EP0191170B2 - Vorrichtung zur Entlüftung von Kraftstofftanks - Google Patents

Vorrichtung zur Entlüftung von Kraftstofftanks Download PDF

Info

Publication number
EP0191170B2
EP0191170B2 EP85115458A EP85115458A EP0191170B2 EP 0191170 B2 EP0191170 B2 EP 0191170B2 EP 85115458 A EP85115458 A EP 85115458A EP 85115458 A EP85115458 A EP 85115458A EP 0191170 B2 EP0191170 B2 EP 0191170B2
Authority
EP
European Patent Office
Prior art keywords
control
duty ratio
mean value
mixture
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP85115458A
Other languages
English (en)
French (fr)
Other versions
EP0191170A1 (de
EP0191170B1 (de
Inventor
Helmut Ing. Grad. Breitkreutz
Albrecht Dipl.-Ing. Clement
Dieter Dipl.-Ing. Mayer
Claus Dipl.-Ing. Ruppmann
Dieter Dipl.-Ing. Walz
Ernst Dipl.-Ing. Wild
Martin Dr. Zechnall
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6260813&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0191170(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0191170A1 publication Critical patent/EP0191170A1/de
Application granted granted Critical
Publication of EP0191170B1 publication Critical patent/EP0191170B1/de
Publication of EP0191170B2 publication Critical patent/EP0191170B2/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/08Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/003Adding fuel vapours, e.g. drawn from engine fuel reservoir
    • F02D41/0032Controlling the purging of the canister as a function of the engine operating conditions
    • F02D41/004Control of the valve or purge actuator, e.g. duty cycle, closed loop control of position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1486Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor with correction for particular operating conditions
    • F02D41/1488Inhibiting the regulation
    • F02D41/1491Replacing of the control value by a mean value
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/02Engines characterised by fuel-air mixture compression with positive ignition
    • F02B1/04Engines characterised by fuel-air mixture compression with positive ignition with fuel-air mixture admission into cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2454Learning of the air-fuel ratio control

Definitions

  • the invention relates to a device according to the preamble of claim 1.
  • a device of this type US-A-4 275 697
  • the composition of the exhaust gas-sensing lambda probe is used to control tank ventilation valves in such a way that depending on the signal of the lambda probe such valve is opened or closed continuously.
  • the tank ventilation valve is arranged between an intermediate store and the inlet of the internal combustion engine and is electrically controlled; a corresponding, but pneumatically controlled tank ventilation valve is also known from DE-A-2 612 300.
  • DE-A-2 633 617 discloses a combination of precontrol and regulation of setting variables in internal combustion engines, but without going into the special conditions when venting fuel tanks.
  • tank ventilation device according to US Pat. No. 4,275,697, which parallelly converts the output signal of the ⁇ probe, which is converted into a clock pulse sequence, and which is originally fed to the solenoid of a control nozzle in the carburetor in order to ensure a stoichiometric mixture used to switch the tank ventilation off or to keep it to minimum values when either a minimum or a maximum fuel is added via the carburetor.
  • the additional tank ventilation should lead to an undesirable over-greasing of the mixture; in normal operation, the additional fuel quantities coming from the tank ventilation remain without any major influence and ultimately, namely indirectly via the reaction of the ⁇ probe, affect the mixture composition, albeit with a time delay and below Circumstances, roughly corrected.
  • the intermediate storage container containing the activated carbon filter is able to store fuel vapors up to a certain maximum quantity, the filter being flushed during engine operation by the vacuum developed by the internal combustion engine in the intake tract, for which purpose the filter has an opening to the outside air. Therefore, if you only allow the buffer to be flushed under certain operating conditions, an additional fuel-air mixture that is attributable to this tank ventilation results, which, as a mixture that has not been measured or cannot be measured with reasonable effort, results in the fuel metering signal that is normally produced very precisely with a high level of computation a fuel injection system, the duration of the injection control command t i - and the resulting quantity of fuel supplied to the internal combustion engine falsifies.
  • Such an additional amount of fuel which in particular also influences the driving behavior under certain conditions, which in extreme cases can consist of almost 100% air or 100% fuel vapor as a tank ventilation mixture, is also not acceptable if the influence of this disturbance variable is directly influenced by pneumatic actuators refers to the intake manifold pressure developed by the internal combustion engine or completely excludes the supply of the tank ventilation mixture by means of an electronic on / off control for particularly sensitive operating conditions, such as idling.
  • the invention is therefore based on the object to provide a device which in terms of its proportions or its quantities, the tank ventilation mixture, which cannot be predetermined, can be fed to the intake tract of the respective internal combustion engine in such a way that, on the one hand, there is an effective ventilation of the intermediate storage, but on the other hand no disturbing influence on the fuel metering device operating under the guidance of a ⁇ regulation the internal combustion engine results.
  • the invention solves this problem with the characterizing features of claim 1 and has the decisive advantage that the tank ventilation influence is removed from the area of arbitrary connections and is deliberately fine-tuned to the respective internal combustion engine behavior with continuous change of the maximum quantity to be supplied, the tank ventilation depending on in internal combustion engines already existing ⁇ control of the operating mixture is controlled and regulated so that negative influences neither on the driving behavior nor on the basic control of the fuel supply are possible.
  • tank ventilation valve in the tank ventilation line between the filter and the suction tract is controlled periodically by the assigned control unit, the period resulting from the change between opening and closing the valve and a variation of this ratio of opening time to closing time (which corresponds to the duty cycle of the tank ventilation control) appropriate adjustment of the tank ventilation mixture amount can be achieved.
  • tank ventilation can also be included and implemented in the overall behavior of the internal combustion engine over a wide range depending on the ⁇ control factor.
  • FIG. 1 shows the basic principle of tank ventilation with tank ventilation valve with a continuously changeable opening cross section and electronic control unit
  • FIG. 2 shows the approximately linear course of the characteristic curve of the tank ventilation valve over the pulse duty factor of the control pulse sequence
  • Control pulse sequence for the tank ventilation valve via load and speed
  • Fig. 4 shows the characteristic curve of the mean value of the lambda control factor for lambda control-dependent control of the tank ventilation
  • Fig. 5 characteristic curves of the duty cycle, tank ventilation and lambda control factor over time each with pure control via the tank ventilation Map and additionally with a control dependent on the mean value of the lambda control factor
  • FIG. 1 shows the basic principle of tank ventilation with tank ventilation valve with a continuously changeable opening cross section and electronic control unit
  • FIG. 2 shows the approximately linear course of the characteristic curve of the tank ventilation valve over the pulse duty factor of the control pulse sequence
  • Control pulse sequence for the tank ventilation valve via load and speed
  • Fig. 4 shows the characteristic curve of the mean value of the lambda control factor for lambda control-dependent
  • Fig. 7 shows the block diagram schematic of the tank ventilation with pilot control map and optional supplementary engagement of a lambda control dependent control and a threshold control.
  • FIG. 1 shows a fuel tank or tank 10 which is vented and vented exclusively via an activated carbon filter located in a temporary storage tank 11, the fuel evaporating from the tank being stored in the activated carbon filter up to a limited maximum amount.
  • This stored fuel is then sucked into the engine while the internal combustion engine is running - only the intake area 12 with the throttle valve 12a is shown in FIG. 1.
  • the metering of the fuel drawn off from the area of the tank ventilation or of the fuel air mixture formed there, the proportions of which cannot be determined, takes place via a special tank ventilation valve 13 in such a way that in all operating states of the system there is no impairment of driving behavior and exhaust gas behavior and no impairment of the control circuits involved in the fuel metering and adaptive systems occurs.
  • the control of the tank ventilation valve 13 takes place on its magnetic part 13a by a control device 14, this one Control pulse sequence outputs with variable duty cycle TV, whereby a suitable variation of the opening cross section of the tank ventilation system 13 can be set.
  • the characteristic curve of the tank ventilation valve 13 between the minimum throughput Qmin and Qmax over the pulse duty factor can be approximately linear, possibly also exponential, which can be included in the calculation.
  • the following information relates to specific numerical data of a suitable tank ventilation valve with a passage cross-section that can be changed continuously depending on the duty cycle of the control pulse sequence.
  • a corresponding characteristic curve is shown qualitatively in FIG. 2.
  • a first embodiment which is independent of other, possibly supplementary and supportive control and regulation options for tank ventilation, has inventive importance, the control of the tank ventilation valve via a tank ventilation map or pilot control map, which is dependent on the load (shown as pilot control Injection pulse t L here a fuel injection system) and the speed n via 4x4 support points with the possibility of interpolation each outputs quantized duty cycle variables and feeds, for example, a multiplier 15 for the tank ventilation valve control.
  • pilot control map is denoted by 16 and shown in FIG. 3 as a diagram, the map being designed so that the percentage enrichment of the combustion mixture supplied to the internal combustion engine is the same in all areas for a given TE mixture .
  • the duty cycle of the control pulse sequence for the tank ventilation valve can be quantized continuously or in steps of, for example, 10% each in the range between 0 and 100%.
  • Fig. 7 the control of the further processing point 15 from the pilot control map 16 is shown via a switch S1, which is useful so that in certain operating states (idling, overrun cut-off) the tank ventilation can be completely prevented, if necessary, or also to do without to enable the pilot control map control to take effect other control and regulating methods to be explained below.
  • the lambda control circuit for generating the fuel metering signal of the internal combustion engine 17, in this case a spark ignition internal combustion engine (Otto engine) with injection, in a multiplier stage 18, starting from the output signal of a load sensor (not shown),
  • a load sensor for example, an air flow meter, and a speed sensor generates a load signal, namely an injection time duration signal t L and is fed to a further, downstream multiplier stage 19, ultimately for the control of the injection valve or valves.
  • a correction factor F R is applied to the injection time period at the multiplier 19, which is generated as a lambda correction factor behind a comparator 20 from the actual lambda value generated by the lambda probe 21 and a lambda target value from a lambda controller 22.
  • this lambda correction factor F R which is present anyway on the basis of the lambda control loop, is used in order to make possible a lambda control-dependent control of the tank ventilation as well.
  • the averaged value generated via an intermediate low-pass filter 23 is used F R of the lambda correction factor is used and also reaches a multiplication point 15 for the TE valve control via a characteristic curve block 24.
  • the characteristic curve of the tank ventilation change or influence above the mean value of the lambda control is again shown separately in FIG. 4 and comprises four support points with interpolation, the basic function being such that an increasing enrichment of the tank ventilation mixture (TE mixture) over the mean value F R of the lambda correction factor is recognized, since this shifts to lower values, and the tank ventilation is closed accordingly by correspondingly changing the duty cycle of the control pulse sequence for the tank ventilation valve.
  • the block diagram of FIG. 7 also contains a second possible variant for characteristic curve mean value control, which can be used as an alternative to this and comprises limit value regulation of the mean value of the lambda correction factor.
  • a further comparison point 25 is provided, which has a limit value F RGW of the mean value of the lambda correction factor is supplied, together with the actual value mean value F R of the correction factor.
  • the comparison result is sent to a comparator 26, which decides whether the mean value F R of the correction factor is above or below the predetermined limit value;
  • a downstream integrator 27 is driven as an I controller for limit value control with appropriate polarity, the output signal of which is then likewise fed to the multiplication point 15.
  • FIG. 5 The diagrams on the left-hand side of FIG. 5 show the states that result from the pilot control map 16 with pure control; assume that the duty cycle of the controller is at 0.25 due to the speed and load values; occurs at a predetermined time t 1 (see diagram b) of Fig. 5) a sudden increase in the fuel content in the TE mixture (illustrated by three different curves (1); (2); (3)), then the controller responds Not at all via the pilot control map and the lambda correction factor F R only shifts accordingly in the direction of a lean mixture as a result of the "fuel cloud" (theoretical step function) in the TE mixture (see c) of FIG. 5), ie the Regulator leans.
  • the enrichment now caused by the tank ventilation shifts the mean value F R beyond the limit value GW, which occurs at time t2.
  • the duty cycle of the drive pulse sequence is (increasingly) closed via the I controller 27, that is, it decreases from the time t 3 to the mean value F R has returned above the limit; from this point in time, the pulse duty factor increases again in accordance with the adjustment of the I-controller 27, whereby multiple oscillations, as shown at c) in FIG. 6, can also result around the limit value GW until the cloud formation has subsided at the point in time t and Average F R and duty cycle return to previous values.
  • the time constant of the I controller 27 for the tank ventilation must be greater than the time constant of the known I controller of the lambda control for the fuel metering or the calculation of the fuel injection pulses, one for the entire speed / load range constant time constant is sufficient for the tank ventilation. Furthermore, a maximum limitation I TEmax should be provided for the I controller and the quantization of the I controller should be about four times finer than the output quantization for the pulse duty factor.
  • the overall function of the tank ventilation in accordance with the block diagram representation of FIG. 7 can therefore look like the two following formulas alternatively indicate and the alternatively provided additional control options occur via the mean value of the lambda control or the limit value control in addition to the map control:
  • TVTE KFTE (n, t L ) - ITE ( F ⁇ CMEA )

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supplying Secondary Fuel Or The Like To Fuel, Air Or Fuel-Air Mixtures (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)

Description

    Stand der Technik
  • Die Erfindung betrifft eine Vorrichtung nach dem Oberbegriff des Anspruchs 1. Bei einer bekannten Vorrichtung dieser Art (US-A-4 275 697) wird die Zusammensetzung des Abgases erfassende Lambda-Sonde zur Steuerung von Tanktentlüftungsventilen so eingesetzt, daß abhängig vom Signal der LambdaSonde ein solches Ventil kontinuierlich geöffnet bzw. geschlossen wird. Das Tankentlüftungsventil ist dabei zwischen einem Zwischenspeicher und dem Einlaß der Brennkraftmaschine angeordnet und elektrisch gesteuert; ein entsprechendes, jedoch pneumatisch gesteuertes Tankentlüftungsventil ist ferner bekannt aus DE-A-2 612 300.
  • Die DE-A-2 633 617 offenbart eine Kombination von Vorsteuerung und Regelung von Einstellgrößen bei Brennkraftmaschinen, ohne jedoch auf die speziellen Verhältnisse bei der Entlüftung von Kraftstofftanks einzugehen.
  • Bemerkenswert ist aber bei allen bekannten Ausführungsformen von Tanktentlüftungssystemen, die in Abhängigkeit zum Ausgangssignal einer λ-Sonde oder auch abhängig von einem Kraftstoffregelimpuls Tankentlüftungsventile ansteuern, daß eine Freigabe von Dämpfen aus dem Zwischenspeicher immer dann zugelassen wird, wenn sich aus dem Ausgangssignal der λ-Sonde eine magere Gemischzusammensetzung ergibt, während das Tankentlüftungsventil geschlossen oder nahezu geschlossen ist, wenn die λ-Sonde eine fette Gemischzusammensetzung anzeigt. Hierdurch soll eine ausgleichende Wirkung im Hinblick auf eine Verstetigung der Verhältnisanteile des der Brennkraftmaschine insgesamt zugeführten Kraftstoffluftgemisches erzielt werden, wobei aber die Aufbereitung des Kraftstoffluftgemisches über die in beiden US-Patentschriften vorgesehene Vergasung durch die Tankentlüftungsmittel unbeeinflußt bleibt. Das bedeutet, daß bei Anzeige eines entsprechend mageren Gemisches durch die λ-Sonde die Anfettung gleichzeitig und daher parallel über das Gemischaufbereitungssystem und die Tankentlüftung erfolgt.
  • Unterschiedlich hierzu ist lediglich die Tankentlüftungsvorrichtung nach der US-A-4 275 697, die das in eine Taktimpulsfolge umgewandelte Ausgangssignal der λ-Sonde, welches ursprünglich dem Solenoid einer Steuerdüse im Vergaser zugeführt ist, um für ein möglichst stöchiometrisches Gemisch zu sorgen, parallel dazu benutzt, die Tankentlüftung immer dann abzuschalten oder auf minimale Werte zu halten, wenn entweder eine minimale oder eine maximale Kraftstoffzugabe über den Vergaser erfolgt. In diesen beiden Fällen soll die zusätzliche Tankentlüftung zu einer nicht wünschenswerten Überfettung des Gemisches führen; bei Normalbetrieb bleiben die zusätzlichen, aus der Tankentlüftung stammenden Kraftstoffmengen ohne größeren Einfluß und werden letztlich auch, nämlich indirekt über die Reaktion der λ-Sonde, in ihrer Einwirkung auf die Gemischzusammensetzung, wenn auch mit Zeitverzögerung und unter Umständen phasenverschoben, in etwa ausgeregelt.
  • Die genannten Veröffentlichungen sind Beispiele dafür, daß man bei dem Betrieb von Brennkraftmaschinen bestrebt ist, die sich aufgrund und in Abhängigkeit bestimmter Parameter (Kraftstoff-Temperatur, -Menge, Dampfdruck, Luftdruck, Spülmenge ...) bildenden Kraftstoffdämpfe nicht lediglich ins Freie zu entlüften, sondern der Brennkraftmaschine wieder zuzuführen; üblicherweise so, daß der erwähnte, mit Aktivkohle gefüllte Zwischenspeicher vorgesehen ist, der die sich bildenden Kraftstoffdämpfe, beispielsweise bei stehendem Fahrzeug, aufnimmt und über eine Leitung dem Ansaugbereich der Brennkraftmaschine zuführt. In diesem Zusammenhang ist es ferner bekannt, eine durch eine solche zusätzliche, auf die Tankentlüftung zurückzuführende Kraftstoffluftgemischmenge mögliche Erhöhung der Abgasemission zu verhindern oder kleinzuhalten, indem die Tankentlüftung nur bei bestimmten Betriebszuständen der Brennkraftmaschine zugelassen wird (s. Bosch "Motronic" - Technische Beschreibung C5/1 vom August 1981; DE-OS-2 829 958).
  • Der den Aktivkohlefilter enthaltende Zwischenspeicherbehälter ist in der Lage, Kraftstoffdämpfe bis zu einer bestimmten Maximalmenge zu speichern, wobei eine Spülung des Filters während des Motorbetriebes durch den von der Brennkraftmaschine entwickelten Unterdruck im Ansaugtrakt erfolgt, wozu das Filter eine Öffnung zur Außenluft besitzt. Notwendigerweise ergibt sich daher auch dann, wenn man nur bei bestimmten Betriebsbedingungen die Spülung des Zwischenspeichers zuläßt, ein zusätzliches, auf diese Tankentlüftung zurückzuführendes Kraftstoffluftgemisch, welches als nicht gemessenes oder mit sinnvollem Aufwand nicht meßbares Gemisch das normalerweise mit hohem Berechnungsaufwand sehr exakt erstellte Kraftstoffzumeßsignal - bei einer Kraftstoffeinspritzanlage die Dauer des Einspritzsteuerbefehls ti - und die sich hierdurch ergebende, der Brennkraftmaschine zugeführte Kraftstoffmenge verfälscht. Eine solche, insbesondere auch das Fahrverhalten unter bestimmten Bedingungen beeinflussende zusätzliche Kraftstoffmenge, die in den Extremfällen als Tankentlüftungsgemisch auch aus nahezu 100 % Luft oder 100 % Kraftstoffdampf bestehen kann, ist auch dann nicht akzeptierbar, wenn man den Einfluß, dieser Störgröße durch pneumatische Stellglieder unmittelbar auf den von der Brennkraftmaschine entwickelten Saugrohrdruck bezieht oder die Zuführung des Tankentlüftungs-Gemisches durch eine elektronische Ein/Aus-Steuerung für besonders empfindliche Betriebszustände, etwa Leerlauf, völlig ausschließt.
  • Der Erfindung liegt daher die Aufgabe zugrunde, eine Vorrichtung zu schaffen, die das in seinen Verhältnisanteilen bzw. seinen Mengen nicht vorgebbare Tankentlüftungs-Gemisch in einer solchen Weise dem Ansaugtrakt der jeweiligen Brennkraftmaschine zuführen kann, daß sich einerseits eine wirksame Entlüftung des Zwischenspeichers, andererseits aber kein störender Einfluß auf die unter der Führung einer λ-Regelung arbeitenden Kraftstoffdosiereinrichtung für die Brennkraftmaschine ergibt.
  • Vorteile der Erfindung
  • Die Erfindung löst diese Aufgabe mit den kennzeichnenden Merkmalen des Anspruchs 1 und hat den entscheidenden Vorteil, daß der Tankentlüftungseinfluß aus dem Bereich willkürlicher Aufschaltungen herausgenommen und gezielt bei kontinuierlicher Änderung der jeweils zuzuführenden Maximalmenge feinfühlig auf das jeweilige Brennkraftmaschinenverhalten abgestimmt wird, wobei die Tankentlüftung in Abhängigkeit zur bei Brennkraftmaschinen ohnehin schon vorhandenen λ-Regelung des Betriebsgemisches so gesteuert und geregelt wird, daß negative Einflüsse weder auf das Fahrverhalten, noch auf die Grundregelung der Kraftstoffzufuhr möglich sind.
  • Dabei ist von besonderem Vorteil die Steuerung der Tankentlüftung im Sinne einer Vorsteuerung aus einem Last-Drehzahl-Kennfeld heraus, wobei diese Vorsteuerung dann noch weiter abhängig vom λ-Regelfaktor gemacht wird.
  • Besonders vorteilhaft ist auch die Einführung einer zusätzlichen oder auch allein in Verbindung mit dem Last-Drehzahlkennfeld wirksamen Grenzwertregelung um den Grenzwert eines minimal zulässigen λ-Regelfaktors.
  • Dabei wird das Tankentlüftungsventil in der Tankentlüftungsleitung zwischen dem Filter und dem Saugtrakt vom zugeordneten Steuergerät periodisch angesteuert, wobei die Periode sich aus dem Wechsel zwischen Öffnen und Schließen des Ventils ergibt und eine Variation dieses Verhältnisses Öffnungsdauer zu Schließdauer (was dem Tastverhältnis der Tankentlüftungsansteuerung entspricht) eine entsprechende Verstellung der Tankentlüftungs-Gemischmenge erzielt werden kann. Auf diese Weise kann über einen weiten Bereich in Abhängigkeit zum λ-Regelfaktor auch die Tankentlüftung im Sinne einer kontinuierlichen Regelung in das Gesamtverhalten der Brennkraftmaschine einbezogen und realisiert werden.
  • Durch die in den Unteransprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen der im Hauptanspruch angegebenen Vorrichtung möglich.
  • Zeichnung
  • Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und werden in der nachfolgenden Beschreibung näher erläutert. Es zeigen Fig. 1 stark schematisiert das Grundprinzip der Tankentlüftung mit Tankentlüftungsventil mit kontinuierlich änderbarem Öffnungsquerschnitt und elektronischem Steuergerät, Fig. 2 den angenähert linearen Verlauf der Kennlinie des Tankentlüftungsventils über dem Tastverhältnis der Ansteuerimpulsfolge, Fig. 3 ein Tankentlüftungs-Kennfeld zur Vorsteuerung des Tastverhältnisses der Ansteuerimpulsfolge für das Tankentlüftungsventil über Last und Drehzahl, Fig. 4 den Kennlinienverlauf des Mittelwerts des Lambda-Regelfaktors zur Lambda-regelungsabhängigen Steuerung der Tankentlüftung, Fig. 5 Kennlinienverläufe von Tastverhältnis, Tankentlüftung und Lambda-Regelfaktor über der Zeit jeweils bei reiner Steuerung über das Tankentlüftungs-Kennfeld und zusätzlich mit vom Mittelwert des Lambda-Regelfaktors abhängiger Steuerung, Fig. 6 den Kennlinienverlauf des Tastverhältnisses der Ansteuerimpulsfolge, der Tankentlüftung und des Mittelwerts des Lambda-Regelfaktors über der Zeit bei Vorsteuerung über das Tankentlüftungs-Kennfeld und zusätzlicher Grenzwertregelung, Fig. 7 schematisiert das Blockschaltbild der Tankentlüftung mit Vorsteuerkennfeld und wahlweisem ergänzendem Eingriff einer Lambdaregelungsabhängigen Steuerung und einer Grenzwertregelung.
  • Beschreibung der Ausführungsbeispiele
  • In Fig. 1 ist ein Kraftstoffbehälter oder Tank 10 gezeigt, der ausschließlich über ein in einem Zwischenspeicherbehälter 11 befindliches Aktivkohlefilter beund entlüftet wird, wobei der aus dem Tank verdampfende Kraftstoff bis zu einer begrenzten Maximalmenge im Aktivkohlefilter gespeichert wird. Dieser gespeicherte Kraftstoff wird dann bei laufender Brennkraftmaschine - in Fig. 1 ist lediglich der Ansaugbereich 12 mit Drosselklappe 12a dargestellt - in den Motor abgesaugt. Die Zumessung des aus dem Bereich der Tankentlüftung abgesaugten Kraftstoffs oder des dort gebildeten, in seinen Verhältnisanteilen nicht bestimmbaren Kraftstoffluftgemisches erfolgt über ein spezielles Tankentlüftungsventil 13 so, daß in allen Betriebszuständen des Systems keine Beeinträchtigung von Fahrverhalten und Abgasverhalten und keine Beeinträchtigung der an der Kraftstoffzumessung beteiligten Regelkreise und adaptiver Systeme auftritt.
  • Die Ansteuerung des Tankentlüftungsventils 13 erfolgt auf dessen Magnetteil 13a von einem Steuergerät 14, wobei dieses eine Ansteuerimpulsfolge mit veränderbarem Tastverhältnis TV ausgibt, wodurch sich eine geeignete Variation des Öffnungsquerschnitts des Tankentlüftungssystems 13 einstellen läßt. Dabei kann die Kennlinie des Tankentlüftungsventils 13 zwischen Minimaldurchsatz Qmin und Qmax über dem Tastverhältnis angenähert linear, gegebenenfalls auch exponentiell verlaufen, was in die Berechnung einbezogen werden kann.
  • Die folgenden Angaben beziehen sich auf speziell numerische Daten eines geeigneten Tankentlüftungsventils mit in Abhängigkeit zum Tastverhältnis der Ansteuerimpulsfolge kontinuierlich veränderbarem Durchlaßquerschnitt.
  • Mit Vorteil basiert das Tankentlüftungsventil auf dem Hubmagnetprinzip, welches im stromlosen Zustand offen ist und einer geeigneten Taktfrequenz-Impulsfolge von 10 Hz angesteuert wird. Hierbei ergibt sich dann bei einem Druckunterschied Δp = 20 mbar ein Maximaldurchsatz von 2<Q≦4 m³/h und ein Minimaldurchsatz beim gleichen Druckunterschied von 0<Q≦0,1 m³/h, wobei bei diesem bevorzugten Ausführungsbeispiel die über das Tastverhältnis herstellbare Variation zwischen Qmin und Qmax im Verhältnis 1 : 20 liegt. Ein entsprechender Kennlinienverlauf ist in Fig. 2 qualitativ dargestellt.
  • Für die weiteren Funktionen der Tankentlüftung TE wird auf die Blockbilddarstellung der Fig. 7 Bezug genommen; hierbei umfaßt eine erste Ausführungsform, die auch unabhängig von anderen, gegebenenfalls ergänzend und unterstützend eingreifenden Steuer- und Regelungsmöglichkeiten für die Tankentlüftung erfinderische Bedeutung besitzt, die Ansteuerung des Tankentlüftungsventils über ein Tankentlüftungs-Kennfeld oder Vorsteuerkennfeld, welches in Abhängigkeit zur Last (dargestellt als Vorsteuer-Einspritzimpuls tL hier einer Kraftstoffeinspritzanlage) und der Drehzahl n über 4x4 Stützstellen mit der Möglichkeit der Interpolation jeweils quantisierte Tastverhältnisgrößen ausgibt und beispielsweise einer Multiplizierstelle 15 für die Tankentlüftungsventilansteuerung zuführt. In der Darstellung der Fig. 7 ist ein solches Vorsteuerkennfeld mit 16 bezeichnet und in Fig. 3 als Diagramm dargestellt, wobei das Kennfeld so auszulegen ist, daß die prozentuale Anfettung des der Brennkraftmaschine zugeführten Verbrennungsgemisches bei gegebenem TE-Gemisch in allen Bereichen gleich groß ist.
  • In diesem Zusammenhang wird darauf hingewiesen, daß die nachfolgenden Ausführungen sich im wesentlichen auf die Anwendung der Tankentlüftung auf eine Kraftstoffeinspritzanlage beziehen, so daß im folgenden für die Einspritzung gebräuchliche Bezeichnungen verwendet werden. Hierdurch wird die Erfindung jedoch nicht auf die Zuordnung zu einer Kraftstoffeinspritzanlage eingeschränkt, sondern umfaßt die Anwendungsmöglichkeit bei beliebigen Kraftstoffzumeßeinrichtungen für Brennkraftmaschinen.
  • Die Quantisierung des Tastverhältnisses der Ansteuerimpulsfolge für das Tankentlüftungsventil kann dabei kontinuierlich oder in Schritten von beispielsweise jeweils 10 % im Bereich zwischen 0 und 100 % erfolgen. In Fig. 7 ist die Ansteuerung der weiterverarbeitenden Stelle 15 aus dem Vorsteuerkennfeld 16 über einen Schalter S1 dargestellt, was sinnvoll ist, damit bei bestimmten Betriebszuständen (Leerlauf, Schubabschaltung) die Tankentlüftung gegebenenfalls völlig unterbunden werden kann, oder auch deshalb, um unter Verzicht auf die Vorsteuer-Kennfeldansteuerung andere, im folgenden noch zu erläuternde Steuer- und Regelverfahren wirksam werden zu lassen.
  • Fig. 7 zeigt zum besseren Verständnis auch den Lambda-Regelkreis für die Erstellung des Kraftstoffzumeßsignals der Brennkraftmaschine 17, in diesem Fall einer fremdgezündeten Brennkraftmaschine (Otto-Motor) mit Einspritzung, wobei in einer Multiplizierstufe 18, ausgehend von dem Ausgangssignal eines nicht dargestellten Lastsensors, beispielsweise eines Luftmengenmessers, und eines Drehzahlgebers ein Lastsignal, nämlich ein Einspritzzeitdauersignal tL erzeugt und einer weiteren, nachgeschalteten Multiplizierstufe 19, letztlich für die Ansteuerung des oder der Einspritzventile, zugeführt wird. An der Multiplizierstufe 19 wird die Einspritzzeitdauer mit einem Korrekturfaktor FR beaufschlagt, der als Lambda-Korrekturfaktor hinter einem Vergleicher 20 aus dem von der Lambda-Sonde 21 erzeugten Lambda-Istwert und einem Lambda-Sollwert von einem Lambda-Regler 22 erzeugt wird.
  • In einer Ausgestaltung vorliegender Erfindung wird dieser ohnehin aufgrund des Lambda-Regelkreises vorliegende Lambda-Korrekturfaktor FR benutzt, um eine Lambda-regelungsabhängige Steuerung auch der Tankentlüftung möglich zu machen.
  • Hierzu wird der über einen zwischengeschalteten Tiefpaß 23 erzeugte gemittelte Wert F R des Lambda-Korrekturfaktors benutzt und gelangt über einen Kennlinienblock 24 ebenfalls zur Multiplizierstelle 15 für die TE-Ventilansteuerung.
  • Der Kennlinienverlauf der Tankentlüftungsänderung oder -beeinflussung über dem Mittelwert der Lambda-Regelung ist in Fig. 4 nochmals gesondert dargestellt und umfaßt vier Stützstellen mit Interpolation, wobei die Grundfunktion so ist, daß eine steigende Anfettung des Tankentlüftungsgemisches (TE-Gemisches) über den Mittelwert F R des Lambda-Korrekturfaktors erkannt wird, da dieser sich zu niedrigeren Werten verschiebt, und die Tankentlüftung durch entsprechende Veränderung des Tastverhältnisses der Ansteuerimpulsfolge für das Tankentlüftungsventil entsprechend geschlossen wird.
  • Schließlich enthält das Blockschaltbild der Fig. 7 noch eine zweite mögliche Variante zur Kennlinien-Mittelwertregelung, die alternativ zu dieser eingesetzt werden kann und eine Grenzwertregelung des Mittelwerts des Lambda-Korrekturfaktors umfaßt. Hierzu ist eine weitere Vergleichsstelle 25 vorgesehen, der ein Grenzwert F RGW des Mittelwerts des Lambda-Korrekturfaktors zugeführt wird, zusammen mit dem Istwert-Mittelwert F R des Korrekturfaktors. Über einen Schalter S2 gelangt das Vergleichsergebnis auf einen Komparator 26, der entscheidet, ob der Mittelwert F R des Korrekturfaktors oberhalb oder unterhalb des vorgegebenen Grenzwerts liegt; je nach dem Ergebnis wird ein nachgeschalteter Integrator 27 als I-Regler für die Grenzwertregelung mit entsprechender Polung angesteuert, dessen Ausgangssignal dann ebenfalls der Multiplizierstelle 15 zugeführt wird.
  • Anhand der Diagrammverläufe der Figuren 5 und 6 werden im folgenden die sich aufgrund der möglichen Tankentlüftungs-Steuerungsverfahren ergebenden Funktionen erläutert.
  • Dabei zeigen die Diagrammverläufe auf der linken Seite der Fig. 5 die Zustände, die sich bei reiner Steuerung aus dem Vorsteuer-Kennfeld 16 ergeben; es sei angenommen, daß das Tastverhältnis der Steuerung sich aufgrund der Drehzahlen und Lastwerte bei 0,25 befindet; tritt zu einem vorgegebenen Zeitpunkt t₁ (s. Diagramm b) der Fig. 5) ein sprungartiger Anstieg des Kraftstoffgehalts im TE-Gemisch auf (verdeutlicht durch drei verschiedene Kurvenverläufe (1); (2); (3)), dann reagiert die Steuerung über das Vorsteuerkennfeld hierauf überhaupt nicht und der Lambda-Korrekturfaktor FR verschiebt sich lediglich entsprechend in Richtung auf mageres Gemisch als Folge der "Kraftstoffwolke" (theoretische Sprungfunktion) im TE-Gemisch (s. bei c) der Fig.5), d.h. der Regler magert ab.
  • Anders ist dies bei den Diagrammverläufen auf der rechten Seite der Fig. 5; geht man auch hier zunächst von einem Tastverhältnis 0,25 aus der Kennfeldsteuerung aus, dann ergeben sich durch die Einflußnahme der F R-abhängigen Steuerung je nach der Kraftstoffwolke im TE-Gemisch geringere Tastverhältnis-Werte, wie bei (2) und (3) gezeigt; diese Veränderung des Tastverhältnisses resultiert aus dem Vorsteueranteil über dem Kennlinienblock der Mittelwert-Lambda-Regelung und zeigt bei c) auch einen weniger starken Abfall des Lambda-Korrekturfaktors FR.
  • Die Wirkung der Grenzwertregelung, in den Diagrammverläufen der Fig. 6 bei a), b) und c) ohne eine FR-abhängige Steuerung dargestellt, ist demgegenüber so, daß die Tankentlüftung TE über das Tastverhältnis der Ansteuerimpulsfolge vom Vorsteuerkennfeld der Tankentlüftung KFTE des Blocks 16 (maximal) geöffnet ist (numerischer Wert bei a) in Fig. 6: TV = 0,25), bis sich zum Zeitpunkt t₁ die TE-Kraftstoffanreicherung auf in diesem Fall einen angenommenen Wert von 100 % ergibt (s. b) der Fig. 6).
  • Entsprechend dem Kennlinienverlauf bei c) der Fig. 6 für den Lambda-Korrekturfaktor (= durchgezogene, einem Dreieckverlauf folgende Linie, wobei der Mittelwert F R des Korrekturfaktors in diesem Diagramm gestrichelt dargestellt ist) verschiebt die durch die Tankentlüftung jetzt bewirkte Anfettung den Mittelwert F R über den Grenzwert GW hinaus, was zum Zeitpunkt t₂ eintritt. Ab hier wird dann über den I-Regler 27 das Tastverhältnis der Ansteuerimpulsfolge (zunehmend) geschlossen, nimmt also ab bis zum Zeitpunkt t₃ der Mittelwert F R wieder über den Grenzwert zurückgelaufen ist; ab diesem Zeitpunkt steigt dann entsprechend der Verstellung des I-Reglers 27 das Tastverhältnis wieder an, wobei sich auch mehrfache Schwingungen, wie bei c) in Fig. 6 dargestellt, um den Grenzwert GW ergeben können, bis die Wolkenbildung zum Zeitpunkt t₄ abgeklungen ist und Mittelwert F R und Tastverhältnis wieder auf die früheren Werte zurückkehren.
  • Es vorsteht sich, daß die Zeitkonstante des I-Reglers 27 für die Tankentlüftung größer als die Zeitkonstante des für sich gesehen bekannten I-Reglers der Lambda-Regelung für die Kraftstoffzumessung oder die Berechnung der Kraftstoffeinspritzimpulse sein muß, wobei für den gesamten Drehzahl/Lastbereich eine konstante Zeitkonstante für die Tankentlüftung ausreichend ist. Ferner sollte für den I-Regler eine Maximalbegrenzung ITEmax vorgesehen und die Quantisierung des I-Reglers etwa vierfach feiner als die Ausgabequantisierung für das Tastverhältnis sein.
  • Die Gesamtfunktion der Tankentlüftung entsprechend der Blockbilddarstellung der Fig. 7 kann daher so aussehen, wie die beiden nachfolgenden Formeln alternativ angeben und wobei die alternativ vorgesehenen ergänzenden Regelungsmöglichkeiten über den Mittelwert der Lambda-Regelung oder die Grenzwertregelung additiv zur Kennfeldsteuerung auftreten:
    Figure imgb0001

    TVTE = KFTE(n,t L ) - ITE( F ¯ RGW )
    Figure imgb0002
  • Dabei sind noch folgende Randbedingungen als Einschaltbedingungen generell zu beachten:
    • 1. Die Ausgabe des Tastverhältnisses TV ist unterbunden (TV = 0), also die Tankentlüftung gesperrt, wenn
      • a) die Lambda-Regelung der Brennkraftmaschine selbst unwirksam ist.
      • b) der Betriebszustand Schubabschneiden vorliegt oder
      • c) gegebenenfalls bei Leerlauf.
    • 2. Erfolgt die Kraftstoffzuführung oder -dosierung, etwa bei einer Kraftstoffeinspritzanlage mit adaptiver Vorsteuerung der Lambda-Regelung (LRA), dann würden diese beiden Funktionen (LRA und TE) sich gegenseitig beeinflussen und zu einem Fehlverhalten führen. Die TE ist daher abzuschalten, wenn LRA aktiv ist oder umgekehrt, die adaptive Lambda-Regelung ist abzuschalten, wenn die Tankentlüftung TE aktiv ist.
    • 3. Dabei können noch folgende Bedingungen gelten:
      • a) Bei Start mit Motortemperatur TMOT < 30° und TANS < 30° ist die Tankentlüftung TE für ca. 10 Minuten geschlossen; währenddessen ist die erwähnte adaptive Vorsteuerung der Lambda-Regelung (LRA) aktiv.
      • b) Es schließt sich eine TE-Phase von ca. 5 Minuten an, dann wird TE mit Änderungsbegrenzung geschlossen. Unter Beachtung des Korrekturfaktors FR wird dann, wenn die Abweichung ΔFR > 5 % vom Normalwert FR = 1 ist, die LRA aktiviert und abgewartet, bis ΔFR < 5 % ist oder maximal 5 Minuten vergangen sind. Anschließend kann die TE wieder mit Änderungsbegrenzung zugelassen werden.

Claims (5)

  1. Vorrichtung zur Entlüftung von Kraftstofftanks (10) bei Brennkraftmaschinen in Verbindung mit einer von einem Lambda-Regelfaktor geregelten Kraftstoffzumessung des Betriebsgemisches, mit einem sich bildende Kraftstoffdämpfe aufnehmenden Zwischenspeicher, insbesondere Aktivkohle-Filterbehälter (11), und Mitteln (14, 13a, 13) zur gesteuerten Abgabe des Tankentlüftungsgemisches (TE-Gemisch) zur Brennkraftmaschine in Abhängigkeit zu ausgewählten, mindestens das Ausgangssignal einer Lambda-Sonde umfassenden Betriebsbedingungen durch Veränderung des Durchlaßöffnungsquerschnitts eines zwischen dem Zwischenspeicher und der Brennkraftmaschine geschalteten elektrisch gesteuerten Tankentlüftungsventils (13), dadurch gekennzeichnet, daß der Durchlaßöffnungsquerschnitt des Tankentlüftungsventils (13) über ein Vorsteuer-Kennfeld (16) (Fig. 3) in Abhängigkeit zu Last (tL) und Drehzahl (n) zwischen vorgegebenen Werten (0 % - 100 %) gesteuert bestimmt ist und ergänzend in einem geschlossenen Wirkungskreis in Abhängigkeit vom Lambda-Sondensignal gesteuert wird, daß das als Magnetventil, insbesondere Hubmagnet, ausgebildete Tankentlüftungsventil (13) von einer Steuerschaltung (14) mittels einer getakteten, in ihrem Tastverhältis (TVTE) zur Veränderung des Durchlaßöffnungsquerschnitts derart veränderlichen Ansteuerimpulsfolge angesteuert ist, daß mit steigendem Tastverhältnis der Durchlaßöffnungsquerschnitt kontinuierlich steigt und daß zur Lambda-Sondensignal-abhängigen Steuerung des Tastverhältnisses (TVTE) in dem oben genannten geschlossenen Wirkungskreis entweder Mittel (23,24,15) vorgesehen sind, welche das Tastverhältnis längs einer Mittelwert-Kennlinie des Lambda-Regelfaktors (FR) derart steuern, daß eine steigende Anfettung des TE-Gemisches über den Mittelwert des Lambda-Regelfaktors (FR) erkannt und das Tankentlüftungsventil durch entsprechende Reduzierung des Tastverhältnisses entsprechend geschlossen wird oder eine Vergleichsstelle (25) vorgesehen ist, der ein Grenzwert (GW) des Mittelwerts des Lambdaregelfaktors (FR) und dieser zugeführt ist, mit einem nachgeschalteten Komparator (26) zur Vorzeichenbestimmung und einem Integrator (27), der in kontinuierlicher Verstellung mit vorgegebener Konstante ein sich änderndes Tastverhältnis für die Absteuerimpulsfolge erzeugt und einer Multiplizierstufe (15) zuführt, der auch das durch die Kennfeld-Vorsteuerung ausgegebene Tastverhältnis (KFTE) zugeführt wird, derart, daß alternativ zur Steuerung über den Mittelwert des Lambda-Regelfaktors eine Regelung des Mittelwerts des Lambda-Regelfaktors auf einen Grenzwert mittels Änderung des Tastverhältnisses (TVTE) der Ansteuerimpulsfolge vorgenommen wird, wobei bei Überschreiten eines vorgegebenen Grenzwertes (FRGW) durch den Mittelwert des Lambda-Regelfaktors (FR) das Tastverhältnis (TVTE) im Sinne einer Reduzierung des Öffnungsquerschnittes und bei Rücklauf im Sinne einer Erhöhung des Durchlaßöffnungsquerschnittes verändert wird (Fig. 6)
  2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß das Vorsteuerkennfeld (KVTE) mindestens 4x4 Stützstellen mit der Möglichkeit der Interpolation umfaßt und so ausgelegt ist, daß die prozentuale Anfettung des Verbrennungsgemisches bei gegebenem TE-Gemisch durchlaufend gleich groß ist.
  3. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß alternativ zur kennlinienabhängigen Steuerung über den Mittelwert die Grundadaption durch die Tankentlüftung unbeeinflußt bleibt.
  4. Vorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß ein Tastverhältniswerte für die Ansteuerungsimpulsfolge des Tankentlüftungsventils gespeichert enthaltender Kennfeld-Vorsteuerblock (16) vorgesehen ist, der in Abhängigkeit zu Last (tL) und Drehzahl (n) vorgegebene Wert des Tastverhältnisses ausgibt und einer Eingriffsstelle, insbesodere Multiplizierstufe (15), zuführt (Fig. 7).
  5. Vorrichtung nach Anspruch 4, dadurch gekennzeichnet, daß der Eingriffsstelle (Multiplizierstufe 15) ein weiteres Ausgangssignal eines Kennlinienblocks (24) zugeführt ist, der in Abhängigkeit zum Verlauf des Mittelwerts (FR) des Lambda-Regelfaktors vorgegebene Werte des Tastverhältnisses erstellt zur alleinigen Auswertung oder in Kombination mit den Angaben des Vorsteuerkennfeldes.
EP85115458A 1985-01-26 1985-12-05 Vorrichtung zur Entlüftung von Kraftstofftanks Expired - Lifetime EP0191170B2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3502573A DE3502573C3 (de) 1985-01-26 1985-01-26 Vorrichtung zur Entlüftung von Kraftstofftanks
DE3502573 1985-01-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP88106880.3 Division-Into 1988-04-29

Publications (3)

Publication Number Publication Date
EP0191170A1 EP0191170A1 (de) 1986-08-20
EP0191170B1 EP0191170B1 (de) 1989-03-29
EP0191170B2 true EP0191170B2 (de) 1995-08-16

Family

ID=6260813

Family Applications (2)

Application Number Title Priority Date Filing Date
EP85115458A Expired - Lifetime EP0191170B2 (de) 1985-01-26 1985-12-05 Vorrichtung zur Entlüftung von Kraftstofftanks
EP19880106880 Expired - Lifetime EP0288090B1 (de) 1985-01-26 1985-12-05 Vorrichtung zur Entlüftung von Kraftstofftanks

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP19880106880 Expired - Lifetime EP0288090B1 (de) 1985-01-26 1985-12-05 Vorrichtung zur Entlüftung von Kraftstofftanks

Country Status (4)

Country Link
US (1) US4683861A (de)
EP (2) EP0191170B2 (de)
JP (3) JPH0759917B2 (de)
DE (3) DE3502573C3 (de)

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6355357A (ja) * 1986-08-22 1988-03-09 Toyota Motor Corp 内燃機関の空燃比制御装置
JPH0718390B2 (ja) * 1986-09-26 1995-03-06 日産自動車株式会社 燃料蒸発ガスのパ−ジ量制御装置
DE3639946C2 (de) * 1986-11-22 1997-01-09 Bosch Gmbh Robert Verfahren und Einrichtung zur Kompensation des Tankentlüftungsfehlers bei einem adaptiv lernenden Kraftstoffzufuhrsystem
JPH0726598B2 (ja) * 1988-02-18 1995-03-29 トヨタ自動車株式会社 内燃機関の空燃比制御装置
DE3813220C2 (de) * 1988-04-20 1997-03-20 Bosch Gmbh Robert Verfahren und Einrichtung zum Stellen eines Tankentlüftungsventiles
DE3822300A1 (de) * 1988-07-01 1990-01-04 Bosch Gmbh Robert Verfahren und vorrichtung zur tankentlueftungsadaption bei lambdaregelung
DE3826527A1 (de) * 1988-08-04 1990-02-08 Bosch Gmbh Robert Stereolambdaregelung
US5482024A (en) * 1989-06-06 1996-01-09 Elliott; Robert H. Combustion enhancer
NL8902897A (nl) * 1989-11-23 1991-06-17 Tno Zuiveren van lucht.
DE4025544A1 (de) * 1990-03-30 1991-10-02 Bosch Gmbh Robert Tankentlueftungsanlage fuer ein kraftfahrzeug und verfahren zum ueberpruefen deren funktionstuechtigkeit
DE59000761D1 (de) * 1990-04-12 1993-02-25 Siemens Ag Tankentlueftungssystem.
DE4030948C1 (en) * 1990-09-29 1991-10-17 Mercedes-Benz Aktiengesellschaft, 7000 Stuttgart, De Monitoring removal of petrol vapour from IC engine fuel tank - detecting change in fuel-air mixt. composition during selected working conditions
DE59004362D1 (de) * 1990-10-24 1994-03-03 Siemens Ag Kraftstoffeinspritzsystem für eine Brennkraftmaschine.
JP3173661B2 (ja) * 1990-12-28 2001-06-04 本田技研工業株式会社 内燃エンジンの蒸発燃料制御装置
DE4108856C2 (de) * 1991-03-19 1994-12-22 Bosch Gmbh Robert Tankentlüftungsanlage sowie Verfahren und Vorrichtung zum Überprüfen der Dichtheit derselben
DE4109401A1 (de) * 1991-03-22 1992-09-24 Bosch Gmbh Robert Verfahren und vorrichtung zur tankentlueftung
DE4122975A1 (de) * 1991-07-11 1993-01-14 Bosch Gmbh Robert Tankentlueftungsanlage fuer ein kraftfahrzeug sowie verfahren und vorrichtung zum ueberpruefen von deren funktionsfaehigkeit
US5263460A (en) * 1992-04-30 1993-11-23 Chrysler Corporation Duty cycle purge control system
JP3378304B2 (ja) * 1992-08-06 2003-02-17 マツダ株式会社 エンジンの空燃比制御装置
US5438967A (en) * 1992-10-21 1995-08-08 Toyota Jidosha Kabushiki Kaisha Internal combustion device
DE4319772A1 (de) * 1993-06-15 1994-12-22 Bosch Gmbh Robert Verfahren und Vorrichtung zum Steuern einer Tankentlüftungsanlage
US5529047A (en) * 1994-02-21 1996-06-25 Nippondenso Co., Ltd. Air-fuel ratio system for an internal combustion engine
JP3689126B2 (ja) * 1994-03-18 2005-08-31 本田技研工業株式会社 内燃機関の蒸発燃料制御装置
FR2722247B1 (fr) * 1994-07-05 1996-08-30 Renault Procede de commande d'un moteur a combustion interne a recyclage de gaz de purge de l'event du reservoir
DE4430971A1 (de) 1994-08-31 1996-03-07 Bayerische Motoren Werke Ag Verfahren und Vorrichtung zur Zufuhr von Kraftstoffdampf in ein Saugrohr einer Brennkraftmaschine in Kraftfahrzeugen
DE19610169B4 (de) * 1996-03-15 2007-08-02 Robert Bosch Gmbh Verfahren zur Adaption der Verzugszeit eines elektromagnetischen Tankentlüftungsventils
JP3880655B2 (ja) * 1996-05-31 2007-02-14 本田技研工業株式会社 内燃機関の蒸発燃料制御装置
JP3890576B2 (ja) * 1997-04-02 2007-03-07 株式会社デンソー 内燃機関の空燃比制御装置
JP3707221B2 (ja) * 1997-12-02 2005-10-19 スズキ株式会社 内燃機関の空燃比制御装置
JPH11280567A (ja) * 1998-03-30 1999-10-12 Toyota Motor Corp 希薄燃焼内燃機関の蒸発燃料濃度検出装置及びその応用装置
JP3861446B2 (ja) * 1998-03-30 2006-12-20 トヨタ自動車株式会社 希薄燃焼内燃機関の蒸発燃料濃度検出装置及びその応用装置
JP4233694B2 (ja) * 1999-07-26 2009-03-04 本田技研工業株式会社 内燃機関の蒸発燃料放出防止装置
DE10014564A1 (de) * 2000-03-23 2001-09-27 Opel Adam Ag Kraftstoffzumess-System für eine Brennkraftmaschine
DE10037511C1 (de) 2000-08-01 2002-01-03 Siemens Ag Verfahren zur Diagnose der Verstellvorrichtung einer Drallklappe
DE10043862A1 (de) 2000-09-04 2002-03-14 Bosch Gmbh Robert Verfahren zur Steuerung der Regenerierung eines Kraftstoffdampfzwischenspeichers bei Verbrennungsmotoren
DE10043698A1 (de) 2000-09-04 2002-03-14 Bosch Gmbh Robert Verfahrenzur Bildung der Verzugszeit eines elektromagnetischen Tankentlüftungsventils
DE10335902B4 (de) * 2003-08-06 2015-12-31 Robert Bosch Gmbh Verfahren zur Tankentlüftung bei einer Brennkraftmaschine
DE102006002717B3 (de) * 2006-01-19 2007-05-24 Siemens Ag Verfahren und Vorrichtung zum Ansteuern eines Ventils eines Kraftstoffdampf-Rückhaltesystems
US9200600B1 (en) * 2006-05-15 2015-12-01 Brunswick Corporation Method for controlling a fuel system of a marine propulsion engine
CN101568714B (zh) * 2006-12-28 2012-06-20 丰田自动车株式会社 内燃机的控制装置
DE102007013993B4 (de) * 2007-03-23 2011-12-22 Continental Automotive Gmbh Steuerverfahren für eine Brennkraftmaschine
DE102007039830A1 (de) * 2007-08-23 2009-02-26 Robert Bosch Gmbh Ventilkontrolle bei Betankung von Drucktanks
DE102007046489B3 (de) 2007-09-28 2009-05-07 Continental Automotive Gmbh Verfahren zum Betreiben einer Brennkraftmaschine
DE102007046481B3 (de) * 2007-09-28 2009-04-09 Continental Automotive Gmbh Verfahren und Vorrichtung zum Steuern einer Brennkraftmaschine
US7950375B2 (en) * 2008-06-11 2011-05-31 GM Global Technology Operations LLC Noise minimization for evaporative canister ventilation valve cleaning
US9527718B2 (en) * 2013-10-10 2016-12-27 Ford Global Technologies, Llc Refueling systems and methods for mixed liquid and gaseous fuel
US9388775B2 (en) 2014-04-24 2016-07-12 Ford Global Technologies, Llc Systems and methods for refueling canister system
US9644552B2 (en) 2014-06-24 2017-05-09 Ford Global Technologies, Llc System and methods for refueling a vehicle
FR3042230A1 (fr) * 2015-10-13 2017-04-14 Continental Automotive France Reduction du bruit d'une vanne d'isolation d'un reservoir de carburant d'un vehicule automotive.
US10533506B2 (en) * 2017-10-02 2020-01-14 Ford Global Technologies, Llc Systems and methods for an evaporative emissions system and fuel system having a single delta pressure sensor
JP2020133503A (ja) * 2019-02-20 2020-08-31 愛三工業株式会社 蒸発燃料処理装置
US20220256778A1 (en) * 2021-02-12 2022-08-18 Carlos T. Santiago System and method for portable self-contained greenhouse

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3690307A (en) * 1970-08-13 1972-09-12 Physics Int Co Vapor venting and purging system for engines
JPS51110130A (en) * 1975-03-25 1976-09-29 Nissan Motor Nainenkikanno taikiosenboshisochi
US4013054A (en) * 1975-05-07 1977-03-22 General Motors Corporation Fuel vapor disposal means with closed control of air fuel ratio
US4130095A (en) * 1977-07-12 1978-12-19 General Motors Corporation Fuel control system with calibration learning capability for motor vehicle internal combustion engine
JPS5458111A (en) * 1977-10-19 1979-05-10 Hitachi Ltd Engine controller
JPS5851394Y2 (ja) * 1979-04-19 1983-11-22 本田技研工業株式会社 タンク内圧制御装置
US4275697A (en) * 1980-07-07 1981-06-30 General Motors Corporation Closed loop air-fuel ratio control system
JPS5741443A (en) * 1980-08-26 1982-03-08 Toyo Denso Co Ltd Emission controlling apparatus for internal combustion engine
JPS5762955A (en) * 1980-08-28 1982-04-16 Honda Motor Co Ltd Device employed in internal combustion engine for preventing escape of vaporized fuel
DE3039436C3 (de) * 1980-10-18 1997-12-04 Bosch Gmbh Robert Regeleinrichtung für ein Kraftstoffzumeßsystem einer Brennkraftmaschine
JPS6055810B2 (ja) * 1980-11-25 1985-12-06 日本ビクター株式会社 光学的低域フイルタの製造方法
JPS57129247A (en) * 1981-02-04 1982-08-11 Hitachi Ltd Preventive device for fuel evaporation and dispersion
JPS57165644A (en) * 1981-04-07 1982-10-12 Nippon Denso Co Ltd Control method of air-fuel ratio
JPS5882040A (ja) * 1981-11-11 1983-05-17 Hitachi Ltd 空燃比制御装置
JPS58110853A (ja) * 1981-12-25 1983-07-01 Honda Motor Co Ltd 過給機付内燃機関における蒸発燃料制御装置
JPS58191361U (ja) * 1982-06-16 1983-12-19 日産自動車株式会社 燃料蒸発ガス回収装置
JPS59213941A (ja) * 1983-05-19 1984-12-03 Fuji Heavy Ind Ltd 燃料蒸発ガス排出抑止装置

Also Published As

Publication number Publication date
DE3502573C3 (de) 2002-04-25
JP2694123B2 (ja) 1997-12-24
JP2945882B2 (ja) 1999-09-06
JPH1068359A (ja) 1998-03-10
JPH0759917B2 (ja) 1995-06-28
DE3502573C2 (de) 1994-03-03
DE3584257D1 (de) 1991-10-31
EP0288090A2 (de) 1988-10-26
US4683861A (en) 1987-08-04
JPH07293361A (ja) 1995-11-07
EP0191170A1 (de) 1986-08-20
DE3569143D1 (en) 1989-05-03
EP0288090B1 (de) 1991-09-25
EP0288090A3 (en) 1989-01-04
EP0191170B1 (de) 1989-03-29
JPS61175260A (ja) 1986-08-06
DE3502573A1 (de) 1986-07-31

Similar Documents

Publication Publication Date Title
EP0191170B2 (de) Vorrichtung zur Entlüftung von Kraftstofftanks
DE2803750C2 (de)
DE3813220C2 (de) Verfahren und Einrichtung zum Stellen eines Tankentlüftungsventiles
DE3423144C2 (de) Verfahren zum Steuern der Zufuhr von Kraftstoff zu einer Brennkraftmaschine bei Beschleunigung
DE4140527C2 (de) Regelvorrichtung für das Luft/Brennstoff-Verhältnis für einen Verbrennungsmotor
EP0760056B1 (de) Verfahren und vorrichtung zur steuerung einer brennkraftmaschine
DE3639946C2 (de) Verfahren und Einrichtung zur Kompensation des Tankentlüftungsfehlers bei einem adaptiv lernenden Kraftstoffzufuhrsystem
DE3039435A1 (de) Vorrichtung zur regelung der leerlauf-drehzahl von brennkraftmaschinen
EP0152604A1 (de) Steuer- und Regelverfahren für die Betriebskenngrössen einer Brennkraftmaschine
DE3714151A1 (de) Steuereinrichtung fuer die drosselklappe eines verbrennungsmotors
DE10225448A1 (de) Verfahren und Vorrichtung zur Steuerung der Brennkraftmaschine eines Fahrzeugs
DE4319772A1 (de) Verfahren und Vorrichtung zum Steuern einer Tankentlüftungsanlage
DE3322820C2 (de)
DE19610169B4 (de) Verfahren zur Adaption der Verzugszeit eines elektromagnetischen Tankentlüftungsventils
DE19727297C2 (de) Verfahren zum Betreiben einer Brennkraftmaschine insbesondere eines Kraftfahrzeugs
EP0205916B1 (de) Verfahren zur Steuerung und/oder Regelung von Betriebskenngrössen einer Brennkraftmaschine
DE68905482T2 (de) Vorrichtung fuer die regelung einer steuerkenngroesse einer innenbrennkraftmaschine auf einen vorbestimmten wert.
DE10018209A1 (de) Verfahren und Vorrichtung zur Durchflusssteuerung insbesondere von Kraftstoffdämpfen in Tankentlüfungsanlagen von Kraftfahrzeugen
DE3218793C2 (de)
DE4322319A1 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
DE4322270A1 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
DE3317938C2 (de)
DE3321920A1 (de) Kraftstoffzufuehrungs-steuersystem fuer brennkraftmaschinen mit einer gemischabmagerungs-funktion im niedriglast-bereich der brennkraftmaschinen und verfahren zum elektronischen steuern von kraftstoffbemessungsmitteln
EP1134390B1 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
EP2089621B1 (de) Verfahren zum steuern einer brennkraftmaschine und brennkraftmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19870219

17Q First examination report despatched

Effective date: 19870626

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

XX Miscellaneous (additional remarks)

Free format text: TEILANMELDUNG 88106880 EINGEREICHT AM 29.04.88.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3569143

Country of ref document: DE

Date of ref document: 19890503

ET Fr: translation filed
ITF It: translation for a ep patent filed
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: SIEMENS AKTIENGESELLSCHAFT, BERLIN UND MUENCHEN

Effective date: 19891222

ITTA It: last paid annual fee
RAP4 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: ROBERT BOSCH GMBH

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 19950816

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): DE FR GB IT

ET3 Fr: translation filed ** decision concerning opposition
GBTA Gb: translation of amended ep patent filed (gb section 77(6)(b)/1977)

Effective date: 19950816

ITF It: translation for a ep patent filed
APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20011227

Year of fee payment: 17

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20021202

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20021213

Year of fee payment: 18

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031205

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20031205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040831

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO