table 3 for the case that ⁇ A% ⁇ ⁇ 1% is selected so that there is a possible amplitude change of approximately ⁇ 3% of the input voltage supplied to this pair for the actuator unit pair of the middle stage 56 and a possible amplitude change of approximately ⁇ 9% for the actuator unit pair of the foremost stage 55.
  • the additive winding of the actuating unit 34 can effect a change of + 4.5%, while the subtracting winding can bring about a change of - 4.9%, and the additive or subtracting one Winding the actuator 34 'can apply a change of + 4.4% or - 4.2% to the input voltage of this rear actuator 34' of level 55.
  • level 56 with values that are about 0.02% to 0.03% higher, as can be seen in Table 3 without any problems.
  • Table 4 Similar to Table 2 on the left, the twenty-seven switching state combinations are listed again, which can be achieved with a transformer circuit comprising three actuator unit pairs according to FIG. 5, if only three switching state combinations are used for each actuator unit pair.
  • Table 4 shows for each actuator 34, 34 'of the three actuator pairs whether the additive or the subtracting winding is connected to the associated input or output voltage.
  • a “1” means that the further winding in question is connected to the associated voltage, while a "0" indicates that the winding by opening the relevant switch 180, 181 or 180, 181 'from the connection connecting conductor 10 (see. Fig. 2) separately and therefore not connected to the input or output voltage.
  • the number combination 1001 for a pair of actuating units thus means that in the front actuating unit, ie closer to the voltage source 1, the additive winding is switched on and the subtracting winding is switched off, while in the rear actuating unit arranged closer to the load 7, the additive winding switched off and the subtracting winding is switched on.
  • a pair of actuators identified in this way is therefore in the third switching state combination defined above, in which the effects of the front and rear actuators virtually cancel each other out, so that the input voltage appears at the output of the actuator pair with an almost unchanged amplitude.
  • the switch controller 23 selects this combination when the supply voltage U V has dropped significantly compared to the setpoint.
  • Fig. 6 shows a modification of the circuit arrangement according to the invention, as it can be used to control the voltage output by a three-phase network.
  • a transformer circuit 75, 76, 77 is provided for each of the three phase conductors R, S and T, each of which is constructed in the same way as the transformer circuit in FIG. 5.
  • Each of these therefore exists three transformer circuits 75, 76, 77 from three stages 55, 56, 57 connected in series, each of which here consists of a pair of actuating units 34, 34 'and can assume four different switching states.
  • the AC voltage on each of the three phase conductors R, S and T can thus be subjected to change amounts which are in a ratio of 1: 3: 9, or the AC input voltage can be passed on unchanged or the load current can be throttled.
  • each of the transformer circuits 75, 76, 77 is not only with its associated phase conductor R, S or T, but also with the zero -N conductor connected.
  • a three-phase network 80 is used here as the voltage source.
  • the voltage amplitudes supplied by the network 80 on the individual phase conductors R, S, T are continuously measured with the aid of a sensor arrangement 81, which supplies the three measurement signals to a comparator arrangement 82. There, the measurement signals are compared with a common reference value U ref . Alternatively, a separate reference value can also be specified for each phase conductor R, S and T.
  • the comparator 82 generates a separate difference signal for each of the three phase conductors R, S, T, which is fed to a switch controller 83.
  • This controls via the line groups 85, 86, 87, the switches of the stages 55, 56, 57 in each of the transformer circuits 75, 76, 77 in the manner as has been explained in detail above.
  • each control unit is connected to the switch control 83 via several lines, as shown in FIGS. 1 and 2. For the sake of simplicity, however, these lines have only been shown in FIG. 6 as a single bidirectional line.
  • each transformer circuit 75, 76, 77 is formed by a phase conductor R K , S K or T K , the letter "K" indicating that an AC voltage with a constant amplitude is available on these phase conductors.
  • These voltages can either be applied together to a single load that requires a three-phase current, or different loads, each of which only has to be operated with a 1-phase alternating current.
  • the sensor arrangement 81 can also be designed in a multi-phase system in such a way that it measures the AC voltages supplied to the phase conductors R K , S K , T K of the loads.
  • the circuit arrangement according to the invention can also be used in multi-phase systems which comprise fewer or more than three phases.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Ac-Ac Conversion (AREA)
  • Control Of Electrical Variables (AREA)

Claims (36)

  1. Circuit de transformateur, pour la production d'une tension de charge réglable, appliquée à une charge, à partir d'une tension d'alimentation fournie par une source de tension, avec au moins une unité de réglage dont les composants sont les suivants:
    - un transformateur, avec un premier bobinage, placé en série avec la charge, et au moins un bobinage supplémentaire, dont le rapport du nombre des spires par rapport au premier bobinage est supérieur à 1,
    - un conducteur reliant des bornes, disposé, en observant depuis le premier bobinage du transformateur, derrière la charge et placé en série avec celle-ci, ainsi que
    - des commutateurs, à l'aide desquels l'unité de réglage est commutable entre différents états de connexion, où, au moins dans l'un de ces états de connexion, est appliquée, à un bobinage supplémentaire, une tension alternative de commande qui induit, dans le premier bobinage, une tension qui influe sur la tension alternative d'entrée, de telle façon que l'amplitude de la tension alternative à la sortie se distingue de l'amplitude de la tension alternative à l'entrée par l'amplitude de la tension induite, et où, dans un état de connexion neutre, un bobinage supplémentaire soit mis en circuit si bien que la tension de sortie de l'unité de réglage soit égale à la tension d'entrée,
    caractérisé en ce que, à l'état neutre de connexion, à l'aide des commutateurs (150, 151; 180, 181) le bobinage supplémentaire (11; 35, 36) qui, au moins au nombre de un, est mis en circuit dans une voie de courant électrique (150, 11, 151; 35, 180, 185, 181, 36) qui est en parallèle avec le premier bobinage (9) du transformateur (8).
  2. Circuit de transformateur selon la revendication 1, dans lequel le transformateur (8) comprend un bobinage supplémentaire unique (11), caractérisé en ce que l'unité de réglage (4) est connectable à l'aide des commutateurs (150, 151, 152, 153), dans les deux états de commutation suivants:
    - un (premier) état de connexion additionneur, dans lequel le bobinage supplémentaire (11) est soumis à la tension d'entrée (UE) de l'unité de réglage (4), avec un sens de bobinage tel que la tension (ΔU₁) induite de ce fait dans le premier bobinage (9) influe de façon additive sur la tension d'entrée (UE), et
    - un (deuxième) état de connexion soustracteur, dans lequel le bobinage supplémentaire (11) est-soumis à la tension de sortie (UA) de l'unité de réglage (4), avec un sens de bobinage tel que la tension (ΔU₂) induite de ce fait dans le premier bobinage (9) influe de façon soustractive sur la tension d'entrée (UE),
    et que les deux extrémités (13, 14) du bobinage supplémentaire (11) sont reliées, à l'aide d'un premier et d'un deuxième commutateurs (150, 151), aux deux extrémités du premier bobinage (9), pour obtenir le (troisième) état de connexion neutre.
  3. Circuit de transformateur selon la revendication 2, caractérisé en ce que les deux extrémités (13, 14) du bobinage supplémentaire (11) sont reliées au conducteur (10) reliant des bornes, d'une part par l'intermédiaire d'un troisième commutateur (152), d'autre part par l'intermédiaire d'un quatrième commutateur (153), et que les troisième et quatrième commutateurs (152, 153) sont respectivement réalisés à la façon d'un circuit limiteur d'intensité de courant, de manière qu'à l'état fermé il ne soit opposé au courant qui y passe qu'une résistance constante et faible, tant que ce courant est inférieur à une valeur limite prédéterminée, et en ce que cette valeur limite est choisie un peu supérieure à l'intensité du courant qui passe dans le bobinage supplémentaire (11) au premier ou au deuxième état de connexion.
  4. Circuit de transformateur selon la revendication 2, caractérisé en ce que les deux extrémités (13, 14) du bobinage supplémentaire (11) sont susceptibles d'être directement reliées galvaniquement, d'une part par l'intermédiaire d'un troisième commutateur (152), d'autre part par l'intermédiaire d'un quatrième commutateur (153), à un conducteur supplémentaire (155), et qu'entre le conducteur électrique supplémentaire (155) et le conducteur (10) reliant des bornes est prévu un circuit (157) servant à limiter l'intensité, qui relie électriquement les deux conducteurs (15, 10) entre eux.
  5. Circuit de transformateur selon la revendication 4, caractérisé en ce que la voie de courant (152, 155, 153) qui relie entre elles les deux extrémités (13, 14) du bobinage supplémentaire (11), présente, lorsque le troisième et le quatrième commutateurs (152, 153) sont simultanément fermés, une' résistance électrique dont la valeur est supérieure à la résistance ohmique du bobinage supplémentaire (11).
  6. Circuit de transformateur selon la revendication 1, caractérisé en ce que le transformateur (8) comprend deux bobinages supplémentaires (35, 36), dont l'un est un bobinage additionneur (35) dont la première extrémité est constamment reliée au raccordement d'entrée (2) de l'unité de réglage (34), auquel le premier bobinage (9) est relié, et dont l'autre est un bobinage soustracteur (36) dont la première extrémité est constamment reliée au raccordement de sortie (5) de l'unité de réglage (34), auquel le premier bobinage (9) est relié, où l'unité de réglage est susceptible d'être placée, à l'aide des commutateurs (180, 181) dans les états de commutation suivants:
    - un (premier) état de connexion additionneur, dans lequel seul le bobinage supplémentaire additionneur (35) est relié, par sa deuxième extrémité, au conducteur (10) reliant des bornes, grâce à quoi est induite dans le premier bobinage (9) une tension (ΔU₁) qui s'additionne à la tension d'entrée (UE),
