EP0341436B1 - Verfahren und Vorrichtung zum Kühlen eines heissen Produktgases, das klebrige bzw. schmelzflüssige Partikel enthält - Google Patents
Verfahren und Vorrichtung zum Kühlen eines heissen Produktgases, das klebrige bzw. schmelzflüssige Partikel enthält Download PDFInfo
- Publication number
- EP0341436B1 EP0341436B1 EP89106390A EP89106390A EP0341436B1 EP 0341436 B1 EP0341436 B1 EP 0341436B1 EP 89106390 A EP89106390 A EP 89106390A EP 89106390 A EP89106390 A EP 89106390A EP 0341436 B1 EP0341436 B1 EP 0341436B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- cooling fluid
- cooling
- nozzle ring
- product gas
- process according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10K—PURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
- C10K1/00—Purifying combustible gases containing carbon monoxide
- C10K1/04—Purifying combustible gases containing carbon monoxide by cooling to condense non-gaseous materials
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J3/00—Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
- C10J3/72—Other features
- C10J3/82—Gas withdrawal means
- C10J3/84—Gas withdrawal means with means for removing dust or tar from the gas
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10K—PURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
- C10K1/00—Purifying combustible gases containing carbon monoxide
- C10K1/08—Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S48/00—Gas: heating and illuminating
- Y10S48/02—Slagging producer
Definitions
- the invention relates to a method and a device for cooling a hot product gas, which contains sticky or molten particles which lose their stickiness when cooled, wherein an annular jet of a cooling fluid is injected into the hot product gas in a cooling zone with a circular cross-section, which is emitted from a A large number of separate cooling fluid jets with different levels of penetration is composed.
- appropriate measures must therefore be taken to ensure that these accompanying substances do not impair the cooling and the downstream processing process through deposits on the walls of the apparatus used, on the heat exchanger surfaces and / or in the pipes.
- Toroidal air heaters also work according to the same principle, in which cold air is mixed with the hot combustion gas in a mixing chamber.
- this cooling principle for cooling hot product gases which contain sticky or molten particles, in particular for cooling partial oxidation gas.
- the introduction of a cooling fluid through an annular gap is intended to prevent the particles from touching the wall and thus to eliminate the risk of deposits.
- this goal cannot be achieved to a satisfactory extent.
- the recirculation flow that forms at the edges of the frustoconical cooling fluid ring jet does not keep the sticky particles away from the wall, but on the contrary leads them to the wall.
- the annular jet of the cooling fluid is composed of a plurality of separate cooling fluid jets with different penetration depths.
- the cooling fluid is injected radially through openings in the wall of the cooling device which are connected to a ring line.
- the penetration depth of the emerging cooling fluid jets can only be influenced by the different diameter of the openings. However, this should only be variable within a narrow range between 1.2: 1 and 1.5: 1.
- the invention is therefore based on the object of improving this method of the type mentioned in such a way that contact with the wall of the sticky or molten particles is avoided during the cooling process and the risk of caking or deposits is thereby eliminated. At the same time, a complete and uniform mixing of product gas stream and cooling fluid is to be ensured, which is essential for uniform cooling of the product gas stream.
- the method used to achieve this object is characterized in that the mass and penetration depth of the cooling fluid jets injected at an angle in the direction of flow of the product gas is adapted to the mass of the product gas stream flowing in the individual annular spaces of the cooling zone, the injection speeds of the cooling fluid jets being selected such that the desired penetration depths are achieved and the supply of the cooling fluid to the individual nozzle groups takes place via separate lines provided with valves.
- the method according to the invention enables a bes This adjustable and variable penetration depth of the cooling fluid jets.
- the annular jet can be broken down into a large number of separate individual jets, some of which have different masses, some are different penetration depths and the same or some different injection angles.
- the cooling fluid supply can thus be adapted to the mass of the product stream flowing in the individual annular spaces of the cooling zone, which is necessary for the uniform cooling of the product gas stream.
- FIG. 1 shows a schematic representation of the section from the cooling zone 2 in which the nozzle ring 4 is located for an injection of the separate cooling fluid jets.
- the diameter D of the cooling zone 2 is divided into four parts, for example.
- the diameters 4 D, 2 D, 3 4 D and D therefore limit annular spaces with different base areas in the cooling zone, which is shown in the illustration by different hatching.
- the percentage of the base areas of these annular spaces in the total area of the cooling zone is 6.25%, 18.75%, 31.25% and 43.75% from inside to outside. With a constant flow velocity of the product gas over the cross section of the cooling zone, these percentages also apply to the distribution of the total mass of the product gas over the different annular spaces of the cooling zone.
- cooling fluid masses m1, m 2 , m 3 , m 4 with different penetration depths e 1 , e2, e3, e 4 are therefore injected into the individual annular spaces of the cooling zone.
- the injection angle ⁇ can be the same or different for operational reasons.
- the injection speeds of the cooling fluid are chosen so that the desired penetration depths are achieved.
- the injection speeds are preferably selected at the same time so that when the desired penetration depth is reached, the vertical component of the jet center speed in the flow direction is equal to the speed of the overall flow.
- the cooling of 12oo to 17oo ° C hot partial oxidation gas is a preferred area of application of the method according to the invention contain molten particles, for example metals, salts or ashes.
- a partial stream of the cold, purified product gas can preferably be used as the cooling fluid.
- other media such as e.g. Steam or, if necessary, preheated water.
- FIG. 2 shows the upper part of the reactor 1, which is used to generate the product gas to be cooled, and the cooling zone 2 directly adjoining it.
- the reactor 1 is concerned a gasification reactor with the features known per se. Since the generation of the respective product gas is not the subject of the present invention, there is no need to go into the structural details of the reactor 1 here.
- the cooling zone 2 has a circular cross section. The product gas generated flows in the direction of arrow 3 from the bottom upwards from the reactor 1 into the cooling zone 2.
- the cooling fluid is applied in three stages with different objectives and different effects.
- the actual cooling of the product gas stream takes place through the cooling fluid jets which are injected into the gas via the nozzle ring 4.
- the specific conditions of this cooling fluid addition have already been discussed above.
- the different penetration depths of the individual cooling fluid jets, which are marked by the arrows 5, are achieved by different injection speeds. These are in turn achieved by different initial pressures in the chambers 6a, 6b and 6c, into which the nozzle ring 4 is divided in this case, and by different nozzle diameters.
- the nozzle ring 4 has a number of nozzles corresponding to the number of cooling fluid jets required, which is not shown in the figure.
- the nozzles are evenly distributed over the entire circumference of the nozzle ring 4.
- the different cooling fluid masses are obtained from the different number of nozzles with the same diameter.
- the individual cooling fluid jets can have a different injection angle.
- This injection angle ⁇ can range between 0 ° and 90 ° lie.
- the corresponding injection angles are achieved by a corresponding inclination of the nozzles on the nozzle ring 4.
- the injection speeds of the cooling fluid at the nozzle ring 4 are between 1 m / s and 100 m / s.
- the individual nozzles are each connected via the chambers 6a, 6b and 6c to the lines 7 through which the necessary cooling fluid is supplied, the required pressure being able to be set via the valves 8.
- the pressure of the cooling fluid in the chambers 6a, 6b and 6c is controlled as a function of the gas temperature in the cooling zone 2.
- the gas temperature determined by the temperature measuring device 22 is used via the pulse line 21 as a control variable for the actuator 23 of the valve 8, so that this valve can be opened or closed depending on the measured temperature.
- This type of control is particularly appropriate when the product gas is only produced in a smaller amount than normal in part-load operation and therefore the cooling process is only operated with a reduced amount of cooling fluid. This can go so far that the cooling fluid supply to individual nozzle groups is completely interrupted.
- the control described above has only been drawn for the chamber 6a of the nozzle ring 4. Of course, this regulation can also be applied to the other chambers.
- a further cooling fluid stream is introduced into the device in the direction of the arrows 11 via the annular gap 10.
- This cooling fluid flow is intended to keep the particles away from the reactor wall by displacement.
- the transition region 9 is designed such that its change in inclination continuously changes into the cylindrical part of the cooling zone 2 after an exponential function.
- the speed of the cooling fluid jet, which is injected via the annular gap 10 is in the range between 0.1 m / s and 50 m / s.
- the annular gap 10 is preferably formed in that the wall 12 in the upper part of the reactor 1 is offset, as can be seen from the figure.
- the annular gap 10 is connected via the line 13 to the ring line 14, which is supplied with the required cooling fluid via the line 15.
- a further cooling fluid stream is also injected into the cooling zone 2 above the nozzle ring 4 via the annular gap 16.
- This cooling fluid flow which is marked by the arrows 17, is intended to avoid or suppress eddies and backflows which may be generated by the injection of the cooling fluid via the nozzle ring 4 on the wall of the cooling zone 2.
- the angle ⁇ is chosen to be correspondingly small, namely in the range between 0 ° and 45 °, so that this cooling fluid flow itself does not cause any backflow on the wall of the cooling zone 2.
- the speed of the cooling fluid flow is in the range between 1 m / s and 50 m / s.
- the annular gap 16 is in turn connected via line 18 to the ring line 19, which is supplied with the required cooling fluid via line 20.
- FIG. 2 is only a schematic illustration of the device according to the invention, from which special structural configurations cannot be deduced.
- the walls of the reactor 1 and / or the cooling zone 2 can be designed as tube walls through which a cooling medium flows and which are provided on the inside with a refractory lining.
- the gap 16 can be given a different configuration for manufacturing reasons, which will be discussed further below in connection with FIG. 4.
- FIG. 3 shows a cross section through another embodiment of the nozzle ring 4.
- the nozzle ring in this case has two chambers 6a and 6b located one behind the other. While in the embodiment according to FIG. 2 the rows of nozzles of the individual chambers 6a, 6b and 6c lie one above the other, in the embodiment shown in FIG. 3 all the nozzles are in one plane.
- the nozzles 24 assigned to the rear chamber 6a are each connected to this chamber via the line pieces 25, while the nozzles 26 assigned to the front chamber 6b are embedded directly in the chamber wall.
- the nozzles 24 and 26 can have different diameters and / or angles of inclination. As a rule, the nozzles assigned to a nozzle chamber will each be the same.
- FIG. 4 finally shows a longitudinal section through a special embodiment for the addition of cooling fluid above the nozzle ring 4. While in the device shown in FIG. 2 the cooling fluid is injected into the cooling zone 2 via the annular gap 16, it can be attached for manufacturing reasons. a nozzle ring 27 is also to be used for this.
- the guide ring 29, which is open at the top, is placed on the nozzle ring 27, through which the cooling fluid jets emerging from the nozzles 28 are made more fluid.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Heat Treatments In General, Especially Conveying And Cooling (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3816340 | 1988-05-13 | ||
DE3816340A DE3816340A1 (de) | 1988-05-13 | 1988-05-13 | Verfahren und vorrichtung zum kuehlen eines heissen produktgases, das klebrige bzw. schmelzfluessige partikel enthaelt |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0341436A2 EP0341436A2 (de) | 1989-11-15 |
EP0341436A3 EP0341436A3 (en) | 1990-03-21 |
EP0341436B1 true EP0341436B1 (de) | 1992-07-01 |
Family
ID=6354298
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP89106390A Expired - Lifetime EP0341436B1 (de) | 1988-05-13 | 1989-04-11 | Verfahren und Vorrichtung zum Kühlen eines heissen Produktgases, das klebrige bzw. schmelzflüssige Partikel enthält |
Country Status (11)
Families Citing this family (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3901601A1 (de) * | 1989-01-20 | 1990-07-26 | Krupp Koppers Gmbh | Verfahren und vorrichtung zum kuehlen von partialoxidationsgas |
DE3925564A1 (de) * | 1989-08-02 | 1991-02-07 | Krupp Koppers Gmbh | Verfahren zur erzeugung eines wasserstoffreichen gases |
US5041246A (en) * | 1990-03-26 | 1991-08-20 | The Babcock & Wilcox Company | Two stage variable annulus spray attemperator method and apparatus |
DE59300598D1 (de) * | 1993-03-16 | 1995-10-19 | Krupp Koppers Gmbh | Verfahren für die Druckvergasung von feinteiligen Brennstoffen. |
US5433760A (en) * | 1993-05-13 | 1995-07-18 | Shell Oil Company | Method of quenching synthesis gas |
DE4340156A1 (de) * | 1993-11-25 | 1995-06-01 | Krupp Koppers Gmbh | Verfahren und Vorrichtung zur Kühlung von Partialoxidationsrohgas |
JP2544584B2 (ja) * | 1994-04-11 | 1996-10-16 | 株式会社日立製作所 | 石炭ガス化炉及び石炭ガス化炉の使用方法 |
DE19526403A1 (de) * | 1994-07-20 | 1996-03-07 | Steag Ag | Vorrichtung zum Erzeugen von Gas unter hohem Druck und hoher Temperatur |
NL9401387A (nl) * | 1994-08-26 | 1996-04-01 | Comprimo Bv | Werkwijze voor het koelen van een hete gasstroom, voor het verhogen van het rendement van de elektriciteitsproduktie, alsmede voor het reguleren van het koelproces van een synthesegasstroom, zodanig dat pieken in de elektriciteitsvraag kunnen worden opgevangen. |
DE19601323A1 (de) * | 1996-01-16 | 1997-07-17 | Atzger Juergen | Vorrichtung zur Abgaskühlung in Verdampfungskühlern |
TW526086B (en) * | 2001-02-09 | 2003-04-01 | Nanya Technology Corp | Device and method for cooling and washing exhaust treatment machine |
US6887456B2 (en) * | 2001-10-05 | 2005-05-03 | Conocophillips Company | Catalyst system for enhanced flow syngas production |
US20040006917A1 (en) * | 2002-07-09 | 2004-01-15 | Wakefield David W. | Clean fuel gas made by the gasification of coal |
CN101432400B (zh) * | 2006-05-01 | 2012-11-14 | 国际壳牌研究有限公司 | 气化反应器及其应用 |
US20080000155A1 (en) * | 2006-05-01 | 2008-01-03 | Van Den Berg Robert E | Gasification system and its use |
US7451591B2 (en) * | 2006-05-08 | 2008-11-18 | Econo-Power International Corporation | Production enhancements on integrated gasification combined cycle power plants |
US9051522B2 (en) * | 2006-12-01 | 2015-06-09 | Shell Oil Company | Gasification reactor |
DE102007006988C5 (de) * | 2007-02-07 | 2014-04-17 | Technische Universität Bergakademie Freiberg | Verfahren und Vorrichtung zur Konvertierung von Rohgasen der Kohlevergasung |
WO2009030675A1 (en) * | 2007-09-04 | 2009-03-12 | Shell Internationale Research Maatschappij B.V. | Spray nozzle manifold and process for quenching a hot gas using such an arrangement |
CN101605877B (zh) | 2007-09-04 | 2013-08-21 | 国际壳牌研究有限公司 | 骤冷转炉 |
US7721809B2 (en) * | 2008-06-12 | 2010-05-25 | Schlumberger Technology Corporation | Wellbore instrument module having magnetic clamp for use in cased wellbores |
CN102171314B (zh) | 2008-09-01 | 2013-07-24 | 国际壳牌研究有限公司 | 自清洁设备 |
US8960651B2 (en) * | 2008-12-04 | 2015-02-24 | Shell Oil Company | Vessel for cooling syngas |
JP2013518139A (ja) * | 2010-01-25 | 2013-05-20 | シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ | ガス化炉および方法 |
US9028571B2 (en) * | 2011-04-06 | 2015-05-12 | Ineos Bio Sa | Syngas cooler system and method of operation |
DE102013219312B4 (de) * | 2013-09-25 | 2018-07-12 | Technische Universität Bergakademie Freiberg | Verfahren zur Teilkonvertierung von Rohgasen der Flugstromvergasung |
CN104650988A (zh) * | 2013-11-25 | 2015-05-27 | 航天长征化学工程股份有限公司 | 一种含碳物质反应系统及方法 |
CN105219446B (zh) * | 2015-10-23 | 2018-07-03 | 中国五环工程有限公司 | 全方位水/气混合式激冷喷射装置 |
CN106731918B (zh) * | 2016-12-29 | 2023-08-29 | 中国航天空气动力技术研究院 | 一种分段组合式混合室 |
CN114350417A (zh) * | 2022-01-12 | 2022-04-15 | 新疆八一钢铁股份有限公司 | 一种焦炉煤气净化装置 |
CN116021415B (zh) * | 2023-02-11 | 2023-06-20 | 定州市四新工业有限公司 | 一种具有散热装置的珩磨机 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB872088A (en) * | 1957-05-17 | 1961-07-05 | Jean Daubersy | Steel manufacture |
US2971830A (en) * | 1958-06-18 | 1961-02-14 | Sumitomo Chemical Co | Method of gasifying pulverized coal in vortex flow |
US3456928A (en) * | 1967-05-24 | 1969-07-22 | Chemical Construction Corp | Combined blast furnace scrubber and dust catcher |
BE789914A (fr) * | 1971-10-12 | 1973-02-01 | Steag Ag | Dispositif d'epuration de gaz de fumees |
US3841061A (en) * | 1972-11-24 | 1974-10-15 | Pollution Ind Inc | Gas cleaning apparatus |
NL178134C (nl) * | 1974-06-17 | 1986-02-03 | Shell Int Research | Werkwijze en inrichting voor het behandelen van een heet produktgas. |
NL7604513A (nl) * | 1976-04-28 | 1977-11-01 | Shell Int Research | Werkwijze voor het vergassen van fijn verdeelde asbevattende brandstoffen. |
DE2710154C2 (de) * | 1977-03-09 | 1982-09-23 | Dr. C. Otto & Comp. Gmbh, 4630 Bochum | Unter Druck und hoher Temperatur arbeitender Gaserzeuger |
NL7704399A (nl) * | 1977-04-22 | 1978-10-24 | Shell Int Research | Werkwijze en reactor voor de partiele ver- branding van koolpoeder. |
DE3100004C2 (de) * | 1981-01-02 | 1986-11-20 | Achenbach Buschhütten GmbH, 5910 Kreuztal | Waschkolonne |
US4581899A (en) * | 1984-07-09 | 1986-04-15 | Texaco Inc. | Synthesis gas generation with prevention of deposit formation in exit lines |
GB2161593A (en) * | 1984-07-13 | 1986-01-15 | Shell Int Research | Method and apparatus for cooling a hot product gas |
DE3601786C2 (de) * | 1986-01-22 | 1996-03-07 | Krupp Koppers Gmbh | Einrichtung zur Abkühlung des aus einem unter erhöhtem Druck betriebenen Vergasungsreaktor austretenden heißen Produktionsgases |
-
1988
- 1988-05-13 DE DE3816340A patent/DE3816340A1/de not_active Withdrawn
-
1989
- 1989-01-31 IN IN96/CAL/89A patent/IN171396B/en unknown
- 1989-02-17 CN CN89100856A patent/CN1020630C/zh not_active Expired - Fee Related
- 1989-02-23 ZA ZA891401A patent/ZA891401B/xx unknown
- 1989-03-22 PL PL27841289A patent/PL162947B1/pl unknown
- 1989-04-11 EP EP89106390A patent/EP0341436B1/de not_active Expired - Lifetime
- 1989-04-11 DE DE8989106390T patent/DE58901759D1/de not_active Expired - Fee Related
- 1989-04-11 ES ES89106390T patent/ES2042849T3/es not_active Expired - Lifetime
- 1989-05-03 TR TR89/0378A patent/TR24006A/xx unknown
- 1989-05-03 CS CS892727A patent/CS276636B6/cs unknown
- 1989-05-03 US US07/347,333 patent/US4954136A/en not_active Expired - Fee Related
- 1989-05-09 DD DD89328422A patent/DD283860A5/de not_active IP Right Cessation
- 1989-08-10 US US07/392,136 patent/US4973337A/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
EP0341436A2 (de) | 1989-11-15 |
IN171396B (enrdf_load_stackoverflow) | 1992-10-03 |
TR24006A (tr) | 1991-01-28 |
ES2042849T3 (es) | 1993-12-16 |
CS276636B6 (en) | 1992-07-15 |
US4954136A (en) | 1990-09-04 |
PL162947B1 (pl) | 1994-01-31 |
DE58901759D1 (de) | 1992-08-06 |
CN1037730A (zh) | 1989-12-06 |
US4973337A (en) | 1990-11-27 |
ZA891401B (en) | 1989-11-29 |
CS272789A3 (en) | 1992-03-18 |
PL278412A1 (en) | 1989-12-11 |
DE3816340A1 (de) | 1989-11-23 |
EP0341436A3 (en) | 1990-03-21 |
DD283860A5 (de) | 1990-10-24 |
CN1020630C (zh) | 1993-05-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0341436B1 (de) | Verfahren und Vorrichtung zum Kühlen eines heissen Produktgases, das klebrige bzw. schmelzflüssige Partikel enthält | |
DE69222125T2 (de) | Atomisierung von schweren Kohlenwasserstoffen | |
DE69319621T2 (de) | Verfahren und vorrichtung zur pyrolitischen zersetzung von kohlenwasserstoffen | |
DE2817356C2 (de) | Produktgas-Kühlvorrichtung an einem Generator zur Kohlenstaub-Vergasung und Herstellung von Synthesegas | |
DE69619439T2 (de) | Vorrichtung zur Zerstäubung einer Flüssigkeit | |
DE3809313A1 (de) | Verfahren und vorrichtung zum kuehlen von partialoxidationsgas | |
DE2610279A1 (de) | Verfahren zum verhindern der bildung von koksablagerungen bei einem wirbelschichtreaktor | |
DE3441361A1 (de) | Verfahren und einrichtung zum abkuehlen von stueckigem material | |
DE3427088C2 (de) | Vorrichtung zum Abkühlen eines heißen Produktgases | |
EP0616022B1 (de) | Verfahren für die Druckvergasung von feinteiligen Brennstoffen | |
DE2300217A1 (de) | Verfahren und vorrichtung zur brennstoffeinspritzung in hochoefen o. dgl | |
DE1906895B2 (de) | Vorrichtung zur direkten Beheizung eines Wirbelschichtreaktors | |
WO2002090283A1 (de) | Anlage und verfahren zur herstellung von zementklinker | |
DE2104478A1 (de) | Verfahren und Vorrichtung zum Ab kühlen von heißen Medien | |
DE69504346T2 (de) | Verfahren zur zerstäubung einer dispergierbaren flüssigkeit | |
DE3524802C2 (de) | Vorrichtung zum Verhindern unerwünschter Anlagerungen von klebrigen Teilchen aus einem heißen Produktgas und deren Verwendung | |
DE2726078B2 (de) | Verfahren und Vorrichtung zum Entfernen von Schlacke o.dgl. von geschmolzenem Metall | |
DE69515699T2 (de) | Dampfkrack-einrichtung und -verfahren mit kontrollierter injektion von festen teilchen in einem abschreck-austauscher | |
DE2744611A1 (de) | Verfahren und vorrichtung zum beschichten von teilchen mit einer in einem reagierenden gas enthaltenen substanz | |
DE69101858T2 (de) | Apparat zur Verbrennung von Abfällen in einem Wirbelschichtbett. | |
DE3940848A1 (de) | Verfahren und vorrichtung zum verschliessen des spaltes zwischen elektrode und ofendeckel eines elektro-schmelzofens | |
DE3409371A1 (de) | Verfahren und vorrichtung zur vollstaendigen oder teilweisen verbrennung von kohlenstoffhaltigem brennstoff | |
DE2057862A1 (de) | Verfahren und Vorrichtung zur Herstellung eines Pulvers durch Verspruehen eines geschmolzenen Materials | |
DE1115881B (de) | Verfahren und Vorrichtung zur Vergasung von Kohlenwasserstoffen | |
EP0433579B1 (de) | Verfahren und Vorrichtung zur Kühlung von Partialoxidationsrohgas |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): DE ES GB NL SE |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): DE ES GB NL SE |
|
17P | Request for examination filed |
Effective date: 19900212 |
|
17Q | First examination report despatched |
Effective date: 19910312 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE ES GB NL SE |
|
REF | Corresponds to: |
Ref document number: 58901759 Country of ref document: DE Date of ref document: 19920806 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2042849 Country of ref document: ES Kind code of ref document: T3 |
|
EAL | Se: european patent in force in sweden |
Ref document number: 89106390.1 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19980312 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19980318 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 19980320 Year of fee payment: 10 Ref country code: NL Payment date: 19980320 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 19980417 Year of fee payment: 10 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19990411 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19990412 Ref country code: ES Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY Effective date: 19990412 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19991101 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19990411 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 19991101 |
|
EUG | Se: european patent has lapsed |
Ref document number: 89106390.1 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20000201 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20020204 |