EP0055467B1 - Membranpumpe mit druckentlastet eingespannter Membran - Google Patents

Membranpumpe mit druckentlastet eingespannter Membran Download PDF

Info

Publication number
EP0055467B1
EP0055467B1 EP81110720A EP81110720A EP0055467B1 EP 0055467 B1 EP0055467 B1 EP 0055467B1 EP 81110720 A EP81110720 A EP 81110720A EP 81110720 A EP81110720 A EP 81110720A EP 0055467 B1 EP0055467 B1 EP 0055467B1
Authority
EP
European Patent Office
Prior art keywords
diaphram
chamber
pressure
housing body
diaphragm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP81110720A
Other languages
English (en)
French (fr)
Other versions
EP0055467A1 (de
Inventor
Horst Dipl.-Ing. Fritsch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lewa Herbert Ott GmbH and Co KG
Original Assignee
Lewa Herbert Ott GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lewa Herbert Ott GmbH and Co KG filed Critical Lewa Herbert Ott GmbH and Co KG
Priority to AT81110720T priority Critical patent/ATE10670T1/de
Publication of EP0055467A1 publication Critical patent/EP0055467A1/de
Application granted granted Critical
Publication of EP0055467B1 publication Critical patent/EP0055467B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/0009Special features
    • F04B43/0054Special features particularities of the flexible members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
    • F04B43/06Pumps having fluid drive
    • F04B43/067Pumps having fluid drive the fluid being actuated directly by a piston

Definitions

  • the invention relates to a diaphragm pump according to the preamble of claim 1.
  • the diaphragm clamping which is achieved by the peripheral edge of the diaphragm clamped between the housing body and the pump cover, acts at the same time in such a diaphragm pump as a seal of the pressure chamber from the atmosphere, so that such a construction can only achieve delivery pressures of up to 350 bar, since the The tightness of the diaphragm pump must also be ensured with critical fluids, such as toxic or abrasive dosing media.
  • diaphragm pump constructions of the above-mentioned other type namely those with metal diaphragms
  • metal membranes naturally only allow small deflections and therefore require a much larger membrane bending diameter than plastic membranes.
  • the highest demands are placed on the processing quality of the sealing surfaces, namely on the clamping surface of the metal membrane, and on the surface quality of the membrane material.
  • Diaphragm pumps with metal membranes are therefore much larger and more expensive than those with plastic membranes.
  • operational safety is lower because metal membranes are more sensitive to breakage, e.g. can easily be caused by suspension or dirt particles in the medium.
  • the invention is therefore based on the object of designing the diaphragm pump of the generic type in order to eliminate the disadvantages described in such a way that it is suitable for delivery pressures of well over 350 bar and at the same time permits the use of reliable, displacement-intensive plastic membranes.
  • the invention is based on the idea of relieving the clamping surface of the membrane of the sealing function, which it had previously had to perform simultaneously, i.e. H.
  • the diaphragm is relieved of pressure with a precisely defined deformation between the pump cover and the housing body in such a way that the same pressure, namely that of the pressure chamber, always prevails both radially inside and radially outside the diaphragm clamping surface.
  • the pressure chamber of the diaphragm pump is sealed off from the atmosphere in the usual way by a separate seal. Sealing of this type is problem-free because only hydraulic fluid, usually mineral oil, has to be sealed. Thus, the previously difficult task of securely sealing volatile, aggressive or toxic fluids at high pulsating pressures is reduced to a technically simple, proven solution, namely sealing oil at pulsating pressure.
  • sealing elements e.g. 0-rings can be used.
  • the circumferential pressure equalization space which is arranged radially outside the membrane clamping surface and has the shape of an annular groove, is provided in the end face of the housing body and is connected to the pressure space via at least one connecting channel.
  • This connecting channel can either be connected directly to the pressure chamber or can be guided to a blind bore in the housing body, which receives a snift valve arrangement connected to the hydraulic supply and is in turn connected to the pressure chamber via a further channel.
  • Reliable, displacement-intensive plastic membranes can therefore be used in the membrane pump designed according to the invention and, at the same time, delivery pressures of up to, for example, 1200 bar with a membrane service life of over 20,000 operating hours can be achieved.
  • the invention is based on the following
  • the diaphragm pump shown has a pump housing in the form of a housing body 2 which is closed at the end by a pump cover 1 and in which an oscillating displacement piston 3 works as a hydraulic diaphragm drive. This can be mechanically pushed back and forth in an axial bore 4 of the housing body 2 and is sealed off from a hydraulic supply 6 by a sealing packing 5.
  • the pump cover 1 is detachably fixed on the end face to the housing body 2 by screws 7, a delivery chamber 8 and a pressure chamber 9 filled with hydraulic fluid being formed in the mutually facing end faces of the pump cover 1 and the housing body 2 by correspondingly large, diameter-concave recesses.
  • the pressure chamber 9, which opens at the bottom in the middle into the bore 4 of the housing body 2, which displaceably guides the displacer 3, is separated from the delivery chamber 8 by a plastic membrane 10, which in the illustrated embodiment consists of a single membrane, but also of several, sandwiched one above the other Membranes can be formed and in any case is firmly clamped between the pump cover 1 and the housing body 2 in the manner described below.
  • the pump cover 1 has a spring-loaded inlet valve 11 and a spring-loaded outlet valve 12, these valves 11, 12 being connected to the delivery chamber 8 via an inlet channel 13 and an outlet channel 14 in such a way that the delivery medium flows to the right according to FIG. 1 Suction stroke of the diaphragm 10 in the direction of arrow A is sucked into the delivery chamber 8 via the inlet valve 11 and the inlet duct 13 and metered out in the direction of arrow B during the pressure stroke of the diaphragm 10 to the left according to FIG. 1 via the outlet duct 14 and the outlet valve 12 the delivery chamber 8 is pushed out.
  • an overflow valve 15 serving for overpressure protection is provided in the housing body 2, which has a valve ball arranged in the bottom side in a blind bore 16 of the housing body 2 and loaded in the manner shown by an adjustable spring 17 15 ', the blind bore 16 being connected to the hydraulic reservoir 6 by a duct 18 and to the pressure chamber 9 by a duct 19.
  • the pressure chamber 9 is then connected to the hydraulic reservoir 6 via the channels 19, 18 and is depressurized if an inadmissibly high pressure should be built up in the pressure chamber 9 during the pressure stroke of the membrane 10.
  • a sniffer valve 21 is received in a further blind bore 20 of the housing body 2, which releases the connection of the pressure chamber 9 to the hydraulic reservoir 6 for the purpose of vacuum protection when the membrane 10 is in contact with the pressure chamber during the membrane suction stroke.
  • the blind bore 20 is connected via a channel 22 to the pressure chamber 9 and via a channel 23 to the hydraulic reservoir 6, the snifting valve 21 in the manner shown having a spring-loaded valve ball 25 resting on the underside of the bottom of an insert body 24, which at Reaches a certain preset negative pressure and accordingly connects the pressure chamber 9 to the hydraulic reservoir 6 via the channels 22, 23.
  • this sniffer valve 21 also serves to vent the pressure chamber 9, i.e. the degassing of the hydraulic fluid in the pressure chamber 9.
  • the channel 22 in the housing body 2 is designed to rise, in such a way that its geodetically lower end (left channel end in FIG. 1) with the geodetically highest point of the pressure chamber 9 and its geodetically higher end (right channel end in 1) is connected to the blind bore 20, so that a functionally reliable degassing of the hydraulic fluid or venting of the pressure chamber 9 is always achieved automatically.
  • the membrane 10 with a clamping surface 26 formed by a peripheral edge is firmly clamped between those parts of the facing end faces of the housing body 2 and the pump cover 1, which are connected to the delivery chamber 8 and the pressure chamber 9 adjoin, this membrane clamping surface 26 being inserted into an annular recess 27 formed in the end face of the housing body 2.
  • a circumferential pressure compensation chamber 28 is provided in the end face of the housing body 2, which has the shape of an annular groove and, in the exemplary embodiment shown, via a single connecting channel 29 formed in the housing body 2 with the blind bore 20 receiving the snifting valve 21 - and thus via the channel 22 with the pressure chamber 9 - is connected. This ensures that both radially outside and radially inside the membrane clamping surface 26, i.e. So both in the pressure chamber 9 and in the pressure compensation chamber 28, the pressure is always the same and the membrane clamping surface 26 is thus relieved of pressure.
  • the connecting channel 29 - like the channel 22 - is also designed to rise in the housing body 2 and is designed such that it extends from the geodetically highest point of the pressure compensation chamber 28 to the geodetically highest point of the pressure chamber 9 - namely via the blind bore 20 and the channel 22 - leads, so that a safe degassing of the pressure compensation chamber 28 is also ensured.
  • the membrane 10 additionally has an outer edge 26 'on its clamping surface 26, which has a considerably smaller thickness than the membrane main body, the thickness of this outer clamping edge 26' preferably being about 5-20% of the thickness of the membrane main body.
  • the width of the outer clamping edge 26 ' should be at least 10 times its thickness.
  • the advantage of an even greater sealing and clamping security is achieved.
  • the malfunction may occur that the pressure in the delivery chamber 8 becomes greater than in the pressure chamber 9, for example when the outlet valve 12 is stuck or when its spring breaks, etc.
  • the diaphragm 10 Similar to their movement during the suction stroke - deflected and pressed against the concave support surface of the pressure chamber 9, the clamping edge of the membrane 10 formed by the usual clamping surface 26 being excessively stressed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Reciprocating Pumps (AREA)

Description

  • Die Erfindung betrifft eine Membranpumpe gemäss dem Oberbegriff des Anspruchs 1.
  • Bei bekannten Membranpumpen dieser Art, die mit hydraulischem Membranantrieb arbeiten, sind grundsätzlich zwei Basiskonstruktionen bekannt, nämlich einerseits solche, bei denen eine oder mehrere Kunststoffmembranen zur Anwendung gelangen, und andererseits solche, bei denen Metallmembranen verwendet werden.
  • Bei denjenigen bekannten Membranpumpenkonstruktionen (GB-A-872 752), bei denen eine Kunststoffmembran, üblicherweise aus Polytetrafluoräthylen (PTFE) oder Elastomeren bestehend, zur Anwendung gelangt, ergibt sich der Vorteil einer kompakten, preisgünstigen und sehr betriebssicheren Ausführung, so dass diese heute hauptsächlich eingesetzt wird. Dies beruht darauf, dass eine Kunststoffmembran naturgemäss eine hohe Elastizität aufweist und daher sehr grosse Auslenkungen sowie kleine Durchmesser gestattet, so dass durch die Unempfindlichkeit der Kunststoffmembran gegen Oberflächenbeschädigungen und auch bei schwierigen Fördermedien, wie z.B. Suspensionen, eine sehr hohe Betriebssicherheit erreicht wird, die sich in einer Membranlebensdauer von mehr als 20000 Betriebsstunden äussert.
  • Die Membraneinspannung, die durch den zwischen Gehäusekörper und Pumpendeckel festgeklemmten Umfangsrand der Membran erreicht wird, wirkt aber bei einer derartigen Membranpumpe gleichzeitig als Abdichtung des Druckraumes zur Atmosphäre hin, so dass sich mit einer derartigen Konstruktion nur Förderdrücke bis maximal 350 bar erreichen lassen, da die Dichtheit der Membranpumpe auch bei kritischen Fördermedien, wie beispielsweise giftigen oder abrasiven Dosiermedien, gewährleistet sein muss.
  • Es müssen demgemäss für gewünschte höhere Förderdrücke von über 350 bar Membranpumpenkonstruktionen der obengenannten anderen Art, nämlich solche mit Metallmembranen, eingesetzt werden. Metallmembranen lassen jedoch naturgemäss nur kleine Auslenkungen zu und erfordern deshalb einen wesentlich grösseren Membranbiegedurchmesser als Kunststoffmembranen. Ausserdem werden höchste Anforderungen an die Bearbeitungsgüte der Dichtflächen, nämlich an die Einspannfläche der Metallmembran, sowie an die Oberflächengüte des Membranmaterials gestellt. Entsprechend dem grösseren Durchmesser der Metallmembran ergeben sich auch höhere Kräfte für die Schrauben der Membraneinspannung. Membranpumpen mit Metallmembranen sind deshalb sehr viel grösser und teurer als solche mit Kunststoffmembranen. Zudem ist die Betriebssicherheit geringer, weil Metallmembranen empfindlicher gegen Bruch sind, der z.B. leicht durch Suspensions- oder Schmutzpartikel im Fördermedium herbeigeführt werden kann.
  • Der Erfindung liegt daher die Aufgabe zugrunde, die Membranpumpe der gattungsgemässen Art zur Beseitigung der geschilderten Nachteile derart auszugestalten, dass sie sich für Förderdrücke von weit über 350 bar eignet und gleichzeitig den Einsatz von betriebssicheren, verdrängungsintensiven Kunststoffmembranen erlaubt.
  • Diese Aufgabe wird durch die Merkmale des Anspruchs 1 gelöst. Vorteilhafte Ausgestaltungen hiervon sind in den weiteren Ansprüchen angegeben.
  • Der Erfindung liegt der Gedanke zugrunde, die Einspannfläche der Membran von der Dichtfunktion, die sie bisher gleichzeitig übernehmen musste, zu entlasten, d. h. also, die Membran druckentlastet mit genau definierter Verformung zwischen Pumpendeckel und Gehäusekörper derart einzuspannen, dass sowohl radial innerhalb wie radial ausserhalb der Membraneinspannfläche stets der gleiche Druck, nämlich derjenige des Druckraums, herrscht. Dadurch ergibt sich der bedeutende Vorteil, dass nicht nur die Membraneinspannfläche keinerlei Dichtfunktion mehr übernehmen muss, sondern dass auch dann, wenn mit der Membranpumpe Förderdrücke von weit über 350 bar erzielt werden sollen, eine Kunststoffmembran zur Anwendung gelangen kann, die gegenüber der Metallmembran die bereits geschilderten Vorteile, nämlich u.a. grosse Verdrängungsintensität, Kerbunempfindlichkeit, hohe Lebensdauer, kleinen Durchmesser usw., aufweist.
  • Die Abdichtung des Druckraums der Membranpumpe zur Atmosphäre hin erfolgt in üblicher Weise durch eine gesonderte Dichtung. Eine derartige Abdichtung gestaltet sich problemlos, weil lediglich Hydraulikflüssigkeit, in der Regel Mineralöl, abzudichten ist. Somit ist die bisher schwierige Aufgabe einer sicheren Abdichtung leichtflüchtiger, aggressiver oder giftiger Fördermedien bei hohen pulsierenden Drücken auf eine technisch einfache, bewährte Lösung reduziert, nämlich der Abdichtung von Öl bei pulsierendem Druck. Dafür können bekannte Dichtelemente, z.B. 0-Ringe, verwendet werden.
  • Der radial ausserhalb der Membraneinspannfläche angeordnete umlaufende Druckausgleichsraum, der die Form einer Ringnut aufweist, ist gemäss einer bevorzugten Ausführungsform in der Stirnfläche des Gehäusekörpers vorgesehen und steht über wenigstens einen Verbindungskanal mit dem Druckraum in Verbindung. Dieser Verbindungskanal kann entweder direkt mit dem Druckraum verbunden oder aber zu einer Sackbohrung im Gehäusekörper geführt sein, die eine mit dem Hydraulikvorrat in Verbindung stehende Schnüffelventilanordnung aufnimmt und ihrerseits über einen weiteren Kanal mit dem Druckraum verbunden ist.
  • Es lassen sich daher bei der erfindungsgemäss ausgestalteten Membranpumpe betriebssichere, verdrängungsintensive Kunststoffmembranen einsetzen und gleichzeitig Förderdrücke von bis zu beispielsweise 1200 bar bei einer Membranlebensdauer bis über 20000 Betriebsstunden erzielen.
  • Die Erfindung wird im folgenden anhand der
  • Zeichnung näher erläutert. Diese zeigt in:
    • Fig. 1 schematisch im Querschnitt die Membranpumpe gemäss der Erfindung;
    • Fig. 2 vergrössert im Schnitt das Detail A der Membranpumpe gemäss Fig. 1 und
    • Fig. 3 eine abgewandelte Ausführungsform in einer der Fig. 2 ähnlichen Detaildarstellung.
  • Wie aus Fig. 1 ersichtlich, weist die dargestellte Membranpumpe ein Pumpengehäuse in Form eines durch einen Pumpendeckel 1 stirnseitig verschlossenen Gehäusekörpers 2 auf, in dem als hydraulischer Membranantrieb ein oszillierender Verdrängerkolben 3 arbeitet. Dieser ist in einer axialen Bohrung 4 des Gehäusekörpers 2 mechanisch hin- und herverschiebbar und durch eine Dichtungspackung 5 gegenüber einem Hydraulikvorrat 6 abgedichtet.
  • Der Pumpendeckel 1 ist durch Schrauben 7 stirnseitig am Gehäusekörper 2 lösbar festgelegt, wobei in den einander zugekehrten Stirnflächen des Pumpendeckels 1 und des Gehäusekörpers 2 durch entsprechend grosse, durchmessergleiche konkave Ausnehmungen ein Förderraum 8 sowie ein mit Hydraulikflüssigkeit gefüllter Druckraum 9 gebildet ist. Der Druckraum 9, der an seinem Boden mittig in die den Verdrängerkolben 3 verschiebbar führende Bohrung 4 des Gehäusekörpers 2 mündet, ist vom Förderraum 8 durch eine Kunststoffmembran 10 getrennt, die beim dargestellten Ausführungsbeispiel aus einer einzigen Membran besteht, jedoch auch aus mehreren, sandwichartig übereinandergelegten Membranen gebildet sein kann und in jedem Fall in der nachstehend beschriebenen Weise fest zwischen Pumpendeckel 1 und Gehäusekörper 2 eingespannt ist.
  • Der Pumpendeckel 1 weist ein federbelastetes Einlassventil 11 sowie ein federbelastetes Auslassventil 12 auf, wobei diese Ventile 11, 12 derart über einen Einlasskanal 13 bzw. einen Auslasskanal 14 mit dem Förderraum 8 in Verbindung stehen, dass das Fördermedium beim nach rechts gemäss Fig. 1 erfolgenden Saughub der Membran 10 in Richtung des Pfeils A über das Einlassventil 11 und den Einlasskanal 13 in den Förderraum 8 angesaugt und beim nach links gemäss Fig. 1 erfolgenden Druckhub der Membran 10 über den Auslasskanal 14 und das Auslassventil 12 in Richtung des Pfeils B dosiert aus dem Förderraum 8 herausgedrückt wird.
  • Um beim Membrandruckhub eine Überlastung der Membran 10 sowie der gesamten Membranpumpe zu verhindern, ist im Gehäusekörper 2 ein dem Überdruckschutz dienendes Überströmventil 15 vorgesehen, das eine bodenseitig in einer Sackbohrung 16 des Gehäusekörpers 2 angeordnete, in der dargestellten Weise durch eine einstellbare Feder 17 belastete Ventilkugel 15' aufweist, wobei die Sackbohrung 16 durch einen Kanal 18 mit dem Hydraulikvorrat 6 sowie durch einen Kanal 19 mit dem Druckraum 9 verbunden ist. Wie ersichtlich, wird aufgrund dieser Anordnung und Ausbildung des Überströmventils 15 der Druckraum 9 dann über die Kanäle 19,18 mit dem Hydraulikvorrat 6 verbunden und druckentlastet, wenn während des Druckhubes der Membran 10 ein unzulässig hoher Druck im Druckraum 9 aufgebaut werden sollte.
  • In entsprechender Weise ist in einer weiteren Sackbohrung 20 des Gehäusekörpers 2 ein Schnüffelventil 21 aufgenommen, das zum Zweck des Unterdruckschutzes bei der druckraumseitigen Anlage der Membran 10 während des Membransaughubes die Verbindung des Druckraumes 9 zum Hydraulikvorrat 6 freigibt. Zu diesem Zweck ist die Sackbohrung 20 über einen Kanal 22 mit dem Druckraum 9 sowie über einen Kanal 23 mit dem Hydraulikvorrat 6 verbunden, wobei das Schnüffelventil 21 in der dargestellten Weise eine federbelastete, unterseitig dem Boden eines Einsatzkörpers 24 anliegende Ventilkugel 25 aufweist, die bei Erreichen eines bestimmten voreingestellten Unterdrucks abhebt und demgemäss über die Kanäle 22, 23 die Verbindung des Druckraums 9 mit dem Hydraulikvorrat 6 herstellt.
  • Gleichzeitig dient dieses Schnüffelventil 21 auch der Entlüftung des Druckraumes 9, d.h. der Entgasung der im Druckraum 9 befindlichen Hydraulikflüssigkeit. Zu diesem Zweck ist der Kanal 22 im Gehäusekörper 2 ansteigend verlaufend ausgebildet, und zwar derart, dass sein geodätisch tiefer liegendes Ende (linkes Kanalende in Fig. 1) mit der geodätisch höchsten Stelle des Druckraums 9 und sein geodätisch höher liegendes Ende (rechtes Kanalende in Fig. 1) mit der Sackbohrung 20 verbunden ist, so dass stets selbsttätig eine funktionssichere Entgasung der Hydraulikflüssigkeit bzw. Entlüftung des Druckraums 9 erreicht ist.
  • Wie aus Fig. 1 und besonders deutlich aus Fig. 2 ersichtlich, ist die Membran 10 mit einer durch einen Umfangsrand gebildeten Einspannfläche 26 fest zwischen denjenigen Teilen der einander zugekehrten Stirnflächen von Gehäusekörper 2 und Pumpendeckel 1 eingespannt, die an den Förderraum 8 und den Druckraum 9 angrenzen, wobei diese Membraneinspannfläche 26 in eine in der Stirnfläche des Gehäusekörpers 2 gebildete ringförmige Ausnehmung 27 eingelegt ist. Radial ausserhalb dieser Membraneinspannfläche 26 ist in der Stirnfläche des Gehäusekörpers 2 ein umlaufender Druckausgleichsraum 28 vorgesehen, der die Form einer Ringnut aufweist und beim dargestellten Ausführungsbeispiel über einen einzigen, im Gehäusekörper 2 gebildeten Verbindungskanal 29 mit der das Schnüffelventil 21 aufnehmenden Sackbohrung 20 - und damit über den Kanal 22 mit dem Druckraum 9 - in Verbindung steht. Damit ist gewährleistet, dass sowohl radial ausserhalb als auch radial innerhalb der Membraneinspannfläche 26, d.h. also sowohl im Druckraum 9 als auch im Druckausgleichsraum 28, stets der gleiche Druck herrscht und somit die Membraneinspannfläche 26 druckentlastet ist.
  • Wie aus der Zeichnung ersichtlich, ist der Verbindungskanal 29 - genau wie der Kanal 22 - ebenfalls ansteigend verlaufend im Gehäusekörper 2 ausgebildet und derart angelegt, dass er von der geodätisch höchsten Stelle des Druckausgleichsraumes 28 zur geodätisch höchsten Stelle des Druckraumes 9 - nämlich über die Sackbohrung 20 und den Kanal 22 - führt, so dass auch dadurch für eine sichere Entgasung des Druckausgleichsraumes 28 gesorgt ist.
  • Die Abdichtung des Druckraums 9 bzw. des Druckausgleichsraums 28 nach aussen erfolgt über eine gesonderte Ringdichtung 30, die radial ausserhalb des Druckausgleichsraums 28 in eine Ringnut 31 in der Stirnfläche des Gehäusekörpers 2 eingelegt ist.
  • Bei der abgewandelten Ausführungsform gemäss Fig. 3 weist die Membran 10 an ihrer Einspannfläche 26 zusätzlich einen äusseren Rand 26' auf, der eine beträchtlich geringere Dicke als der Membranhauptkörper besitzt, wobei die Dicke dieses äusseren Einspannrandes 26' bevorzugt etwa 5-20% der Dicke des Membranhauptkörpers beträgt. Ausserdem soll die Breite des äusseren Einspannrandes 26' wenigstens dem 10fachen seiner Dicke entsprechen.
  • Mit einer derartigen Ausgestaltung der Membraneinspannfläche 26 einschliesslich verdünntem äusserem Einspannrand 26' wird der Vorteil einer noch grösseren Abdicht- und auch Einspannsicherheit erreicht. Es kann nämlich, speziell auch im Betriebsstillstand der Membranpumpe, der Störfall eintreten, dass der Druck im Förderraum 8 grösser wird als im Druckraum 9, beispielsweise wenn das Auslassventil 12 klemmt oder wenn dessen Feder bricht usw. In solch einem Störfall wird dann die Membran 10 - ähnlich ihrer Bewegung beim Saughub - ausgelenkt und an die konkave Abstützfläche des Druckraums 9 gedrückt, wobei der durch die übliche Einspannfläche 26 gebildete Einspannrand der Membran 10 über Gebühr beansprucht wird. Dies ergibt sich deswegen, weil der in diesem Augenblick im Förderraum 8 herrschende Druck die förderseitige Membranfläche beaufschlagt, gleichzeitig jedoch nicht durch einen entsprechenden Druck im Druckraum 9 kompensiert ist. Das hat zur Folge, dass die derart beaufschlagte Membran 10 an ihrer üblichen Einspannfläche 26 förderseitig geringfügig verformt wird, so dass durch den somit entstehenden Spalt Fördermedium vom Förderraum 8 in den Druckraum 9 kriechen könnte.
  • Derartiges wird jedoch wirksam durch den zusätzlich zur üblichen Einspannfläche 26 vorgesehenen, verdünnt ausgebildeten äusseren Membraneinspannrand 26' verhindert, da dieser aufgrund seiner geringen Dicke - in Verbindung mit einer bestimmten Mindestbreite - gleichsam einen Klebeffekt ausübt, weil das dünne Membranmaterial an den durch die übliche Oberflächenrauhigkeit bedingten kleinen Vorsprüngen bzw. Erhebungen der metallischen Dichtflächen von Pumpendeckel 1 und Gehäusekörper 2 anhaftet und somit an einer unerwünschten Wander- bzw. Fliessbewegung gehindert wird. Somit kann auch im genannten Störfall am äusseren Membraneinspannrand 26' vorbei keinerlei Fördermedium vom Förderraum 8 in den Druckraum 9 eindringen.

Claims (6)

1. Membranpumpe mit wenigstens einer Membran (10), die einen Förderraum (8) von einem mit Hydraulikflüssigkeit gefüllten Druckraum (9) trennt und mit einer durch ihren Umfangsrand gebildeten Einspannfläche (26) fest zwischen einem Gehäusekörper (2) sowie einem Pumpendekkel (1) eingespannt ist, mit einem hydraulischen Membranantrieb in Form eines oszillierenden Verdrängerkolbens (3), der im Gehäusekörper (2) zwischen dem Druckraum (9) und einem Hydraulikvorrat (6) verschieblich ist, und mit einer zwischen Pumpendeckel (1) und Gehäusekörper (2) angeordneten Ringdichtung (30), die den Druckraum (9) nach aussen abdichtet, dadurch gekennzeichnet, dass radial ausserhalb der Membraneinspannfläche (26, 26') ein umlaufender Druckausgleichsraum (28) in Form einer Ringnut vorgesehen ist, der über wenigstens einen Verbindungskanal (29) mit dem Druckraum (9) in Verbindung steht, und dass die zwischen Pumpendeckel (1) und Gehäusekörper (2) angeordnete Ringdichtung (30) radial ausserhalb des Druckausgleichsraums (28) vorgesehen ist.
2. Membranpumpe nach Anspruch 1, dadurch gekennzeichnet, dass die als Druckausgleichsraum (28) dienende Ringnut in der Stirnfläche des Gehäusekörpers (2) vorgesehen und wenigstens an einer Stelle über den ebenfalls im Gehäusekörper (2) verlaufenden Verbindungskanal (29) mit dem Druckraum (9) verbunden ist.
3. Membranpumpe nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Verbindungskanal (29) von der geodätisch höchsten Stelle des Druckausgleichsraums (28) zu der geodätisch höchsten Stelle des Druckraums (9, 22, 20) geführt ist.
4. Membranpumpe nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Membran (10) am äusseren Rand (26') ihrer Einspannfläche (26) eine beträchtlich geringere Dicke als im Bereich ihres Hauptkörpers aufweist.
5. Membranpumpe nach Anspruch 4, dadurch gekennzeichnet, dass die Dicke des verdünnt ausgebildeten Membraneinspannrandes (26') etwa 5-20% der Dicke des Hauptkörpers der Membran (10) beträgt.
6. Membranpumpe nach Anspruch 4 oder 5, dadurch gekennzeichnet, dass die Breite des äusseren Einspannrandes (26') der Membran (10) wenigstens dem 10fachen seiner Dicke entspricht.
EP81110720A 1980-12-29 1981-12-23 Membranpumpe mit druckentlastet eingespannter Membran Expired EP0055467B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT81110720T ATE10670T1 (de) 1980-12-29 1981-12-23 Membranpumpe mit druckentlastet eingespannter membran.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3049341 1980-12-29
DE3049341 1980-12-29

Publications (2)

Publication Number Publication Date
EP0055467A1 EP0055467A1 (de) 1982-07-07
EP0055467B1 true EP0055467B1 (de) 1984-12-05

Family

ID=6120468

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81110720A Expired EP0055467B1 (de) 1980-12-29 1981-12-23 Membranpumpe mit druckentlastet eingespannter Membran

Country Status (4)

Country Link
US (1) US4430048A (de)
EP (1) EP0055467B1 (de)
JP (1) JPS57146078A (de)
AT (1) ATE10670T1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023001840A1 (de) * 2021-07-23 2023-01-26 ventUP GmbH Dosierer mit gekapselten funktionselementen

Families Citing this family (81)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3446952A1 (de) * 1984-12-21 1986-07-10 Lewa Herbert Ott Gmbh + Co, 7250 Leonberg Membranpumpe mit umlaufspuelung
EP0248514B1 (de) * 1986-06-02 1990-08-01 TECHNICON INSTRUMENTS CORPORATION(a Delaware corporation) System und Verfahren zur Abgabe von abgemessenen Flüssigkeitsmengen
JPH0198773A (ja) * 1987-09-22 1989-04-17 Yoshinobu Koiwa バルブ装置
US4821688A (en) * 1988-07-12 1989-04-18 Brunswick Corporation Automatic oil-fuel mixer with auxiliary chamber
US4975026A (en) * 1989-02-17 1990-12-04 Energy Innovations, Inc. Free-piston heat pump
JPH04445A (ja) 1990-04-17 1992-01-06 Fuji Photo Film Co Ltd ハロゲン化銀カラー写真感光材料の処理方法
US5262068A (en) * 1991-05-17 1993-11-16 Millipore Corporation Integrated system for filtering and dispensing fluid having fill, dispense and bubble purge strokes
DE9201455U1 (de) * 1992-02-06 1992-04-02 Fa. Andreas Stihl, 7050 Waiblingen Membrankraftstoffpumpe für einen Membranvergaser
US5280924A (en) * 1992-02-28 1994-01-25 Dresser-Rand Company Automatic seal depressurization system
JPH062664A (ja) * 1992-06-22 1994-01-11 Nippon Soken Inc ダイアフラム式ポンプ
DE4420863C2 (de) * 1994-06-15 1998-05-14 Ott Kg Lewa Gesteuerte Schnüffelbehinderung für Hochdruck-Membranpumpen
US5934885A (en) * 1994-10-07 1999-08-10 Bayer Corporation Reagent pump assembly
IL115327A (en) * 1994-10-07 2000-08-13 Bayer Ag Diaphragm pump
US5624246A (en) * 1995-09-25 1997-04-29 Gas Research Institute Hydraulic ammonia solution pump
US6540833B1 (en) * 1998-01-09 2003-04-01 Fastar, Ltd. Moving head coating apparatus and method
EP1058006B1 (de) * 1998-02-17 2012-09-12 Nikkiso Company, Ltd. Membranpumpe
DE19840365A1 (de) * 1998-09-04 2000-03-09 Bran & Luebbe Membrankolbenpumpe
CN100371595C (zh) * 1999-11-12 2008-02-27 日机装株式会社 膜片型往复泵
US6497676B1 (en) 2000-02-10 2002-12-24 Baxter International Method and apparatus for monitoring and controlling peritoneal dialysis therapy
DE10012904B4 (de) * 2000-03-16 2004-08-12 Lewa Herbert Ott Gmbh + Co Membraneinspannung mit Elastizitätsausgleich
DE10056568C1 (de) * 2000-11-15 2002-01-03 Horst Kleibrink Vorrichtung zur Einhaltung der korrekten Ölüberströmmenge an Membrankompressoren
JP2002257050A (ja) * 2001-03-02 2002-09-11 Nikkiso Co Ltd ダイアフラムポンプ
US20030017056A1 (en) * 2001-07-19 2003-01-23 Baxter International Inc. Pump having flexible liner and merchandiser having such a pump
US6905314B2 (en) 2001-10-16 2005-06-14 Baxter International Inc. Pump having flexible liner and compounding apparatus having such a pump
US20030017066A1 (en) * 2001-07-19 2003-01-23 Baxter International Inc. Apparatus, flexible bag and method for dispensing
US6769231B2 (en) 2001-07-19 2004-08-03 Baxter International, Inc. Apparatus, method and flexible bag for use in manufacturing
DE10209758B4 (de) * 2002-03-05 2004-11-18 Horst Kleibrink Verfahren zur Optimierung der Gasströmung innerhalb eines Membrankompressors
US20030220607A1 (en) * 2002-05-24 2003-11-27 Don Busby Peritoneal dialysis apparatus
US6939111B2 (en) * 2002-05-24 2005-09-06 Baxter International Inc. Method and apparatus for controlling medical fluid pressure
US7175606B2 (en) 2002-05-24 2007-02-13 Baxter International Inc. Disposable medical fluid unit having rigid frame
US7153286B2 (en) * 2002-05-24 2006-12-26 Baxter International Inc. Automated dialysis system
ES2366781T3 (es) 2002-07-19 2011-10-25 Baxter International Inc. Sistemas y métodos para la diálisis peritoneal.
US7238164B2 (en) * 2002-07-19 2007-07-03 Baxter International Inc. Systems, methods and apparatuses for pumping cassette-based therapies
US7007824B2 (en) 2003-01-24 2006-03-07 Baxter International Inc. Liquid dispenser and flexible bag therefor
US7090474B2 (en) * 2003-05-16 2006-08-15 Wanner Engineering, Inc. Diaphragm pump with overfill limiter
MX351817B (es) 2003-10-28 2017-10-30 Baxter Healthcare Sa Metodos mejorados de cebado, integridad y altura sobre la cabeza y aparatos para sistemas de fluidos medicinales.
US8029454B2 (en) 2003-11-05 2011-10-04 Baxter International Inc. High convection home hemodialysis/hemofiltration and sorbent system
US7329104B2 (en) * 2004-03-02 2008-02-12 Drummond Scientific Company Split-housing pipette pump
US8454324B2 (en) * 2004-03-18 2013-06-04 Precision Dispensing Systems Limited Pump
NZ531822A (en) * 2004-03-18 2007-08-31 Prec Dispensing Systems Ltd A membrane pump
JP4722654B2 (ja) * 2004-12-20 2011-07-13 ルネサスエレクトロニクス株式会社 オシレータ及びこれを用いたチャージポンプ回路
US7442035B2 (en) * 2005-04-26 2008-10-28 Gei Development, Llc Gas induction bustle for use with a flare or exhaust stack
US8197231B2 (en) 2005-07-13 2012-06-12 Purity Solutions Llc Diaphragm pump and related methods
JP4792598B2 (ja) * 2008-03-24 2011-10-12 株式会社日本製鋼所 水素透過モジュールおよびその使用方法
US8062513B2 (en) 2008-07-09 2011-11-22 Baxter International Inc. Dialysis system and machine having therapy prescription recall
US9514283B2 (en) 2008-07-09 2016-12-06 Baxter International Inc. Dialysis system having inventory management including online dextrose mixing
EP2154371B1 (de) * 2008-08-14 2018-09-19 Bran + Lübbe GmbH Pumpenvorrichtung
TW201024526A (en) * 2008-12-23 2010-07-01 Cheng-Chin Kung Cooling and circulating system for engine oil
GB2470348B (en) * 2009-04-29 2011-06-08 Flotronic Pumps Ltd Double-diaphragm pump with unidirectional valve arrangement
GB0915327D0 (en) * 2009-09-03 2009-10-07 Quanta Fluid Solution Ltd Pump
DE102010039829A1 (de) * 2010-08-26 2012-03-01 Prominent Dosiertechnik Gmbh Membranpumpe mit trägheitsgesteuertem Leckergänzungsventil
US8465025B2 (en) 2010-08-31 2013-06-18 Oshkosh Corporation Gas spring assembly for a vehicle suspension
US8596648B2 (en) 2010-10-22 2013-12-03 Oshkosh Corporation Pump for vehicle suspension system
CN103814194B (zh) 2011-08-22 2016-10-19 康明斯排放处理公司 用于排气后处理系统的尿素投配的装置、方法及系统
US9610392B2 (en) 2012-06-08 2017-04-04 Fresenius Medical Care Holdings, Inc. Medical fluid cassettes and related systems and methods
ITMO20120232A1 (it) * 2012-09-24 2014-03-25 Air Spraying Srl Pompa a pistone membrana
GB201305755D0 (en) 2013-03-28 2013-05-15 Quanta Fluid Solutions Ltd Re-Use of a Hemodialysis Cartridge
GB201314512D0 (en) 2013-08-14 2013-09-25 Quanta Fluid Solutions Ltd Dual Haemodialysis and Haemodiafiltration blood treatment device
EA201691286A1 (ru) * 2013-12-20 2016-12-30 Тетра Лаваль Холдингз Энд Файнэнс С.А. Кондуктометрический датчик и насос, содержащий такой датчик
GB201409796D0 (en) 2014-06-02 2014-07-16 Quanta Fluid Solutions Ltd Method of heat sanitization of a haemodialysis water circuit using a calculated dose
DE102014109801A1 (de) * 2014-07-11 2016-01-14 Prominent Gmbh Membranpumpe mit reduzierter Leckageergänzung im Überlastfall
DE102014013779A1 (de) * 2014-09-17 2016-03-17 Knf Flodos Ag Membranpumpe
US9964106B2 (en) 2014-11-04 2018-05-08 Wanner Engineering, Inc. Diaphragm pump with dual spring overfill limiter
WO2016077751A1 (en) * 2014-11-14 2016-05-19 Checkpoint Fluidic Systems International, Ltd. Metallic sandwich diaphragm pump mechanism
DE102015005692A1 (de) * 2015-05-06 2016-11-10 Mann + Hummel Gmbh Druckregelventil
DK201570293A1 (en) 2015-05-19 2016-12-12 Nel Hydrogen As Diaphragm compressor with an oblong shaped chamber
GB201523104D0 (en) 2015-12-30 2016-02-10 Quanta Fluid Solutions Ltd Dialysis machine
GB2547214A (en) 2016-02-10 2017-08-16 Quanta Fluid Solutions Ltd Membrane pump usage condition detection
US9890024B2 (en) 2016-04-08 2018-02-13 Oshkosh Corporation Leveling system for lift device
GB201622119D0 (en) 2016-12-23 2017-02-08 Quanta Dialysis Tech Ltd Improved valve leak detection system
GB201701740D0 (en) 2017-02-02 2017-03-22 Quanta Dialysis Tech Ltd Phased convective operation
GB201705273D0 (en) 2017-03-31 2017-05-17 Quanta Dialysis Tech Ltd Data storage amd exchange by medical device components
US11179516B2 (en) 2017-06-22 2021-11-23 Baxter International Inc. Systems and methods for incorporating patient pressure into medical fluid delivery
GB201710546D0 (en) 2017-06-30 2017-08-16 Quanta Dialysis Tech Ltd Dialysis systems, devices and methods
USD907211S1 (en) 2017-09-28 2021-01-05 Quanta Dialysis Technologies Ltd. Dialysis machine
US11434902B2 (en) * 2019-03-11 2022-09-06 Ingersoll-Rand Industrial U.S., Inc. Electric diaphragm pump with offset slider crank
GB2584335A (en) 2019-05-31 2020-12-02 Quanta Dialysis Technologies Ltd Source container connector
DE102022110332B4 (de) 2022-04-28 2025-09-18 Thomas Magnete Gmbh Membranpumpe mit innerhalb von Pumpkammern angeordnetem Antrieb
CN115217747B (zh) * 2022-08-19 2024-04-30 隋斌 隔膜压缩机及其缸体结构
CN116906315A (zh) * 2023-07-07 2023-10-20 中鼎恒盛气体设备(芜湖)股份有限公司 一种隔膜压缩机膜片及密封圈破损检测装置
WO2025068885A2 (en) * 2023-09-29 2025-04-03 Precision Planting Llc Agricultural sample processing and analysis system and related methods

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2202313A (en) 1937-11-10 1940-05-28 Marvin H Grove Fluid pressure regulator
US2348248A (en) 1941-08-14 1944-05-09 Olin S Elliott Automatic valve for pressure type atomizers
US2578746A (en) 1946-12-12 1951-12-18 Mills Ind Inc Fluid pump
US2693827A (en) 1948-06-24 1954-11-09 Hays Corp Metal diaphragm unit
US2575398A (en) 1949-09-26 1951-11-20 Schroeder John Diaphragm pump
DE874709C (de) * 1950-04-16 1953-04-27 Werner Dr-Ing Zarnack Hochdruckpumpe
GB702518A (en) * 1951-08-16 1954-01-20 Bataafsche Petroleum Improvements in or relating to apparatus comprising a vessel in which compartments are formed by a flexible diaphragm
US2907339A (en) 1953-03-27 1959-10-06 Phillips Petroleum Co Differential refractometer
US2916255A (en) 1957-02-18 1959-12-08 Koehler Aircraft Products Comp Diaphragm valve
DE1095123B (de) * 1957-06-01 1960-12-15 Friedrich Wilhelm Pleuger Tauchpumpe mit Membrankolbenantrieb
GB872752A (en) * 1959-04-29 1961-07-12 Wm Butler & Co Bristol Ltd Improvements relating to hydraulically operated pumps
US3149469A (en) * 1962-04-27 1964-09-22 Milton Roy Co Controlled volume pump
US3354831A (en) * 1966-11-04 1967-11-28 Weatherhead Co Piston diaphragm pump
US3467017A (en) * 1968-02-19 1969-09-16 Yarway Corp Hydraulic actuator
US3661060A (en) 1970-08-05 1972-05-09 Duriron Co Diaphragms for high pressure compressors and pumps
JPS494806A (de) * 1972-04-19 1974-01-17
JPS5040244A (de) * 1973-08-15 1975-04-12

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023001840A1 (de) * 2021-07-23 2023-01-26 ventUP GmbH Dosierer mit gekapselten funktionselementen

Also Published As

Publication number Publication date
US4430048A (en) 1984-02-07
EP0055467A1 (de) 1982-07-07
ATE10670T1 (de) 1984-12-15
JPS57146078A (en) 1982-09-09
JPS6331673B2 (de) 1988-06-24

Similar Documents

Publication Publication Date Title
EP0055467B1 (de) Membranpumpe mit druckentlastet eingespannter Membran
EP0547404B1 (de) Hydraulisch angetriebene Membranpumpe mit Membranhubbegrenzung
DE10012902B4 (de) Atmungsfreie Membraneinspannung
DE10012904B4 (de) Membraneinspannung mit Elastizitätsausgleich
EP0418644B1 (de) Membranpumpe mit mechanisch angetriebener Membran
DE3446914C2 (de)
DE69520476T2 (de) Selbstentlüftende Dichtung
EP0057288B1 (de) Zweizylinder-Dickstoffpumpe, vorzugsweise Betonpumpe mit einem von einer zylinderseitigen Brillenplatte abwechselnd schwenkenden Schaltorgan
EP0256221A1 (de) Anordnung zur Abdichtung einer Stange
DE2355191C3 (de) Kolbenpumpe
DE3151764C2 (de) Membranpumpe mit druckentlastet eingespannter Membran
DE4139703A1 (de) Hochdruck-fluidregler
DE10125669B4 (de) Pumpe, insbesondere Plungerpumpe
DE102005031422C5 (de) Systemtrenner
EP0464165B1 (de) Höchstdruckplungerpumpe
EP3978751B1 (de) Verbundmembran für membranpumpen
DE2211415A1 (de) Ventil fur Pumpen, Kompressoren od dgl
DE10143978B4 (de) Hydraulisch angetriebene Membranpumpe mit vorgespannter Membran
EP0925453B1 (de) Flügelzellenpumpe
EP0342346B1 (de) Zahnradpumpe
DE2123140B2 (de) Dichtungsanordnung für eine hin- und hergehende Stange
DE102017112110A1 (de) Plungerpumpe sowie Verwendung einer Plungerpumpe
DE102004055493B3 (de) Druckunterstützte Membraneinspannung
DE2710428A1 (de) Plungerpumpe
DE3213325A1 (de) Pumpe, insbesondere schmiermittelpumpe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19821230

ITF It: translation for a ep patent filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 10670

Country of ref document: AT

Date of ref document: 19841215

Kind code of ref document: T

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
EPTA Lu: last paid annual fee
EAL Se: european patent in force in sweden

Ref document number: 81110720.0

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19951123

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19951201

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19951204

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19951220

Year of fee payment: 15

Ref country code: NL

Payment date: 19951220

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19960109

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19960111

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19961223

Ref country code: AT

Effective date: 19961223

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19961223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19961224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19961231

Ref country code: BE

Effective date: 19961231

Ref country code: CH

Effective date: 19961231

BERE Be: lapsed

Owner name: LEWA HERBERT OTT G.M.B.H. + CO.

Effective date: 19961231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19970701

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19961223

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19970829

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19970701

EUG Se: european patent has lapsed

Ref document number: 81110720.0

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19951231

Year of fee payment: 15