EP0392477B1 - Beschichtete Polyamidfaser - Google Patents

Beschichtete Polyamidfaser Download PDF

Info

Publication number
EP0392477B1
EP0392477B1 EP90106890A EP90106890A EP0392477B1 EP 0392477 B1 EP0392477 B1 EP 0392477B1 EP 90106890 A EP90106890 A EP 90106890A EP 90106890 A EP90106890 A EP 90106890A EP 0392477 B1 EP0392477 B1 EP 0392477B1
Authority
EP
European Patent Office
Prior art keywords
polyamide
amino groups
fiber
fiber according
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90106890A
Other languages
English (en)
French (fr)
Other versions
EP0392477A2 (de
EP0392477A3 (de
Inventor
Jürgen Dr. Wichelhaus
Serge Dr. Rebouillat
Johannes Andres
Werner Dr. Gruber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EIDP Inc
Original Assignee
Henkel AG and Co KGaA
EI Du Pont de Nemours and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel AG and Co KGaA, EI Du Pont de Nemours and Co filed Critical Henkel AG and Co KGaA
Priority to AT90106890T priority Critical patent/ATE100156T1/de
Publication of EP0392477A2 publication Critical patent/EP0392477A2/de
Publication of EP0392477A3 publication Critical patent/EP0392477A3/de
Application granted granted Critical
Publication of EP0392477B1 publication Critical patent/EP0392477B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/10Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing oxygen
    • D06M13/11Compounds containing epoxy groups or precursors thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/59Polyamides; Polyimides
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/55Epoxy resins

Definitions

  • the invention relates to a polyamide fiber which is coated with a special reaction product consisting of a multifunctional epoxy component and a polyamide resin.
  • the invention further relates to a method for coating polyamide fibers with such agents.
  • fibers are understood to mean both continuous fibers and also fiber cuts, fiber composites, yarns, cords, textile fabrics or pulps.
  • Preferred polyamide fibers are aromatic polyamide fibers.
  • fibers coated in this way show a relatively high water absorption. This is not desirable for numerous subsequent processing steps.
  • Canadian Patent 651,745 describes a process for the preparation of polyaminoamides by the condensation of fatty acids with alkylene polyamines.
  • polyaminoamides are known as hardeners for epoxy resins, there is no indication in the specialist literature that they can be used advantageously for the surface treatment of fibers, in particular aramid fibers.
  • the invention thus relates to a polyamide fiber coated with the reaction products of a multifunctional epoxy compound and a polyamine, characterized in that a polyamide resin with amino groups, in particular amino end groups, is used as the polyamine.
  • Another object of the invention is the use of the above-mentioned reaction product of polyfunctional epoxides and polyamide resins as an adhesive and lubricity-imparting coating on a polyamide fiber.
  • a polyfunctional amine which also has amide groups as the reaction component for the polyfunctional epoxy compound.
  • polyamide resins with amino end groups are those polyamide resins in which one or all of the acid components are branched dicarboxylic acids and in particular dimer fatty acids, or in which at least one of the difunctional amino components is the corresponding dimer fatty acid diamine.
  • Dimer fatty acids are understood here to mean the dimerization products of unsaturated fatty acids. These are mixtures of substances with a high proportion of branched dicarboxylic acids of chain length C3 die, but which also contain monofunctional fatty acids and trimers.
  • polyamide resins with amino end groups the reaction products of such dimer fatty acids with an excess of at least difunctional primary or secondary amines, which may also contain tertiary amino groups, are suitable.
  • Polyamide resins based on dimer fatty acids as dicarboxylic acid and alkylenediamines, dialkylenetriamines and / or their higher homologs as amino components are particularly suitable.
  • polyaminoamide resins which are formed by reacting fatty acids and / or dimer fatty acid, but preferably unsaturated fatty acids with ethylenediamine and / or diethylenetriamine at higher temperatures and / or in the presence of catalysts, and which contain nitrogen-containing heterocycles (generally imidazoline rings) as parts of the molecule.
  • nitrogen-containing heterocycles generally imidazoline rings
  • products are preferred in which the number of nitrogen atoms in rings is 20-90%, preferably 20-60%, based on all nitrogen atoms.
  • the dimer fatty acids can furthermore be partially, i.e. up to about 50% by weight can be replaced by dicarboxylic acids having 3 to 20 carbon atoms. It is also possible to chain extend the polyaminoamides by reaction with e.g. Undergo lactams. Suitable lactams are caprolactam and / or lauryl lactam.
  • the polyaminoamides used according to the invention can also be used in admixture with other mono- or polyfunctional amines will.
  • the amount of monofunctional amines should be limited to about 10 mol%, based on amino groups.
  • the amount of the other multifunctional amines should not be more than 80 mol% of the total amount of amines. However, it is preferred to use such amines only in minor amounts.
  • Suitable here are di- and trifunctional amines, as are usually used as curing agents for epoxides, for example ethylenediamine, diethylenetriamine, aliphatic or cycloaliphatic diprimary amines and the like.
  • amine number should be more than 70, an upper limit being given by the molecular weight and being approximately 700, preferably 100.
  • a large number of multifunctional epoxy compounds can be combined with the polyamide resins mentioned. Attention should be paid to the functionality of the epoxy component from 2 to 4. Preference is given to semi-volatile polyfunctional epoxy compounds, especially those with ring structures, e.g. contain aromatic ring structures as a base.
  • Preferred epoxy compounds are N-glycidyl compounds and / or O-glycidyl compounds, in particular N-glycidyl compounds with functionality 3 to 4.
  • a particularly suitable multifunctional epoxy compound is tetraglycidyldiaminodiphenylmethane.
  • a ratio of amine hydrogens to epoxy rings between 2: 1 and 1: 2, in particular with an excess of either amine component or epoxy component.
  • Higher amounts of amine can also be used, for example between 2 and 4 amine hydrogens per epoxy group. In this case there are amino end groups in the middle, otherwise epoxy end groups.
  • Another object of the invention is a method for modifying polyamide fibers with the reaction products of polyfunctional epoxides and polyamide resins, in which the polyamide resin and the polyfunctional epoxy compound are applied to the fibers simultaneously or in succession as a solution, dispersion or melt and then cured if desired at elevated temperature leaves.
  • the epoxy compounds and the polyamide resin may be preferred to dissolve or disperse the epoxy compounds and the polyamide resin separately, and then to coat the fiber either in a mixture of the solutions / dispersions or in succession in the individual solutions / dispersions.
  • Usual concentrations of the coating solutions are between 1 and 20% by weight.
  • polyfunctional epoxy component can be used in solutions with a solids content of 2 to 10% by weight and the polyamide resin component in solutions with a solids content of 10 to 20% or in dispersions and then applied. It can also be applied from the melt.
  • Suitable solvents are the solvents which are customary for polyamides based on dimer fatty acid.
  • a particularly favorable solvent system consists of isopropanol and toluene, for example in a weight ratio of 9: 1.
  • the coating compositions of the invention may also contain other additives.
  • dyes, anti-aging agents and the like may be present.
  • Catalysts for the reaction of amines with epoxy groups can also be used.
  • catalysts for this are, for example, tertiary amines.
  • coated fibers can be made from polyamides, based on aromatic and / or aliphatic basic building blocks. Coated fibers made from aromatic polyamides are of particular importance.
  • Aromatic polyamide fibers are generally fibers (continuous fibers, fiber short cuts, pulps, fiber composites, yarns or textile fabrics) made of aromatic polyamides with a fibrous structure.
  • Aromatic polyamides are understood to mean those polymers which partially, predominantly or exclusively consist of aromatic rings which are connected to one another by carbonamide bridges and optionally also by other bridge members.
  • the structure of such aromatic polyamides can be illustrated in part by the following general formula: (-CO-NH A1-NH-CO-A2) n , in which A1 and A2 represent aromatic and / or heterocyclic rings, which can also be substituted.
  • An important class of surface-treated fibers according to the invention is derived from fully aromatic copolyamides.
  • aromatic polyamides examples include: poly-m-phenylene-isophthalamide, trade name Nomex (R) (US 3,287,324); Poly-p-phenylene terephthalamide, trade name Kevlar (R) (DE 22 19 703). Also suitable are polyamides of this structure in which at least one of the phenyl radicals carries one or more substituents, for example lower alkyl groups, alkoxy groups or halogen atoms. Other aromatic polyamides at least partially contain building blocks which are derived from 3- or 4-amino-benzoic acid.
  • Also suitable for coating with the surface treatment agents according to the invention are those fully aromatic polyamide fibers which, according to DE 22 19 646, have been stretched in a nitrogen atmosphere at a temperature above 150 ° C.
  • aromatic polyamides are also suitable, in which the aromatic rings are partly replaced by heterocycles or which also have heterocycles as substituents or chain links, and fibers according to US Pat. No. 4,075,172, which are offered under the trade name Technora (R) .
  • the surface treatment agents according to the invention can be used at various points in fiber production.
  • the surface treatment agents can be applied to moist fibers which have never been dried (on line) or they can be applied to the dried fibers (off line). It is preferred to apply the surface treatment agents after drying and, if desired, after stretching. This applies in particular to aramid fibers.
  • the usual applicators can be used. These are, for example, metering application systems, roll application systems, serpentine application systems or baths.
  • Ultrasound treatment, electrostatic treatment or plasma treatment of the fiber or yarn can also be carried out before, during or after the application. In some cases this will be preferred to improve the penetration of the treatment agent. In any case, the devices customary here for use with solvent-containing preparations can be used.
  • the quantity applied to the fiber is 0.01 to 12% by weight, based on fiber weights.
  • the fiber can be dried before or after the coating and possibly can also be coated in several layers, ie after a first coating step is dried and then coated again in a further bath.
  • the first coating is preferably carried out with epoxy resin solutions, the second coating with the polyaminoamide solution.
  • the drying process can be carried out using convection (for example hot air), heat conduction (for example contact drying), radiation (for example Infrared) or the like.
  • the heat treatment of the fiber usually takes place in a range from 80 to 220 ° C., the higher temperature range can only be used with thermally stable fibers, for example with aramid fibers.
  • the drying time can vary between a few seconds and several minutes depending on the degree of drying to be achieved and the further use of the fiber.
  • the running speed of the fibers or yarns in the coating device can be chosen between a few meters per minute and a few hundred meters per minute depending on the desired product intake quantity.
  • a lower limit of the drying time is about 5 seconds
  • an upper limit of the running speed is about 750 m / min.
  • the surface-coated fibers according to the invention can be used in a variety of ways.
  • the fibers show reduced water absorption and reduced coefficients of friction, which is important during processing. For example, they show better substrate adhesion in cold adhesive processes, but can also be embedded in plastics or vulcanized in rubber, the fibers then having good binding ability to polar and non-polar types of rubber. Furthermore, the polyamide fibers coated in this way show reduced friction against one another.
  • a polyaminoamide with an amine number between 80 and 95 based on fatty acid and diethylenetriamine analogous to Example 2 of CA 651.745 was dissolved in isopropanol while hot.
  • the solids content of the solution was 12% by weight.
  • the epoxy resin solution and the amine resin solution were then diluted so that the solids content epoxy to amine ratio was 2: 3.
  • an aromatic polyamide fiber Kevlar (R) ) was first drawn through the epoxy resin solution, dried with hot air at 200 ° C and pulled through the polyamide resin solution in the second step, after which a further drying step was carried out at 200 ° C in a counter-air flow.
  • the adhesive characteristics were measured before and after fatigue by pulling the yarns out of the rubber block.
  • treated aramid yarns (Kevlar (R) 1670 dtex, 80 T / M) were introduced into different rubber mixtures and vulcanized at 160 ° C. for a period of 20 minutes.
  • the rubber mixtures with the yarns were pressed between two plates of an electrically heated hydraulic press (18 t).
  • aramid continuous fiber of the p-phenylenediamine-terephthalamide type in the dried (off-line) state was drawn through a bath with the surface treatment agent according to the invention described above and then dried at approximately 120.degree.
  • the yarn had a pretension of 0.6 daN. It was an untwisted 1670 dtex yarn.
  • a dried polyamide fiber (Kevlar (R) 29) was first drawn through the epoxy resin solution (2% by weight solid), then dried with hot air at 200 ° C and in the second step through the polyamide resin solution (3% by weight ) each in polyol / isopropanol, then dried at 200 ° C in a counter air stream.
  • the coefficient of friction of treated yarns compared to untreated yarns was determined in preliminary tests. The measurement was carried out in a friction measuring device (Rothschild) according to standard conditions. The coefficient of friction yarn to metal was 0.40 for the treated yarn and 0.54 for the untreated yarn. The Friction coefficient fiber to fiber was 0.055 for the treated yarn compared to 0.11 for the standard product Kevlar (R) 29)
  • Aramid yarns (Kevlar (R) were knitted on an ELHA (R) circular knitting machine (model RRU). The test lasted 4 hours. The machine speed was 670 min -1, the knitting speed 15 m / min. In contrast to untreated fibers, none The image of the knitted fabric was uniform, and there were no deposits in the knitting machine, which means that the surface treatment agents according to the invention markedly improve the knitting properties of aramid yarns.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Chemical Treatment Of Fibers During Manufacturing Processes (AREA)

Description

  • Die Erfindung betrifft eine Polyamidfaser, die mit einem speziellen Reaktionsprodukt aus einer mehrfunktionellen Epoxidkomponente und einem Polyamidharz beschichtet ist. Weiterhin betrifft die Erfindung ein Verfahren zur Beschichtung von Polyamidfasern mit derartigen Mitteln.
  • Unter Fasern werden im Sinne der Erfindung sowohl Endlosfasern als auch Faserschnitte, Faserverbunde, Garne, Corde, textile Flächengebinde oder auch Pulpen verstanden. Bevorzugte Polyamidfasern sind aromatische Polyamidfasern.
  • Es ist bekannt, Kunststoffe mit organischen oder anorganischen Fasern zu verstärken, um bessere Materialeigenschaften zu erhalten. Die Reißfestigkeit solcher Verbundwerkstoffe oder andere mechanische Eigenschaften erhöhen sich dabei um den Betrag, der von den eingebauten Fasern herrührt. Es hat sich jedoch gezeigt, daß das volle Leistungsvermögen der Fasern in vielen Fällen nicht ausgenutzt werden kann, da beim Zerreißvorgang an der Grenzfläche der Faser zur Matrix Bruch auftritt, und die Fasern sozusagen aus der Matrix herausgezogen werden. Derartige Phänomene werden insbesondere bei sehr reißfesten Fasern, beispielsweise Aramid-Fasern beobachtet.
  • Um dies zu verhindern, werden in der Technik Fasern mit Oberflächenbehandlungsmitteln, beispielsweise mit Epoxidharz-Zubereitungen oder auch mit anderen Harzen überzogen. So wird in der US-Patentschrift 4,652,488 vorgeschlagen, aromatische Polyamidfasern mit einem Reaktionsprodukt von mehrfunktionellen Epoxiden und mehrfunktionellen Aminen zu beschichten. Hierzu schlägt das US-Patent vor, von einem speziellen Cord auszugehen und diesen mit einem difunktionellen Epoxid, wie beispielsweise dem Diglycidylether des Glycerins und einem difunktionellen Amin, beispielsweise Piperazin, zu beschichten. Ziel des Vorschlags ist es, Beschichtungen mit relativ niedrigem Restepoxidgehalt zu erhalten. Derartige Epoxidbeschichtungen sind jedoch recht spröde und führen daher dazu, daß die Fasern, Garne usw. bei nachfolgenden textilen Bearbeitungsschritten, wie dem Stricken oder Weben, aufspleißen oder gar brechen können, so daß sich Ablagerungen in den Textilmaschinen bilden.
  • Darüber hinaus zeigen so beschichtete Fasern eine relativ hohe Wasseraufnahme. Dies ist bei zahlreichen nachfolgenden Bearbeitungsschritten nicht gewünscht.
  • In der kanadischen Patentschrift 651,745 wird ein Verfahren zur Herstellung von Polyaminoamiden durch Kondensation von Fettsäuren mit Alkylenpolyaminen beschrieben. Wenngleich derartige Polyaminoamide als Härter für Epoxidharze bekannt sind, so findet sich in der Fachliteratur kein Hinweis darauf, daß sie mit Vorteil zur Oberflächenbehandlung von Fasern, insbesondere Aramid-Fasern, eingesetzt werden können.
  • Es ist daher Aufgabe der Erfindung, eine Polyamidfaser, insbesondere eine Aramid-Faser, zu schaffen, die mit einer speziellen Epoxidbeschichtung auf Basis von Polyaminoamiden versehen ist, und dadurch günstigere Verarbeitungsfähigkeiten, wie geringere Reibungskoeffizienten und geringere Wasseraufnahme, aber auch gute Verklebbarkeit zeigt.
  • Gegenstand der Erfindung ist somit eine Polyamidfaser, beschichtet mit den Reaktionsprodukten aus einer mehrfunktionellen Epoxidverbindung und einem Polyamin, dadurch gekennzeichnet, daß als Polyamin ein Polyamidharz mit Aminogruppen, insbesondere Aminoendgruppen eingesetzt wird.
  • Ein weiterer Gegenstand der Erfindung ist die Verwendung des vorgenannten Reaktionsprodukts aus mehrfunktionellen Epoxiden und Polyamidharzen als Haftfestigkeit und Gleitwirkung-vermittelnde Beschichtung auf einer Polyamidfaser.
  • In einer allgemeinen Ausgestaltung der erfindungsgemäßen Lehre wird daher vorgeschlagen, als Reaktionskomponente für die mehrfunktionelle Epoxidverbindung ein mehrfunktionelles Amin zu verwenden, das auch noch Amidgruppen aufweist. Geeignet sind hier ganz allgemein Polyamidharze mit Amino-Endgruppen. Unter diesen bevorzugt jedoch sind solche Polyamidharze, bei denen eine oder alle Säurekomponenten verzweigte Dicarbonsäuren und insbesondere Dimerfettsäuren darstellen, oder bei denen zumindest eine der difunktionellen Aminokomponente das entsprechende Dimerfettsäurediamin ist.
  • Unter Dimerfettsäuren werden hier die Dimerisierungsprodukte ungesättigter Fettsäuren verstanden. Es sind dies Stoffmischungen mit einem hohen Anteil an verzweigten Dicarbonsäuren der Kettenlänge C₃₆, die darüber hinaus jedoch auch noch monofunktionelle Fettsäuren sowie auch Trimere enthalten.
  • Unter den denkbaren Polyamidharzen mit Aminoendgruppen sind die Umsetzungsprodukte von solchen Dimerfettsäuren mit einem Überschuß an zumindest difunktionellen primären oder sekundären Aminen, die auch noch tertiäre Aminogruppen enthalten können, geeignet. Besonders geeignet sind Polyamidharze auf Basis von Dimerfettsäuren als Dicarbonsäure und Alkylendiamine, Dialkylentriamine und/oder deren höheren Homologe als Aminokomponente.
  • Weiter geeignet sind Polyaminoamidharze, die durch Umsetzen von Fettsäuren und/oder Dimerfettsäure, vorzugsweise aber ungesättigte Fettsäuren mit Ethylendiamin und/oder Diethylentriamin bei höheren Temperaturen und/oder in Gegenwart von Katalysatoren entstehen, und die als Molekülteile stickstoffhaltige Heterocyclen (im allgemeinen Imidazolinringe) enthalten. Bei derartigen Polyaminoamiden sind Produkte bevorzugt, bei denen die Anzahl der in Ringen liegenden Stickstoffatome 20 - 90, vorzugsweise 20 - 60 %, bezogen auf alle Stickstoffatome, beträgt.
  • In den erfindungsgemäß eingesetzten Polyamidharzen können die Dimerfettsäuren desweiteren anteilsweise, d.h. bis zu etwa 50 Gew.-% durch Dicarbonsäuren mit 3 bis 20 C-Atomen ersetzt sein. Weiterhin ist es möglich, die Polyaminoamide einer Kettenverlängerung durch Reaktion mit z.B. Lactamen zu unterziehen. Geeignete Lactame sind Caprolactam und/oder Lauryllactam.
  • Die erfindungsgemäß eingesetzten Polyaminoamide können auch in Abmischung mit anderen mono- oder mehrfunktionellen Aminen eingesetzt werden. Die Menge der monofunktionellen Amine sollte dabei auf etwa 10 mol-%, bezogen auf Aminogruppen, beschränkt sein. Die Menge der anderen mehrfunktionellen Amine sollte nicht mehr als 80 mol-% der gesamten Aminmenge betragen. Bevorzugt ist jedoch, derartige Amine nur in untergeordneten Mengen einzusetzen. Geeignet sind hier di-und trifunktionelle Amine, wie sie üblicherweise als Härtungsmittel für Epoxide eingesetzt werden, so beispielsweise Ethylendiamin, Diethylentriamin, aliphatische oder cycloaliphatische diprimäre Amine und dergleichen.
  • Bei der Auswahl geeigneter Polyamidharze hat der Fachmann auf die Aminzahl zu achten. Diese soll mehr als 70 betragen, wobei eine Obergrenze durch das Molekulargewicht gegeben ist und etwa bei 700, vorzugsweise bei 100, liegt.
  • Mit den genannten Polyamidharzen können eine Vielzahl mehrfunktioneller Epoxidverbindungen kombiniert werden. Dabei ist auf eine Funktionalität der Epoxidkomponente von 2 bis 4 zu achten. Bevorzugt sind hier schwer flüchtige mehrfunktionelle Epoxidverbindungen, insbesondere solche die Ringstrukturen, z.B. aromatische Ringstrukturen als Grundkörper enthalten. Bevorzugte Epoxidverbindungen sind N-Glycidylverbindungen und/oder O-Glycidylverbindungen, insbesondere N-Glycidylverbindungen der Funktionalität 3 bis 4.
  • Eine besonders geeignete mehrfunktionelle Epoxidverbindung ist das Tetraglycidyldiaminodiphenylmethan.
  • Bei der Wahl der Mengenverhältnisse hat der Fachmann darauf zu achten, daß im ausgehärteten Zustand die Reaktionsprodukte zwischen der Epoxidverbindung und dem Polyaminoamid einen Überschuß an reaktive Endgruppen aufweisen. Bei Polyamidharzen mit einer Funktionalität von mindestens 2 und einer Aminzahl zwischen 80 und 90 in Kombination mit 4 funktionellen Epoxidverbindungen hat sich bewährt, ein Gewichtsverhältnis Epoxid zu Amin von 1 : 5 bis 1 : 1, bevorzugt 1 : 3 bis 1 : 1,2 und im besonderen 2 : 3 einzustellen.
  • Ganz allgemein ist es bevorzugt, ein Verhältnis von Aminwasserstoffen zu Epoxidringen zwischen 2 : 1 und 1 : 2 zu wählen, wobei insbesondere mit einem Überschuß von entweder aminischer Komponente oder Epoxidkomponente gearbeitet wird. Auch höhere Aminmengen können eingesetzt werden, so beispielsweise zwischen 2 und 4 Aminwasserstoffen pro Epoxidgruppe. Dabei liegen dann im mittel Aminoendgruppen, andernfalls Epoxidendgruppen vor.
  • Ein weiterer Gegenstand der Erfindung ist ein Verfahren zur Modifizierung von Polyamidfasern mit den Reaktionsprodukten aus mehrfunktionellen Epoxiden und Polyamidharzen, bei dem man das Polyamidharz und die mehrfunktionelle Epoxidverbindung gleichzeitig oder nacheinander als Lösung, Dispersion oder Schmelze auf die Fasern aufbringt und danach gewünschtenfalls bei erhöhter Temperatur aushärten läßt.
  • Dabei kann es bevorzugt sein, die Epoxidverbindungen und das Polyamidharz getrennt zu lösen oder zu dispergieren, und dann die Faser entweder in einer Mischung der Lösungen/Dispersionen oder nacheinander in den einzelnen Lösungen/Dispersionen zu beschichten. Übliche Konzentrationen der Beschichtungslösungen liegen dabei zwischen 1 und 20 Gew.-%. So kann beispielsweise mehrfunktionelle Epoxidkomponente in Lösungen mit einem Feststoffgehalt von 2 bis 10 Gew.-% und die Polyamidharzkomponente in Lösungen mit einem Feststoffgehalt von 10 bis 20 % oder auch in Dispersionen eingesetzt und dann aufgebracht werden. Darüber hinaus kann aus der Schmelze aufgetragen werden.
  • Die erfindungsgemäß eingesetzten Harzlösungen sind nicht in jedem Falle echte physikalische Lösungen. Ohne Nachteil für die Eigenschaften können auch Teile der miteinander gemischten Polymeren in dispergierter gequollener oder nicht gequollener Form vorliegen. In einem solchen Fall ist bei der Anwendung ein Absetzen zu verhindern. Als Lösungsmittel kommen die für Polyamide auf Basis Dimerfettsäure gängigen Lösungsmittel in Frage. So beispielsweise Mischungen aus C₁- bis C₁₂-Alkoholen, insbesondere C₁- bis C₄-Alkoholen, vorzugsweise in Abmischung mit Kohlenwasserstoffen. Ein besonders günstiges Lösungsmittelsystem besteht aus Isopropanol und Toluol, beispielsweise im Gewichtsverhältnis 9 : 1.
  • Die erfindungsgemäßen Beschichtungsmittel können darüber hinaus auch noch weitere Zusätze enthalten. So können beispielsweise Farbstoffe, Alterungsschutzmittel und dergleichen vorhanden sein. Auch Katalysatoren für die Reaktion von Aminen mit Epoxidgruppen können eingesetzt werden. Bekannte Katalysatoren hierfür sind beispielsweise tertiäre Amine.
  • Gemäß der Erfindung können beschichtete Fasern aus Polyamiden, und zwar auf Basis aromatischer und/oder aliphatischer Grundbausteine hergestellt werden. Von besonderer Bedeutung sind beschichtete Fasern aus aromatischen Polyamiden.
  • Im Rahmen der Erfindung kommt beschichteten aromatischen Polyamidfasern besondere Bedeutung zu. Unter aromatischen Polyamidfasern werden hier ganz allgemein Fasern, (Endlos-Fasern, Faserkurzschnitte, Pulpen, Faserverbunde, Garne oder textile Flächengebilde) aus aromatischen Polyamiden mit faseriger Struktur angesehen. Dabei werden unter aromatischen Polyamiden solche Polymeren verstanden, die teilweise, überwiegend oder ausschließlich aus aromatischen Ringen bestehen, die durch Carbonamidbrücken und ggf. auch zusätzlich durch andere Brückenglieder miteinander verbunden sind. Die Struktur solcher aromatischen Polyamide läßt sich zum Teil durch die folgende allgemeine Formel verdeutlichen: (-CO-NH A₁-NH-CO-A₂)n, in der A₁ und A₂ aromatische und/oder heterocylische Ringe bedeuten, die auch substituiert sein können. Eine wichtige Klasse von oberflächenvergüteten Fasern gemäß Erfindung leitet sich von voll aromatischen Copolyamiden ab.
  • Beispiele für derartige aromatische Polyamide sind: Poly-m-phenylen-isophthalamid, Handelsname Nomex(R) (US 3,287,324); Poly-p-phenylen-terephthalamid, Handelsname Kevlar(R) (DE 22 19 703). Geeignet sind weiterhin Polyamide dieser Struktur, bei denen zumindest einer der Phenylreste ein oder mehrere Substituenten, z.B. niedrige Alkylgruppen, Alkoxygruppen oder Halogenatome trägt. Weitere aromatische Polyamide enthalten zumindest teilweise Bausteine, die sich von der 3- bzw. 4-Amino-benzoesäure ableiten.
  • Weiter geeignet für die Vergütung mit den erfindungsgemäßen Oberflächenbehandlungsmitteln sind solche voll aromatischen Polyamidfasern, die nach der DE 22 19 646 in Stickstoffatmosphäre bei einer Temperatur über 150°C verstreckt worden sind.
  • Weiterhin sind auch aromatische Polyamide geeignet, die Diaminodiphenylengruppen enthalten, bei denen bei Phenylreste, die je eine Amino- oder Carbonsäuregruppe tragen, über ein Brückenglied, z.B. ein Heteroatom (O, S, SO₂, NR, N₂ oder eine Gruppe CR₂ (mit R = H oder Alkylgruppen) oder eine Gruppe CO miteinander verbunden sind. Geeignet sind schließlich auch aromatische Polyamide, bei denen die aromatischen Ringe zum Teil durch Heterocyclen ersetzt sind oder die Heterocyclen als Substituenten oder Kettenglieder mitaufweisen, sowie Fasern gemäß US-PS 4,075,172, die unter dem Handelsnamen Technora(R) angeboten werden.
  • Die erfindungsgemäßen Oberflächenbehandlungsmittel können an verschiedenen Stellen der Faserherstellung eingesetzt werden. So können die Oberflächenbehandlungsmittel auf noch nie getrocknete feuchte Faser aufgebracht werden (on line) oder sie können auf die getrocknete Faser (off line) aufgebracht werden. Bevorzugt ist es, die Oberflächenbehandlungsmittel nach dem Trocknen und gewünschtenfalls nach dem Verstrecken aufzubringen. Dies gilt insbesondere für Aramid-Fasern.
  • Beim Auftragen auf die Faser können die üblichen Auftragsgeräte eingesetzt werden. Es sind dies beispielsweise Dosierauftragssysteme, Rollenauftragssysteme, Serpentinenauftragssysteme oder Bäder.
  • Vor, während oder nach dem Auftrag kann auch eine Ultraschallbehandlung, eine elektrostatische Behandlung oder eine Plasmabehandlung der Faser oder des Garnes erfolgen. In manchen Fällen wird dies bevorzugt sein, um das Eindringen des Behandlungsmittels zu verbessern. Im jeden Falle können die hier üblichen für die Verwendung mit lösungsmittelhaltigen Zubereitungen geeigneten Gerätschaften eingesetzt werden. Die Auftragsmenge auf die Faser beträgt bezogen auf Fasergewichten 0,01 bis 12 Gew.-%.
  • Die Faser kann vor oder nach der Beschichtung getrocknet werden und möglicherweise kann auch in mehreren Schichten beschichtet werden, d.h. nach einem ersten Beschichtungsschritt wird getrocknet und dann in einem weiteren Bad nochmals beschichtet. Vorzugsweise wird die erste Beschichtung mit Epoxidharzlösungen, die zweite Beschichtung mit der Polyaminoamidlösung durchgeführt. Der Trocknungsprozeß kann durchgeführt werden unter Verwendung von Konvektion (beispielsweise Heißluft), Wärmeleitung (z.B. Kontakttrocknung), Strahlung (z.B. Infrarot) oder dergleichen. Die Wärmebehandlung der Faser findet üblicherweise in einem Bereich von 80 bis 220°C statt, wobei die höheren Temperaturbereich nur bei thermisch stabilen Fasern eingesetzt werden können, also beispielsweise bei Aramid-Fasern. Die Trockenzeit kann zwischen wenigen Sekunden und mehreren Minuten variieren in Abhängigkeit von dem zu erzielenden Trocknungsgrad und der weiteren Verwendung der Faser. Die Laufgeschwindigkeit der Faser oder Garne in der Beschichtungseinrichtung kann je nach der angestrebten Produktaufnahmemenge zwischen wenigen Metern pro Minute, einigen hundert Metern pro Minute gewählt werden. Eine untere Grenze der Trockenzeit liegt bei etwa 5 Sekunden, eine obere Grenze der Laufgeschwindigkeit bei etwa 750 m/min.
  • Die erfindungsgemäß oberflächenvergüteten Fasern sind vielfältig einsetzbar. Die Fasern zeigen verminderte Wasseraufnahme und verringerte Reibungskoeffizienten, was bei der Verarbeitung wichtig ist. Sie zeigen beispielsweise bei Kaltklebeverfahren bessere Substrathaftung, können jedoch auch in Kunststoffe eingebettet oder in Gummi einvulkanisiert werden, wobei die Fasern dann zu polaren wie apolaren Gummiarten gute Bindefähigkeit aufweisen. Weiterhin zeigen die so beschichteten Polyamidfasern eine verringerte Reibung gegeneinander.
  • Beispiele Beispiel 1 Beschichtung der Fasern
  • Ein Epoxidharz auf Basis Tetraglycidyldiaminodiphenylmethan Epoxidzahl 33 plus/minus 2 wurde zu einer 5 Gew.-%igen Lösung in Toluol/Isopropanol (1 : 1) in der Wärme gelöst.
  • Ein Polyaminoamid mit Aminzahl zwischen 80 und 95 auf Basis Fettsäure und Diethylentriamin analog Beispiel 2 der CA 651,745 wurde in der Wärme in Isopropanol gelöst. Der Feststoffgehalt der Lösung betrug 12 Gew.-%. Die Epoxidharzlösung und die Aminharzlösung wurden dann so verdünnt, daß ein Verhältnis der Feststoffgehalte Epoxid zu Amin wie 2 : 3 sich ergab. In einem ersten Arbeitsgang wurde dann eine aromatische Polyamidfaser (Kevlar(R)) zunächst durch die Epoxidharzlösung gezogen, mit Heißluft bei 200°C getrocknet und im zweiten Arbeitsgang durch die Polyamidharzlösung gezogen, wonach sich ein weiterer Trocknungsschritt bei 200°C im Gegenluftstrom anschloß.
  • Beispiel 2
  • Die Klebecharakteristik wurde vor und nach Ermüdung gemessen, indem die Garne aus dem Gummiblock gezogen wurden.
  • Zur Herstellung der Probekörper wurden nach dem 1. Trocknen behandelte Aramid-Garne (Kevlar(R) 1670 dtex, 80 T/M) in unterschiedliche Kautschukmischungen eingebracht und vulkanisiert bei 160°C während einer Zeitdauer von 20 min. Dazu wurden die Kautschukmischungen mit den Garnen zwischen 2 Platten einer elektrisch heizbaren hydraulischen Presse gepreßt (18 t).
  • Zur Bestimmung der Haftfähigkeit der Garne wurden diese mit einer Zuggeschwindigkeit von 125 mm/min. aus den Gummiblöcken gezogen. Dabei wurden die folgenden Haftwerte gemessen (jeweils im Vergleich zu Fasern, die mit einer konventionellen Epoxidharzbeschichtung beschichtet worden waren):
       Gummimischung ACM 173N (173N)
       Gummimischung CR 169N (141N)
       Gummimischung EPDM 132N (115N)
  • Beispiel 3
  • Eine Aramid-Endlosfaser vom Typ p-Phenylendiamin-terephthalamid im getrockneten (off line) Zustand wurde durch ein Bad mit dem zuvor geschilderten erfindungsgemäßen Oberflächenbehandlungsmittel gezogen und anschließend bei ca. 120°C getrocknet. Das Garn hatte eine Vorspannung von 0,6 daN. Es handelte sich um ein unverdrilltes 1670 dtex-Garn. In einem ersten Arbeitsgang wurde eine getrocknete Polyamidfaser (Kevlar(R)29) zunächst durch die Epoxidharzlösung (2 Gew.-% Feststoff) gezogen, dann mit Heißluft bei 200°C getrocknet und im zweiten Arbeitsgang durch die Polyamidharzlösung (3 Gew.-%) jeweils in Polyol/Isopropanol geführt, anschließend bei 200°C im Gegenluftstrom getrocknet.
  • Mit den so behandelten Garnen wurden unter Standardbedingungen die Feuchtigkeitsaufnahme gemessen. Diese betrug für ein unbehandeltes Aramid-Garn (Kevlar(R)29): 7,5 Gew.-%, für das erfindungsgemäß behandelte Garn 2,4 Gew.-% und für ein gleiches Garn mit einer üblichen Epoxidbeschichtung 5 Gew.-%.
  • Strickversuche mit behandelten Garnen
  • In Vorversuchen wurde der Reibungskoeffizient behandelter Garne im Vergleich zu unbehandelten Garnen bestimmt. Die Messung wurde in einem Reibungsmeßgerät (Rothschild) nach Standardbedingungen durchgeführt. Der Reibungskoeffizient Garn zu Metall betrug für das behandelte Garn 0,40, für das unbehandelte Garn 0,54. Der Reibungskoeffizient Faser zu Faser betrug für das behandelte Garn 0,055 verglichen mit 0,11 für das Standardprodukt Kevlar(R)29)
  • Aramid-Garne (Kevlar(R) wurden auf einer ELHA(R) Kreisstrickmaschine (Modell RRU) verstrickt. Der Test dauerte 4 Stunden. Die Maschinengeschwindigkeit war 670 min⁻¹, die Strickgeschwindigkeit 15 m/min. Im Gegensatz zu unbehandelten Fasern wurde kein Verschleißen beobachtet. Das Bild der Strickware war einheitlich. Weiterhin bildeten sich keine Ablagerungen in der Strickmaschine. Dies bedeutet, daß die erfindungsgemäßen Oberflächenbehandlungsmittel die Vertrickbarkeit von Aramid-Garnen deutlich verbessern.

Claims (14)

  1. Polyamidfaser beschichtet mit den Reaktionsprodukten aus einer mehrfunktionellen Epoxidverbindung und einem Polyamin, dadurch gekennzeichnet, daß als Polyamin ein Polyamidharz mit Amino-Gruppen eingesetzt wird.
  2. Polyamidfaser nach Anspruch 1, dadurch gekennzeichnet, daß das Polyamidharz eine Aminzahl von 20 bis 700, vorzugsweise 70 bis 100 aufweist.
  3. Polyamidfaser nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß als Polyamidharz mit Amino-Gruppen ein Umsetzungsprodukt von Dimerfettsäure mit einem Überschuß an zumindest difunktionellen primären und/oder sekundären Aminen, die auch tertiäre Aminogruppen enthalten können, eingesetzt wird.
  4. Polyamidfaser nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß als Polyamidharz mit Aminogruppen ein Umsetzungsprodukt von Dimerfettsäure mit einem Überschuß an primären und/oder sekundären Aminen, die auch tertiäre Aminogruppen enthalten können, eingesetzt wird, welches 20 bis 90, insbesondere 20 bis 60 % der Stickstoffatome als Ringglieder von Imidazolinringen enthält.
  5. Polyamidfaser nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß als Polyamidharz ein Umsetzungsprodukt von Fettsäuren und/oder Dimerfettsäure mit Alkylendiaminen, Dialkylentriaminen und/oder deren höheren Homologen eingesetzt wird.
  6. Polyamidfaser nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß die mehrfunktionelle Epoxidverbindung eine Funktionalität zwischen 2 und 4 aufweist.
  7. Polyamidfaser nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß die mehrfunktionelle Epoxidverbindung 3 oder 4 N-Glycidylgruppen und/oder O-Glycidylgruppen aufweist.
  8. Polyamidfaser nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß die mehrfunktionelle Epoxidverbindung Tetraglycidyldiaminodiphenylmethan ist.
  9. Polyamidfaser nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß die ausgehärteten Reaktionsprodukte der mehrfunktionellen Epoxidharzverbindung mit dem Polyamidharz im Mittel Amino-Endgruppen oder Epoxidendgruppen aufweisen.
  10. Polyamidfaser nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß es sich um Endlosfasern, Faserschnitte, Faserverbunde, Garne, Korde oder textile Flächengebinde aus zumindest vorwiegend aromatischen Polyamiden handelt.
  11. Verwendung des Reaktionsprodukts aus mehrfunktionellen Epoxiden und Polyamidharzen gemäß vorstehenden Ansprüchen als Haftfestigkeit und Gleitwirkung-vermittelnde Beschichtung auf einer Polyamidfaser.
  12. Verfahren zur Modifizierung von Polyamidfasern mit den Reaktionsprodukten aus mehrfunktionellen Epoxiden und Polyamidharzen, bei dem man das Polyamidharz mit Aminogruppen und die mehrfunktionelle Epoxidverbindung gleichzeitig oder nacheinander als Lösung, Dispersion oder Schmelze auf die Fasern aufbringt und danach gewünschtenfalls bei erhöhter Temperatur aushärten läßt.
  13. Verfahren nach Anspruch 12, dadurch gekennzeichnet, daß man die Faser zunächst durch eine Lösung oder Aufschlämmung der Epoxidharzkomponente und anschließend gewünschtenfalls nach Zwischentrocknung durch eine Lösung oder Aufschlämmung des Polyamidharzes mit Aminogruppen durchbewegt und hernach gewünschtenfalls trocknet und härtet.
  14. Verfahren nach Anspruch 12 oder 13, dadurch gekennzeichnet, daß man das Reaktionsprodukt vor oder nach dem ersten Trocknen auf die Faser aufbringt.
EP90106890A 1989-04-14 1990-04-10 Beschichtete Polyamidfaser Expired - Lifetime EP0392477B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT90106890T ATE100156T1 (de) 1989-04-14 1990-04-10 Beschichtete polyamidfaser.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3912521 1989-04-14
DE3912521A DE3912521A1 (de) 1989-04-14 1989-04-14 Beschichtete polyamidfaser

Publications (3)

Publication Number Publication Date
EP0392477A2 EP0392477A2 (de) 1990-10-17
EP0392477A3 EP0392477A3 (de) 1991-03-06
EP0392477B1 true EP0392477B1 (de) 1994-01-12

Family

ID=6378816

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90106890A Expired - Lifetime EP0392477B1 (de) 1989-04-14 1990-04-10 Beschichtete Polyamidfaser

Country Status (7)

Country Link
EP (1) EP0392477B1 (de)
JP (1) JP2979483B2 (de)
KR (1) KR900016541A (de)
AT (1) ATE100156T1 (de)
BR (1) BR9001724A (de)
CA (1) CA2014092A1 (de)
DE (2) DE3912521A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19622216A1 (de) * 1996-06-03 1997-12-04 Kunstfaserwerk Erwin Hahl Gmbh Monofile mit verbesserter Chemikalienbeständigkeit und höherem E-Modul (Steifheit) sowie Verfahren zu ihrer Herstellung
JP4969425B2 (ja) * 2007-12-04 2012-07-04 旭化成イーマテリアルズ株式会社 アラミド繊維織物、並びに該織物を用いたプリプレグ及び積層板
JP6997499B2 (ja) * 2017-03-31 2022-02-10 東レ・デュポン株式会社 建造物補強用繊維シート

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3287324A (en) * 1965-05-07 1966-11-22 Du Pont Poly-meta-phenylene isophthalamides
JPS57205582A (en) * 1981-06-08 1982-12-16 Teijin Ltd Fiber reinforced sheet material
EP0107887B2 (de) * 1982-11-02 1994-08-17 Akzo Nobel N.V. Mit Klebemittel beschichtetes Multifilamentgarn aus aromatischem Polyamid sowie Verfahren zur Herstellung dieses Garns
JPH0621411B2 (ja) * 1984-12-14 1994-03-23 金井 宏之 耐熱性不織布
JPS61204229A (ja) * 1985-03-07 1986-09-10 Kanebo Ltd 繊維強化樹脂複合材料
JPS63165583A (ja) * 1986-12-26 1988-07-08 旭化成株式会社 パラ系アラミド繊維の接着性改良法

Also Published As

Publication number Publication date
DE3912521A1 (de) 1990-10-25
ATE100156T1 (de) 1994-01-15
CA2014092A1 (en) 1990-10-14
BR9001724A (pt) 1991-05-21
KR900016541A (ko) 1990-11-13
DE59004180D1 (de) 1994-02-24
EP0392477A2 (de) 1990-10-17
JP2979483B2 (ja) 1999-11-15
EP0392477A3 (de) 1991-03-06
JPH02293475A (ja) 1990-12-04

Similar Documents

Publication Publication Date Title
DE19529631C5 (de) Verwendung eines oberflächenaktiven Mittels zur Oberflächenbehandlung von Verstärkungsmaterial, Verstärkungsmaterial mit einer mit dem genannten oberflächenaktiven Mittel behandelten Oberfläche und Verwendung des Verstärkungsmaterials
EP0119185B1 (de) Verfahren zur Herstellung von schwer entflammbaren, hochtemperaturbeständigen Polyimidfasern
DE3120750A1 (de) Geschlichtete glasfasern, verfahren zu ihrer herstellung und mit geschlichteten glasfasern verstaerkte polymere materialien
DE2024477B2 (de) Verfahren zur Herstellung beschichteter Glasfasermaterialien und wäßriges Schlichtemittel zur Durchführung des Verfahrens
EP0367137B1 (de) Haftvermittler
EP1070093B1 (de) Inhärent licht- und hitzestabilisierte polyamide mit verbesserter nassechtheit
JPS6175880A (ja) サイズ剤
DE2735220A1 (de) Haftmittelzusammensetzung
EP0801159B1 (de) Schrumpfarme Hybridgarne, Verfahren zu deren Herstellung und deren Verwendung
DE4027063C2 (de) Verfahren zur Herstellung von besonders hochmolekularen Polyamidfasern sowie nach diesem Verfahren herstellbare Polyamidfasern
JP2957467B2 (ja) 炭素繊維ストランド用サイジング剤、サイズ処理された炭素繊維ストランド、及びその炭素繊維ストランドを強化繊維としたプリプレグ
EP1396572B1 (de) Verfahren zur Herstellung eines wasserabweisend ausgerüsteten Aramidgewebes und dessen Verwendung
EP0392477B1 (de) Beschichtete Polyamidfaser
DE2520733C3 (de) Verbesserung der Gummihaftung von hochtemperaturfesten aromatischen PoIy-13,4-oxadiazolfäden
EP0897944A2 (de) Verfahren zum Imprägnieren von endlosen Fasern mit einem Thermoplasten sowie nach diesem Verfahren hergestellte Faser-Matrix-Verbunde
CH654585A5 (de) Zusammensetzung und verfahren zur praeadhaerisierung von synthetischen faeden.
DE1444141A1 (de) Verfahren zur Verbesserung der Gummihaftung von Reifencord aus Polyaethylenterephthalat
DE3601126C2 (de)
EP0392476B1 (de) Verwendung von Harzlösungen oder Dispersionen von Harzen zur Oberflächenbehandlung von Polyamidfasern
DE60226315T2 (de) Beschichtungslösungen geeingnet zur verbesserung der haftung von nylon-beschichtungen und verfahren zur anwendung davon
CH327460A (de) Elektrische Antriebsmaschine
DE2120720A1 (de) Verfahren zur Herstellung von Polyesterfäden mit verbesserter Gummihaftung
DE3700811A1 (de) Verfahren zum aufbringen einer silizium-kohlenstoff-bindungen enthaltenden schicht auf kohlenstoff-fasern
DE2225611A1 (de) Glasfaserverstarkung sowie Verfahren zu ihrer Herstellung
DE3210746A1 (de) Verfahren zur herstellung eines faserverstaerkten faserverbundwerkstoffs

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE DK ES FR GB IT LI NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

17P Request for examination filed

Effective date: 19901219

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE DK ES FR GB IT LI NL SE

RIN1 Information on inventor provided before grant (corrected)

Inventor name: REBOUILLAT, SERGE, DR.

Inventor name: WICHELHAUS, JUERGEN, DR.

Inventor name: ANDRES, JOHANNES

Inventor name: GRUBER, WERNER, DR.

17Q First examination report despatched

Effective date: 19920807

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB IT LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19940112

Ref country code: BE

Effective date: 19940112

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19940112

Ref country code: DK

Effective date: 19940112

REF Corresponds to:

Ref document number: 100156

Country of ref document: AT

Date of ref document: 19940115

Kind code of ref document: T

ET Fr: translation filed
REF Corresponds to:

Ref document number: 59004180

Country of ref document: DE

Date of ref document: 19940224

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940308

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19940410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Effective date: 19940430

Ref country code: LI

Effective date: 19940430

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

NLS Nl: assignments of ep-patents

Owner name: E.I. DU PONT DE NEMOURS AND COMPANY

Effective date: 20060707

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20080312

Year of fee payment: 19

Ref country code: DE

Payment date: 20080417

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20080428

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20080303

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20080416

Year of fee payment: 19

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090410

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20091101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20091231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090410

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090410