EP0158054A1 - Commande hydraulique - Google Patents

Commande hydraulique Download PDF

Info

Publication number
EP0158054A1
EP0158054A1 EP85101751A EP85101751A EP0158054A1 EP 0158054 A1 EP0158054 A1 EP 0158054A1 EP 85101751 A EP85101751 A EP 85101751A EP 85101751 A EP85101751 A EP 85101751A EP 0158054 A1 EP0158054 A1 EP 0158054A1
Authority
EP
European Patent Office
Prior art keywords
piston
pressure
hydraulic drive
storage
hydraulic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP85101751A
Other languages
German (de)
English (en)
Other versions
EP0158054B1 (fr
Inventor
Gerhard Körner
Horst Plettner
Edelwald Lutz
Egon Orth
Rudi Weingärtner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BBC Brown Boveri AG Switzerland
Original Assignee
BBC Brown Boveri AG Switzerland
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BBC Brown Boveri AG Switzerland filed Critical BBC Brown Boveri AG Switzerland
Publication of EP0158054A1 publication Critical patent/EP0158054A1/fr
Application granted granted Critical
Publication of EP0158054B1 publication Critical patent/EP0158054B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/28Power arrangements internal to the switch for operating the driving mechanism
    • H01H33/30Power arrangements internal to the switch for operating the driving mechanism using fluid actuator
    • H01H33/34Power arrangements internal to the switch for operating the driving mechanism using fluid actuator hydraulic

Definitions

  • the invention relates to a hydraulic drive, in particular for high-voltage circuit breakers, with a working piston designed as a differential piston, which is guided in a one-sided axial recess in a pressure housing and is constantly under the force of an energy store on one side and the other side optionally with pressure can be acted upon or relieved of pressure.
  • Such a drive is known from DE-OS 28 28 958, in which a differential piston is acted upon by hydraulic fluid from a separately arranged energy store.
  • Such spatial separation inevitably leads to the laying of pressure lines that are susceptible to interference from external influences, which, depending on their length, adversely affect the efficiency of the system, and which have to be laid taking fire safety into account, which in total together with a considerable installation effort.
  • the recess as a step-shaped cylinder bore, the working piston being guided in the bore with a smaller diameter, the storage piston in the bore with a larger diameter.
  • This arrangement leads to a very compact design, since the possible storage volume in the storage space is a multiple of the required actuating volume for the working piston.
  • Another advantage is the high positioning force for the working piston that can be achieved with this arrangement.
  • the recess in the pressure housing is expediently closed with a housing cover, this having a cup-shaped bulge which accommodates the collecting space for the hydraulic fluid.
  • the spring arrangement serving as an energy store, or spring store for short, outside concentrically around the pressure housing, the storage piston using transmission rods, which are arranged symmetrically to its central axis and slide out of the pressure housing in a pressure-tight manner, via a thrust piece with the spring storage device is rigidly coupled.
  • the spring accumulator is supported against a molded-in shoulder on the almost cylindrical pressure housing.
  • the end of the pressure housing facing away from the housing recess has a cylindrical outer contour which serves as a sliding guide for the circular pressure piece.
  • the spring accumulator is expediently formed from disk spring assemblies. This measure offers the known Advantage that with an appropriate choice of dimensions and preload an almost constant force curve can be adjusted over the spring travel, so that the hydraulic accumulator has an almost constant pressure over its entire operating range.
  • the housing cover has an integrally formed switch flange in the extension of the pressure housing, to which a high-voltage circuit breaker can be attached.
  • a mechanical position indicator which actuates a limit switch attached to the housing cover in the extension of one of the transmission rods, serves to control the respective memory content of the hydraulic accumulator.
  • a mechanical and electrical position indicator is provided, which is connected to a coupling via a lever with a slide for converting the translational movement of the working piston into a rotational movement, which coupling is firmly connected to the piston rod.
  • a high-pressure pump and a hydraulic control unit are integrated diametrically opposite one another in the pressure housing in the area of the storage space, the control slide belonging to the hydraulic control unit being located in a bore running parallel to the central axis of the storage piston.
  • Another advantage that results from this design is that all hydraulic connections between the pressure chambers and the high pressure pump and the hydraulic control unit in the form of fluid channels embedded in the pressure housing. are, so that externally installed pressure lines are not required.
  • the fluid channels are designed so that hydraulic fluid is conveyed from the collecting space into the storage space and from there via the three-way control unit can get from the storage space into a working space for the working piston and from the working space into the collecting space.
  • the working area is on the side of the working piston facing away from the storage area.
  • a spring-loaded locking pin inserted in the pressure housing engages in an annular groove provided for this purpose on the working piston jacket when the working piston is in its working position.
  • the spring force of the compression spring is to be set so that the locking pin slides back into its bore at operating pressure in the hydraulic fluid storage space as a result of the force acting on its excellent end face.
  • the hydraulic drive according to the invention is designed in such a way that it meets the standards, regulations or legal regulations (e.g. ANSI, ICE / VDE) and reliably maintains the switching times or switching intervals required there.
  • standards, regulations or legal regulations e.g. ANSI, ICE / VDE
  • one or more additional, externally arranged and independent of external energy supply similarly constructed hydraulic accumulators, ie units without a work, pump and control unit, can be provided, which have corresponding Hydraulic lines and valves are connected to the hydraulic drive.
  • similarly constructed hydraulic accumulators ie units without a work, pump and control unit, which have corresponding Hydraulic lines and valves are connected to the hydraulic drive.
  • the connecting lines can be rigid, i.e. firm or flexible, e.g. be laid as an armored hose.
  • the valves are designed according to the invention as a multi-way valve and expediently arranged on the hydraulic drive in order to prevent the pressure drop in the storage space in the case of damaged connections.
  • the location of the or the additional storage can be determined according to the respective local conditions.
  • FIG. 1 shows the schematic structure of the arrangement formed from the storage unit and hydraulic actuator.
  • a storage piston 16 which delimits a collecting space 34 which is subjected to low pressure and in which the storage piston 16 is supported against the pressure housing via a spring arrangement which is symmetrical with respect to its central axis, against a storage space 30 which is subjected to high pressure is also a working piston 18, which has a piston rod 28, which centrally axially penetrates the storage piston 16 and the pressure housing 10 for the purpose of actuating an electrical switch 100, and which separates the storage space from a working space 38, which can be selected by means of a control unit 22 optionally via fluid channels 54 , 56 connected to the storage space 30 can be pressurized, or connected to the collecting space 34 via fluid channels 54, 58 can be relieved of the pressure.
  • a high-pressure pump 20 delivers pressure fluid from the collecting space 34 into the storage space 30 via fluid channels 50, 52.
  • the hydraulic drive shown in FIGS. 2 to 4 has a pressure housing 10 with an almost cylindrical stepped outer contour, into which a step-shaped cylinder bore is formed starting from an end face in the axial direction.
  • This bore has a first area with a large diameter, which serves as storage cylinder 12, and a second area with a smaller diameter, which serves as working cylinder 14, at a depth of approximately 1/3.
  • the pressure housing 10 is closed off from the outside with a flanged housing cover 32.
  • a high-pressure pump 20 is fitted outside in a pressure-tight manner by means of a circumferential seal into a housing opening arranged radially to the cylinder axis.
  • a hydraulic control unit 22 is also positively integrated diametrically opposite in the pressure housing 10.
  • the storage cylinder 12 serves to receive a storage piston 1b, which separates the storage space 30, which is under high pressure, from the collecting space 34, which is acted upon by low pressure and is arranged in the cup-shaped, arched housing cover 32. If the operating pressure in the storage space 30 is exceeded, this is connected to the collecting space 34 via a bore 86 which extends axially eccentrically in the storage piston 16 and leads to an overpressure valve 84 located in the storage piston 16.
  • the storage piston 16 On the side facing the collecting space 34, the storage piston 16 has a collar 90, through which a fluid channel 58, which is formed in the pressure housing 10 and is extended by means of a pressed-in piece of pipe, is eccentrically guided in a bore 92 with sufficient play and ends in the collecting space 34. Further bores are arranged symmetrically to the central axis, each receiving a transmission rod 60.
  • sliding seal 102 On the end of the storage piston 16 opposite the collar there is a sliding seal 102 which is embedded in the outer surface of the storage piston 16 and which seals the storage space 30 against the wall of the storage cylinder 12.
  • the storage piston 16 In its center, the storage piston 16 is penetrated by a piston rod 28 in an axially extending guide bore 82.
  • sliding seal 104 To seal the storage space 30, at least one is in the guide bore '82 inserted sliding seal 104 is provided.
  • Two slide rings 106 serve for the exact guidance of the piston rod 28 in the guide bore 82.
  • Free access for the hydraulic fluid from the storage space 30 to a work space R 36 is limited to a defined cross section by a fitted insert and an inserted impact bushing 110.
  • the piston rod 28 is inseparably connected to a working piston 18, which, designed as a differential piston, has annularly tapering shoulders 88 on both piston surfaces, which act as impact dampers, and which merge into the piston rod 28 on one side.
  • the working piston 18 On the end opposite the piston rod 28, the working piston 18 carries a piston ring, a sliding seal 42 is also embedded in the piston jacket at an approximately medium piston height.
  • an annular groove 44 is provided in the jacket of the working piston 18, the contour of which is adapted to a spring-loaded locking pin 46.
  • a fluid channel 54 opens into the bottom 48 of the working cylinder 14 and establishes the connection to the hydraulic control unit 22 running axially parallel to the working cylinder 14.
  • the hydraulic control unit is connected to the storage space 30 via a fluid duct 56, and to the collecting space 34 via a fluid duct 58.
  • the high-pressure pump 20 is connected to the collecting space 34 via a fluid channel 50 and to the storage space 30 via a fluid channel 52.
  • the spring-loaded locking pin 46 as a pressure-controlled lock in the radial direction in the working cylinder 14 arranged, which is aligned with the intended annular groove 44 when the working piston 18 is in the working position.
  • the transmission rods 60 are led out of the pressure housing 10 in a bushing with a sliding seal and connect the accumulator piston 16 to a spring arrangement 26 via a pressure piece 62.
  • the stepped and threaded ends of the transmission rod 60 are bores in the collar 90 of the thread adapted to the thread diameter Storage piston 16 and bores in the pressure piece 62 inserted so that the collar and the pressure piece 62 are supported on the transmission rod 60 and are each non-positively fixed.
  • the pressure piece 62 is guided by the cylindrical end of the pressure housing 10 so that it slides on the slide guide 74 with its inner bore 70, which has a slide piece 72 for reducing friction.
  • the spring arrangement 26 is layered in alternating directions and arranged and preloaded in accordance with its geometry in such a way that an almost constant force curve results over the entire working path.
  • the spring assemblies 26 are supported on the one hand against the pressure piece 62 and on the other hand against an abutment 78 incorporated on the circumference of the pressure housing 10.
  • the housing cover 32 is penetrated by the piston rod 28 in a central bore 108 with an inserted sliding seal.
  • a mechanical actuating display 120 for the accumulator piston Eccentrically arranged, in the extension of a transmission rod 60, a mechanical actuating display 120 for the accumulator piston, which penetrates the housing cover in a slide-tight bore 109, is led out of the pressure building 10, one on the housing cover 32 attached limit switch 122 actuated.
  • the further configuration of the housing cover 32 provides that an electrical switch 100 to be actuated via the piston rod 28 can be flanged to the switch flange 124 in the extension of the pressure housing 10.
  • the housing cover 32 is guided radially outwards so that it serves as a hood base 116 for receiving a cover 114, which is detachably connected to the hood base 116 with a closure.
  • an optical reading device 126 can be attached to the hood base.
  • an electrical setting indicator 128 is provided for the working piston, which is connected to a coupling 132 via a lever with a sliding piece 130. The coupling serves to connect the piston rod 28 to the electrical switch 100 to be actuated.
  • On the side facing away from the switch flange there is a threaded bore 134 in the pressure housing 10, which receives a cylinder screw 136 for fixing a holding device 138.
  • the fluid in the hydraulic control unit 22 channels 54 and 56 connected to each other, hydraulic fluid from the storage space 30 reaches the bottom 48 of the working cylinder 14, so that the same pressure is present on both piston surfaces.
  • the piston area of the working piston 18 facing the working space A 38 is larger by the cross section of the piston rod 28 than the opposite piston area, the working piston 18 is moved into the working position.
  • the piston rod 28 moves in the direction of the switch flange 124, as a result of which the flanged electrical switch 100 is actuated.
  • the fluid channels 54 and 58 are connected to one another in the hydraulic control unit 22.
  • the impact dampers 88 mentioned at the outset are provided.
  • FIG. 5 schematically shows how an external hydraulic accumulator 10 # connects via a connecting line either as a rigid pipeline 40 or as a flexible hose line 40 # to a multi-way valve 24, which, located on the hydraulic drive, connects the high-pressure pump 20 either with the storage space 34 or with the external one Hydraulic accumulator 10 # connects.
  • This hydraulic accumulator 10 # consists of a pressure housing 10 #, which is designed in the same way as the pressure housing 10 of the hydraulic drive.
  • the cylindrical interior is subdivided by a storage piston 16 # into a storage space 30 # and into a second area which accommodates the spring arrangement 26 # provided as a storage element.
  • the supply of pressurized fluid via the connecting line (40, 40 #) through the high-pressure pump 20 is provided, with the intermediate multi-way valve secures the storage space 30 against a drop in pressure.

Landscapes

  • Actuator (AREA)
  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)
  • Supply Devices, Intensifiers, Converters, And Telemotors (AREA)
EP85101751A 1984-03-10 1985-02-16 Commande hydraulique Expired EP0158054B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19843408909 DE3408909A1 (de) 1984-03-10 1984-03-10 Hydraulischer antrieb
DE3408909 1984-03-10

Publications (2)

Publication Number Publication Date
EP0158054A1 true EP0158054A1 (fr) 1985-10-16
EP0158054B1 EP0158054B1 (fr) 1987-01-14

Family

ID=6230172

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85101751A Expired EP0158054B1 (fr) 1984-03-10 1985-02-16 Commande hydraulique

Country Status (4)

Country Link
US (1) US4716812A (fr)
EP (1) EP0158054B1 (fr)
JP (1) JPH076531B2 (fr)
DE (2) DE3408909A1 (fr)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0240884A2 (fr) * 1986-04-05 1987-10-14 BBC Brown Boveri AG Entraînement pour générer un mouvement linéaire pour un consommateur
EP0827168A1 (fr) * 1996-08-28 1998-03-04 ABBPATENT GmbH Disjoncteur de puissance à haute tension
EP0829892A1 (fr) * 1996-09-12 1998-03-18 ABBPATENT GmbH Moteur hydraulique
EP0829893A1 (fr) * 1996-09-12 1998-03-18 ABBPATENT GmbH Moteur hydraulique
CN100437869C (zh) * 2006-05-25 2008-11-26 沈阳东华工大高压电器设备有限公司 用于高压断路器的弹簧液压操动机构
CN100583341C (zh) * 2007-02-09 2010-01-20 沈阳东华工大高压电器设备有限公司 用于高压断路器的外套集成式弹簧液压操动机构
WO2010012349A1 (fr) * 2008-08-01 2010-02-04 Abb Technology Ag Disque à came et commutateur de déviation à ressort pour entraînement à ressort accumulateur, et entraînement à ressort accumulateur correspondant
CN101393816B (zh) * 2008-10-31 2012-04-25 沈阳东华工大高压电器设备有限公司 具有自卫能力的电磁液压阀型弹簧液压操动机构
WO2012079667A1 (fr) * 2010-12-15 2012-06-21 Abb Technology Ag Module d'accumulateur pour un entraînement d'accumulateur à ressort hydraulique
DE102011011311A1 (de) * 2011-02-15 2012-08-16 Abb Technology Ag Antrieb für einen Hochspannungsleistungsschalter
CN104673733A (zh) * 2015-02-10 2015-06-03 浙江大学 工程菌及其在制备(r)-6-氰基-5-羟基-3-羰基己酸叔丁酯中的应用
CN104718589A (zh) * 2012-10-18 2015-06-17 Abb技术有限公司 按照行程开关的带有延长的开关滞后的电气开关装置
WO2020211992A1 (fr) * 2019-04-17 2020-10-22 Siemens Aktiengesellschaft Dispositif de déclenchement pour un dispositif de commutation électrique

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3611497A1 (de) * 1986-04-05 1987-10-08 Bbc Brown Boveri & Cie Antriebsvorrichtung fuer sf(pfeil abwaerts)6(pfeil abwaerts)-hochspannungsleistungsschalter
DE3735123A1 (de) * 1987-10-16 1989-06-29 Hartmann & Laemmle Hydraulische antriebsvorrichtung
DE3833484A1 (de) * 1988-10-01 1990-04-05 Asea Brown Boveri Antriebsvorrichtung fuer ein elektrisches schaltgeraet
US5058384A (en) * 1990-09-20 1991-10-22 University Of British Columbia Digital actuator
DE4011445A1 (de) * 1990-04-09 1991-10-10 Abb Patent Gmbh Hydraulischer antrieb
US5251445A (en) * 1991-10-03 1993-10-12 Hydra-Ram Inc. Hand operated hydraulic pump having pressurized reservoir within piston
JP2869265B2 (ja) * 1992-05-29 1999-03-10 三菱電機株式会社 遮断器
DE19637050A1 (de) * 1996-09-12 1998-03-19 Abb Patent Gmbh Hydraulischer Antrieb
IT1294650B1 (it) * 1997-09-08 1999-04-12 Special Springs Srl Gruppo di comando e di alimentazione particolarmente per attuatori ausiliari atti alla movimentazione di attrezzature e/o utensili
DE102007062291A1 (de) * 2007-10-16 2009-04-23 Abb Technology Ag Hydraulischer Federspeicherantrieb
US20130133913A1 (en) * 2010-03-25 2013-05-30 Hadar Magali Force-Barrier
US8794108B2 (en) * 2011-06-13 2014-08-05 Sonnax Industries, Inc. Automatic transmission fluid accumulator replacement assembly
DE102011121777B4 (de) 2011-12-21 2018-11-08 Ewo Fluid Power Gmbh Doppeltwirkender Hydraulikzylinder mit integrierten Kolbenspeichern
DE102012007680B4 (de) 2012-03-09 2021-10-07 Abb Power Grids Switzerland Ag Hydromechanisches Speichermodul für einen Federspeicherantrieb eines Hochspannungsschalters
DE102013203557A1 (de) * 2013-03-01 2014-09-04 Siemens Aktiengesellschaft Verfahren zur Erzeugung einer Relativbewegung sowie Vorrichtung zur Durchführung des Verfahrens
DE102013005621B4 (de) 2013-04-04 2021-05-06 Abb Power Grids Switzerland Ag Verriegelungsvorrichtung für einen hydromechanischen Federspeicherantrieb einer gasisolierten Schaltanlage
DE202016100443U1 (de) 2015-12-23 2016-02-16 Abb Technology Ag Speichermodul für einen hydromechanischen Federspeicherantrieb

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH537089A (de) * 1970-09-22 1973-05-15 Siemens Ag Hydraulische Betätigungsvorrichtung für einen elektrischen Schalter

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE53574C (de) * — Salzbergwerk Neu-Stassfurt in Loederburg bei Stafsfurt Verfahren zur Darstellung von Magnesiahydrat aus gebrannter Magnesia
DE7737221U1 (fr) * 1900-01-01 Vereinigte Baubeschlagfabriken Gretsch & Co Gmbh, 7250 Leonberg
DE8307240U1 (de) * 1983-07-14 L. & C. Steinmüller GmbH, 5270 Gummersbach Hydraulik- oder Pneumatikarbeitszylinder mit kontinuierlicher druckflüssigkeitsgesteuerter Hublängenverstellung
US2452176A (en) * 1945-03-14 1948-10-26 Westinghouse Air Brake Co Fluid pressure controlled actuator
US2956549A (en) * 1955-07-05 1960-10-18 Gen Motors Corp Dual piston cylinder
US2931218A (en) * 1957-05-23 1960-04-05 Gen Dynamics Corp Controlled actuator
US2989299A (en) * 1958-05-05 1961-06-20 Jack L Modrich Hydraulic cylinder and check valve therefor
US3426651A (en) * 1966-07-26 1969-02-11 Pneumo Dynamics Corp Air-oil suspension
GB1173916A (en) * 1966-11-24 1969-12-10 Valeriano Bonetti Improvements in Height Adjustment Devices
US3649789A (en) * 1970-11-02 1972-03-14 Kurt Stoll Electrical switch apparatus
CH518158A (de) * 1971-04-06 1972-01-31 Schlatter Ag Pneumatisches Halteaggregat
US3813994A (en) * 1971-06-01 1974-06-04 Certain Teed Prod Corp Internal air assisted brake actuator
DE2235074B2 (de) * 1972-07-12 1979-05-17 Siemens Ag, 1000 Berlin Und 8000 Muenchen Hydraulische Betätigungsvorrichtung für einen elektrischen Schalter
FR2266022B1 (fr) * 1974-03-26 1976-12-17 Gratzmuller Jean Louis
US3926124A (en) * 1974-07-25 1975-12-16 Abex Corp Railroad car retarders
IT1042708B (it) * 1975-09-19 1980-01-30 Attrezzature Mec Oleodinam Gruppo cilindro pistone ad azionamento fluidodinamico
GB1546852A (en) * 1977-05-31 1979-05-31 Universal Hydraulics Ltd Stop or brake mechanisms
DE2726246C3 (de) * 1977-06-10 1981-11-12 Jungheinrich Unternehmensverwaltung Kg, 2000 Hamburg Hydraulikanlage für den Hubantrieb eines Hubladers
US4205208A (en) * 1978-03-16 1980-05-27 Westinghouse Electric Corp. Double-flow compressed-gas operating mechanism for a high-voltage circuit-breaker
DE2828958A1 (de) * 1978-06-28 1980-01-10 Siemens Ag Hydraulischer antrieb
BE878647A (nl) * 1979-09-07 1979-12-31 Christ Van De Keybus P V B A Inrichting voor het besturen van een orgaan onder invloed van een fluidium met wisselende druk
FR2490292A1 (fr) * 1980-09-17 1982-03-19 Unic Sa Perfectionnement aux verins a double effet
JPS57127136A (en) * 1981-01-29 1982-08-07 Tokico Ltd Closed type cylinder device
DE3141295A1 (de) * 1981-10-17 1983-04-28 Stabilus Gmbh, 5400 Koblenz Gasfeder mit temperaturabhngig gesteuerter ausschubkraft
CH660256A5 (de) * 1983-01-25 1987-03-31 Sprecher Energie Ag Antriebsanordnung fuer einen hochspannungsschalter.

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH537089A (de) * 1970-09-22 1973-05-15 Siemens Ag Hydraulische Betätigungsvorrichtung für einen elektrischen Schalter

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0240884A2 (fr) * 1986-04-05 1987-10-14 BBC Brown Boveri AG Entraînement pour générer un mouvement linéaire pour un consommateur
EP0240884A3 (en) * 1986-04-05 1988-01-07 Bbc Aktiengesellschaft Brown, Boveri & Cie. Drive for the generation of a linear movement of a consumer
EP0827168A1 (fr) * 1996-08-28 1998-03-04 ABBPATENT GmbH Disjoncteur de puissance à haute tension
EP0829892A1 (fr) * 1996-09-12 1998-03-18 ABBPATENT GmbH Moteur hydraulique
EP0829893A1 (fr) * 1996-09-12 1998-03-18 ABBPATENT GmbH Moteur hydraulique
CN100437869C (zh) * 2006-05-25 2008-11-26 沈阳东华工大高压电器设备有限公司 用于高压断路器的弹簧液压操动机构
CN100583341C (zh) * 2007-02-09 2010-01-20 沈阳东华工大高压电器设备有限公司 用于高压断路器的外套集成式弹簧液压操动机构
DE102008035871B4 (de) * 2008-08-01 2011-03-24 Abb Technology Ag Nockenscheibe und Federwegschalter für einen Federspeicherantrieb sowie Federspeicherantrieb
WO2010012349A1 (fr) * 2008-08-01 2010-02-04 Abb Technology Ag Disque à came et commutateur de déviation à ressort pour entraînement à ressort accumulateur, et entraînement à ressort accumulateur correspondant
CN101393816B (zh) * 2008-10-31 2012-04-25 沈阳东华工大高压电器设备有限公司 具有自卫能力的电磁液压阀型弹簧液压操动机构
WO2012079667A1 (fr) * 2010-12-15 2012-06-21 Abb Technology Ag Module d'accumulateur pour un entraînement d'accumulateur à ressort hydraulique
RU2552849C2 (ru) * 2010-12-15 2015-06-10 Абб Текнолоджи Аг Накопительный модуль для гидравлического пружинного привода
US9620302B2 (en) 2010-12-15 2017-04-11 Abb Schweiz Ag Storage module for a hydraulic stored-energy spring mechanism
DE102011011311A1 (de) * 2011-02-15 2012-08-16 Abb Technology Ag Antrieb für einen Hochspannungsleistungsschalter
CN104718589A (zh) * 2012-10-18 2015-06-17 Abb技术有限公司 按照行程开关的带有延长的开关滞后的电气开关装置
CN104718589B (zh) * 2012-10-18 2017-02-15 Abb瑞士股份有限公司 按照行程开关的带有延长的开关滞后的电气开关装置
CN104673733A (zh) * 2015-02-10 2015-06-03 浙江大学 工程菌及其在制备(r)-6-氰基-5-羟基-3-羰基己酸叔丁酯中的应用
WO2020211992A1 (fr) * 2019-04-17 2020-10-22 Siemens Aktiengesellschaft Dispositif de déclenchement pour un dispositif de commutation électrique

Also Published As

Publication number Publication date
US4716812A (en) 1988-01-05
DE3408909A1 (de) 1985-09-12
JPH076531B2 (ja) 1995-01-30
DE3560057D1 (en) 1987-02-19
JPS60208613A (ja) 1985-10-21
EP0158054B1 (fr) 1987-01-14

Similar Documents

Publication Publication Date Title
EP0158054B1 (fr) Commande hydraulique
EP0681128A1 (fr) Electrovanne
DE3122961A1 (de) Elektro-hydraulisches wegeventil
DE1576088A1 (de) Schnellentlastungsventil fuer hydraulische Kraftzylinder
DE3013381C2 (de) Arbeitskolben-Zylinder-Einheit
DE3329734C2 (fr)
EP1500825B1 (fr) Distributeur à voies multiples
DE102008022509A1 (de) Wegeventil mit einer Rastvorrichtung
DE19616973A1 (de) Mehrwege-Schieberventil
EP0179103A1 (fr) Verin a trois positions
DE4419213A1 (de) Hydraulischer Arbeitszylinder
DE3524414C2 (de) Linearantrieb
DE10342478B3 (de) Ventilanordnung zur Steuerung von Hydraulikflüssigkeit in einer Axialkolbenmaschine
DE29808295U1 (de) Sitzventil
DE3532988C2 (de) Elektrohydraulische Schaltvorrichtung
EP0482329A1 (fr) Vérin hydraulique pour vanne de commande et de régulation
DE2914196C2 (de) Ventil zum Steuern von Druckmittel
DE8632990U1 (de) Berührungsloser Sensor
EP0388635B1 (fr) Dispositif de commande électrohydraulique
DE2724233A1 (de) Hydraulische einrichtung zum gesteuerten, zeitlich verzoegerten druckaufbau in einer kupplung oder bremse
DE3235784C2 (de) Druckmittelbetätigter doppeltwirkender Arbeitszylinder
EP3771850A1 (fr) Système de soupape
DE3504878A1 (de) Einzelstempelventil mit zentraldichtung
DD268742A5 (de) Oelmengenkontrollgeraet
DE3023359A1 (de) Multi-schnellkupplung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): CH DE FR LI SE

17P Request for examination filed

Effective date: 19850927

17Q First examination report despatched

Effective date: 19860619

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR LI SE

REF Corresponds to:

Ref document number: 3560057

Country of ref document: DE

Date of ref document: 19870219

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19890126

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19900217

EUG Se: european patent has lapsed

Ref document number: 85101751.7

Effective date: 19901107

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20011129

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20011130

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20011220

Year of fee payment: 18

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030902

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031031

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST