EP0522492B1 - Lenkung mit elektrischer Hilfskraft - Google Patents

Lenkung mit elektrischer Hilfskraft Download PDF

Info

Publication number
EP0522492B1
EP0522492B1 EP92111471A EP92111471A EP0522492B1 EP 0522492 B1 EP0522492 B1 EP 0522492B1 EP 92111471 A EP92111471 A EP 92111471A EP 92111471 A EP92111471 A EP 92111471A EP 0522492 B1 EP0522492 B1 EP 0522492B1
Authority
EP
European Patent Office
Prior art keywords
electric motor
steering apparatus
detection means
electric power
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92111471A
Other languages
English (en)
French (fr)
Other versions
EP0522492A2 (de
EP0522492A3 (de
Inventor
Hirofumi Matsuoka
Hidetoshi Tabuse
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koyo Seiko Co Ltd
Original Assignee
Koyo Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyo Seiko Co Ltd filed Critical Koyo Seiko Co Ltd
Publication of EP0522492A2 publication Critical patent/EP0522492A2/de
Publication of EP0522492A3 publication Critical patent/EP0522492A3/xx
Application granted granted Critical
Publication of EP0522492B1 publication Critical patent/EP0522492B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/0481Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures
    • B62D5/0487Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures detecting motor faults
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/08Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current
    • H02H3/087Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current for dc applications
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/08Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors
    • H02H7/0833Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors for electric motors with control arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/08Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors
    • H02H7/0833Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors for electric motors with control arrangements
    • H02H7/0838Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors for electric motors with control arrangements with H-bridge circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/08Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors
    • H02H7/085Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors against excessive load
    • H02H7/0851Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors against excessive load for motors actuating a movable member between two end positions, e.g. detecting an end position or obstruction by overload signal

Definitions

  • This invention relates to an electric power steering apparatus which assists the power required for the steering operation of an automobile.
  • a steering torque acting on a steering wheel is detected, a driving current the value of which is set depending upon the detected torque is supplied to a DC motor for assisting the steering operation to drive it, so that the turning force of the DC motor assists the power required for the steering operation of an automobile, thereby providing a driver with a comfortable feeling of steering.
  • a driving circuit for the DC motor is composed of a bridge circuit consisting of four power transistors.
  • Fig. 1 is a schematic block diagram illustrating the configuration of a control system of a conventional electric power steering apparatus.
  • reference numeral 1 designates a DC motor for assisting the steering operation, and the DC motor 1 is driven by a motor driving circuit 2.
  • the motor driving circuit 2 is composed of a bridge circuit consisting of two forward rotation power transistors 20a and 20b and two reverse rotation power transistors 20c and 20d which function as switching elements.
  • the forward rotation power transistor 20a and reverse rotation power transistor 20d are connected in series, the reverse rotation power transistor 20c and forward rotation power transistor 20b are connected in series, and the two series circuits are connected in parallel.
  • the DC motor 1 is connected between the node of the forward rotation power transistor 20a and reverse rotation power transistor 20d and that of the reverse rotation power transistor 20c and forward rotation power transistor 20b.
  • the collector of the forward rotation power transistor 20a and that of the reverse rotation power transistor 20c are connected to a main power supply 5 through a current detection resistor 8 and a fail-safe relay circuit 6.
  • the emitter of the forward rotation power transistor 20b and that of the reverse rotation power transistor 20d are coupled to ground via a current detection resistor 9.
  • the bases of the forward rotation power transistors 20a and 20b and reverse rotation power transistors 20c and 20d are coupled to a control unit 7.
  • the fail-safe relay circuit 6 comprises a relay contact (not shown) which in its ON state supplies the electric power from the main power supply 5 to the motor driving circuit 2 and in its OFF state shuts off the supply of electric power. The operation of the relay contact is controlled by the control unit 7.
  • the current detection resistor 8 is coupled to an over-current detection circuit 80 which detects a current flowing into the motor driving circuit 2 and supplies the detection result to the control unit 7.
  • the current detection resistor 9 is coupled to a current detection circuit 90 which detects a current flowing through the DC motor 1 and supplies the detection result to the control unit 7.
  • the control unit 7 comprises a microcomputer and a PWM modulation circuit.
  • the microcomputer performs a control of the degree of assisting the steering operation in which the degree of assisting the steering operation for the DC motor 1 is calculated on the basis of the detection results of a torque sensor and a speed sensor (both are not shown), and also a fail-safe control in which the relay contact of the fail-safe relay circuit 6 is made into the OFF state when an abnormality in the torque sensor, the speed sensor, the motor driving circuit 2, etc. is detected.
  • the PWM modulation circuit generates a PWM output (hereinafter, referred to as "PWM signal”) corresponding to the degree of assisting the steering operation which has been obtained by the microcomputer.
  • the PWM signal for controlling the motor which is outputted from the PWM modulation circuit is applied to the base of the forward rotation power transistor 20a, and a continuous signal for controlling the motor by which the forward rotation power transistor 20b is continuously turned on is applied to the base of the forward rotation power transistor 20b.
  • a current flows through the main power supply 5, the fail-safe relay circuit 6, the current detection resistor 8, the forward rotation power transistor 20a, the DC motor 1, the forward rotation power transistor 20b and the current detection resistor 9, in this sequence, so that the DC motor 1 is driven to forward rotate.
  • the PWM signal outputted from the PWM modulation circuit is applied to the base of the reverse rotation power transistor 20c, and a continuous signal for controlling the motor by which the reverse rotation power transistor 20d is continuously turned on is applied to the base of the reverse rotation power transistor 20d.
  • a current flows through the main power supply 5, the fail-safe relay circuit 6, the current detection resistor 8, the reverse rotation power transistor 20c, the DC motor 1, the reverse rotation power transistor 20d and the current detection resistor 9, in this sequence, so that the DC motor 1 is driven to reversely rotate.
  • the driving force is regulated by the duty ratio of the PWM signal.
  • the control unit 7 When the state wherein the detection result exceeds the given threshold threshold value continues for a predetermined period of time, the control unit 7 performs a fail-safe control in which the relay contact of the fail-safe relay circuit 6 is made into the OFF state so that the supply of electric power to the motor driving circuit 2 is cut off, thereby forcibly stopping the DC motor 1.
  • Fig. 2 is a graph illustrating the variation of current value which is detected by the overcurrent detection circuit 80 when a ground fault occurs in the DC motor 1.
  • a ground fault of the DC motor 1 occurs at time t 1
  • the current flowing through the DC motor 1 increases in the manner of time-lag of first order in accordance with the electrical time constant of the DC motor 1 and reaches the given threshold value A at time t 4 .
  • the current value continues to be equal to or greater than the given threshold value A for the predetermined period of time, i.e. at time t 5 , the fail-safe control is performed.
  • JP-A-1 278 882 which forms the basis for the precharacterizing part of claim 1 discloses an electric power steering apparatus comprising first current detection means to determine a current flowing into a drive circuit and second current detection means to determine a current flowing out of the drive circuit.
  • the known apparatus is provided with means for obtaining the difference between the currents detected by said first and second current detection means, an abnormality detection means for detecting an abnormality of said electric power steering apparatus on the basis of the obtained current difference and inhibition means for inhibiting said electric motor from assisting the steering power when the abnormality is detected.
  • the first and second current detection means allow for the detection of a current flowing into or out of the drive circuit. However, if there is a failure within the drive circuit, a current flowing to or from the electric motor cannot be determined, thereby leaving an uncertainty about the failure status of the power steering apparatus.
  • the current flowing into the electric motor increases in the manner of time-lag of first order in accordance with the electrical time constant of the electric motor, and the current flowing out from the electric motor rapidly decreases to approximately zero.
  • the difference between the current flowing into the electric motor and that flowing out therefrom is obtained, and an abnormal state of the electric motor due to the ground fault is detected on the basis of this difference. More specifically, when this difference exceeds a given value, it is judged that an abnormal state of the electric motor due to a ground fault has occurred.
  • a fault in a motor driving circuit such as that caused in terminals of resistors which function as the means for detecting a current flowing into the electric motor and the means for detecting a current flowing out from the electric motor, and that caused in signal wires which are extended between the means for detecting a current flowing into the electric motor and that for detecting a current flowing out from the electric motor and the means for detecting an abnormal state.
  • Fig. 3 is a schematic block diagram illustrating the configuration of a control system of an electric power steering apparatus according to the invention.
  • reference numeral 1 designates a DC motor for assisting the steering operation which is driven by a motor driving circuit 2.
  • the motor driving circuit 2 is composed of a bridge circuit consisting of two forward rotation power transistors 20a and 20b and two reverse rotation power transistors 20c and 20d which function as switching elements.
  • the forward rotation power transistor 20a and reverse rotation power transistor 20d are connected in series, the reverse rotation power transistor 20c and forward rotation power transistor 20b are connected in series, and the two series circuits are connected in parallel.
  • the node of the forward rotation power transistor 20a and reverse rotation power transistor 20d is connected to the DC motor 1 through a first current detection resistor 3, and the node of the reverse rotation power transistor 20c and forward rotation power transistor 20b is connected to the DC motor 1 through a second current detection resistor 4.
  • the collector of the forward rotation power transistor 20a and that of the reverse rotation power transistor 20c are connected to a main power supply 5 through a fail-safe relay circuit 6.
  • the emitter of the forward rotation power transistor 20b and that of the reverse rotation power transistor 20d are coupled to ground.
  • the bases of the forward rotation power transistors 20a and 20b and reverse rotation power transistors 20c and 20d are coupled to a control unit 7.
  • the fail-safe relay circuit 6 comprises a relay contact (not shown) which in its ON state supplies the electric power from the main power supply 5 to the motor driving circuit 2 and in its OFF state shuts off the supply of electric power. The operation of the relay contact is controlled by the control unit 7.
  • the first current detection resistor 3 is coupled to a first current detection circuit 30 which detects a current flowing into or out from the DC motor 1 and supplies the detection result to the control unit 7.
  • the second current detection resistor 4 is coupled to a second current detection circuit 40 which detects a current flowing into or out from the DC motor 1 and supplies the detection result to the control unit 7.
  • the control unit 7 comprises a microcomputer 70 and a PWM modulation circuit 71.
  • the microcomputer 70 performs a control of the degree of assisting the steering operation in which the degree of assisting the steering operation for the DC motor 1 is calculated on the basis of the detection results of a torque sensor and a speed sensor (both are not shown), and also a fail-safe control in which the relay contact of the fail-safe relay circuit 6 is made into the OFF state when an abnormality in the torque sensor, the speed sensor, the motor driving circuit 2, etc. is detected.
  • the PWM modulation circuit 71 generates a PWM output (hereinafter, referred to as "PWM signal”) corresponding to the degree of assisting the steering operation which has been obtained by the microcomputer 70.
  • PWM signal a PWM output
  • the control unit 7 monitors the DC motor 1 on the basis of the detection results of the first and second current detection circuits 30 and 40, and, when the ground fault of the DC motor 1 is detected, performs the above-described fail-safe control.
  • FIG. 4 is a flowchart illustrating the procedure of the monitor and control for a ground fault which is conducted in the control unit 7.
  • step S1 it is judged whether or not the contents of a timer which defines the calculation period have reached a given value.
  • the process performs the return operation.
  • the detected current value I 1 of the first current detection circuit 30 and the detected current value I 2 of the second current detection circuit 40 are read in (step S2).
  • the absolute value of the difference between the read-in detected current values I 1 and I 2 is obtained, and it is judged whether or not the obtained absolute value is smaller than a predetermined threshold value ⁇ I (step S3).
  • the contents of an NG counter which conducts the count for the operation of the fail-safe relay circuit 6 are cleared (step S4).
  • step S5 when it is judged that the absolute value is not smaller than the threshold value ⁇ I or when a ground fault occurs in the DC motor 1, the value of the NG counter is increased by one (step S5), and it is judged whether or not the value of the NG counter exceeds a given value (step S6).
  • step S6 When it is judged in step S6 that the value of the NG counter does not exceed the given value, the process performs the return operation. In contrast, when it is judged in step S6 that the NG counter exceeds the given value, the fail-safe control described above is executed.
  • Fig. 5 is a graph illustrating the variation of the detected current value I 1 of the first current detection circuit 30 and the detected current value I 2 of the second current detection circuit 40 which are obtained when a ground fault occurs at point P of Fig. 3 in the DC motor 1 driven to rotate in forward direction.
  • the graph in which detected current value is plotted as ordinate and the elapsed time as abscissa shows the relationship between them.
  • a ground fault of the DC motor 1 occurs at time t 1 , and after the occurrence of the ground fault the detected current value I 1 increases in the manner of time-lag of first order in accordance with the electrical time constant of the DC motor 1, and the detected current value I 2 rapidly decreases to zero.
  • the absolute value of the difference between the detected current values I 1 and I 2 reaches the threshold value ⁇ I at time t 2 .
  • the fail-safe control is performed.
  • the scale of the time axis of Fig. 5 is substantially the same as that of Fig. 2 described above.
  • the apparatus of the invention can detect a ground fault of the DC motor 1 more rapidly than the conventional apparatus.
  • the detection of an abnormal state of the DC motor 1 is performed on the basis of the difference between the current flowing into the DC motor 1 and that flowing out therefrom in this way, an abnormal state of the DC motor 1 due to a ground fault can be detected in a short period of time because the current flowing out from the DC motor 1 rapidly decreases and hence this difference becomes large in a short period of time.
  • FIG. 6 is a schematic block diagram illustrating the configuration of the control system of another embodiment of the invention.
  • components corresponding to those of Fig. 3 are designated by the same reference numerals, and their description is omitted.
  • the control system of Fig. 6 is characterized in the first and second current detection circuits 30 and 40.
  • the first current detection circuit 30 has a configuration in which the positive input terminal of an amplifier 31 is connected through a resistor 32 to one terminal (terminal connected to the side of the DC motor 1) of the first current detection resistor 3, the negative input terminal of the amplifier 31 is connected through a resistor 33 to the other terminal of the first current detection resistor 3, the positive input terminal is connected also to an offset power supply 35 through a resistor 34, and the output terminal and negative input terminal of the amplifier 31 are connected to each other via a resistor 36.
  • the first current detection circuit 30 detects the voltage across the first current detection resistor 3 and supplies the detection result (output voltage V IA of the amplifier 31) to the control unit 7 as information indicative of the current flowing into or flowing out from the DC motor 1.
  • the second current detection circuit 40 has a configuration in which the positive input terminal of an amplifier 41 is connected through a resistor 42 to one terminal (terminal connected to the side of the DC motor 1) of the second current detection resistor 4, the negative input terminal of the amplifier 41 is connected through a resistor 43 to the other terminal of the second current detection resistor 4, the positive input terminal is connected also to an offset power supply 45 through a resistor 44, and the output terminal and negative input terminal of the amplifier 41 are connected to each other via a resistor 46.
  • the second current detection circuit 40 detects the voltage across the second current detection resistor 4 and supplies the detection result (output voltage V IB of the amplifier 41) to the control unit 7 as information indicative of the current flowing into or flowing out from the DC motor 1.
  • the offset power supplies 35 and 45 of the first and second current detection circuits 30 and 40 have a common power supply source.
  • Fig. 7 is a graph showing the detection characteristics of the first and second current detection circuits 30 and 40.
  • the output voltage V IA of the amplifier 31 and the output voltage V IB of the amplifier 41 are plotted as ordinate and the value of the driving current (flowing-in or flowing-out current) of the DC motor 1 as abscissa, so as to show the relationship between them.
  • the value of the driving current of the DC motor 1 is positive when the driving current flows in one direction, and negative when it flows in the opposite direction.
  • the state wherein the output voltages V IA and V IB are equal to an offset voltage V OFF is the state wherein no driving current of the DC motor 1 flows.
  • the detection characteristics of the first current detection circuit 30 are indicated by a line of positive gradient (V IA in the figure), and those of the second current detection circuit 40 are indicated by a line of negative gradient (V IB in the figure).
  • V IA positive gradient
  • V IB negative gradient
  • the detection characteristics of both the first and second current detection circuits 30 and 40 change because the offset power supplies 35 and 45 of the first and second current detection circuits 30 and 40 have a common power supply source.
  • Fig. 8 is a graph showing the detection characteristics of the first and second current detection circuits 30 and 40 which are obtained when the power supply voltage is lowered.
  • the ordinate and abscissa of the graph are the same as those of Fig. 7.
  • the output voltage V IA of the first current detection circuit 30 and the output voltage V IB of the second current detection circuit 40 are indicated by a broken line and a one-dot chain line, respectively. Since the values of the output voltages V IA and V IB depend on the power supply voltage, in the case that the power supply voltage is lowered, the detection characteristics of the first and second current detection circuits 30 and 40 appear in such a manner that the output voltages V IA and V IB are saturated at a lower level, respectively.
  • the security of the electric power steering apparatus is impaired in this way. Therefore, it is required to perform the afore-mentioned fail-safe control so as to prevent the security from being impaired.
  • the first and second current detection circuits 30 and 40 having the circuit structures described above have the detection characteristics which are different from each other in polarity, when the power supply voltage is lowered, the difference between the detected current values which are respectively represented by their output voltages V IA and V IB becomes large. This allows the state in which the absolute value of the difference between the detected current values I 1 and I 2 is not smaller than the threshold value ⁇ I, to be continued for the predetermined period of time (i.e., YES in step S6 of Fig. 4), so that the fail-safe control is executed, thereby preventing the security from being impaired.
  • the thus configured electric power steering apparatus of this embodiment can detect the voltage drop of the power supply in addition to the early detection of a ground fault which was described in conjunction with the former embodiment. According to this embodiment, therefore, it is possible to realize an electric power steering apparatus of very high security.

Claims (15)

  1. Elektrische Servolenkvorrichtung zur Unterstützung einer Lenkkraft mittels eines Elektromotors (1), mit:
    einer Motortreiberschaltung (2) zum Steuern des Stroms, der dem Elektromotor (1) von einer Hauptstromquelle (5) zugeführt wird,
    einer ersten Stromdetektionseinrichtung (3,30) zum Detektieren des in den Elektromotor (1) fließenden Stroms,
    einer zweiten Stromdetektionseinrichtung (4,40) zum Detektieren des aus dem Elektromotor (1) heraus fließenden Stroms,
    einer Einrichtung (7) zum Errechnen der Differenz zwischen den von den ersten und zweiten Stromdetektionseinrichtungen (3,30,4,40) detektierten Strömen,
    einer Abnormitätsdetektionseinrichtung (7) zum Detektieren einer Abnormität der elektrischen Servolenkvorrichtung auf der Basis der errechneten Stromdifferenz, und
    einer Verhinderungseinrichtung (7), um bei Detektion einer Abnormität den Elektromotor (1) daran zu hindern, die Lenkkraft zu verstarken,
    dadurch gekennzeichnet, daß
    die ersten und zweiten Stromdetektionseinrichtungen (3, 30,4,40) zur Detektion des zwischen der Motortreiberschaltung (2) und dem Elektromotor (1) fließenden Stromes vorgesehen sind.
  2. Elektrische Servolenkvorrichtung nach Anspruch 1, ferner mit
    einem ersten Schalter (20a), der den dem Elektromotor (1) zugeführten Strom zum Drehen in Vorwärtsrichtung steuert,
    einem zweiten Schalter (20b), der den Elektromotor (1) zwecks Vorwärtsdrehung mit Masse verbindet,
    einem dritten Schalter (20c), der den dem Elektromotor (1) zugeführten Strom zum Drehen in Rückwärtsrichtung steuert,
    einem vierten Schalter (20d), der den Elektromotor (1) zwecks Rückwärtsdrehung mit Masse verbindet,
    wobei die erste Stromdetektionseinrichtung (3,30) den von dem ersten Schalter (20a) zu dem Elektromotor (1) fließenden Strom oder den von dem Elektromotor (1) zu dem vierten Schalter (20d) fließenden Strom detektiert, und
    die zweite Stromdetektionseinrichtung (4,40) den von dem Elektromotor (1) zu dem zweiten Schalter (20b) fließenden Strom bzw. den von dem dritten Schalter (20c) zu dem Elektromotor (1) fließenden Strom detektiert.
  3. Elektrische Servolenkvorrichtung nach Anspruch 1 oder 2, bei der die erste Stromdetektionseinrichtung (3,30) einen Widerstand (3), der mit dem Elektromotor (1) verbunden ist, und eine Schaltung (30) zum Detektieren des durch den Widerstand (3) fließenden Stroms aufweist.
  4. Elektrische Servolenkvorrichtung nach einem der Ansprüche 1-3, bei der die zweite Stromdetektionseinrichtung (4,40) einen Widerstand (4), der mit dem Elektromotor (1) verbunden ist, und eine Schaltung (40) zum Detektieren des durch den Widerstand (4) fließenden Stroms aufweist.
  5. Elektrische Servolenkvorrichtung nach einem der Ansprüche 1-4, bei der die Abnormitätsdetektionseinrichtung (7) den Absolutwert der errechneten Differenz mit einem vorgegebenen Wert vergleicht.
  6. Elektrische Servolenkvorrichtung nach Anspruch 5, bei der die Abnormitätsdetektionseinrichtung (7) eine Abnormität der elektrischen Servolenkvorrichtung zu dem Zeitpunkt detektiert, zu dem ein Zustand, in dem der Absolutwert der errechneten Stromdifferenz nicht kleiner ist als der vorgegebene Wert, für eine vorbestimmte Zeitdauer bestanden hat.
  7. Elektrische Servolenkvorrichtung nach einem der Ansprüche 1-6, bei der die Abnormitätsdetektionseinrichtung (7) einen Masseschlußfehler des Elektromotors (1) detektiert.
  8. Elektrische Servolenkvorrichtung nach einem der Ansprüche 1-7, ferner mit einer Stromquelle (5) zum Zuführen eines elektrischen Stroms zum Treiben des Elektromotors (1) und einer Ausfallüberwachungs-Relaisschaltung (6) zum Steuern der Stromzufuhr von der Stromquelle (5) zu dem Elektromotor (1).
  9. Elektrische Servolenkvorrichtung nach Anspruch 8, bei der bei Detektion der Abnormität die Verhinderungseinrichtung (7) einen Relais-Kontakt der Ausfallüberwachungs-Relaisschaltung (6) in den Aus-Zustand schaltet und dadurch die Stromzufuhr zu dem Elektromotor (1) unterbricht.
  10. Elektrische Servolenkvorrichtung nach Anspruch 1 oder 2, bei der ein erster Widerstand (3) mit dem Elektromotor (1) verbunden ist, ein zweiter Widerstand (4) mit dem Elektromotor (1) verbunden ist, eine erste Spannungsdetektionseinrichtung (30) die an beiden Enden des ersten Widerstandes (3) auftretende Spannungscharakteristik detektiert, eine zweite Spannungsdetektionseinrichtung (40) die an beiden Enden des zweiten Widerstandes (4) auftretende Spannungscharakteristik detektiert, eine Abnormitätsdetektionseinrichtung (7) eine Abnormität der elektrischen Servolenkvorrichtung auf der Basis der aus den ersten und zweiten Spannungsdetektionseinrichtungen (30,40) erhaltenen Detektionsergebnisse detektiert, und eine Verhinderungseinrichtung (7) bei Detektion einer Abnormität den Elektromotor (1) daran hindert, die Lenkkraft zu unterstützen.
  11. Elektrische Servolenkvorrichtung nach Anspruch 10, bei der die erste Spannungsdetektionseinrichtung (30) aufweist: einen Verstärker (31), wobei der positive Eingangsanschluß des Verstärkers (31) mit demjenigen Anschluß des ersten Widerstandes (3) verbunden ist, der auf der Seite des Elektromotors (1) angeordnet ist, der negative Eingangsanschluß des Verstärkers (31) mit dem anderen Anschluß des ersten Widerstandes (3) verbunden ist, der Ausgangsanschluß des Verstärkers (31) mit dem negativen Eingangsanschluß verbunden ist; und eine Offset-Stromquelle (35), die mit dem positiven Eingangsanschluß des Verstärkers (31) verbunden ist, und die zweite Spannungsdetektionseinrichtung (40) aufweist: einen Verstärker (41), wobei der positive Eingangsanschluß des Verstärkers (41) mit demjenigen Anschluß des zweiten Widerstandes (4) verbunden ist, der auf der Seite des Elektromotors (1) angeordnet ist, der negative Eingangsanschluß des Verstärkers (41) mit dem anderen Anschluß des zweiten Widerstandes (4) verbunden ist, der Ausgangsanschluß des Verstärkers (41) mit dem negativen Eingangsanschluß verbunden ist; und eine Offset-Stromquelle (45), die mit dem positiven Eingangsanschluß des Verstärkers (41) verbunden ist.
  12. Elektrische Servolenkvorrichtung nach Anspruch 11, bei der die Stromversorgungsquelle der Offset-Stromquelle (35) der ersten Spannungsdetektionseinrichtung (30) die gleiche ist wie die Stromversorgungsquelle der Offset-Stromquelle (45) der zweiten Spannungsdetektionseinrichtung (40).
  13. Elektrische Servolenkvorrichtung nach einem der Ansprüche 10-12, ferner mit einer Stromquelle (5) zum Zuführen eines elektrischen Stroms zum Treiben des Elektromotors (1) und einer Ausfallüberwachungs-Relaisschaltung (6) zum Steuern der Stromzufuhr von der Stromquelle (5) zu dem Elektromotor (1).
  14. Elektrische Servolenkvorrichtung nach einem der Ansprüche 10-13, bei der die Abnormitätsdetektionseinrichtung (7) einen Masseschlußfehler des Elektromotors (1) und einen Spannungsabfall der Stromquelle (5) detektiert.
  15. Elektrische Servolenkvorrichtung nach einem der Ansprüche 10-14, bei der bei Detektion der Abnormität die Verhinderungseinrichtung (7) einen Relais-Kontakt der Ausfallüberwachungs-Relaisschaltung (6) in den Aus-Zustand schaltet und dadurch die Stromzufuhr zu dem Elektromotor (1) unterbricht.
EP92111471A 1991-07-10 1992-07-07 Lenkung mit elektrischer Hilfskraft Expired - Lifetime EP0522492B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP61682/91U 1991-07-10
JP6168291 1991-07-10

Publications (3)

Publication Number Publication Date
EP0522492A2 EP0522492A2 (de) 1993-01-13
EP0522492A3 EP0522492A3 (de) 1994-03-23
EP0522492B1 true EP0522492B1 (de) 1997-02-05

Family

ID=13178283

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92111471A Expired - Lifetime EP0522492B1 (de) 1991-07-10 1992-07-07 Lenkung mit elektrischer Hilfskraft

Country Status (3)

Country Link
US (1) US5303156A (de)
EP (1) EP0522492B1 (de)
DE (1) DE69217280T2 (de)

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5412295A (en) * 1992-10-23 1995-05-02 Konica Corporation Abnormality detection circuit for a motor for use in a copier
JP2857555B2 (ja) * 1993-01-27 1999-02-17 三菱電機株式会社 電動式パワーステアリング装置
JP2932335B2 (ja) * 1993-07-30 1999-08-09 光洋精工株式会社 電動パワーステアリング装置
JP2949185B2 (ja) * 1993-12-24 1999-09-13 光洋精工株式会社 電動パワーステアリング装置
JP3525195B2 (ja) * 1994-08-02 2004-05-10 光洋精工株式会社 電動パワーステアリング装置
JPH08132992A (ja) * 1994-11-10 1996-05-28 Mitsubishi Electric Corp 車載用制御装置
JPH08207794A (ja) * 1995-01-31 1996-08-13 Honda Motor Co Ltd 電動パワーステアリング装置
US5773991A (en) * 1995-05-02 1998-06-30 Texas Instruments Incorporated Motor current sense circuit using H bridge circuits
JP3190946B2 (ja) * 1995-06-06 2001-07-23 三菱電機株式会社 モータ制御装置
US6013994A (en) * 1996-10-01 2000-01-11 Nsk Ltd. Controller of electric power-steering system
JP3274377B2 (ja) * 1996-12-25 2002-04-15 三菱電機株式会社 負荷短絡故障の検出方法及びその装置と電動パワーステアリング装置
US6000486A (en) * 1997-04-18 1999-12-14 Medicart, L.L.C. Apparatus for providing self-propelled motion to medication carts
DE69737146T2 (de) * 1997-06-20 2007-10-04 Mitsubishi Denki K.K. Motorisch angetriebene servolenkung
JP3257971B2 (ja) * 1997-09-12 2002-02-18 本田技研工業株式会社 電動パワーステアリング装置
JP3311280B2 (ja) * 1997-09-16 2002-08-05 本田技研工業株式会社 車両の自動操舵装置
US6194792B1 (en) * 1997-10-08 2001-02-27 Mitsubishi Denki Kabushiki Kaisha Controller for automobile
DK175056B1 (da) * 1998-02-27 2004-05-10 Linak As Styring til elmotorer, navnlig i lineære aktuatorer
KR20000019528A (ko) * 1998-09-12 2000-04-15 윤종용 모터의 전류 리미터 제어장치 및 방법
JP3752882B2 (ja) * 1999-04-01 2006-03-08 豊田工機株式会社 電動パワーステアリング制御装置
US7740099B2 (en) * 1999-06-04 2010-06-22 Segway Inc. Enhanced control of a transporter
US6580990B2 (en) * 2000-08-30 2003-06-17 The Raymond Corporation Integrity check for electric steer system
US6965206B2 (en) * 2000-10-13 2005-11-15 Deka Products Limited Partnership Method and system for fail-safe motor operation
US6711510B2 (en) 2001-02-20 2004-03-23 Trw Inc. Over-current protection method and device
JP2003072581A (ja) * 2001-09-07 2003-03-12 Toyoda Mach Works Ltd 電気式動力舵取装置の制御方法および電気式動力舵取装置
GB2380623B (en) * 2001-10-05 2003-11-12 Minebea Co Ltd Motor control circuit overcurrent protection
KR20030069356A (ko) * 2002-02-20 2003-08-27 주식회사 만도 전자제어 파워 스티어링 시스템에서의 모터 제어 전류모니터링회로
US7002313B2 (en) * 2002-03-18 2006-02-21 Nsk Ltd. Electric power steering device control apparatus
US6731085B2 (en) 2002-04-02 2004-05-04 Trw Inc. Method and apparatus for determining motor faults in an electric assist steering system
FR2842959B1 (fr) * 2002-07-24 2004-12-24 Airbus France Dispositif et procede de protection contre les surintensites dans une armoire de distribution d'energie electrique
JP4039280B2 (ja) * 2003-03-14 2008-01-30 ミツミ電機株式会社 モータ駆動回路
JP4270978B2 (ja) * 2003-08-25 2009-06-03 本田技研工業株式会社 電動パワーステアリング装置の故障検出装置
US6900657B2 (en) 2003-09-24 2005-05-31 Saia-Burgess Automotive, Inc. Stall detection circuit and method
JP2005212579A (ja) * 2004-01-29 2005-08-11 Denso Corp 電動パワーステアリング装置
JP4241412B2 (ja) * 2004-02-03 2009-03-18 株式会社日立製作所 運動機構の駆動制御装置
JP4529666B2 (ja) * 2004-03-03 2010-08-25 株式会社デンソー 負荷駆動装置及び負荷駆動制御方法
US7483796B2 (en) * 2004-12-08 2009-01-27 Trw Automotive U.S. Llc Method and apparatus for determining faults in an electric assist steering system
WO2006063303A1 (en) * 2004-12-09 2006-06-15 Won-Door Corporation Method and apparatus for motor control using relays
US7116110B1 (en) * 2005-06-30 2006-10-03 Yazaki North America, Inc. Sensorless protection for electronic device
CA2659308C (en) 2006-08-11 2013-10-01 Segway Inc. Speed limiting in electric vehicles
US7979179B2 (en) * 2006-08-11 2011-07-12 Segway Inc. Apparatus and method for pitch state estimation for a vehicle
US7877179B2 (en) * 2006-09-12 2011-01-25 GM Global Technology Operations LLC Mechanical and electrical locking coordination security strategy for an active front steer system
US20090055033A1 (en) * 2007-08-23 2009-02-26 Segway Inc. Apparatus and methods for fault detection at vehicle startup
JP4600505B2 (ja) * 2008-04-09 2010-12-15 トヨタ自動車株式会社 車両のステアリング装置
JP5189627B2 (ja) * 2010-09-08 2013-04-24 三菱電機株式会社 電力変換装置
JP5945741B2 (ja) * 2012-09-24 2016-07-05 日立オートモティブシステムズ株式会社 電動パワーステアリング装置
CN103112495B (zh) * 2013-02-02 2015-08-05 哈尔滨工业大学 一种新型汽车电动助力转向容错控制装置及方法
RU2681244C2 (ru) * 2014-04-03 2019-03-05 Йигал ЛИВНЕ Интеллектуальная соединительная муфта
JP6489031B2 (ja) * 2016-01-27 2019-03-27 株式会社デンソー モータ制御装置
EP3460593B1 (de) * 2017-09-22 2021-06-30 B&R Industrial Automation GmbH Sichere schaltvorrichtung

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2522605A2 (fr) * 1982-03-04 1983-09-09 Peugeot Aciers Et Outillage Dispositif d'assistance de direction pour vehicule automobile
JPS61271168A (ja) * 1985-05-27 1986-12-01 Honda Motor Co Ltd 電動式パワ−ステアリング装置の電動機駆動回路
JPH0615331B2 (ja) * 1985-06-12 1994-03-02 株式会社日立製作所 電動式パワ−ステアリング装置
JPH0796387B2 (ja) * 1986-03-31 1995-10-18 本田技研工業株式会社 電動式パワーステアリング装置
JPS63141875A (ja) * 1986-12-02 1988-06-14 Mitsubishi Electric Corp モ−タ駆動式パワ−ステアリング装置
DE3863646D1 (de) * 1987-01-23 1991-08-22 Mitsubishi Electric Corp Servolenksteuerungseinrichtung.
JP2506739B2 (ja) * 1987-03-27 1996-06-12 豊田工機株式会社 電気式動力舵取装置
JP2691190B2 (ja) * 1988-02-05 1997-12-17 アイシン精機株式会社 モータ駆動装置
JPH07115643B2 (ja) * 1988-04-28 1995-12-13 三菱電機株式会社 電動式パワーステアリング装置
JP2698914B2 (ja) * 1988-05-02 1998-01-19 光洋精工株式会社 電動式パワーステアリング装置
US4985666A (en) * 1988-08-30 1991-01-15 Sony Corporation Safety device for video cassette recorder
JPH0288362A (ja) * 1988-09-26 1990-03-28 Mitsubishi Electric Corp パワーステアリング装置
JPH0299456A (ja) * 1988-10-06 1990-04-11 Omron Tateisi Electron Co モータ駆動装置
JPH02162159A (ja) * 1988-12-14 1990-06-21 Omron Tateisi Electron Co 電動式パワーステアリング装置
US5150021A (en) * 1989-09-18 1992-09-22 Jidosha Kiki Co., Ltd. Method of controlling electric power steering apparatus

Also Published As

Publication number Publication date
EP0522492A2 (de) 1993-01-13
DE69217280T2 (de) 1997-05-28
EP0522492A3 (de) 1994-03-23
DE69217280D1 (de) 1997-03-20
US5303156A (en) 1994-04-12

Similar Documents

Publication Publication Date Title
EP0522492B1 (de) Lenkung mit elektrischer Hilfskraft
JP3518944B2 (ja) モータ駆動装置
KR0145630B1 (ko) 역전가능 모터 제어장치 및 이를 이용한 차량 모터 구동 동력 조향 시스템
US6335600B1 (en) Motor drive unit and method of detecting malfunction of motor drive unit
WO1998058833A1 (fr) Dispositif de direction assistee entraine par un moteur electrique
US5568025A (en) Abnormally detecting device for relay
JPH04331493A (ja) モータ駆動制御装置
CA2355019C (en) Electrically-driven power steering system having failure detection function
US4569411A (en) Power steering control apparatus
JPH0520976U (ja) 電動パワーステアリング装置
US6397971B1 (en) Electrically powered steering system
JP3550978B2 (ja) 電動パワーステアリング装置の制御装置
JP4508542B2 (ja) 直流モータ駆動ブリッジ回路の故障検知装置
JP3020038B2 (ja) 電動パワーステアリング装置
JP2884183B2 (ja) 電動式パワーステアリング装置
JP3812334B2 (ja) 直流負荷駆動装置
JP3443136B2 (ja) モータの大地短絡検出回路
JP2506269B2 (ja) 電動式パワ―ステアリング装置
JP3229519B2 (ja) 電動式パワーステアリング装置
JP3188806B2 (ja) 直流モータ回転不良検出装置および直流モータ駆動装置
KR100330447B1 (ko) 전동 파워 스티어링 회로
JP3641921B2 (ja) 電動パワーステアリング装置の制御装置
JP3517989B2 (ja) 車両の操舵装置
JPH0923683A (ja) モータの制御装置
JPH09233888A (ja) 車両用電動モータ制御装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB IT

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19940609

17Q First examination report despatched

Effective date: 19950802

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

ITF It: translation for a ep patent filed

Owner name: ING. A. GIAMBROCONO & C. S.R.L.

REF Corresponds to:

Ref document number: 69217280

Country of ref document: DE

Date of ref document: 19970320

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20080731

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20080709

Year of fee payment: 17

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090707

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090707

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090707

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20110727

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20110629

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69217280

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69217280

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20120710