EP0069950B1 - Verfahren zum Aufbringen von Phosphatüberzügen auf Metalloberflächen - Google Patents

Verfahren zum Aufbringen von Phosphatüberzügen auf Metalloberflächen Download PDF

Info

Publication number
EP0069950B1
EP0069950B1 EP82105960A EP82105960A EP0069950B1 EP 0069950 B1 EP0069950 B1 EP 0069950B1 EP 82105960 A EP82105960 A EP 82105960A EP 82105960 A EP82105960 A EP 82105960A EP 0069950 B1 EP0069950 B1 EP 0069950B1
Authority
EP
European Patent Office
Prior art keywords
metal surfaces
contact
brought
phosphating solution
process according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP82105960A
Other languages
English (en)
French (fr)
Other versions
EP0069950A1 (de
Inventor
Hugh Thomas Springstead
Gary Dennis Kent
Bernhard Norbert Intorp
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel Corp
Original Assignee
Metallgesellschaft AG
Continentale Parker Ste
Continentale Parker SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metallgesellschaft AG, Continentale Parker Ste, Continentale Parker SA filed Critical Metallgesellschaft AG
Publication of EP0069950A1 publication Critical patent/EP0069950A1/de
Application granted granted Critical
Publication of EP0069950B1 publication Critical patent/EP0069950B1/de
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/10Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using organic inhibitors
    • C23F11/16Sulfur-containing compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • C23C22/36Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates
    • C23C22/362Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates containing also zinc cations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/12Orthophosphates containing zinc cations
    • C23C22/14Orthophosphates containing zinc cations containing also chlorate anions

Definitions

  • the invention relates to a method for applying phosphate coatings on metal surfaces by means of phosphating solutions based on zinc phosphate as an essential layer-forming component, which are accelerated with chlorate and water-soluble aromatic nitro compound.
  • Oxidizing agents such as chlorate, nitrate, nitrite, hydrogen peroxide or peroxy compounds in general and organic nitro compounds in particular play an important role as accelerators.
  • DE-OS 3 016 576 describes a phosphating process based on zinc phosphate solution which contains nitrate and chlorate as accelerators. In a process based on zinc phosphate solution, it is also intended to use chlorate, nitrite, nitrate, organic nitro compounds or mixtures thereof (AT-PS 314 931).
  • GB-PS 1 542 222 provides for the use of chlorate and nitrobenzenesulfonate as accelerators in zinc phosphate processes.
  • the weight ratio of chlorate to nitrobenzenesulfonate should be 3: 1 to 5: 1.
  • DE-OS 3 004927 also describes a process for phosphating metal surfaces with zinc phosphate solutions, which may contain nitrite and / or organic nitro compound and optionally additionally chlorate.
  • the amounts of nitrite should be 0.01 to 0.2 g / l
  • the amounts of organic nitro compound and optionally chlorate should be in the range of 0.05 to 2 g / l.
  • the object of the invention is to provide a method for applying phosphate layers on metal surfaces which does not have the known, in particular the aforementioned disadvantages, is simple to carry out and can do without the use of expensive chemicals.
  • the method according to the invention is particularly suitable for producing phosphate coatings on steel, galvanized steel and aluminum or on surfaces which contain several of these metals.
  • the active bath components can be introduced in the form of water-soluble or acid-soluble salts or compounds or as acids in water.
  • the water-soluble aromatic nitro compound should have no more than two nitro groups.
  • nitrobenzoic acid is suitable.
  • nitrobenzenesulfonate in particular m-nitrobenzenesulfonate, is used as the water-soluble aromatic nitro compound.
  • solutions used to produce the phosphate coating can have further components if necessary. So it is z. B. advantageous to bring solutions with the metal surfaces in contact, which additionally contain 2 to 9 g / I NOa.
  • phosphating solutions that additionally contain 0.2 to 4 g / 1 fluoride ions.
  • the fluoride can be present in the phosphating solution as free or as a complex-bound fluorine ion.
  • Suitable complex fluorides are e.g. B. fluoborates and / or fluosilicates.
  • phosphating solutions which contain an additional content of Ni, Co and / or Fe ions are advantageous. These ions should preferably be present in a total amount of 0.1 to 2.5 g / l. Such additives can expediently be used in conjunction with 0.2 to 4 g / l of the aforementioned simple or complex fluorides. Such phosphating solutions with contents of Ni, Co and / or Fe ions as well as simple and / or complex fluorine ions are also suitable for the treatment of several metals existing surfaces an advantage. Fluorine contents of up to 1 g / l are generally sufficient. When measuring the addition of Ni, Co and / or Fe ions, the total of these should not exceed the Zn ion content of the phosphating solution.
  • a phosphating solution which has a pH of 2 to 3.5, preferably 2.9 to 3.2.
  • the phosphating solution should have 5 to 30 points total acid and 0.3 to 2.5 points free acid.
  • the number of points is defined in the usual way. For example, the amount of 0.1 n sodium hydroxide solution (in ml) consumed before the bromphenol blue is handled is equal to the number of free acid and the consumption when handling phenolphthalein is equal to the total acid score. The number of points can also be determined by potentiometric titration.
  • the phosphating solution can be applied in any manner. Dip and spray treatments as well as combined dip / spray treatments are particularly suitable.
  • the duration of exposure depends on the desired phosphate layer formation and on the process conditions, but also on the nature of the metal surface and the preceding treatment.
  • the treatment times are generally in the range from 0.5 to 3 minutes.
  • layer weights of about 0.86 to 1.60 g / m 2 (for steel), from 1.30 to 2.15 g / m 2 (for galvanized steel) and up to 0.43 g / m 2 (with aluminum) adjustable.
  • the respective value results from the accelerator ratio used, the layer weight decreasing as the proportion of aromatic nitro compound increases.
  • the phosphating solution used in carrying out the process according to the invention is usually prepared from a concentrate and diluted accordingly.
  • the free acid content in the concentrate can be set sufficiently high to reliably avoid solid separation during storage or transport.
  • the appropriate pH or the free acid content is then set.
  • the working phosphating solution can be supplemented using a supplementary solution which contains all the active ingredients or using several supplementary solutions which contain all of the active ingredients in their entirety.
  • a supplemental solution may contain zinc and phosphate ions and optionally nitrate and / or fluoride and / or nickel ions and another supplementary solution may contain alkali ions, nitrobenzenesulfonate and chlorate ions.
  • the process according to the invention is used within a customary process which consists of cleaning, water rinsing, formation of a phosphate layer, water rinsing, post-treatment and rinsing with demineralized water. This can be followed by a painting treatment or another type of coating.
  • the process according to the invention is particularly advantageous as a pretreatment before electrocoating, especially cathodic electrocoating.
  • the layers produced by the process according to the invention are very fine-grained and permit excellent anchoring of a lacquer coating applied subsequently.
  • the phosphate coatings obtained offer good corrosion protection and show good physical properties, in particular if the subsequent painting is carried out by electrocoating, in particular by cathodic electrocoating, and steel surfaces, galvanized surfaces or aluminum are treated in the process.
  • the method according to the invention is also characterized by reduced sludge and crust formation in the phosphating device.
  • By changing the accelerator ratio it is finally possible to adapt the quality of the phosphate layer with regard to layer weight and fine grain to the respective requirements.
  • Concentrate A was first prepared by mixing the following ingredients in a stainless steel container: In a second container, B mixed while stirring.
  • the sheets treated in this way were cathodically dip-coated with an electrocoat material (ED 3002 R) from PPG Industries and subjected to the tests for determining the corrosion resistance and various physical properties.
  • the properties determined in each case were excellent.
  • Example 2 The procedure according to Example 2 was repeated, but hot-dip galvanized, re-rolled sheets were used instead of steel sheets. Similar test results as in Example 2 were obtained.
  • Example 2 The procedure according to Example 2 was repeated. Instead of the steel sheets, aluminum sheets were treated. Test results similar to those of Example 2 were obtained.
  • Examples 2 to 4 were carried out again, with the difference that the phosphating in stage 3.) according to Example 2 was carried out by immersion treatment at 49 ° C. for 1 minute.
  • the sheet qualities treated in this way also showed test results similar to those in Examples 2 to 4.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Paints Or Removers (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zum Aufbringen von Phosphatüberzügen auf Metalloberflächen mittels Phosphatierungslösungen auf Basis Zinkphosphat als wesentliche schichtbildende Komponente, die mit Chlorat und wasserlöslicher aromatischer Nitroverbindung beschleunigt sind.
  • Es ist bekannt, Metalloberflächen mit Zinkphosphatüberzügen zu versehen. Diese Überzüge verbessern den Korrosionsschutz und die Lackhaftung. Gegenüber älteren Verfahren, die für die Überzugsausbildung eine beträchtliche Behandlungsdauer erforderten, ist durch den Zusatz einer Vielzahl von Beschleunigern die Möglichkeit gegeben, den Bildungsprozeß des Überzuges zu verkürzen. Insbesondere Oxidationsmittel, wie Chlorat, Nitrat, Nitrit, Wasserstoffperoxid bzw. Peroxyverbindungen generell und organische Nitroverbindungen, spielen als Beschleuniger eine wichtige Rolle.
  • Schließlich sind auch Phosphatiersysteme mit bestimmten Beschleunigerkombinationen entwickelt worden. So beschreibt die DE-OS 3 016 576 ein Phosphatierverfahren auf Basis Zinkphosphatlösung, das als Beschleuniger Nitrat und Chlorat enthält. Ebenfalls bei einem Verfahren auf Basis Zinkphosphatlösung ist vorgesehen, Chlorat, Nitrit, Nitrat, organische Nitroverbindungen oder Gemische hiervon einzusetzen (AT-PS 314 931).
  • Die GB-PS 1 542 222 sieht vor, bei Zinkphosphatverfahren Chlorat und Nitrobenzolsulfonat als Beschleuniger einzusetzen. Dabei soll das Gewichtsverhältnis von Chlorat zu Nitrobenzolsulfonat 3 : 1 bis 5 : 1 sein.
  • Auch die DE-OS 3 004927 beschreibt ein Verfahren zur Phosphatierung von Metalloberflächen mit Zinkphosphatlösungen, die Nitrit und/oder organische Nitroverbindung sowie gegebenenfalls zusätzlich Chlorat enthalten können. Die Nitritmengen sollen 0,01 bis 0,2 g/I betragen, die Mengen an organischer Nitroverbindung und gegebenenfalls Chlorat sollen im Bereich von 0,05 bis 2 g/1 liegen. Obgleich die vorgenannten Verfahren mit gewissen Vorteilen verbunden sind, haftet ihnen der Nachteil an, daß die erzielbaren Schichtgewichte über den angestrebten Werten liegen, daß die Phosphatschichten häufig nicht die erwünschte Feinkörnigkeit aufweisen und daß es insbesondere an der Flexibilität bei der Erzeugung von Phosphatschichten bestimmter Körnigkeit und bestimmter Schichtgewichte fehlt.
  • Aufgabe der Erfindung ist es, ein Verfahren zum Aufbringen von Phosphatschichten auf Metalloberflächen bereitzustellen, das die bekannten, insbesondere vorgenannten Nachteile nicht aufweist, einfach in der Durchführung ist und auf den Einsatz aufwendiger Chemikalien verzichten kann.
  • Die Aufgabe wird gelöst, indem das Verfahren der eingangs genannten Art entsprechend der Erfindung derart ausgestaltet wird, daß man die Metalloberflächen mit einer Phosphatierungslösung in Berührung bringt, die
    • 0,5 bis 4 g/I Zn,
    • 3,0 bis 12 g/I P04,
    • 1,5 bis 7 g/I C103 und
    • 2,0 bis 7 g/I aromatische Nitroverbindung

    enthält und in der das Verhältnis CIOa : Nitroverbindung (0,5 bis 1,25) : 1 beträgt.
  • Das erfindungsgemäße Verfahren ist insbesondere zur Erzeugung von Phosphatüberzügen auf Stahl, verzinktem Stahl und Aluminium bzw. auf Oberflächen, die mehrere dieser Metalle enthalten, geeignet.
  • Die wirksamen Badbestandteile können in Form wasserlöslicher oder säurelöslicher Salze bzw. Verbindungen oder als Säuren in Wasser eingebracht werden. Geeignet sind z. B. Zinknitrat, Zinkoxid, Zinkcarbonat, saures Zinkphosphat sowie Phosphorsäure, Mono- oder Dinatriumphosphat und Alkalichlorat.
  • Die wasserlösliche aromatische Nitroverbindung sollte nicht mehr als zwei Nitrogruppen aufweisen. Geeignet ist beispielsweise Nitrobenzoesäure.
  • In einer bevorzugten Ausgestaltung der Erfindung wird als wasserlösliche aromatische Nitroverbindung Nitrobenzolsulfonat, insbesondere m-Nitrobenzolsulfonat, eingesetzt.
  • Die zur Erzeugung des Phosphatüberzuges eingesetzten Lösungen können im Bedarfsfall weitere Bestandteile aufweisen. So ist es z. B. vorteilhaft, Lösungen mit den Metalloberflächen in Berührung zu bringen, die zusätzlich 2 bis 9 g/I NOa enthalten.
  • Wenn Aluminiumoberflächen behandelt werden sollen, empfiehlt es sich, Phosphatierungslösungen zum Einsatz zu bringen, die zusätzlich 0,2 bis 4 g/1 Fluoridionen enthalten. Das Fluorid kann in der Phosphatierungslösung als freies oder als komplex gebundenes Fluorion vorliegen. Geeignete komplexe Fluoride sind z. B. Fluoborate und/oder Fluosilikate.
  • Insbesondere bei der Behandlung von verzinktem Stahl sind Phosphatierungslösungen von Vorteil, die einen zusätzlichen Gehalt von Ni-, Co- und/oder Fe-Ionen enthalten. Vorzugsweise sollten diese Ionen in einer Gesamtmenge von 0,1 bis 2,5 g/I vorliegen. Derartige Zusätze können zweckmäßigerweise in Verbindung mit 0,2 bis 4 g/I der vorgenannten einfachen oder komplexen Fluoride zum Einsatz kommen. Derartige Phosphatierungslösungen mit Gehalten an Ni-, Co- und/oder Fe-Ionen sowie einfachen und/oder komplexen Fluorionen sind auch für die Behandlung von aus mehreren Metallen bestehenden Oberflächen von Vorteil. Hierbei sind im allgemeinen Fluorgehalte bis 1 g/I ausreichend. Bei der Bemessung des Zusatzes von Ni-, Co- und/oder Fe-Ionen sollte deren Gesamtheit den Gehalt der Phosphatierungslösung an Zn-lonen nicht übersteigen.
  • Es ist vorteilhaft, die Metalloberflächen mit einer Phosphatierungslösung in Berührung zu bringen, die einen pH-Wert von 2 bis 3,5, vorzugsweise 2,9 bis 3,2, aufweist.
  • Die Phosphatierungslösung sollte 5 bis 30 Punkte Gesamtsäure und 0,3 bis 2,5 Punkte Freie Säure aufweisen. Dabei ist die Zahl der Punkte in üblicher Weise definiert. So ist die bis zum Umschlag von Bromphenol blau verbrauchte Menge 0,1 n Natronlauge (in ml) gleich der Zahl Freier Säure und der Verbrauch beim Umschlag von Phenolphtalein gleich der Punktezahl Gesamtsäure. Die Punktezahl kann auch durch potentiometrische Titration ermittelt werden.
  • Es ist vorteilhaft, die Metalloberfläche mit einer eine Temperatur von 26,7 bis 71°C aufweisenden Phosphatierungslösung in Berührung zu bringen. Temperaturen im Bereich von 37,8 bis 49° C sind besonders geeignet.
  • Die Aufbringung der Phosphatierungslösung kann auf beliebige Weise erfolgen. Insbesondere Tauch- und Spritzbehandlungen sowie kombinierte Tauch/Spritz-Behandlungen sind geeignet. Die Einwirkungsdauer hängt von der erwünschten Phosphatschichtausbildung sowie von den Verfahrensbedingungen, aber auch von der Beschaffenheit der Metalloberfläche wie der vorgeschalteten Behandlung ab. Im allgemeinen liegen die Behandlungszeiten im Bereich von 0,5 bis 3 Minuten.
  • Mit dem erfindungsgemäßen Verfahren sind Schichtgewichte von etwa 0,86 bis 1,60 g/m2 (bei Stahl), von 1,30 bis 2,15 g/m2 (bei verzinktem Stahl) und bis 0,43 g/m2 (bei Aluminium) einstellbar. Der jeweilige Wert ergibt sich aus dem verwendeten Beschleunigerverhältnis, wobei mit steigendem Anteil an aromatischer Nitroverbindung das Schichtgewicht sinkt.
  • Üblicherweise wird die bei der Durchführung des erfindungsgemäßen Verfahrens zum Einsatz kommende Phosphatierungslösung aus einem Konzentrat angesetzt und entsprechend verdünnt. Im Konzentrat kann der Gehalt an Freier Säure hinreichend hoch eingestellt werden, um eine Feststoffabscheidung während der Lagerung oder beim Transport mit Sicherheit zu vermeiden. Im Gebrauch, d. h. beim Ansatz und bei der Ergänzung des arbeitenden Phosphatierungsbades, wird dann auf den geeigneten pH-Wert bzw. den Gehalt an Freier Säure eingestellt. Die arbeitende Phosphatierungslösung kann unter Verwendung einer Ergänzungslösung, die sämtliche wirksamen Bestandteile enthält, oder unter Verwendung mehrerer Ergänzungslösungen, die in ihrer Gesamtheit alle wirksamen Bestandteile enthalten, ergänzt werden. Beispielsweise kann eine Ergänzungslösung Zink- und Phosphationen sowie gegebenenfalls Nitrat- und/oder Fluorid- und/oder Nickelionen und eine andere Ergänzungslösung Alkaliionen, Nitrobenzolsulfonat und Chlorationen enthalten.
  • Das erfindungsgemäße Verfahren findet innerhalb eines üblichen Verfahrensganges, der aus Reinigen, Wasserspülen, Phosphatschichtausbildung, Wasserspülen, Nachbehandeln und Spülen mit vollentsalztem Wasser besteht, Anwendung. Danach kann sich eine Lackierbehandlung oder eine andersartige Beschichtung anschließen.
  • Das erfindungsgemäße Verfahren ist insbesondere als Vorbehandlung vor der Elektrotauchlackierung, speziell der kathodischen Elektrotauchlackierung, von Vorteil.
  • Die mit dem erfindungsgemäßen Verfahren hergestellten Schichten sind sehr feinkörnig und gestatten eine hervorragende Verankerung eines nachfolgend aufgebrachten Lacküberzuges. Außerdem bieten die erhaltenen Phosphatüberzüge einen guten Korrosionsschutz und zeigen gute physikalische Eigenschaften, insbesondere wenn die anschließende Lackierung durch Elektrotauchlackierung, speziell durch kathodische Elektrotauchlackierung, erfolgt und dabei Stahloberflächen, verzinkte Oberflächen oder Aluminium behandelt werden.
  • Das erfindungsgemäße Verfahren zeichnet sich außerdem durch verringerte Schlamm- und Krustenbildung in der Phosphatiervorrichtung aus. Durch Veränderung des Beschleunigerverhältnisses ist schließlich die Möglichkeit gegeben, die Qualität der Phosphatschicht hinsichtlich Schichtgewicht und Feinkörnigkeit den jeweiligen Erfordernissen anzupassen.
  • Die Erfindung wird anhand der Beispiele beispielsweise und näher erläutert.
  • Beispiel 1
  • Es wurde zunächst ein Konzentrat A durch Vermischen folgender Bestandteile in einem Behälter aus rostfreiem Stahl hergestellt:
    Figure imgb0001
    In einem zweiten Behälter wurden zur Bildung eines Konzentrates B
    Figure imgb0002
    unter Rühren vermischt.
  • Aus beiden Konzentraten wurde eine für die Spritzbehandlung bestimmte Phosphatierungslösung hergestellt, indem
    • 42,0 g des Konzentrates A und
    • 29,2 g des Konzentrates B zusammen mit
    • 1,2 g Soda

    mit Wasser auf 1 I aufgefüllt wurden. Die Gesamtsäurepunktzahl war 13 bei Titration einer 10 ml-Badprobe mit 0,1 n Natriumhydroxidlösung gegen Phenolphthalein. Beispiel 2
  • Kaltgewalzte Stahlbleche wurden dem Verfahrensgang
    • 1. Reinigung mit einem alkalischen Reiniger (auf Basis Natrium-o-phosphat, Natriumpyrophosphat, Borax, aktivierend wirkendes Titanphosphat, Tensid) bei 60° C während 1 Minute im Spritzen;
    • 2. Warmwasserspülen während 30 Sekunden;
    • 3. Phosphatieren mit der gemäß Beispiel 1 erhaltenen Lösung bei 49° C durch Spritzbehandlung während 1 Minute;
    • 4. Kaltwasserspülen während 30 Sekunden;
    • 5. Nachbehandeln mit einer CrVI/Crlll-lonen enthaltenden Lösung mit einem pH-Wert von 4 bei Raumtemperatur durch Tauchen während 30 Sekunden;
    • 6. Spülen mit vollentsalztem Wasser im Spritzen während 10 Sekunden;
    • 7. Ofentrocknen bei 177° C während 5 Minuten

    unterworfen.
  • Die so behandelten Bleche wurden mit einem Elektrotauchlack (ED 3002 R) der Firma PPG Industries kathodisch tauchlackiert und den Tests zur Ermittlung des Korrosionswiderstandes und verschiedener physikalischer Eigenschaften unterworfen. Die jeweils ermittelten Eigenschaften waren hervorragend.
  • Beispiel 3
  • Der Verfahrensgang gemäß Beispiel 2 wurde wiederholt, jedoch wurden anstelle von Stahlblechen feuerverzinkte, nachgewalzte Bleche eingesetzt. Ähnliche Testergebnisse wie in Beispiel 2 wurden erhalten.
  • Beispiel 4
  • Der Verfahrensgang gemäß Beispiel 2 wurde wiederholt. Anstelle der Stahlbleche wurden Aluminiumbleche behandelt. Es wurden ähnliche Testergebnisse wie bei Beispiel 2 erhalten.
  • Beispiel 5
  • Die Beispiele 2 bis 4 wurden erneut durchgeführt mit dem Unterschied, daß das Phosphatieren in Stufe 3.) gemäß Beispiel 2 durch Tauchbehandlung bei 49° C während 1 Minute erfolgte. Auch die auf diese Weise behandelten Blechqualitäten zeigten ähnliche Testergebnisse wie im Falle der Beispiele 2 bis 4.

Claims (9)

1. Verfahren zum Aufbringen von Phosphatüberzügen auf Metalloberflächen mittels Phosphatierungslösungen auf Basis Zinkphosphat als wesentliche schichtbildende Komponente, die mit Chlorat und wasserlöslicher aromatischer Nitroverbindung beschleunigt sind, dadurch gekennzeichnet, daß man die Metalloberflächen mit einer Phosphatierungslösung in Berührung bringt, die
0,5 bis 4 g/I Zn,
3,0 bis 12 g/I P04,
1,5 bis 7 g/1 ClO3 und
2,0 bis 7 g/I aromatische Nitroverbindung

enthält und in der das Verhältnis ClO3 : Nitroverbindung (0,5 bis 1,25) : 1 beträgt.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man die Metalloberflächen mit einer Phosphatierungslösung in Berührung bringt, die als Nitroverbindung Nitrobenzolsulfonat, insbesondere m-Nitrobenzolsulfonat, enthält.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß man die Metalloberflächen mit einer Phosphatierungslösung in Berührung bringt, die zusätzlich 2 bis 9 g/I NOs enthält.
4. Verfahren nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, daß man die Metalloberflächen mit einer Phosphatierungslösung in Berührung bringt, die zusätzlich 0,2 bis 4 g/I F enthält.
5. Verfahren nach einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß man die Metalloberflächen mit einer Phosphatierungslösung in Berührung bringt, die zusätzlich Ni-, Co-und/oder Fe-Ionen, vorzugsweise in einer Gesamtmenge von 0,1 bis 2,5 g/I, enthält.
6. Verfahren nach einem oder mehreren der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß man die Metalloberflächen mit einer Phosphatierungslösung in Berührung bringt, die einen pH-Wert von 2 bis 3,5, vorzugsweise 2,9 bis 3,2, aufweist.
7. Verfahren nach einem oder mehreren der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß man die Metalloberflächen mit einer Phosphatierungslösung in Berührung bringt, die 5 bis 30 Punkte Gesamtsäure und 0,3 bis 2,5 Punkte Freie Säure aufweist.
8. Verfahren nach einem oder mehreren der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß man die Metalloberflächen mit einer eine Temperatur von 26,7 bis 71°C, vorzugsweise 37,8 bis 49° C, aufweisenden Phosphatierungslösung in Berührung bringt.
9. Verfahren nach einem oder mehreren der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß man die Metalloberflächen durch Tauchen, Spritzen oder kombinierte Tauch/Spritz-Behandlung mit der Phosphatierungslösung, vorzugsweise während einer Zeitdauer von 0,5 bis 3 Minuten, in Berührung bringt.
EP82105960A 1981-07-13 1982-07-03 Verfahren zum Aufbringen von Phosphatüberzügen auf Metalloberflächen Expired EP0069950B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US282480 1981-07-13
US06/282,480 US4498935A (en) 1981-07-13 1981-07-13 Zinc phosphate conversion coating composition

Publications (2)

Publication Number Publication Date
EP0069950A1 EP0069950A1 (de) 1983-01-19
EP0069950B1 true EP0069950B1 (de) 1985-10-23

Family

ID=23081699

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82105960A Expired EP0069950B1 (de) 1981-07-13 1982-07-03 Verfahren zum Aufbringen von Phosphatüberzügen auf Metalloberflächen

Country Status (14)

Country Link
US (1) US4498935A (de)
EP (1) EP0069950B1 (de)
JP (1) JPS5819481A (de)
KR (1) KR890001036B1 (de)
AU (1) AU549517B2 (de)
BR (1) BR8204044A (de)
CA (1) CA1200471A (de)
DE (2) DE3267010D1 (de)
ES (1) ES8305051A1 (de)
GB (1) GB2102839A (de)
MX (1) MX157371A (de)
PH (1) PH19127A (de)
PT (1) PT75220B (de)
ZA (1) ZA824588B (de)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3244715A1 (de) * 1982-12-03 1984-06-07 Gerhard Collardin GmbH, 5000 Köln Verfahren zur phosphatierung von metalloberflaechen sowie hierfuer geeignete badloesungen
DE3311738A1 (de) * 1983-03-31 1984-10-04 Metallgesellschaft Ag, 6000 Frankfurt Verfahren zur phosphatierung von metalloberflaechen
DE3325974A1 (de) * 1983-07-19 1985-01-31 Gerhard Collardin GmbH, 5000 Köln Verfahren und universell anwendbare mittel zum beschleunigten aufbringen von phosphatueberzuegen auf metalloberflaechen
GB2148950B (en) * 1983-10-26 1987-02-04 Pyrene Chemical Services Ltd Phosphating composition and processes
GB8329250D0 (en) * 1983-11-02 1983-12-07 Pyrene Chemical Services Ltd Phosphating processes
DE3407513A1 (de) * 1984-03-01 1985-09-05 Gerhard Collardin GmbH, 5000 Köln Verfahren zur zink-calcium-phosphatierung von metalloberflaechen bei niedriger behandlungstemperatur
DE3408577A1 (de) * 1984-03-09 1985-09-12 Metallgesellschaft Ag, 6000 Frankfurt Verfahren zur phosphatierung von metallen
ES8606528A1 (es) * 1985-02-22 1986-04-01 Henkel Iberica Procedimiento para el fosfatado de superficies metalicas, especialmente ferreas
WO1986005094A1 (en) * 1985-03-08 1986-09-12 Takeda Chemical Industries, Ltd. Antiobesity agent and composition
WO1986006276A1 (en) * 1985-04-30 1986-11-06 Takeda Chemical Industries, Ltd. Sugar digestion-restraining agent and sugar digestion-restraining composition
GB8523572D0 (en) * 1985-09-24 1985-10-30 Pyrene Chemicals Services Ltd Coating metals
US4673445A (en) * 1986-05-12 1987-06-16 The Lea Manufacturing Company Corrosion resistant coating
DE3630246A1 (de) * 1986-09-05 1988-03-10 Metallgesellschaft Ag Verfahren zur erzeugung von phosphatueberzuegen sowie dessen anwendung
DE3631759A1 (de) * 1986-09-18 1988-03-31 Metallgesellschaft Ag Verfahren zum erzeugen von phosphatueberzuegen auf metalloberflaechen
US6551417B1 (en) 2000-09-20 2003-04-22 Ge Betz, Inc. Tri-cation zinc phosphate conversion coating and process of making the same
JP5462467B2 (ja) 2008-10-31 2014-04-02 日本パーカライジング株式会社 金属材料用化成処理液および処理方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2295545A (en) * 1938-02-04 1942-09-15 Parker Rust Proof Co Treatment of metal
DE1287890B (de) * 1961-03-23 1900-01-01
US3272664A (en) * 1963-07-25 1966-09-13 Detrex Chem Ind Composition and method for coating metal surfaces
GB1542222A (en) * 1977-01-06 1979-03-14 Pyrene Chemical Services Ltd Phosphate coating compositions
JPS53138937A (en) * 1977-05-11 1978-12-04 Nippon Paint Co Ltd Chemical treating method for iron phosphate film
JPS5811513B2 (ja) * 1979-02-13 1983-03-03 日本ペイント株式会社 金属表面の保護方法
DE3016576A1 (de) * 1980-04-30 1981-11-05 Metallgesellschaft Ag, 6000 Frankfurt Verfahren zur phosphatierung von metalloberflaechen sowie dessen anwendung

Also Published As

Publication number Publication date
PT75220A (fr) 1982-08-01
EP0069950A1 (de) 1983-01-19
DE3267010D1 (en) 1985-11-28
GB2102839A (en) 1983-02-09
BR8204044A (pt) 1983-07-05
ES513841A0 (es) 1983-04-01
PT75220B (fr) 1984-07-23
CA1200471A (en) 1986-02-11
PH19127A (en) 1986-01-08
KR890001036B1 (ko) 1989-04-20
JPS5819481A (ja) 1983-02-04
US4498935A (en) 1985-02-12
AU8495282A (en) 1983-01-20
JPH0331790B2 (de) 1991-05-08
ES8305051A1 (es) 1983-04-01
KR840000670A (ko) 1984-02-25
ZA824588B (en) 1983-05-25
DE3224923A1 (de) 1983-02-17
MX157371A (es) 1988-11-18
AU549517B2 (en) 1986-01-30

Similar Documents

Publication Publication Date Title
DE1933013C3 (de) Verfahren zur Erzeugung von Schutzschichten auf Aluminium, Eisen und Zink mittels komplexe Fluoride enthaltender Lösungen
EP0069950B1 (de) Verfahren zum Aufbringen von Phosphatüberzügen auf Metalloberflächen
DE2155670C3 (de) Zinkphosphatierungslösung für Aluminium, Zink oder Eisen
EP0064790A1 (de) Verfahren zur Phosphatierung von Metallen sowie dessen Anwendung zur Vorbehandlung für die Elektrotauchlackierung
EP0261704B1 (de) Verfahren zum Erzeugen von Phosphatüberzügen auf Metalloberflächen
EP0015021B1 (de) Verfahren zur Vorbereitung von Metalloberflächen für die elektrophoretische Tauchlackierung
EP0304108A1 (de) Verfahren zur Phosphatierung von Metallen
EP0056881A1 (de) Verfahren zur Phosphatierung von Metallen
DE860309C (de) Verfahren zur Herstellung von Phosphatueberzuegen auf Metallen mit hohem Aluminiumgehalt
DE2100021A1 (de) Verfahren zum Aufbringen von Phos phatschichten auf Stahl, Eisen und Zinkoberflachen
EP0155547B1 (de) Verfahren zur Zink-Calcium-Phosphatierung von Metalloberflächen bei niedriger Behandlungstemperatur
EP0361375A1 (de) Verfahren zum Aufbringen von Phosphatüberzügen
DE69119138T2 (de) Verfahren zur Phosphatierung von Metalloberflächen
DE974713C (de) Verfahren zur Herstellung von UEberzuegen auf Metallen
DE1285831B (de) Phosphatierungsloesung
EP0486576B1 (de) Verfahren zur herstellung von manganhaltigen zinkphosphatschichten auf verzinktem stahl
DE4228470A1 (de) Verfahren zur Phospatierung von einseitig verzinktem Stahlband
EP0039093B1 (de) Verfahren zur Phosphatierung von Metalloberflächen sowie dessen Anwendung
EP0111223B1 (de) Verfahren zur Phosphatierung von Metalloberflächen sowie hierfür geeignete Badlösungen
DE3245411A1 (de) Verfahren zur phosphatierung elektrolytisch verzinkter metallwaren
EP0414296B1 (de) Verfahren zur Erzeugung von Phosphatüberzügen auf Metallen
EP0264811B1 (de) Verfahren zum Erzeugen von Phosphatüberzügen
EP0121274A1 (de) Verfahren zur Phosphatierung von Metalloberflächen
DE2031358B2 (de) Verfahren zur Erzeugung von Schutzschichten auf Aluminium, Eisen und Zink mittels saurer, komplexe Fluoride enthaltender, Lösungen
EP0215041B1 (de) Verfahren zum phosphatieren von metalloberflächen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR IT LI NL SE

17P Request for examination filed

Effective date: 19830210

RBV Designated contracting states (corrected)

Designated state(s): BE DE FR IT

ITF It: translation for a ep patent filed

Owner name: ZANOLI ENRICO - MONTEC.TEC. S.P.A.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SOCIETE CONTINENTALE PARKER

Owner name: METALLGESELLSCHAFT AG

AK Designated contracting states

Designated state(s): BE DE FR IT

REF Corresponds to:

Ref document number: 3267010

Country of ref document: DE

Date of ref document: 19851128

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITPR It: changes in ownership of a european patent

Owner name: CESSIONE;HENKEL CORPORATION

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19900718

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

ITTA It: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19920331

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19980714

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990731

BERE Be: lapsed

Owner name: HENKEL CORP. (A DELAWARE)

Effective date: 19990731

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20010703

Year of fee payment: 20