EP0447697B1 - Vorrichtung zur Unterdrückung der Torsionsschwingungen einer Dieselmotorkurbelwelle - Google Patents

Vorrichtung zur Unterdrückung der Torsionsschwingungen einer Dieselmotorkurbelwelle Download PDF

Info

Publication number
EP0447697B1
EP0447697B1 EP90250320A EP90250320A EP0447697B1 EP 0447697 B1 EP0447697 B1 EP 0447697B1 EP 90250320 A EP90250320 A EP 90250320A EP 90250320 A EP90250320 A EP 90250320A EP 0447697 B1 EP0447697 B1 EP 0447697B1
Authority
EP
European Patent Office
Prior art keywords
torsional vibration
cylinders
fuel injection
crank shaft
resonance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90250320A
Other languages
English (en)
French (fr)
Other versions
EP0447697A3 (en
EP0447697A2 (de
Inventor
Ryoji Yokohama Dockyard & Machinery Works Nakano
Shoji C/O Yokohama Technical Inst. Mitsui
Keijirou C/O Mitsubishi Jukogyo Tayama
Yasutaka Yokohama Dockyard & Mach. Works Irie
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Publication of EP0447697A2 publication Critical patent/EP0447697A2/de
Publication of EP0447697A3 publication Critical patent/EP0447697A3/en
Application granted granted Critical
Publication of EP0447697B1 publication Critical patent/EP0447697B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/023Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining the cylinder pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1497With detection of the mechanical response of the engine
    • F02D41/1498With detection of the mechanical response of the engine measuring engine roughness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1015Engines misfires

Definitions

  • the present invention relates to an apparatus for suppressing torsional vibration of a crank shaft of a diesel engine.
  • a fuel injection apparatus 7 of a conventional diesel engine is driven by a cam 6 and a roller 5 and is structured to inject fuel into each of the cylinders at the same injection timing and period of time.
  • Suppression of resonance stress of torsional vibration in a crank shaft system of a diesel engine equipped with a conventional injection apparatus is made by change of a length and/or a diameter of the shaft system. addition of further mass or mounting of a torsional vibration damper.
  • a torsional vibration damper For example, in the case of a diesel engine for a ship having six cylinders, as shown in Fig. 4, a one-node six-order resonance point 16 of torsional vibration exists within an ordinary operation range. Accordingly, a relatively wide operation avoidance area is established. Consequently, since as operable range of rotational number is limited, steering is often inconvenient.
  • Suppression of the one-node six-order resonance stress is made by making the diameter of the shaft extremely large to increase the resonant point to a high rotation side, by attaching extremely large mass to a front end of an engine to reduce the resonant point to a low rotation side, or by providing an expensive torsional vibration damper. Accordingly, large modification of design and cost are required.
  • the suppressing apparatus of torsional vibration of the crank shaft of the diesel engine adjusts a fuel injection timing and a fuel injection period (injection amount) for each cylinder in the vicinity of a resonant point of torsional vibration properly and varies a characteristic curve of pressure in the cylinder with respect to a crank angle to reduce the magnitude of harmonic components 12 and 13 of resonance order of torque 11 added to each cylinder, or adjusts phase differences 14 and 15 of the harmonic components 12 and 13 for each cylinder and suppresses the resonant stress so as to cancel external force for the vibration mode.
  • a suppressing apparatus of torsional vibration of a crank shaft of a diesel engine having a fuel injection mechanism capable of freely setting a fuel injection timing and period comprises a detector of a rotational number of the engine, and a fuel injection setting device for judging whether the detected value is within an area in the vicinity of a resonant point of torsional vibration of a crank shaft system or not to vary the fuel injection timing and period by a predetermined value if the detected value is within the area.
  • a fundamental principle of the present invention is as follows:
  • the magnitude of stress in the resonant point of torsional vibration of the diesel engine is proportional to the magnitude of a vector sum of the harmonic components 12 and 13 of the resonant order of the torque 11 added to each cylinder. Accordingly, if the magnitude of the harmonic components 12 and 13 of the resonant order and the magnitude of the vector sum are reduced in the resonance, the resonant stress can be suppressed.
  • the fuel injection timing and period are properly varied to adjust the characteristic curves 8 and 9 of pressure in the cylinder for each cylinder so that the harmonic components of torque produced in each cylinder is decreased and the vector sum is made small to reduce the resonance stress.
  • the effects of the present invention are as follows:
  • the present invention makes it possible to reduce the excitation torque component in the vicinity of the resonant point of torsional vibration of the crank shaft by modification of the fuel injection period in the diesel engine. Since the additional stress by the resonance in the vicinity of the resonance point is reduced, the operation avoidance area is made narrow and can be removed if circumstances require. Further, suppression of resonance requiring the provision of the torsional vibration damper can be effected by only adjustment of the fuel injection system.
  • a configuration of a first embodiment is now described. Stress produced in a crank shaft in operation in a resonance of torsional vibration or in the vicinity thereof is proportional to a magnitude of a harmonic component of the resonant order of a composite torque of an engine producing vibrating force.
  • the harmonic component of the composite torque is decreased by reducing the harmonic component of the resonance order of torque by each cylinder so that the stress in the resonance of the crank shaft or in the vicinity thereof is reduced to avoid the resonance.
  • numeral 26 denotes a detector coupled to a crank shaft of an engine to detect a rotational angle of an engine.
  • Numeral 24 denotes a fuel injection timing setting device which is connected to the detector 26.
  • Numeral 25 denotes a memory which is connected to the fuel injection timing setting device 24.
  • Numerals 231 to 236 denote actuators each corresponding to each of the cylinders and connected to the fuel injection timing setting device 24.
  • Numerals 221 to 226 denote control valves each connected to each of the actuators 231 to 236.
  • Numeral 4 denotes a fuel pump, 3 an accumulator to which the fuel pump 4 is connected. The accumulator and the control valves 221 to 226 are connected in parallel with each other.
  • Numerals 11 to 16 denote fuel injection valves each disposed in each of cylinder heads and opened in a fuel chamber and connected to each of the control valves 221 to 226.
  • the detector 26 detects a rotational angle of a crank shaft and a time with the top dead point of a first cylinder as the origin to produce the detected signal.
  • the fuel injection timing setting device 24 receives the signal of the detector 26 and calculates a rotational speed of engine in accordance with the flow chart 1 of the torsional vibration suppressing apparatus of Fig. 6. Whether the rotational speed is within the resonance area of torsional vibration or not is judged on the basis of the contents stored in the memory 25 connected thereto.
  • the fuel injection process of normal operation is set for each cylinder and the signal is sent to each of the actuators 231 to 236.
  • the actuator 231 to 236 are operated to actuate the control valves 221 to 226 so that the fuel injection valves 11 to 16 normally injects the pressurized fuel stored in the accumulator 3 into combustion chambers of the cylinders.
  • the setting device 24 determines that the rotational speed of the crank shaft is within the resonance range of torsional vibration, the setting device 24 sets an injection timing delay amount common to the cylinders and an injection period extension amount for preventing deterioration of the thermal efficiency and much fuel consumption on the basis of the memory contents of the memory 25 to send signals to the actuators 231 to 236.
  • the actuators 231 to 236 are operated to actuate the control valves 221 to 226 so that the fuel injection valves 11 to 16 make uniformly modified fuel injection. The above operations are repeated.
  • the fuel injection timing setting device 24 can determine that it is not within the resonance range of torsional vibration and accordingly returns to set the normal injection as described above.
  • a structure of a second embodiment is different only in the contents of the memory from the first embodiment and accordingly description of the structure is omitted.
  • the six-order harmonic component of torsional vibration of a crank shaft of a series 6-cylinder engine resonates with one-node vibration within the operation range.
  • the resonant state is shown by 16 of the resonance curve of Fig. 4.
  • numeral 18 represents an operation avoidance area.
  • a reason of resonance is as follows: In the normal operation state, the fuel injection process of the cylinders is relatively identical. Accordingly, the characteristic curve of pressure in the cylinder with respect to the crank angle of the cylinders, the harmonic component of torque of the crank shaft by the cylinders, and the phase from the top dead point of the cylinders are identical.
  • numeral 12 represents the six-order harmonic component of torque of the crank shaft by one cylinder in the normal operation
  • numeral 14 represents a phase from the top dead point. Since ignition is at regular intervals in the series six-cylinder engine, the phase of six-order harmonic component of torque of the crank shaft by the cylinders is just identical.
  • the mode of one-node torsional vibration is as shown by 20 of one-node torsional vibration mode diagram of Fig. 5 and since specific amplitudes 21 in positions of the cylinders have the same direction, the torque component of the same six-order phase excites the vibration strongly.
  • the fuel injection process of three cylinders of six cylinders is changed and curve 8 in the normal fuel injection shown by the characteristic curve of Fig. 2 is changed to curve 9 shown by broken line of Fig. 2.
  • the six-order harmonic component of the crank shaft torque is changed as shown by 13 of the harmonic component diagram of Fig. 3 and as shown in Fig. 3 the phase for the top dead point is delayed by about 30° as compared with that shown by 14 of Fig. 3 to reverse the phase as shown by 15 of Fig. 3. Consequently, the torque of the crank shaft by the six cylinders for the one-node torsional vibration mode can be canceled each other to reduce amplitude in the resonance.
  • numeral 19 denotes an area in which operation must be avoided in the embodiment, while the area is very narrower as compared with the prior art.
  • the detector 26 detects the rotational angle and time with the top dead point of the first cylinder of the crank shaft as the origin to produce the signal.
  • the fuel injection timing detector 24 calculates the rotational speed of the crank shaft as shown in the flow chart 2 showing operation of the torsional vibration suppressing apparatus of Fig. 7. Then, it is judged whether the rotational speed of the crank shaft calculated on the basis of the contents of the memory 25 is within the resonant area of torsional vibration or not. When it is determined that it is not within the area, the operation is the same as that of the first embodiment.
  • the fuel injection timing setting device 24 judges it and returns the operation to the normal injection process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • High-Pressure Fuel Injection Pump Control (AREA)

Claims (2)

  1. Vorrichtung zur Unterdrückung der Torsionsschwingungen der Kurbelwelle eines Dieselmotors, bestehend aus:
       einem Detektor zur Erfassung des Drehwinkels eines Motors;
       einer Speichereinheit zur Speicherung der Zeitsteuerung für die Treibstoffeinspritzung im normalen Betriebszustand; sowie
       einer Vorrichtung zur Zeiteinstellung der Treibstoffeinspritzung, die vom besagten Detektor zur Erfassung des Drehwinkels Angaben zum Drehwinkel empfängt, um daraus die Drehzahl des Motors zu berechnen und zu beurteilen, ob die errechnete Drehzahl innerhalb des Resonanzbereichs der Torsionsschwingungen liegt oder nicht, so daß bei einer außerhalb des Resonanzbereichs der Torsionsschwingungen liegenden Drehzahl die Zeitsteuerung der Treibstoffeinspritzung für den Normalbetrieb festgelegt wird, wogegen bei einer innerhalb des Resonanzbereichs der Torsionsschwingungen liegenden Drehzahl die Einspritzzeiten für die Hälfte der Zylinder verzögert werden, um so das Startdrehmoment in einem Zustand zu reduzieren, in dem Resonanz mit der Torsionsschwingung eintritt, so daß eine Phase des durch die Zylinder wirkenden Startdrehmoments in eine Phase des durch die übrigen Zylinder wirkenden Startdrehmoments umgekehrt wird.
  2. Vorrichtung zur Unterdrückung der Torsionsschwingungen der Kurbelwelle eines Dieselmotors entsprechend Anspruch 1, wobei die Anzahl der Zylinder 6 ist, und der Zustand, in dem Resonanz bei Einknoten-Torsionsschwingungen eintritt, eine sechsstufige harmonische Schwingung ist; und beim Auftreten einer Drehzahl, die innerhalb des Resonanzbereichs der Torsionsschwingungen liegt, erfolgt für drei Zylinder eine Verzögerung der Einspritzzeit um etwa 30.
EP90250320A 1990-03-23 1990-12-20 Vorrichtung zur Unterdrückung der Torsionsschwingungen einer Dieselmotorkurbelwelle Expired - Lifetime EP0447697B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2071954A JP3004307B2 (ja) 1990-03-23 1990-03-23 ディーゼル機関のクランク軸ねじり振動抑制装置
JP71954/90 1990-03-23

Publications (3)

Publication Number Publication Date
EP0447697A2 EP0447697A2 (de) 1991-09-25
EP0447697A3 EP0447697A3 (en) 1992-03-04
EP0447697B1 true EP0447697B1 (de) 1994-05-25

Family

ID=13475390

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90250320A Expired - Lifetime EP0447697B1 (de) 1990-03-23 1990-12-20 Vorrichtung zur Unterdrückung der Torsionsschwingungen einer Dieselmotorkurbelwelle

Country Status (5)

Country Link
EP (1) EP0447697B1 (de)
JP (1) JP3004307B2 (de)
KR (1) KR940006051B1 (de)
DE (1) DE69009173T2 (de)
DK (1) DK0447697T3 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017117289A1 (en) * 2015-12-28 2017-07-06 Eaton Corporation Cylinder deactivation and engine braking for start or stop harmonics management
US11326533B2 (en) 2016-01-19 2022-05-10 Eaton Intelligent Power Limited Cylinder deactivation and engine braking for thermal management
US11459917B2 (en) 2015-09-25 2022-10-04 Eaton Intelligent Power Limited Cylinder deactivation energy waste management

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19633066C2 (de) * 1996-08-16 1998-09-03 Telefunken Microelectron Verfahren zur zylinderselektiven Steuerung einer selbstzündenden Brennkraftmaschine
JP3405163B2 (ja) * 1997-12-17 2003-05-12 トヨタ自動車株式会社 内燃機関の燃料噴射量制御装置
GB0220383D0 (en) * 2002-08-31 2002-10-09 Holset Engineering Co Mehod of reducing high cycle fatigue of turbochargers
ITBO20030001A1 (it) 2003-01-02 2004-07-03 Ferrari Spa Metodo per la riduzione dei fenomeni di risonanza in una linea
WO2005124133A1 (en) * 2004-06-17 2005-12-29 Man B & W Diesel A/S Vibration reduction by combustion parameter control of large diesel engines
DK1739296T3 (da) * 2005-06-30 2013-06-03 Waertsilae Nsd Schweiz Ag Fremgangsmåde til optimering af en driftsparameter i en stempelforbrændingsmotor samt stempelforbrændingsmotor
CN100460648C (zh) * 2005-11-17 2009-02-11 曼B与W狄赛尔公司 减少十字头式二冲程内燃机传动轴系统中过大扭转振动的方法
FI122489B (fi) * 2008-05-26 2012-02-15 Waertsilae Finland Oy Menetelmä ja järjestelmä dieselmoottorin sylintereiden tasapainottamiseksi
JP5212318B2 (ja) * 2009-09-04 2013-06-19 トヨタ自動車株式会社 車両のエンジン制御装置
JP5807393B2 (ja) * 2011-05-30 2015-11-10 いすゞ自動車株式会社 内燃機関の制御方法、内燃機関及びそれを搭載した車両
JP5795731B2 (ja) * 2011-12-16 2015-10-14 川崎重工業株式会社 ねじり振動応力低減制御装置、これを備えた船舶、及びねじり振動応力低減方法
JP6025640B2 (ja) * 2013-03-28 2016-11-16 三菱重工業株式会社 エンジンの失火時負荷制御方法およびその失火時負荷制御システム
CN104865075B (zh) * 2014-02-26 2020-11-17 南京理工大学 船舶柴油机振动信号的分析系统及其方法
JP6866325B2 (ja) 2018-03-16 2021-04-28 株式会社Ihi原動機 舶用エンジン
CN114060195B (zh) * 2020-08-04 2023-02-28 北京福田康明斯发动机有限公司 一种降低发动机振动的方法、系统、存储介质和电子设备
CN115031978A (zh) * 2022-04-07 2022-09-09 哈尔滨工程大学 一种基于连杆瞬态应力的柴油机曲轴扭振模型标定方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0227058A2 (de) * 1985-12-20 1987-07-01 Audi Ag Verfahren und Schaltung zur Regelung des Spritzbeginns bei einer Verteilerpumpe für Dieselkraftstoff an einer Dieselbrennkraftmaschine

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4172434A (en) * 1978-01-06 1979-10-30 Coles Donald K Internal combustion engine
US4418669A (en) * 1982-07-19 1983-12-06 The Bendix Corporation Fuel distribution control system for an internal combustion engine
US4475511A (en) * 1982-09-01 1984-10-09 The Bendix Corporation Fuel distribution control system for an internal combustion engine
JPS6026142A (ja) * 1983-07-22 1985-02-09 Toyota Motor Corp デイ−ゼル機関のトルク制御装置
JPS60184944A (ja) * 1984-03-02 1985-09-20 Toyota Motor Corp 電子制御デイ−ゼルエンジンの気筒別燃料噴射量制御方法
CH674398A5 (de) * 1986-06-23 1990-05-31 Sulzer Ag

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0227058A2 (de) * 1985-12-20 1987-07-01 Audi Ag Verfahren und Schaltung zur Regelung des Spritzbeginns bei einer Verteilerpumpe für Dieselkraftstoff an einer Dieselbrennkraftmaschine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11459917B2 (en) 2015-09-25 2022-10-04 Eaton Intelligent Power Limited Cylinder deactivation energy waste management
WO2017117289A1 (en) * 2015-12-28 2017-07-06 Eaton Corporation Cylinder deactivation and engine braking for start or stop harmonics management
US11326533B2 (en) 2016-01-19 2022-05-10 Eaton Intelligent Power Limited Cylinder deactivation and engine braking for thermal management

Also Published As

Publication number Publication date
DK0447697T3 (da) 1994-06-20
DE69009173D1 (de) 1994-06-30
EP0447697A3 (en) 1992-03-04
EP0447697A2 (de) 1991-09-25
KR940006051B1 (ko) 1994-07-02
JPH03275958A (ja) 1991-12-06
KR910017057A (ko) 1991-11-05
JP3004307B2 (ja) 2000-01-31
DE69009173T2 (de) 1994-09-08

Similar Documents

Publication Publication Date Title
EP0447697B1 (de) Vorrichtung zur Unterdrückung der Torsionsschwingungen einer Dieselmotorkurbelwelle
US4860711A (en) Engine with variable compression ratio
US4887573A (en) Ignition timing adjusting apparatus for internal combustion engine
JPH09126040A (ja) 内燃機関の制御装置
JP4049823B2 (ja) マルチシリンダ内燃機関におけるノッキング制御の方法
US20090281706A1 (en) Engine Optimisation Method And Apparatus
JP2003527527A (ja) 多気筒内燃機関の作動方法
JP5038638B2 (ja) 内燃機関の制御装置及び制御方法
US5080066A (en) Method of controlling engine
JPH0275760A (ja) 内燃機関の点火時期制御装置
US4745902A (en) Ignition timing control method for internal combustion engine
US6267101B1 (en) Device for preventing unbalance between respective engine cylinders of a motor vehicle
US5783744A (en) Engine knocking detection system
JPS58107875A (ja) 内燃機関の点火時期制御方法
JP3997966B2 (ja) 筒内直接噴射式内燃機関
JP2634278B2 (ja) 内燃機関燃料噴射装置
JP3508220B2 (ja) 多気筒内燃機関の制御装置
JPS63189658A (ja) 内燃機関の出力制御装置
JPH0680305B2 (ja) 内燃機関のノツキング検出装置
JPS6316153A (ja) エンジンの制御装置
JPH0425435B2 (de)
JPH04350337A (ja) 車体振動低減方法
JPH0240055A (ja) エンジンの出力制御装置
JPH0751908B2 (ja) 内燃機関の空燃比制御装置
JP2002317671A (ja) 燃料噴射装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): CH DE DK LI

17P Request for examination filed

Effective date: 19910218

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): CH DE DK LI

17Q First examination report despatched

Effective date: 19930128

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE DK LI

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REF Corresponds to:

Ref document number: 69009173

Country of ref document: DE

Date of ref document: 19940630

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19970114

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971231

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 19981214

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991220

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20020109

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030701