    - un (deuxième) état de connexion soustracteur, dans lequel seul le bobinage supplémentaire soustracteur (36) est relié, par sa deuxième extrémité, au conducteur (10) reliant des bornes, grâce à quoi est induite dans le premier bobinage (9) une tension (ΔU₂) qui se soustrait de la tension d'entrée (UE),
    et que les deux deuxièmes extrémités des deux bobinage supplémentaire (35,36) sont reliées directement entre elles galvaniquement dans le (troisième) état de connexion neutre.
  7. Circuit de transformateur selon la revendication 6, caractérisé en ce que les deux commutateurs (180,181), grâce auxquels les deux extrémités des deux bobinages supplémentaires (35,36) sont reliables au conducteur (10) reliant des bornes, sont directement reliées entre elles galvaniquement grâce à un conducteur électrique supplémentaire (185), et qu'entre ce conducteur (185) et le conducteur (10) reliant des bornes est prévu un circuit (157) servant à limiter l'intensité du courant, qui relie entre eux électriquement les deux conducteurs (185, 10).
  8. Circuit de transformateur selon l'une des revendications 4, 5 ou 7, caractérisé en ce que le circuit (157) est un commutateur qui est fermé dans les premier et deuxième états de connexion de l'unité de réglage (4, 34) et ouvert dans le troisième.
  9. Circuit de transformateur selon l'une des revendications 4, 5 ou 7, caractérisé en ce que le circuit (157) est un circuit de limitation d'intensité du courant, qui oppose au courant qui le traverse une résistance constante et faible, tant que ce courant est inférieur à une valeur limite prédéterminée, et en ce que la valeur limite est choisie un peu supérieure à l'intensité passant dans le premier ou le deuxième état de connexion dans le bobinage supplémentaire (11; 35, 36) placé sous la tension de commande.
  10. Circuit de transformateur selon la revendication 3 ou 9, caractérisé en ce que la valeur limite du circuit de limitation d'intensité est modifiable.
  11. Circuit de transformateur selon la revendication 10, caractérisé en ce que le circuit de limitation d'intensité de courant est commutable à une deuxième valeur limite, sensiblement inférieure à la première, pendant des temps au cours desquels l'unité de réglage se trouve à long terme dans le troisième état de connexion.
  12. Circuit de transformateur selon la revendication 11, caractérisé en ce que la deuxième valeur limite est égale à zéro.
  13. Circuit de transformateur selon la revendication 3 ou l'une des revendications 9 à 12, caractérisé en ce que le circuit de limitation d'intensité règle le courant passant à travers lui à l'approche de la valeur limite, avec un dépassement continu à cette valeur limite.
  14. Circuit de transformateur selon la revendication 3 ou l'une des revendications 9 à 13, caractérisé en ce que le circuit (157) de limitation d'intensité du courant comprend deux transistors V-MOS (190; 191), dont les pistes de source et de drain sont placées en série avec des polarités mutuellement opposées, et aussi deux résistances (192, 193) branchées en série, entre elles et les pistes de source et de drain des deux transistors (190, 191), entre ces derniers, et la tension de porte des deux transistors (190, 191) étant appliquée au point de liaison (195) des deux résistances (192, 193) et du raccordement de porte respectif.
  15. Circuit de transformateur selon la revendication 14, caractérisé en ce que le circuit de limitation d'intensité (157) comprend deux diodes (198, 199), placées en série, avec des polarités mutuellement opposée, entre les deux raccordements (187, 188) du circuit de limitation d'intensité (157) et dont le point de liaison (196) est relié de façon à conduire l'électricité au point de liaison (195) des deux résistances (192, 193), le sens de passage de chaque diode (198, 199) étant identique au sens de passage permanent du transistor V-MOS (190, 191) placé dans la branche parallèle respective.
  16. Circuit de transformateur selon l'une des revendications précédentes, caractérisé en ce que le rapport du nombredes spires de chaque bobinage supplémentaire (11; 35, 36, 35', 36') du transformateur (8) par rapport au premier bobinage (9) est situé dans une plage allant de 3/1 à 200/1.
  17. Circuit de transformateur selon l'une des revendications précédentes, caractérisé en ce que le circuit de transformateur comprend au moins deux étages (55, 56, 57), dont chacun se compose d'au moins une unité de réglage (4; 34; 34, 34') et les étages étant placés en série les uns par rapport aux autres, de telle façon que la tension alternative de sortie (UA) de l'étage amont (55, 56) soit la tension alternative d'entrée (UE) de l'étage aval (56, 57), et que les premiers bobinages (9), qui sont au moins au nombre de deux, des transformateurs (8) des deux étages (55, 56, 57) soient directement reliés entre eux en série, ces derniers étages étant également au moins au nombre de deux.
  18. Circuit de transformateur selon la revendication 17, caractérisé en ce que chaque étage (55, 56, 57) comprend au moins deux unités de réglage (34, 34'), qui forment un couple d'unités de réglage, les rapports du nombre des spires de chaque premier bobinage (9, 9') par rapport aux bobinages supplémentaires (35, 36, 35', 36') correspondants étant déterminées réciproquement de façon que la tension de sortie (UAP) du couple d'unités de réglage (34, 34') soit égale à la tension d'entrée (UEP) du couple d'unités de réglage (34, 34'), lorsque l'une (34) des unités de réglage additionne à sa tension d'entrée (UEP) une tension induite (ΔU₁) et que l'autre (34') des unités de réglage soustrait de sa tension d'entrée (UE) une tension induite (ΔU₂).
  19. Circuit de transformateur selon la revendication 18, caractérisé en ce que les valeurs absolues des différences d'amplitudes susceptibles d'être produites au moins par quelques uns des étages (55, 56, 57) se situent dans un rapport de puissances entières du nombre trois 1/3/9, etc.
  20. Agencement de circuits avec un circuit de transformateur selon une ou plusieurs des revendications 17 à 19, caractérisé en ce que sont prévus un dispositif à capteur de mesure à tension alternative (64, 67; 81), un dispositif comparateur (63, 66; 82) qui compare les signaux de sortie du dispositif à capteur de mesure à des valeurs de référence (Uref1, Uref2; Uref) et une commande de commutateur (23; 83), grâce à laquelle les commutateurs des étages (55, 56, 57) sont actionnables sélectivement, de manière qu'une tension de charge (UL) d'amplitude aussi stable que possible soit envoyée à la charge (7).
  21. Agencement de circuits selon la revendication 20, caractérisé en ce que le dispositif à capteur de mesure comprend un capteur de mesure (67; 81), qui mesure la tension d'alimentation (UV) fournie par la source de tension (1; 80), et/ou un capteur de mesure (64) qui mesure la tension de charge (UL).
  22. Agencement de circuits selon l'une des revendications 20 ou 21, caractérisé en ce que, pour chaque conducteur de phase (R, S, T) d'un système à phases multiples, sont prévus un circuit de transformateur (75, 76, 77) avec un ou plusieurs étages (55, 56, 57), un dispositif à capteur de mesure (81) qui mesure la tension sur chacun des conducteurs de phase (R, S, T ou RK, SK, TK), un dispositif comparateur (82) qui compare les signaux de sortie du dispositif à capteur de mesure (81) à au moins une valeur de référence (Uref), ainsi qu'une commande de commutateur (83), qui commande les commutateurs des étages (55, 56, 57) de tous les circuits de transformateur (75, 76, 77) sur la base des signaux différentiels envoyés par le dispositif comparateur (82).
  23. Circuit de transformateur pour un système multiphasé à conducteur neutre, selon l'une des revendications précédentes, caractérisé en ce qu'il comprend pour chaque phase au moins une unité de réglage (4; 34), dont le premier bobinage (9) est chaque fois situé dans le conducteur de phase concerné et dont le conducteur (10) reliant des bornes est relié au conducteur de neutre du système multiphasé.
  24. Circuit de transformateur pour un système multiphasé sans conducteur neutre, selon l'une des revendications 1 à 22, caractérisé en ce qu'il comprend pour chaque phase au moins une unité de réglage (4; 34), dont le premier bobinage (9) est chaque fois situé dans le conducteur de phase concerné et que les conducteurs (10) reliant des bornes de toutes les unités de réglage sont reliés entre eux en vue de former un conducteur neutre artificiel.
  25. Circuit de transformateur pour un système multiphasé sans conducteur neutre, selon l'une des revendications 1 à 22, caractérisé en ce qu'il comprend pour chaque phase au moins une unité de réglage (4; 34) et que les unités de réglage appartenant aux différentes phases sont disposées dans un circuit à phases reliées, où pour chaque unité de réglage, le premier bobinage est situé dans le conducteur de phase concerné et le conducteur (10) reliant des bornes est formé par l'un des autres conducteurs de phase.
  26. Procédé de commutation d'un circuit de transformateur, pour la production d'une tension de charge réglable, appliquée à une charge, à partir d'une tension d'alimentation fournie par une source de tension, avec au moins une unité de réglage qui comprend les composants suivants:
    - un transformateur, avec un premier bobinage, placé en série avec la charge, et au moins un bobinage supplémentaire, dont le rapport du nombre des spires par rapport au premier bobinage est supérieur à 1,
    - un conducteur reliant des bornes disposé, en observant depuis le premier bobinage du transformateur, derrière la charge et placé en série avec celle-ci, ainsi que
    - des commutateurs, à l'aide desquels l'unité de réglage est commutable entre différents états de connexion, où, au moins dans l'un de ces états de connexion, est appliquée à un bobinage supplémentaire une tension alternative de commande qui induit dans le premier bobinage une tension qui influe sur la tension alternative d'entrée, de telle façon que l'amplitude de la tension alternative de sortie se distingue de l'amplitude de la tension alternative d'entrée par l'amplitude de la tension induite et où, dans un état de commutation neutre, un bobinage supplémentaire soit mis en circuit, si bien que la tension de sortie de l'unité de réglage soit égale à la tension d'entrée,
    caractérisé en ce que, à l'état de commutation neutre, à l'aide des commutateurs (150, 151; 180, 181) le bobinage supplémentaire (11; 35, 36), qui est au moins au nombre de un, est mis en circuit dans une voie de courant (150, 11, 151; 35, 180, 185, 181, 36) qui est électriquement en parallèle avec le premier bobinage (9) du transformateur (8).
  27. Procédé selon la revendication 26, pour un circuit de transformateur, avec une unité de réglage (4), dans lequel le transformateur (8) comprend un bobinage supplémentaire unique (11), caractérisé en ce que l'unité de réglage (4) est commutable à l'aide des commutateurs (150, 151, 152, 153), dans les deux états de commutation suivants:
    - un (premier) état de connexion additionneur, dans lequel le bobinage supplémentaire (11) est soumis à la tension d'entrée (UE) de l'unité de réglage (4), avec un sens de bobinage tel que la tension (ΔU₁) induite de ce fait dans le premier bobinage (9) influe de façon additive sur la tension d'entrée (UE), et
    - un (deuxième) état de connexion soustracteur, dans lequel le bobinage supplémentaire (11) est soumis à la tension de sortie (UA) de l'unité de réglage (4), avec un sens de bobinage tel que la tension (ΔU₂) induite de ce fait dans le premier bobinage (9) influe de façon soustractive sur la tension d'entrée (UE),
    et que les deux extrémités (13, 14) du bobinage supplémentaire (11) sont reliées, à l'aide d'un premier et d'un deuxième commutateur (150, 151), aux deux extrémités du premier bobinage (9), pour obtenir le (troisième) état de commutation neutre.
  28. Procédé selon la revendication 27, caractérisé en ce que les deux extrémités (13, 14) du bobinage supplémentaire (11) sont reliées au conducteur (10) reliant des bornes, d'une part par l'intermédiaire d'un troisième commutateur (152), d'autre part par l'intermédiaire d'un quatrième commutateur (153), et que les troisième et quatrième commutateurs (152, 153) sont respectivement réalisés à la façon d'un circuit limiteur d'intensité de courant, de manière qu'à l'état fermé il ne soit opposé au courant qui y passe qu'une résistance constante et faible, tant que ce courant est inférieur à une valeur limite prédéterminée, et en ce que cette valeur limite est choisie un peu supérieure à l'intensité qui passe dans le bobinage supplémentaire (11) au premier ou au deuxième état de connexion, que le passage du premier au deuxième état de connexion, ou inversement, s'effectue chaque fois en passant brièvement par le troisième état de connexion, que lors du passage allant du premier état de commutation, dans lequel le premier commutateur (150) et le quatrième commutateur (153) sont fermés et le deuxième commutateur (151) et le troisième commutateur (152) sont ouverts, au deuxième état, dans lequel le deuxième commutateur (151) et le troisième commutateur (152) sont fermés et le premier commutateur (150) et le quatrième commutateur (153) sont ouverts, il y a d'abord fermeture du deuxième commutateur (151) et du troisième commutateur (152) puis ouverture du premier commutateur (150) et du quatrième commutateur (153), et que, lors du passage du deuxième état de connexion au premier, il y a d'abord fermeture du premier commutateur (150) et du quatrième commutateur (153) puis ouverture du deuxième commutateur (151) et du troisième commutateur (152).
  29. Procédé selon la revendication 27, caractérisé en ce que les troisième et quatrièmes commutateurs (152, 153) sont directement reliés galvaniquement par un conducteur électrique supplémentaire (155), qu'entre le conducteur électrique supplémentaire (155) et le conducteur (10) reliant des bornes est prévu un circuit (157) servant à limiter l'intensité, qui relie entre eux électriquement les deux conducteurs (155, 10), et que le passage du premier au deuxième état de connexion, ou inversement, s'effectue chaque fois en passant brièvement par le troisième état, que lors du passage allant du premier au deuxième état de connexion, il y a d'abord fermeture du deuxième commutateur (151), puis ouverture du quatrième commutateur (153), puis fermeture du troisième commutateur (152) et ensuite ouverture du premier commutateur (150), et que, lors du passage allant du deuxième au premier état, il y a d'abord fermeture du premier commutateur (150), ensuite ouverture du troisième commutateur (152), puis fermeture du quatrième commutateur (153), puis ouverture du deuxième commutateur (151), de sorte que les troisième et quatrième commutateur (152, 153) ne soient jamais fermés simultanément.
  30. Procédé selon la revendication 26, pour un circuit de transformateur avec une unité de réglage (34), dans laquelle le transformateur (8) comprend deux bobinages supplémentaires (35, 36), dont un bobinage agissant comme additionneur (35) est constamment relié, par sa première extrémité, au raccordement d'entrée (2) de l'unité de réglage (34), auquel est relié le premier bobinage (9), et dont l'autre bobinage agissant comme soustracteur (36) est constamment relié, par sa première extrémité, au raccordement de sortie (5) de l'unité de réglage (34), auquel est relié le premier bobinage (9), caractérisé en ce que l'unité de réglage est susceptible d'être placée, à l'aide des commutateurs (180, 181), dans les états de commutation suivants:
    - un (premier) état de connexion additionneur, dans lequel seul le bobinage supplémentaire additionneur (35) est relié, par sa deuxième extrémité, au conducteur (10) reliant des bornes, grâce à quoi est induite dans le premier bobinage (9) une tension (ΔU₁) qui s'additionne à la tension d'entrée (UE),
    - un (deuxième) état de connexion soustracteur, dans lequel seul le bobinage supplémentaire soustracteur (36) est relié, par sa deuxième extrémité, au conducteur (10) reliant des bornes, grâce à quoi est induite dans le premier bobinage (9) une tension (ΔU₂) qui se soustrait de la tension d'entrée (UE),
    et que les deux deuxièmes extrémités des deux bobinage supplémentaire (35,36) sont reliées directement galvaniquement dans le (troisième) état de connexion qui est neutre.
  31. Procédé selon la revendication 30, caractérisé en ce que les deux commutateurs (180, 181), grâce auxquels les deux extrémités des deux bobinages supplémentaires (35, 36) sont susceptibles d'être reliées au conducteur (10) reliant des bornes, sont directement reliées entre elles galvaniquement par un conducteur électrique supplémentaire (185), qu'entre ce dernier et le conducteur (10) reliant des bornes est prévu un circuit (157), servant à limiter l'intensité du courant, qui relie électriquement les deux conducteurs (185, 10), et en ce que lors du passage du premier état de commutation, dans lequel est fermé le commutateur (180), qui est relié à la deuxième extrémité du bobinage supplémentaire additionneur (35), et est ouvert le commutateur (181), qui est relié à la deuxième extrémité du bobinage supplémentaire soustracteur (36), au deuxième état de commutation, dans lequel est ouvert le commutateur (180), qui est relié à la deuxième extrémité du bobinage supplémentaire additionneur (35), et est fermé le commutateur (181), qui est relié à la deuxième extrémité du bobinage supplémentaire soustracteur (36), il y a d'abord fermeture du commutateur (181) du bobinage soustracteur (36) et ensuite ouverture du commutateur (180) du bobinage additionneur (35), et que lors du passage allant du deuxième au premier état de commutation, il y a d'abord fermeture du commutateur (180) du bobinage additionneur (35) puis ouverture du commutateur (181) du bobinage soustracteur (36).
  32. Procédé selon l'une des revendications 26 à 31, caractérisé en ce que l'on utilise comme commutateurs (150, 151, 152, 153; 180, 181) des commutateurs électroniques, qui peuvent être fermés et ouverts à des moments choisis, et que les commutateurs qui doivent être ouverts lors du passage du troisième au premier ou au deuxième état de commutation sont ouverts aussi précisément que possible, aux moments idéaux de commutation, dans lesquels le courant, qui passe au troisième état de commutation par le bobinage supplémentaire (11; 35, 36), qui est raccordé à sa tension de commande correspondante une fois effectué le passage au premier ou deuxième état de commutation, présente la même valeur que le courant qui passe dans ce bobinage supplémentaire (11; 35, 36) immédiatement après le processus de commutation.
  33. Procédé selon la revendication 32, caractérisé en ce que l'on utilise comme approximation pour les moments de commutation idéaux les moments d'ouverture des commutateurs dans lesquels le courant qui passe, dans le premier ou le deuxième état de commutation, dans le bobinage supplémentaire (11; 35, 36) soumis dans cet état à sa tension de commande correspondante, présente un passage à zéro.
  34. Procédé selon la revendication 33, caractérisé en ce que l'intervalle de temps qui s'écoule lors du passage à zéro de l'intensité du courant, qui passe, dans le premier ou le deuxième état de commutation, par le bobinage supplémentaire (11; 35, 36), qui est placé à sa tension de commande correspondante dans cet état de commutation, depuis le passage à zéro précédent ou jusqu'au passage à zéro suivant, est mesuré et que la valeur de mesure est mise en mémoire, et que, lors des passages ultérieurs du troisième au premier ou au deuxième état de connexion, cette valeur de mesure mise en mémoire est utilisée pour déterminée le moment de l'ouverture du commutateur concerné, à partir d'un passage à zéro de la tension de commande.
  35. Procédé selon l'une des revendications 26 à 34, pour un circuit de transformateur, qui comprend au moins deux étages, dont chacun est composé d'au moins une unité de réglage et qui sont placés en série entre eux, de façon que la tension alternative de sortie de l'étage amont soit la tension alternative d'entrée de l'étage aval, que les premiers bobinages, qui sont au moins au nombre de deux, des étages soient placés directement en série, circuit où est aussi prévu un dispositif à capteur de mesure à tension alternative, un dispositif comparateur qui compare les signaux de sortie du dispositif à capteur de mesure à des valeurs de référence et une commande de commutateur, grâce à laquelle les commutateurs des étages sont actionnables sélectivement, de manière qu'une tension de charge à amplitude aussi constante que possible soit envoyée à la charge, caractérisé en ce que la valeur absolue de la plus petite variation d'amplitude possible (A) est située entre 1,0 fois et 2,0 fois la valeur absolue de l'écart (δ) admissible entre la tension de charge (UL) et la valeur de consigne (SL), et que les seuils de commutation pour lesquels, en cas de plus grand écart entre la tension d'alimentation (UV) fournie par la source de tension et la tension alternative nominale, la différence d'amplitude induite passe de n à (n+1) fois la plus petite variation d'amplitude possible (A) et, en cas de diminution de l'écart, elle passe de (n+1) à n fois, sont choisis tels que les valeurs d'amplitude de la tension de charge (UL) sont symétriques par rapport à la valeur de consigne (SL), en cas de passage permanent de la tension d'alimentation (UV) par le seuil de commutation respectif, avant et après la commutation.
  36. Procédé selon la revendication 35, caractérisé en ce que la tension de charge (UL) est réglée à une valeur de consigne (SL) qui est différente de la valeur nominale (UV nom.) de la tension d'alimentation (UV).
EP85108921A 1984-07-24 1985-07-16 Circuit transformateur Expired - Lifetime EP0169488B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT85108921T ATE68611T1 (de) 1984-07-24 1985-07-16 Transformatorschaltung.

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
DE3427291 1984-07-24
DE3427291 1984-07-24
DE19853502889 DE3502889A1 (de) 1984-07-24 1985-01-29 Transformatorschaltung
DE3502889 1985-01-29
DE3511182 1985-03-25
DE19853511182 DE3511182A1 (de) 1985-03-27 1985-03-27 Transformatorschaltung

Publications (3)

Publication Number Publication Date
EP0169488A2 EP0169488A2 (fr) 1986-01-29
EP0169488A3 EP0169488A3 (en) 1987-08-19
EP0169488B1 true EP0169488B1 (fr) 1991-10-16

Family

ID=27192190

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85108921A Expired - Lifetime EP0169488B1 (fr) 1984-07-24 1985-07-16 Circuit transformateur

Country Status (3)

Country Link
US (1) US4774451A (fr)
EP (1) EP0169488B1 (fr)
DE (1) DE3584401D1 (fr)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0729747Y2 (ja) * 1986-11-26 1995-07-05 株式会社東芝 交直変換装置
KR930010265B1 (ko) * 1991-05-14 1993-10-16 삼성전자 주식회사 전자렌지의 구동회로
DE4431021C1 (de) * 1994-08-31 1995-10-19 Siemens Ag Ersatzschaltung für mehrere Funktionseinheiten
JP2561055B2 (ja) * 1994-11-18 1996-12-04 インターナショナル・ビジネス・マシーンズ・コーポレイション 情報処理装置及びその制御方法
US6351106B1 (en) * 2000-09-29 2002-02-26 Silicon Power Corporation Static voltage regulator and controller
WO2009058695A2 (fr) * 2007-10-30 2009-05-07 Northrop Grumman Systems Corporation Transistor à ionisation par choc froid et son procédé de fabrication
RU2377630C1 (ru) * 2008-09-16 2009-12-27 Лев Залманович Фейгин Стабилизатор переменного напряжения с элементами защиты и резервирования (варианты)
BRPI1008138A2 (pt) * 2009-02-06 2016-03-15 Abb Res Ag "transformador de distribuição híbrido com capacidade de energia ca & cc"
CA2752816A1 (fr) * 2009-02-27 2010-09-02 Abb Research Ltd. Transformateur de distribution hybride muni d'un convertisseur de source de tension integre
ES2679821T3 (es) * 2011-07-18 2018-08-31 Abb Schweiz Ag Transformador seco
GB201313774D0 (en) * 2013-08-01 2013-09-18 Vphase Smart Energy Ltd Apparatus and method for voltage control
CN112994549A (zh) * 2021-02-25 2021-06-18 上海交大海洋水下工程科学研究院有限公司 一种全海深rov动力电源的稳定装置、方法及介质
CN113258146B (zh) * 2021-03-29 2022-12-30 华为数字能源技术有限公司 一种电池系统、驱动系统及储能集装箱

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3621374A (en) * 1970-04-16 1971-11-16 Gen Electric Voltage regulator with zero current static switching between taps for a regulator transformer
US3621375A (en) * 1970-04-16 1971-11-16 Gen Electric Voltage regulator with zero current static switching between tapped portions of the primary of a regulator transformer
DE2233020A1 (de) * 1971-07-06 1973-01-25 Edward Cooper Netz-wechselspannungsregler mit mehrfachumschaltungen ihrer anzapfungen der transformator-primaerwicklung
IT1010601B (it) * 1974-03-11 1977-01-20 Legnaioli L Macchina elettrica per variare il rapporto di trasformazione di una tensione con l ausilio di commuta tori
GB1476699A (en) * 1974-12-24 1977-06-16 Matsushita Electric Ind Co Ltd Power supply system
US3970918A (en) * 1975-01-13 1976-07-20 Edward Cooper High speed, step-switching AC line voltage regulator with half-cycle step response
US4178539A (en) * 1978-08-03 1979-12-11 The Superior Electric Company Stepping AC line voltage regulator
GB2043971B (en) * 1979-03-13 1983-04-07 Koffler R Voltage regulators

Also Published As

Publication number Publication date
EP0169488A3 (en) 1987-08-19
EP0169488A2 (fr) 1986-01-29
DE3584401D1 (de) 1991-11-21
US4774451A (en) 1988-09-27

Similar Documents

Publication Publication Date Title
EP0382110B1 (fr) Circuit de commande de sortie pour inverseur, ainsi que source de courant haute fréquence pour l'alimentation en courant continue d'une station de sondage
EP0169488B1 (fr) Circuit transformateur
DE2338538B2 (de) Schaltungsanordnung zur geregelten Gleichstromversorgung
DE4413546A1 (de) Gleichstrom-Steuerschaltung
DE3105636C2 (fr)
DE3530966C2 (fr)
DE2538493C3 (de) Gegen Überstrom geschützte Hochspannungsgleichstromübertragungsanlage
DE3511182C2 (fr)
DE1638316A1 (de) Steuerschaltung fuer die elektronische Kommutierung eines Elektromotors
DE2504407C2 (de) Zerhacker-Regler
DE2731501C3 (de) Regelanordnung für einen mit Reihenschluß-Nebenschluß-Umschaltung betriebenen Gleichstrommotor
EP0243948B1 (fr) Circuit de contrôle pour une lampe à arc
DE4415794A1 (de) Schaltungsanordnung zur Begrenzung des zu schaltenden Stromes eines elektrischen Verbrauchers
WO1998043266A1 (fr) Mecanisme de commande electromagnetique
DE3502889C2 (fr)
DE3546614C2 (en) Transformer circuit
DE1928538A1 (de) Spannungsregler fuer mit Wechselstrom betriebene Geraete,insbesondere stufenloser Drehzahlregler fuer Elektromotore
DE2852065C2 (de) Steuerschaltung für eine drehzahlgesteuerte Gleichstrommaschine
EP1170855B1 (fr) Circuit de décharge
DE1613775C3 (de) Anordnung zur Steuerung der Drehzahl eines über einen Wechselrichter betriebenen Wechselstrommotors
DE2827357A1 (de) Regeleinrichtung mit stromnullmeldung fuer einen kreisstromfreien doppelstromrichter
DE2003587B2 (de) Schaltungsanordnung zur Steuerung des mittleren Widerstandes eines elektronischen Schaltgliedes durch Impulsbreitenmodulation
DE2166454C3 (de) Sättigungsdrossel
DE2736781C3 (de) Schaltungsanordnung zum Regeln oder Steuern des Erregerstromes einer elektrischen Maschine, insbesondere einer Gleichstrommaschine
DE741172C (de) Einrichtung zur Steuerung bzw. zur unmittelbaren Betaetigung von zur Spannungsregelung dienenden Apparaten

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT CH DE FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19860724

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT CH DE FR GB IT LI NL SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: VOIGT & HAEFFNER GMBH

17Q First examination report despatched

Effective date: 19890814

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 68611

Country of ref document: AT

Date of ref document: 19911115

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3584401

Country of ref document: DE

Date of ref document: 19911121

ITF It: translation for a ep patent filed

Owner name: ING. DR. LAZZARO MARTINI S.R.L.

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19930507

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19930514

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19930706

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19930721

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19930730

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19930731

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19930930

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19940716

Ref country code: AT

Effective date: 19940716

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19940717

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19940731

Ref country code: CH

Effective date: 19940731

EUG Se: european patent has lapsed

Ref document number: 85108921.9

Effective date: 19950210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19950201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19940716

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19950331

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19950401

EUG Se: european patent has lapsed

Ref document number: 85108921.9

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST