EP0069943B1 - Verfahren zur Hydrierung von Kohlenwasserstoffen - Google Patents

Verfahren zur Hydrierung von Kohlenwasserstoffen Download PDF

Info

Publication number
EP0069943B1
EP0069943B1 EP82105941A EP82105941A EP0069943B1 EP 0069943 B1 EP0069943 B1 EP 0069943B1 EP 82105941 A EP82105941 A EP 82105941A EP 82105941 A EP82105941 A EP 82105941A EP 0069943 B1 EP0069943 B1 EP 0069943B1
Authority
EP
European Patent Office
Prior art keywords
hydrogenation
hydrocarbons
process according
anion exchangers
mixtures
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP82105941A
Other languages
English (en)
French (fr)
Other versions
EP0069943A1 (de
Inventor
Bernhard Dr. Schleppinghoff
Horst Dipl.-Ing. Reinhardt
Herbert Dipl. Ing. Tschorn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Erdoelchemie GmbH
Original Assignee
Erdoelchemie GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Erdoelchemie GmbH filed Critical Erdoelchemie GmbH
Priority to AT82105941T priority Critical patent/ATE13070T1/de
Publication of EP0069943A1 publication Critical patent/EP0069943A1/de
Application granted granted Critical
Publication of EP0069943B1 publication Critical patent/EP0069943B1/de
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G67/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only
    • C10G67/02Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only
    • C10G67/06Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only including a sorption process as the refining step in the absence of hydrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G25/00Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents
    • C10G25/02Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents with ion-exchange material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/02Gasoline

Definitions

  • the invention relates to a process for the hydrogenation of unsaturated hydrocarbons, in which these unsaturated hydrocarbons are treated with anion exchangers before a catalytic hydrogenation known per se.
  • LHSV space velocity
  • the anion exchangers which can be used according to the invention can be natural or synthetic, inorganic or organic anion exchangers.
  • natural or artificial inorganic anion exchangers are: natural or artificial scapolites or hydroxylapatites, iron oxide gels, carbon anion exchangers such as ammonium carbons, clay minerals, insoluble salts, such as phosphates, zirconium oxide hydrates, aluminum oxide and others.
  • organic anion exchangers examples include gel or macroporous styrene / divinylbenzene resins, condensation resins made from phenols and formaldehyde, cellulose anion exchangers with the functional group -OC z H 4 N (C 2 H 5 ) 2 or -OCH 2 C 6 H 4 NH 2 or another strongly basic functional group, called (meth) acrylic resins or epichlorohydrin / polyamine condensates.
  • cross-linked resins are cross-linked and thus made insoluble.
  • divinylbenzene crosslinker it is also possible, for example, to use trivinylbenzene or trivinylcyclohexane.
  • the crosslinker is generally present in an amount of about 0.3 to 80% by weight, preferably 1 to 65% by weight, particularly preferably 2 to 50% by weight, based on the total amount of the comonomers.
  • Anion exchangers with one of the matrices mentioned contain, for example, quaternary ammonium groups -NH 3 + , such as -N (CH 3 ) 3 + or -N (CH 3 ) 2 CH 2 CH 2 OH + , or tertiary amino groups -NR 2 , as functional groups -N (CH 3 ) 2 .
  • the matrices can also carry alkylene amine or imino groups or unsubstituted amino groups.
  • Anion exchangers of the types described have, for example, total capacities for ion exchange of about 0.5 to 6 val / P resin.
  • Anion exchangers in particular synthetic organic anion exchangers, are available in many variations and in a large number of types as commercial products from many manufacturers. Such anion exchangers can be used individually or as a mixture of several.
  • synthetic organic anion exchangers are preferably used.
  • Anion exchangers which have a matrix of styrene / divinylbenzene and have a gel-like or macroporous structure are used in a particularly preferred manner.
  • the anion exchangers mentioned can be loaded with various ions, for example with hydroxyl, chloride, bromide, sulfate, acetate or formate ions. Mixtures of different ion exchangers which are loaded with various of the anions mentioned by way of example can also be used. Mixtures of the same anion exchanger can also be used which the resin particles present in the mixture are loaded with various of the anions mentioned by way of example. Finally, it is also possible to use anion exchangers which, as a result of partial loading with salts of the various anions mentioned as examples, contain different anions in a resin particle.
  • Anion exchangers or mixtures of anion exchangers are preferably used in which hydroxyl ions are present as an anion, in whole or in part, on different resin particles or on the same resin particle, optionally in addition to one or more other anion (s).
  • hydroxyl ions are present as an anion, in whole or in part, on different resin particles or on the same resin particle, optionally in addition to one or more other anion (s).
  • a proportion of at least 10%, preferably at least 50%, particularly preferably 100% hydroxyl ions, based on the total number of anions may be mentioned.
  • Unsaturated hydrocarbons which are treated according to the invention include olefinic, diolefinic or acetylenic hydrocarbons, or hydrocarbons which contain one or more acetylenic bonds in addition to one or more olefinic bonds. Such unsaturated bonds can be either terminal or non-terminal. Such hydrocarbons can also be used as a pure substance fraction, as a mixture with one another or as a mixture with other substances. Such other substances can be, for example, saturated hydrocarbons, hydrogen, carbon monoxide, carbon dioxide, nitrogen or noble gases. Unsaturated or saturated hydrocarbons that can be treated according to the invention can be either branched or straight-chain. Their chain length is not critical for the implementation of the method according to the invention.
  • a chain length of 2 to 30, preferably 2 to 24, carbon atoms may be mentioned by way of example.
  • hydrocarbons and hydrocarbon mixtures mentioned are fractions such as those formed during the cracking of various cracking feedstocks or are produced from them, further fractions such as those obtained in the selective hydrogenation of cracking gasoline and cracking gasoline fractions, and furthermore fractions such as those used in the oligomerization of C 3 - and / or C 4 -olefins or olefin fractions with the aid of acidic catalysts.
  • the process according to the invention is preferably carried out by using such cracking fractions and oligomerization products with unsaturated bonds, which may also contain paraffins, naphthenes and / or aromatics as mixture components.
  • the inventive method is conducted at a temperature of for example 0 to 120 ° C, preferably 10 to 50 ° C, particularly preferably from 20 bar to 30 0 C and at a pressure of 1 to 100, preferably 1 to 15 bar, particularly preferably 1 to 5 executed in cash.
  • the hydrocarbons to be treated are at least partially in the liquid phase, for example at least 30%, preferably at least 80%, particularly preferably completely, based on the total amount of the hydrocarbons or the mixture proportions.
  • the hydrocarbons from. be driven upwards or downwards through a bed of the anion exchange particles.
  • the anion exchange particles can be arranged in a fixed bed, floating bed or in a fluidized bed.
  • the apparatus to be used to carry out the process according to the invention can be very simple, such as a cylindrical reactor without internals.
  • the anion exchanger can also be used in different beds, which are arranged, for example, on different bottoms of a cylindrical reactor. Further, between two such beds each distributor plates to secure Stel - Lung be located a uniform wetting of the different beds of anion exchanger.
  • the process according to the invention can be applied in the same way and with the same advantage to unsaturated hydrocarbons or the abovementioned mixtures which are then to be subjected to a selective hydrogenation or a full hydrogenation.
  • the bed of anion exchangers is filled with the unsaturated hydrocarbon to be treated or one of the mixtures mentioned with a space velocity LHSV (Liquid Hourly Space Velocity) of 0.1-10, preferably 0.5-5, particularly preferably 1-2 f hydrocarbons per f exchanger loaded per hour.
  • LHSV Liquid Hourly Space Velocity
  • the unsaturated hydrocarbons or the abovementioned mixtures are subjected to catalytic selective hydrogenation or full catalytic hydrogenation in a known manner.
  • the conditions for such a hydrogenation are known to the person skilled in the art.
  • 1 to 10 moles of hydrogen are used per mole of the double or triple bond to be hydrogenated.
  • it is carried out at 10 to 350 ° C and 1 to 200 bar.
  • hydrogenation catalysts are noble metal catalysts such as palladium or platinum, Raney catalysts such as Raney nickel, Raney cobalt, Raney iron or mixtures of such Raney catalysts, optionally with the addition of promoters, or sulfidic hydrogenation catalysts such as cobalt sulfides, nickel sulfides, molybdenum sulfides or Mixtures of these, called.
  • sulfidic hydrogenation catalysts such as cobalt sulfides, nickel sulfides, molybdenum sulfides or Mixtures of these, called.
  • inert carriers are SiO z , A1 2 0 3 , burnt MgO, carbonates such as CaC0 3 or BaC0 3 , sulfates such as BaS0 4 or activated carbon.
  • Such a catalytic hydrogenation can be carried out, for example, in the gas phase, the trickle phase or the liquid phase with a solid or suspended catalyst.
  • the method according to the invention is energetically and thus financially cheaper than previously known pretreatment methods. For example, the elimination of the energy-consuming and thus expensive distillation of the hydrogenation product should be mentioned.
  • the process according to the invention can be carried out in a simple and inexpensive apparatus and thus, in contrast to many previously conventional pretreatment processes, requires only a small investment.
  • the hydrogenation equipment consisted of: insert piston pump, preheater, hydrogenation reactor, cooler and separator.
  • VA reactors inner diameter 15 mm, length 700 mm with electric heating or with double jacket were used as hydrogenation reactors.
  • the lower half of the reactor (about 340 mm in length, corresponds to 60 m! Catalyst) was filled with a Pd catalyst on Al 2 O 3 .
  • the reactor room above was filled with Al 2 O 3 balls and served as an additional preheater.
  • the hydrogenation was carried out in the trickle phase with a hydrogen obtained in cracking plants with approx. 15% CH 4 at 26 bar and an LHSV (Liquid Hourly Space Velocity) of 5.
  • the bromine number (g Br z / 100 g) of the hydrogenated product was used as the criterion for the hydrogenation performance.
  • the product used was pyrolysis gasoline, which was to be selectively hydrogenated to a diene number of at most 1. This corresponds to a result of comparison measurements a reduction of the bromine number to 40-45 g Br2 / 100 g.
  • the inlet temperature was raised from 30-60 ° C. to 110-160 ° C., depending on the hydrogenation activity, the catalyst being considered deactivated if the temperature exceeded 100 ° C.
  • Untreated pyrolysis gasoline was used, as described above, for the selective hydrogenation of the diolefins.
  • the catalyst contained 5 g Pd / f on Al 2 O 3 , impregnated only on the surface. Fresh hydrogen was added to the reactor as exhaust gas was removed. The amount of exhaust gas was 200 l / h.
  • the hydrogenation was started at an inlet temperature of 60 ° C.
  • the bromine number rose after 5 days of operation to over 50 g Br ⁇ / 100 g, whereupon the inlet temperature had to be raised several times by 10-15 ° C. After a running time of 6 weeks, the inlet temperature of 110 ° C was exceeded. During the entire period were almost without exception only bromine numbers> 50 g Br 2 / g reaches 100th
  • Example 1 noble metal catalyst, 5 g Pd / run Al 2 O 3 , but soaked. As in Example 1, the inlet temperature had to be raised several times by 10-15 ° C after a week of running. After a running time of approx. 4 weeks, the inlet temperature of 110 ° C was exceeded.
  • the amount of exhaust gas had to be reduced to approx. 40 l / h and the inlet temperature to 30 ° C. After about 4 weeks, the inlet temperature was raised to 40 ° C. After 20 months of operation, the amount of exhaust gas was still 120 V / h instead of the “normal amount” of 200 l / h caused by the apparatus. After 20 weeks running, the inlet temperature was still 40 ° C, the bromine numbers varied between 38 to 45 g of Br 2/100 g, however, were generally at about 40 g Br z / 100 ml.
  • the hydrogenation equipment consisted of: insert piston pump, preheater, hydrogenation reactor, cooler and separator.
  • VA reactors 25 mm inside diameter, 700 mm length, with double jacket were used as hydrogenation reactors.
  • the reactors were filled with 400 ml of catalyst.
  • the free space above was filled with AI 2 0 3 balls. These served simultaneously as a liquid distributor and as an additional preheating zone.
  • the hydrogenation was carried out in the trickle phase with a trimer from a C 4 oligomerization (isododecene) as the starting product and with a hydrogen obtained in cracking plants with approx. 15% methane at 26 bar and an LHSV of 1.5.
  • the feed was preheated to 180 ° C and hydrogenated at a reactor temperature of 220 ° C.
  • the criterion for the hydrogenation performance the bromine number (g Br2 / 100 g) serving of the hydrogenated product.
  • a bromine number of 0.1 g Br2 / 100 g was regarded as the limit of the product specification, and exceeding this limit value was considered as deactivation of the catalyst.
  • untreated isododecene was used to fully hydrogenate the olefins in the hydrogenation apparatus.
  • the catalyst contained 18 g Pd / l on A1 2 0 3 , impregnated only on the surface. Fresh hydrogen was added to the reactor as exhaust gas was removed. The amount of exhaust gas was 200 i / h.
  • Example 5 the isododecene feed was treated with an anion exchanger before entering the hydrogenation.
  • This anion pre-cleaning was carried out in a fixed bed reactor at 20 ° C practically without pressure using an anion exchange mixture consisting of a part of weakly basic, macroporous ion exchanger based on polystyrene in the OH form (Bayer Lewatit MP 62) and a part of strongly basic, gel-like ion exchanger based on polystyrene in the CI 'form (Bayer Lewatit M 500).
  • the reactor consisted of a glass tube 350 mm long and 35 mm wide and was completely filled with the anion exchange mixture. Compared to Example 5, a considerable increase in the catalyst runtime has been achieved by treating the feed product with an anion exchanger.

Description

  • Die Erfindung betrifft ein Verfahren zur Hydrierung ungesättigter Kohlenwasserstoffe, bei dem diese ungesättigten Kohlenwasserstoffe vor einer an sich bekannten katalytischen Hydrierung mit Anionenaustauschern behandelt werden.
  • Bei der Hydrierung von olefinischen, diolefinischen oder Acetylene enthaltenden Kohlenwasserstoff-Fraktionen tritt durch Ablagerung von Verunreinigungen oder Bildung von Polymeren auf dem Katalysator eine fortschreitende Vergiftung und Desaktivierung dieses Katalysators auf, was zu relativ kurzen Katalysatorstandzeiten führt. Dies trifft besonders für die selektive Hydrierung von diolefinischen Krackbenzinfraktionen zu, die beispielsweise bei der Ethylengewinnung durch Kracken von Naphtha, Gasölen usw. anfallen.
  • Es sind verschiedene Verfahren zur Selektivhydrierung dieser Krackbenzinfraktionen sowie deren Vorbehandlung vor dem Einsatz in diese Teilhydrierung bekannt (Asinger, die Petrolchemische Industrie, Akademie-Verlag Berlin, S. 618 ffl. Hierzu zählen thermische Vorbehandlungen, destillative Abtrennung von Polymeren, Abwaschen von Polymeren vom Hydrierkatalysator durch Anwendung von Rieselphasen bzw. Flüssigphasenhydrierungen, wobei teilweise hydrierte Kohlenwasserstoffströme zurückgeführt werden die allgemeine Verbesserung der Hydrierkatalysatoren. Bei diesen Verfahren werden Katalysatorstandzeiten von einigen Monaten bis zu einem Jahr und nur gelegentlich auch darüber erreicht. Hierfür ist jedoch ein relativ hoher Aufwand bei der Vorbehandlung erforderlich, beispielsweise ein hoher energetischer Aufwand bei der destillativen Abtrennung von Polymeren und ein hoher Investitionsaufwand bei der Rückführung von hydrierten Produktströmen.
  • Die Hydrierung von acetylenhaltigen oder auch olefinischen Kohlenwasserstoffen führt ebenfalls durch die Bildung von Polymeren sowie durch enthaltene Verunreinigungen zur Belegung der Katalysatoroberfläche oder zur Vergiftung des Katalysators und damit zu unbefriedigenden Katalysatorstandzeiten. So werden beispielsweise bei der Hydrierung der Dimeren und Oligomeren der C3- und C4-Olefinoli- gomerisation nur Katalysatorstandzeiten von wenigen Monaten erzielt.
  • Eigene Versuche, mit innigem Vermischen der zu hydrierenden Kohlenwasserstoff-Fraktion mit einer alkalisch reagierenden wässrigen Lösung als Vorbehandlung vor der eigentlichen Hydrierung führten zu keiner wesentlichen Verbesserung der Katalysatorstandzeiten.
  • Es ist daher völlig überraschend, dass eine Behandlung der zur Hydrierung vorgesehenen ungesättigten Kohlenwasserstoffe, mit einem Anionenaustauscher eine beträchtliche Erhöhung der Katalysatorstandzeiten ergibt.
  • Es wurde demnach ein Verfahren zur Hydrierung von Kohlenwasserstoffen gefunden, das dadurch gekennzeichnet ist, dass man ungesättigte Kohlenwasserstoffe und Kohlenwasserstoff-Mischungen aus Krackerfraktionen mit Anionenaustauschern bei einer Temperatur von 0 bis 120°C, einem Druck
  • von 1 bis 100 bar und einer Raumgeschwindigkeit (LHSV) von 0,1 bis 10 1 Kohlenwasserstoffe pro 1 Austauscher behandelt und dann in bekannter Weise katalytisch hydriert.
  • Die erfindungsgemäss einsetzbaren Anionenaustauscher können natürliche oder synthetische, anorganische oder organische Anionenaustauscher sein. Als natürliche oder künstliche anorganische Anionenaustauscher seien beispielsweise genannt: natürliche oder künstliche Skapolite oder Hydroxylapatite, Eisenoxidgel, Kohle-Anionenaustauscher, wie die Ammonkohlen, Tonmineralien, unlösliche Salze, wie Phosphate, Zirkonoxidhydrate, Aluminiumoxid und andere.
  • Als organische Anionenaustauscher seien beispielsweise gelförmige oder makroporöse Styrol/ Divinylbenzol-Harze, Kondensationsharze aus Phenolen und Formaldehyd, Cellulose-Anionenaustauscher mit der funktionellen Gruppe -OCzH4N(C2H5)2 oder -OCH2C6H4NH2 oder einer anderen stark basischen funktionellen Gruppe, (Meth)-Acrylharze oder Epichlorhydrin/Polyamin-Kondensate genannt.
  • Alle diese Harze sind vernetzt und damit unlöslich gemacht. Anstelle des genannten Vernetzers Divinylbenzol können beispielsweise auch Trivinylbenzol oder Trivinylcyclohexan eingesetzt werden. Der Vernetzer liegt im allgemeinen in einer Menge von etwa 0,3 bis 80 Gew.-%, bevorzugt 1 bis 65 Gew.-%, besonders bevorzugt 2 bis 50 Gew.-%, bezogen auf die Gesamtmenge der Comonomeren, vor. Anionenaustauscher mit einer der genannten Matrices enthalten als funktionelle Gruppen beispielsweise quartäre Ammoniumgruppen -NH3 +, wie -N(CH3)3 + oder -N(CH3)2CH2CH2OH+, oder tertiäre Aminogruppen -NR2, wie -N(CH3)2. Ferner können die Matrices AIkylenamin bzw. Iminogruppen oder nicht substituierte Aminogruppen tragen. Anionenaustauscher der beschriebenen Arten haben beispielsweise Totalkapazitäten für den lonenaustausch von etwa 0,5 bis 6 val/P Harz. Solche beschriebenen Anionenaustauscher und ihre Gewinnungs- bzw. Herstellungsverfahren sind seit langem bekannt (Houben-Weyl, Methoden der organischen Chemie, Band 1, Seite 256; F. Helfferich, Ion Exchange, Mc-Graw-Hill, Book-Company, New York 1962).
  • Anionenaustauscher, insbesondere synthetische organische Anionenaustauscher, sind in vielfältiger Abwandlung und in grosser Typenzahl als Handelsprodukte vieler Hersteller erhältlich. Solche Anionenaustauscher können einzeln oder als Gemisch mehrerer eingesetzt werden.
  • In bevorzugter Weise werden erfindungsgemäss synthetische organische Anionenaustauscher eingesetzt. In besonders bevorzugter Weise werden solche Anionenaustauscher eingesetzt, die eine Matrix aus Styrol/Divinylbenzol haben und eine gelförmige oder makroporöse Struktur aufweisen.
  • Die genannten Anionenaustauscher können mit verschiedenen Ionen beladen sein, beispielsweise mit Hydroxyl-, Chlorid-, Bromid-, Sulfat-, Acetat-oder Formiationen. Es können auch Gemische verschiedener lonenaustauscher eingesetzt werden, die mit verschiedenen der beispielhaft genannten Anionen beladen sind. Es können auch Gemische desselben Anionenaustauschers eingesetzt werden, bei denen die im Gemisch vorhandenen Harzteilchen mit verschiedenen der beispielhaft genannten Anionen beladen sind. Schliesslich können auch Anionenaustauscher eingesetzt werden, die in Folge einer partiellen Beladung mit Salzen der verschiedenen, beispielhaft genannten Anionen in einem Harzteilchen verschiedene Anionen enthalten. In bevorzugter Weise werden Anionenaustauscher oder Gemische von Anionenaustauschern eingesetzt, in denen als Anion ganz oder teilweise, auf verschiedenen Harzteilchen oder auf dem gleichen Harzteilchen Hydroxylionen, gegebenenfalls neben einem oder mehreren anderen Anion(en) vorhanden sind. Beispielsweise sei hierzu ein Anteil von mindestens 10%, bevorzugt mindestens 50%, besonders bevorzugt 100% Hydroxylionen, bezogen auf die Gesamtzahl der Anionen, genannt.
  • Als ungesättigte Kohlenwasserstoffe, die erfindungsgemäss behandelt werden, seien olefinische, diolefinische oder acetylenische Kohlenwasserstoffe, oder Kohlenwasserstoffe, die eine oder mehrere acetylenische Bindungen neben einer oder mehreren olefinischen Bindungen enthalten, genannt. Solche ungesättigten Bindungen können sowohl endständig wie nicht-endständig sein. Solche Kohlenwasserstoffe können weiterhin als Reinstoff-Fraktion, als Gemisch untereinander oder als Gemisch mit anderen Stoffen eingesetzt werden. Solche anderen Stoffe können beispielsweise gesättigte Kohlenwasserstoffe, Wasserstoff, Kohlenmonoxid, Kohlendioxid, Stickstoff oder Edelgase sein. Ungesättigte oder gesättigte Kohlenwasserstoffe, die erfindungsgemäss behandelt werden können, können sowohl verzweigt als auch geradkettig sein. Ihre Kettenlänge ist für die Durchführung des erfindungsgemässen Verfahrens unkritisch. Beispielhaft sei eine Kettenlänge von 2 bis 30, bevorzugt 2 bis 24 Kohlenstoffatome genannt. Beispiele für solche genannten Kohlenwasserstoffe und Kohlenwasserstoff-Mischungen sind Fraktionen, wie sie beim Kracken verschiedener Krackeinsatzstoffe entstehen oder aus diesen hergestellt werden, weiterhin Fraktionen, wie sie bei der selektiven Hydrierung von Krackbenzinen und Krackbenzinfraktionen anfallen, weiterhin Fraktionen wie sie bei der Oligomerisierung von C3- und/oder C4-Olefinen oder Olefinfraktionen mit Hilfe saurer Katalysatoren anfallen. In bevorzugter Weise wird das erfindungsgemässe Verfahren durch Einsatz solcher Krackfraktionen und Oligomerisierungsprodukten mit ungesättigten Bindungen ausgeführt, die gegebenenfalls noch Paraffine, Naphthene und/oder Aromaten als Gemischbestandteile enthalten.
  • Das erfindungsgemässe Verfahren wird bei einer Temperatur von beispielsweise 0 bis 120°C, bevorzugt 10 bis 50° C, besonders bevorzugt 20 bis 300C und bei einem Druck von 1 bis 100 bar, bevorzugt 1 bis 15 bar, besonders bevorzugt 1 bis 5 bar ausgeführt. Bei der Ausführung des erfindungsgemässen Verfahrens befinden sich die zu behandelnden Kohlenwasserstoffe wenigstens teilweise in flüssiger Phase, beispielsweise mindestens 30%, bevorzugt mindestens 80%, besonders bevorzugt vollständig, bezogen auf die Gesamtmenge der Kohlenwasserstoffe bzw. der Gemischanteile.
  • Zur Durchführung des erfindungsgemässen Verfahrens können die Kohlenwasserstoffe von. oben nach unten oder von unten nach oben durch eine Schüttung der Anionenaustauscher-Teilchen gefahrenb werden. Hierbei können die Anionenaustauscher-Teilchen im Festbett, Schwebebett oder im Wirbelbett angeordnet sein. Die zur Durchführung des erfindungsgemässen Verfahrens zu verwendenden Apparate können sehr einfach sein, wie beispielsweise ein zylinderförmiger Reaktor ohne Einbauten. Selbstverständlich kann der Anionenaustauscher auch in verschiedenen Schüttungen angewandt werden, die beispielsweise auf verschiedenen Böden eines zylinderförmigen Reaktors angeordnet sind. Weiterhin können zwischen zwei solcher Schüttungen jeweils Verteilerböden zur Sicherstel- lung einer gleichförmigen Benetzung der verschiedenen Schüttungen der Anionenaustauscher angeordnet sein.
  • Das erfindungsgemässe Verfahren kann in gleicher Weise und mit gleichem Vorteil auf ungesättigte Kohlenwasserstoffe oder die obengenannten Mischungen angewendet werden, die anschliessend einer selektiven Hydrierung oder einer Vollhydrierung unterworfen werden sollen.
  • Die Anionenaustauscher-Schüttung wird von dem zu behandelnden ungesättigten Kohlenwasserstoff oder einer der genannten Mischungen mit einer Raumgeschwindigkeit LHSV (Liquid Hourly Space Velocity) von 0, 1 - 10, bevorzugt 0,5 - 5, besonders bevorzugt 1 - 2 f Kohlenwasserstoffe pro f Austauscher pro Stunde beschickt.
  • Die ungesättigten Kohlenwasserstoffe bzw. die oben genannten Gemische werden nach der Behandlung mit einem Anionenaustauscher in bekannter Weise einer katalytischen selektiven Hydrierung oder einer katalytischen Vollhydrierung unterworfen. Die Bedingungen für eine solche Hydrierung sind dem Fachmann bekannt. Beispielsweise werden 1 bis 10 Mol Wasserstoff pro Mol der zu hydrierenden Doppel- oder Dreifachbindung eingesetzt. Es wird beispielsweise bei 10 bis 350°C und 1 bis 200 bar gearbeitet. Als Hydrierkatalysatoren seien beispielsweise Edelmetallkatalysatoren, wie Palladium oder Platin, Raney-Katalysatoren, wie Raney-Nickel, Raney-Kobalt, Raney-Eisen oder Gemische solcher Raney-Katalysatoren, gegebenenfalls unter Zusatz von Promotoren, oder sulfidische Hydrierkatalysatoren, wie Kobaltsulfide, Nickelsulfide Molybdänsulfide oder Gemische hiervon, genannt. In bekannter Weise können solche Hydrierkatalysatoren als solche oder in Verbindung mit einem inerten Träger eingesetzt werden. Als inerte Träger kommen SiOz, A1203, totgebranntes MgO, Carbonate, wie CaC03 oder BaC03, Sulfate, wie BaS04 oder Aktivkohle in Betracht. Eine solche katalytische Hydrierung kann beispielsweise in der Gasphase, der Rieselphase oder der Flüssigphase bei festem oder suspendiertem Katalysator durchgeführt werden.
  • Bei Anwendung des erfindungsgemässen Verfahrens können alle bisher bekannten Verfahren zur Vorbehandlung des Hydriergutes mit dem Ziele der Erhöhung der Katalysatorstandzeiten entfallen. Im Vergleich zu den bisherigen Vorbehandlungsverfahren wird erfindungsgemäss eine deutliche Erhöhung der Katalysatorstandzeiten erzielt. So wird beispielsweise bei der selektiven Hydrierung von Pyrolysebenzin unter Anwendung des erfindungsgemässen Verfahrens die Katalysatorstandzeit zumindest verdoppelt. Ebenso führt die Behandlung von Oligomeren der C3- und C4-Oligomerisationen vor der Vollhydrierung zu einer beträchtlichen, beispielsweise 2 - 5fachen Erhöhung der Katalysatorstandzeiten.
  • Das erfindungsgemässe Verfahren ist im Vergleich zu bisher bekannten Vorbehandlungsverfahren energetisch und damit finanziell günstiger. Hierzu sei beispielsweise der Fortfall der energieaufwendigen und damit teuren Destillation des Hydriergutes erwähnt.
  • Das erfindungsgemässe Verfahren kann in einer einfachen und billigen Apparatur durchgeführt werden und erfordert damit im Gegensatz zu vielen bisher üblichen Vorbehandlungsverfahren nur geringe Investitionsaufwendungen.
  • Schliesslich können infolge der längeren Katalysatorstandzeiten viele der bislang notwendigen Betriebsstillstände entfallen.
  • Beispiele
  • Die erfindungsgemässe Behandlung wird im Zusammenhang mit den nachfolgend beschriebenen Hydrierungen erläutert.
  • a) Beispiele zur selektiven Hydrierung von Krackbenzinfraktionen
  • Die Hydrierapparaturen bestanden aus: Einsatzkolbenpumpe, Vorwärmer, Hydrierreaktor, Kühler und Abscheider. Als Hydrierreaktoren wurden VA-Reaktoren, Innendurchmesser 15 mm, Länge 700 mm mit elektrischer Beheizung oder mit Doppelmantel eingesetzt. Der Reaktor war in der unteren Hälfte (etwa 340 mm Länge, entspricht 60 m! Katalysator) mit einem Pd-Katalysator auf Al2O3 gefüllt. Der darüber befindliche Reaktorraum war mit Al2O3-Kugeln gefüllt und diente als zusätzlicher Vorwärmer.
  • Die Hydrierung wurde in der Rieselphase mit einem bei Krackanlagen anfallenden Wasserstoff mit ca. 15% CH4 bei 26 bar und einer LHSV (Liquid Hourly Space Velocity) von 5 betrieben. AIs Kriterium für die Hydrierleistung diente die Bromzahl (g Brz/100 g) des hydrierten Produktes. Einsatzprodukt war Pyrolysebenzin, das selektiv bis zu einer Dienzahl von höchstens 1 hydriert werden sollte. Dies entspricht aufgrund von Vergleichsmessungen einer Absenkung der Bromzahl auf 40-45 g Br2/100 g. Bei der Bestimmung der Katalysatorstandzeiten wurde die Eintrittstemperatur von 30-60°C je nach Hydrieraktivität bis auf 110-160°C angehoben, wobei bei Überschreitung von ca. 100°C der Katalysator als desaktiviert angesehen werden kann.
  • Beispiel 1 (zum Vergleich)
  • Unvorbehandeltes Pyrolysebenzin wurde, wie vorab beschrieben, zur selektiven Hydrierung der Diolefinen eingesetzt. Der Katalysator enthielt 5 g Pd/fauf Al2O3, nur oberflächlich getränkt. Frischwasserstoff wurde in dem Masse in den Reaktor gegeben, wie Abgas entnommen wurde. Die Abgasmenge betrug 200 ℓ/h. Die Hydrierung wurde mit einer Eintrittstemperatur von 60°C angefahren. Die Bromzahl stieg nach 5 Tagen Laufzeit auf über 50 g Br/100 g an, worauf die Eintrittstemperatur mehrmals um 10-15°C angehoben werden musste. Nach 6 Wochen Laufzeit wurde die Eintrittstemperatur von 110°C überschritten. Während der gesamten Laufzeit konnten fast ausnahmslos nur Bromzahlen > 50 g Br2/100 g erreicht werden.
  • Die Bromzahlen und Eintrittstemperaturen über die Laufzeit sind in Tabelle 1 zusammengestellt:
  • Beispiel 2 (zum Vergleich)
  • Wie Beispiel 1, Edelmetallkatalysator, 5 g Pd/lauf Al2O3, jedoch durchgetränkt. Die Eintrittstemperatur musste wie im Beispiel 1 nach einer Woche Laufzeit mehrmals um 10-15°C angehoben werden. Nach einer Laufzeit von ca. 4 Wochen wurde die Eintrittstemperatur von 110°C überschritten.
  • Die Bromzahlen und Eintrittstemperaturen über die Laufzeit sind in Tabelle II zusammengestellt:
  • Beispiel 3 (zum Vergleich)
  • Wie Beispiel 1, jedoch wurde destilliertes Pyrolysebenzin in die Hydrierung eingesetzt. Die Eintrittstemperatur betrug anfangs 60°C, jedoch musste die Abgasmenge und damit die Frischwasserstoffmenge aufgrund der hohen Anfangsaktivität bis auf 30 ℓ/h gedrosselt werden. Sie hatte erst nach ca. 6 Wochen die apparativ bedingte «Normalmenge» von 200 ℓ/h erreicht. Analog den Beispielen 1 und 2 musste auch hier die Eintrittstemperatur schrittweise um 10-1 5 ° C erhöht werden, jedoch waren die zeitlichen Abstände erheblich länger. Der Versuch wurde nach 15 Wochen bei einer Eintrittstemperatur von 100°C und einer Bromzahl von 47 g Br2/100 g abgebrochen.
  • Die Bromzahlen und Eintrittstemperaturen über die Laufzeit sind in Tabelle III zusammengestellt:
    Figure imgb0001
    Figure imgb0002
    Figure imgb0003
  • Beispiel 4 (erfindungsgemäss)
  • Wie Beispiel 3, jedoch wurde nicht destilliertes Pyrolysebenzin eingesetzt, das zuvor mittels Anionenaustauscher vorbehandelt wurde. Diese Anionenaustauscher-Vorbehandlung erfolgt in einem Festbettreaktor bei 20°C praktisch drucklos unter Verwendung eines lonenaustauschergemisches, bestehend aus einem Teil schwach basischen, makroporösen Ionenaustauschers auf Polystyrolbasis in der OH-Form (Bayer Lewatit MP 62) und aus einem Teil stark basischen gelförmigen Ionenaustauschers auf Polystyrolbasis in der CI'-Form (Bayer Lewatit M 500). Der Vorbehandlungsreaktor bestand aus einem Glasrohr von 350 mm Länge und einer Weite von 35 mm und war ganz mit dem Anionenaustauschergemisch gefüllt.
  • Aufgrund der hohen Anfangsaktivität mussten die Abgasmenge auf ca. 40 ℓ/h und die Eintrittstemperatur bis auf 30°C reduziert werden. Nach ca. 4 Wochen wurde die Eintrittstemperatur auf 40°C angehoben. Die Abgasmenge lag nach 20 Monaten Laufzeit noch bei 120 V/h statt der Apparatur bedingten «Normalmenge» von 200 ℓ/h. Nach 20 Wochen Laufzeit betrug die Eintrittstemperatur immer noch 40°C, die Bromzahlen schwankten zwischen 38-45 g Br2/100 g, lagen jedoch in der Regel bei ca. 40 g Brz/100 ml.
  • b) Beispiele zur Vollhydrierung olefinischer Oligomerenfraktionen
  • Die Hydrierapparaturen bestanden aus: Einsatzkolbenpumpe, Vorwärmer, Hydrierreaktor, Kühler und Abscheider. Als Hydrierreaktoren wurden VA-Reaktoren, 25 mm Innendurchmesser, 700 mm Länge, mit Doppelmantel eingesetzt. Die Reaktoren waren mit 400 ml Katalysator gefüllt. Der darüber befindliche freie Raum wurde mit AI203-Kugeln aufgefüllt. Diese dienten gleichzeitig als Flüssigkeitsverteiler und als zusätzliche Vorheizzone.
  • Die Hydrierung wurde in der Rieselphase mit einem Trimeren aus einer C4-Oligomerisation (Isododecen) als Einsatzprodukt und mit einem bei Krackanlagen anfallenden Wasserstoff mit ca. 15% Methan bei 26 bar und einer LHSV von 1,5 betrieben. Das Einsatzprodukt wurde auf 180°C vorgewärmt und bei einer Reaktortemperatur von 220°C hydriert. Als Kriterium für die Hydrierleistung diente die Bromzahl (g Br2/100 g) des hydrierten Produktes. Eine Bromzahl von 0,1 g Br2/100 g galt als Grenzwert der Produktspezifikation, und eine Überschreitung dieses Grenzwertes wurde als Desaktivierung des Katalysators angesehen.
  • Beispiel 5 (zum Vergleich)
  • Unvorbehandeltes Isododecen wurde, wie vorab beschrieben, zur Vollhydrierung der Olefine in die Hydrierapparatur eingesetzt. Der Katalysator enthielt 18 g Pd/ℓ auf A1203, nur oberflächlich getränkt. Frischwasserstoff wurde in dem Masse in den Reaktor gegeben, wie Abgas entnommen wurde. Die Abgasmenge betrug 200 i/h.
  • Der Verlauf der Bromzahl über die Katalysatorlaufzeit ist in folgender Tabelle zusammengestellt:
    Figure imgb0004
  • Beispiel 6 (erfindungsgemäss)
  • Wie Beispiel 5, jedoch wurde das Einsatzprodukt Isododecen vor dem Eintritt in die Hydrierung mit einem Anionentauscher behandelt. Diese Anionenvorreinigung erfolgte in einem Festbettreaktor bei 20°C praktisch drucklos unter Verwendung eines Aniontauschergemisches, bestehend aus einem Teil schwach basischen, makroporösen lonenaustauscher auf Basis Polystyrol in der OH-Form (Bayer Lewatit MP 62) und aus einem Teil starkbasischen, gelförmigen lonentauscher auf Polystyrolbasis in der CI'-Form (Bayer Lewatit M 500).
  • Der Reaktor bestand aus einem Glasrohr von 350 mm Länge und einer Weite von 35 mm und war ganz mit dem Anionenaustauschergemisch gefüllt.
    Figure imgb0005
    Gegenüber Beispiel 5 ist eine erhebliche Verlängerung der Katalysatorlaufzeit durch die Behandlung des Einsatzproduktes mit Anionentauscher erreicht worden.

Claims (7)

1. Verfahren zur Hydrierung von Kohlenwasserstoffen, dadurch gekennzeichnet, dass man ungesättigte Kohlenwasserstoffe und Kohlenwasserstoff-Mischungen aus Krackerfraktionen mit Anionenaustauschern bei einer Temperatur von 0 bis 120°C, einem Druck von 1 bis 100 bar und einer Raumgeschwindigkeit (LHSV) von 0,1 bis 10 i Kohlenwasserstoffe pro i Austauscher behandelt und dann in bekannter Weise katalytisch hydriert.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass als Anionenaustauscher solche mit einer Matrix aus Styrol/Divinylbenzol mit gelförmiger oder makroporöser Struktur eingesetzt werden.
3. Verfahren nach Anspruch 1 und 2, dadurch gekennzeichnet, dass bei 10 bis 50 ° C gearbeitet wird.
4. Verfahren nach Anspruch 1 bis 2, dadurch gekennzeichnet, dass bei 20 bis 30°C gearbeitet wird.
5. Verfahren nach Ansprüchen 1 bis 4, dadurch gekennzeichnet, dass Gemische, die ungesättigte Kohlenwasserstoffe enthalten, eingesetzt werden, die aus Krackanlagen stammen.
6. Verfahren nach Ansprüchen 1 bis 4, dadurch gekennzeichnet, dass Gemische, die durch Teilhydrierung erhalten werden und ungesättigte Kohlenwasserstoffe enthalten, eingesetzt werden.
7. Verfahren nach Ansprüchen 1 bis 4, dadurch gekennzeichnet, dass Gemische, die durch katalytische Oligomerisierung von C3- und/oder C4-Olefinen erhalten werden und ungesättigte Kohlenwasserstoffe enthalten, eingesetzt werden.
EP82105941A 1981-07-14 1982-07-03 Verfahren zur Hydrierung von Kohlenwasserstoffen Expired EP0069943B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT82105941T ATE13070T1 (de) 1981-07-14 1982-07-03 Verfahren zur hydrierung von kohlenwasserstoffen.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19813127751 DE3127751A1 (de) 1981-07-14 1981-07-14 Verfahren zur hydrierung von kohlenwasserstoffen
DE3127751 1981-07-14

Publications (2)

Publication Number Publication Date
EP0069943A1 EP0069943A1 (de) 1983-01-19
EP0069943B1 true EP0069943B1 (de) 1985-05-02

Family

ID=6136871

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82105941A Expired EP0069943B1 (de) 1981-07-14 1982-07-03 Verfahren zur Hydrierung von Kohlenwasserstoffen

Country Status (6)

Country Link
US (1) US4431528A (de)
EP (1) EP0069943B1 (de)
JP (1) JPS5819388A (de)
AT (1) ATE13070T1 (de)
CA (1) CA1185272A (de)
DE (2) DE3127751A1 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3338269A1 (de) * 1983-10-21 1985-05-02 Basf Ag, 6700 Ludwigshafen Verfahren zur gewinnung von isopren aus einem c(pfeil abwaerts)5(pfeil abwaerts)-kohlenwasserstoffgemisch
US6248230B1 (en) * 1998-06-25 2001-06-19 Sk Corporation Method for manufacturing cleaner fuels
SE9904197D0 (sv) 1999-11-22 1999-11-22 Amersham Pharm Biotech Ab A method for anion exchange adsorption on matrices carrying mixed mode ligands
CN100444919C (zh) * 2004-10-22 2008-12-24 中国石化上海石油化工股份有限公司 一种分离利用甲基四氢苯酐生产废液的方法
CN100444918C (zh) * 2004-10-22 2008-12-24 中国石化上海石油化工股份有限公司 甲基四氢苯酐生产废液的分离方法
CN100448501C (zh) * 2004-11-11 2009-01-07 中国石化上海石油化工股份有限公司 甲基四氢苯酐生产过程中产生的废液的分离方法
US20070137097A1 (en) * 2005-12-16 2007-06-21 Michio Ikura Production of biodiesel from triglycerides via a thermal route

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2566353A (en) * 1948-08-04 1951-09-04 Houdry Process Corp Purification of oils
US2780582A (en) * 1954-07-29 1957-02-05 Standard Oil Co Chemical refining and catalytic conversion of hydrocarbon oils
US3019199A (en) * 1957-08-29 1962-01-30 Shell Oil Co Regeneration of a nitrogen base containing ion exchanger
DE1183491B (de) * 1961-07-20 1964-12-17 Basf Ag Verfahren zum Reinigen von Olefinen
DE1275525B (de) * 1963-02-04 1968-08-22 Bayer Ag Verfahren zur vollstaendigen Hydrierung olefinischer Oligomerer aus Propylen und Butylenen
DE1568408A1 (de) * 1966-08-23 1970-03-05 Dow Chemical Co Verfahren zur Reinigung von Kohlenwasserstoffen
US3668271A (en) * 1967-10-02 1972-06-06 Mobil Oil Corp Hydrogenation of unsaturated hydrocarbons using ion exchange resin containing zero-valent metal as catalyst
AR206714A1 (es) * 1974-05-21 1976-08-13 Snam Progetti Procedimiento para eliminar compuestos acetilenicos de hidrocarburos saturados olefinicos y dienicos o mezcla de los mismos
US3953323A (en) * 1974-12-23 1976-04-27 Texaco Inc. Process for reduction of olefinic unsaturation of pyrolysis naphtha (dripolene)
IT1039740B (it) * 1975-07-08 1979-12-10 Snam Progetti Procedimento per l addizione di acidi organici a composti acetile nici contenuti in correnet i idrocar buriche inorganiche do organiche
FR2410038A1 (fr) * 1977-11-29 1979-06-22 Inst Francais Du Petrole Procede d'hydrogenation selective d'essences contenant a la fois des composes generateurs de gommes et des composes indesirables du soufre

Also Published As

Publication number Publication date
JPS5819388A (ja) 1983-02-04
EP0069943A1 (de) 1983-01-19
DE3263386D1 (en) 1985-06-05
DE3127751A1 (de) 1983-02-03
CA1185272A (en) 1985-04-09
ATE13070T1 (de) 1985-05-15
US4431528A (en) 1984-02-14

Similar Documents

Publication Publication Date Title
DE2526887C2 (de) Verfahren zur Herstellung von aromatischen Kohlenwasserstoffen
DE2640471C3 (de) Verfahren zum dehydrierenden Cyclisieren von aliphatischen Kohlenwasserstoffen
DE2836645C2 (de)
EP0132736B1 (de) Verfahren zur Herstellung von Aminen
DE19705034B4 (de) Prozeß zur Herstellung einer entbenzenten und isomerisierten Benzinmischkomponente unter Verwendung eines Doppelfunktions-Katalysators
DE1568542B2 (de) Verfahren zur katalytischen Umwandlung von Butadien- und n-Buten-1 -haltigen C tief 4 - Kohlenwasserstoffen
DE2162442A1 (de) Katalytisches Reformierverfahren
DE1542309A1 (de) Verfahren zur Herstellung eines edelmetallhaltigen Katalysators
DE2517231C2 (de)
EP0069943B1 (de) Verfahren zur Hydrierung von Kohlenwasserstoffen
DE2148121A1 (de) Verfahren zum katalytischen Cracken von Naphtha
DE2814367A1 (de) Verfahren zur herstellung von benzol aus kohlenwasserstoff-fraktionen, die reich an alkylaromatischen kohlenwasserstoffen sind und paraffinische sowie naphthenische kohlenwasserstoffe enthalten
DE1543195A1 (de) Verfahren zur Herstellung von Benzol hoher Reinheit
DE3623777A1 (de) Verfahren zur hydrierung von olefinen in gegenwart von (gamma)thern
DE4013711A1 (de) Verfahren zur herstellung von hochoktanigen, olefinarmen kraftstoffen und kraftstoffkomponenten
EP0042537B1 (de) Verfahren zur Stellungsisomerisierung von endständigen Doppelbindungen in Olefinen
DE2557913A1 (de) Verfahren zur katalytischen hydrierenden entschwefelung von schweren kohlenwasserstoffoelen
EP0659723B1 (de) Verfahren zur Herstellung von Alkyl-tert.-alkyl-ether enthaltenden Kohlenwasserstoffgemischen
DE1618982B2 (de) Verfahren zum dehydrocyclisieren von paraffinen mit 6 bis 20 kohlenstoffatomen zu aromaten
DE1645741A1 (de) Verfahren zur aromatischen Reformierung mit schwefelhaltigen Katalysatoren
DE19530409C2 (de) Katalysator und dessen Verwendung
DE2225364A1 (de) Verfahren zum katalytischen Reformieren
DE2750249A1 (de) Verfahren zur herstellung von isomerengemischen von methylenbruecken aufweisenden polycyclohexylpolyaminen
DE1932339C2 (de)
DE1284008C2 (de) Verfahren zur umwandlung hoehersiedender kohlenwasserstoffe in niedriger siedende kohlenwasserstoffe mit verbesserter umwandlungsrat

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19820703

AK Designated contracting states

Designated state(s): AT BE DE FR GB IT NL

ITF It: translation for a ep patent filed

Owner name: SOCIETA' ITALIANA BREVETTI S.P.A.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE DE FR GB IT NL

REF Corresponds to:

Ref document number: 13070

Country of ref document: AT

Date of ref document: 19850515

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3263386

Country of ref document: DE

Date of ref document: 19850605

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19870731

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19890731

BERE Be: lapsed

Owner name: EC ERDOLCHEMIE G.M.B.H.

Effective date: 19890731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19900201

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19950619

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19950622

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19950719

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19950721

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19960703

Ref country code: AT

Effective date: 19960703

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19960703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19970328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19970402

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST