DE1235879B - Verfahren zur Herstellung von Alkoholen durch katalytische Hydrierung von Carbonsaeuren - Google Patents

Verfahren zur Herstellung von Alkoholen durch katalytische Hydrierung von Carbonsaeuren

Info

Publication number
DE1235879B
DE1235879B DEB75933A DEB0075933A DE1235879B DE 1235879 B DE1235879 B DE 1235879B DE B75933 A DEB75933 A DE B75933A DE B0075933 A DEB0075933 A DE B0075933A DE 1235879 B DE1235879 B DE 1235879B
Authority
DE
Germany
Prior art keywords
parts
acid
catalyst
water
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
DEB75933A
Other languages
English (en)
Inventor
Dr Karl Adam
Dr Erich Haarer
Dr Konrad Dorfner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Priority to DEB75933A priority Critical patent/DE1235879B/de
Priority to CH340665A priority patent/CH444834A/de
Priority to US439439A priority patent/US3478112A/en
Priority to GB11040/65A priority patent/GB1094727A/en
Priority to NL6503332A priority patent/NL6503332A/xx
Priority to BE661258D priority patent/BE661258A/xx
Priority to FR9533A priority patent/FR1426720A/fr
Publication of DE1235879B publication Critical patent/DE1235879B/de
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • C07C29/136Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
    • C07C29/147Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of carboxylic acids or derivatives thereof
    • C07C29/149Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of carboxylic acids or derivatives thereof with hydrogen or hydrogen-containing gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/18Arsenic, antimony or bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium
    • B01J23/8892Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/16Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr
    • B01J27/18Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr with metals other than Al or Zr
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/17Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrogenation of carbon-to-carbon double or triple bonds
    • C07C29/177Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrogenation of carbon-to-carbon double or triple bonds with simultaneous reduction of a carboxy group
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/001Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by modification in a side chain
    • C07C37/002Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by modification in a side chain by transformation of a functional group, e.g. oxo, carboxyl
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated

Description

BUNDESREPUBLIK DEUTSCHLAND
,, DEUTSCHES
PATENTAMT
AUSLEGESCHRIFT
Int. CL:
C07c -
Deutsche Kl.: 12 ο-5/02
Nummer: 1 235 879
Aktenzeichen: B 75933 IV b/12 ο
Anmeldetag: 17. März 1964
Auslegetag: 9. März 1967
Es ist bekannt, daß sich Carbonsäureester durch katalytische Hydrierung in Alkohole überführen lassen. Die katalytische Reduktion der freien Carbonsäuren zu Alkoholen ist jedoch bis jetzt noch nicht technisch befriedigend und wirtschaftlich gelungen. Die Katalysatoren, in erster Linie Nichtedelmetalle und bzw. oder deren Oxyde, werden durch Carbonsäuren chemisch so stark angegriffen, daß sie nach wenigen Tagen ihre ursprüngliche Aktivität verlieren und danach bald völlig unwirksam werden. Ein anderer Nachteil der bekannten Katalysatoren ist, daß sie nur bei verhältnismäßig geringem Durchsatz einen praktisch vollständigen Umsatz ermöglichen.
Es wurde nun ein Verfahren zur Herstellung von Alkoholen durch katalytische Hydrierung von Carbonsäuren bei erhöhter Temperatur, vorzugsweise unter erhöhtem Druck und gegebenenfalls in Anwesenheit eines inerten Lösungsmittels, gefunden, welches dadurch gekennzeichnet ist, daß man einen Kobaltkatalysator verwendet, der einen Gehalt an Kupfer, Mangan und bzw. oder Chrom aufweist.
Besonders günstige Ergebnisse liefern Katalysatoren, die zusätzlich eine anorganische Säure oder ein Salz einer solchen Säure enthalten. Bevorzugte Zusatzstoffe dieser Art sind solche anorganischen Säuren, die Polysäuren zu bilden vermögen, und deren Alkali-, Erdalkali- oder Erdmetallsalze.
Die Katalysatoren, die man bei dem Verfahren nach der Erfindung verwendet, zeichnen sich durch hohe Aktivität und lange Lebensdauer aus. Sie ermöglichen darüber hinaus hohe Durchsätze bei praktisch vollständigem Umsatz.
Geeignete Ausgangsstoffe für das neue Verfahren sind beispielsweise aliphatische Mono- und Polycarbonsäuren, ein- oder mehrkernige aromatische Mono- und Polycarbonsäuren, araliphatische Mono- und Polycarbonsäuren und cycloaliphatische Mono- und Polycarbonsäuren. Die Ausgangsstoffe können, von den Carboxylgruppen abgesehen, Kohlenwasserstoffstruktur besitzen oder zusätzlich inerte Substituenteo tragen. Als solche seien Hydroxy- oder Aminogruppen genannt. Wenn in den Ausgangsstoffen unter den Reaktionsbedingungen hydrierbare Gruppen vorhanden sind, wie olefinische Doppelbindungen, Nitro- oder Carbonylgruppen, so werden diese in die entsprechenden Strukturen umgewandelt. Von den geeigneten Ausgangsstoffen seien beispielsweise genannt: Essigsäure, Propionsäure, Buttersäure, Stearinsäure, Ölsäure, Bernsteinsäure, Adipinsäure, Dodecandisäure-(l,12), Benzoesäure, Terephthalsäure, Isophthalsäure, Naphthalin-(l,8)-dicarbonsäure, Phenylessigsäure, Cyclohexancarbonsäure, Hexahydro-Verfahren zur Herstellung von Alkoholen durch
katalytische Hydrierung von Carbonsäuren
Anmelder:
Badische Anilin- & Soda-Fabrik
Aktiengesellschaft. Ludwigshafen/Rhein
Als Erfinder benannt:
Dr. Karl Adam,
Dr. Erich Haarer, Ludwigshafen/Rhein;
Dr. Konrad Dorfner, Mannheim-Käfertal
terephthalsäure, ε-Hydroxycapronsäure, p-Nitrobenzoesäure. Salicylsäure, m-Aminobenzoesäure, ^-Aminopropionsäure und Brenztraubensäure. Selbstverständlich lassen sich auch Gemische von Carbonsäuren hydrieren. Ein Beispiel dieser Art ist das technische Carbonsäuregemisch aus Mono- und Dicarbonsäuren, das bei der katalytischen Oxydation von Cyclohexan mit Luft als Nebenprodukt anfällt.
Bevorzugt sind solche Katalysatoren, in denen das Gewichtsverhältnis des Kobalts zu Kupfer, Mangan und bzw. oder Chrom zwischen 1,5:1 und 300:1 liegt, wobei die genannten Komponenten als im metallischen Zustand befindlich angenommen sind. Bei den Katalysatoren, die außer Kobalt nur eine der genannten anderen Komponenten enthalten, ist Kupfer zweckmäßig in größeren Mengen vorhanden als Mangan oder Chrom. Das Gewichtsverhältnis Kobalt zu Kupfer liegt vorzugsweise zwischen 1,5:1 und 50:1. während das Gewichtsverhältnis Kobalt zu Mangan oder Chrom vorteilhaft zwischen 9:1 und 300: 1 gewählt wird. Besonders geeignete Katalysatoren enthalten Kobalt, Kupfer und Mangan, wobei das Ge-Wichtsverhältnis des Kobalts zu den beiden anderen Komponenten zwischen 1,5:1 und 50:1 liegt. In diesen Katalysatoren befindet sich das Kupfer vorteilhaft in mindestens der gleichen Gewichtsmenge wie das Mangan. Katalysatoren, in denen das Gewichtsverhältnis des Kupfers zum Mangan zwischen 2:1 und 8: 1 liegt, haben sich als besonders brauchbar erwiesen.
Geeignete Zusatzstoffe sind beispielsweise Schwefelsäure, Borsäure, Phosphorsäure, Molybdänsäure, Vanadinsäure und Wolframsäure sowie deren Salze mit Metallen der IA-, ΓΙΑ- und IIIA-Gruppe des Periodensystems der Elemente. Im einzelnen seien beispiels-
709 518/545
*· arfflii j -1
weise Trinatriumphosphat, Natriumtetraborat, Kaliumdihydrogenphosphat, Calciumhydrogenphosphat, Magiiesiumhydrogenborat, Aluminiumphosphat, Natriummolybdat, Ammoniumvanadat und Natriumwolframat erwähnt. Man erzielt häufig besonders gute Ergebnisse mit Katalysatoren, die eine anorganische Säure und ein Salz dieser Säure, beispielsweise Phosphorsäure und ein Phosphat, enthalten. Der Anteil der anorganischen Säure und bzw. oder der Salze beträgt im allgemeinen 0,1 bis 15 Gewichtsprozent, be- ίο zogen auf Kobalt.
Die Katalysatoren können auf inerte Träger, wie Kieselsäure, Bauxit, Fullererde oder Aluminiumoxyd, aufgebracht sein. Man stellt Trägerkatalysatoren beispielsweise her, indem man die Trägerstoffe mit Lösungen von Salzen der betreffenden Metalle, vorteilhaft der Nitrate, sowie gegebenenfalls mit einer Lösung der anorganischen Säure oder ihres Salzes tränkt, trocknet und die Metallsalze thermisch in die Oxyde zerlegt. Es ist auch möglich, die aktiven Bestandteile des Katalysators in Form von Hydroxyden oder Carbonaten auf dem Träger niederzuschlagen und diese dann in die Oxyde umzuwandeln. Die Trägerkatalysatoren werden vorteilhaft vor Gebrauch bei 180 bis 4000C mit Wasserstoff behandelt, wobei die Oxyde zumindest »5 teilweise in die Metalle übergehen.
Besonders aktiv sind trägerfreie Katalysatoren. Man kann beispielsweise wäßrige Lösungen von Kobaltsalzen und von Salzen der genannten anderen. Metalle als Hydroxyde oder Carbonate fällen. Bei der Fällung können die erwähnten anorganischen Säuren bzw. deren Salze zugegen sein. Es ist aber auch möglich, die anorganischen Säuren bzw. deren Salze dem Gemisch der Hydroxyde und bzw. oder Carbonate zuzusetzen. Auf jeden Fall wird die Fällung zweckmäßig zu FormJcörpern gepreßt, die man auf Temperaturen, die vorteilhaft zwischen 250 und 9000C, insbesondere zwischen 400 und 6000C liegen, erhitzt und in die Oxyde umwandelt. Auch die trägerfreien Katalysatoren werden im allgemeinen vor Gebrauch durch Behandeln mit Wasserstoff bei 180 bis 4000C zumindest teilweise in die metallische Form übergeführt.
Die erwähnten anorganischen Säuren bzw. ihre Salze lassen sich aus den wie beschrieben hergestellten Katalysatoren selbst bei höherer Temperatur mit Wasser nicht herauslösen.
Man arbeitet bei dem neuen Verfahren vorzugsweise bei Temperaturen zwischen 120 und 3000C. Bei 140 bis 2200C ist die Reaktionsgeschwindigkeit so groß, daß die Carbonsäuren die Katalysatoren praktisch nicht mehr chemisch angreifen.
Die Hydrierung wird zweckmäßig bei erhöhtem Wasserstoffdruclc durchgeführt. Man wendet im allgemeinen Drücke von 50 bis 700 at an.
Es hat sich als besonders zweckmäßig erwiesen, die Hydrierung in Gegenwart von Wasser durchzuführen. Vorzugsweise stellt man einen Wassergehalt von 0,5 bis 70 Gewichtsprozent, bezogen auf die Carbonsäure, ein. Ein bevorzugter Bereich liegt zwischen 3 und 40 Gewichtsprozent.
Eine andere zweckmäßige Maßnahme besteht darin, daß man den Ausgangsstoff mit dem Alkohol, der daraus entsteht, verdünnt. Wenn man das Reaktionsprodukt zurückführt, vorteilhaft im Gewichtsverhältnis von Ausgangsstoff zu rückgeführtem Reaktionsprodukt wie 1: 0,5- bis 1:10, erreicht man nicht nur eine gleichmäßige Temperaturverteilung und damit eine gleichmäßige schnelle Hydrierung, sondern auch eine Erhöhung der Reaktionsgeschwindigkeit und damit eine weitere Verminderung des chemischen Angriffs der Katalysatoren. An sich hätte man eine Rückführung von Reaktionsprodukt vermeiden sollen, weil bekanntlich aus Carbonsäuren und Alkoholen unter den Reaktionsbedingungen Ester entstehen. Bemerkenswerterweise spielt diese unerwünschte Konkurrenzreaktion keine Rolle: im Gegenteil, kleine Mengen an Estern, die in den Ausgangsstoffen enthalten sein können, werden ebenfalls zu Alkoholen hydriert.
Man kann das Verfahren nach der Erfindung diskontinuierlich durchführen, indem man Ausgangsstoffe und Katalysator in ein Druckgefäß einbringt und unter Wasserstoffatmosphäre auf die Reaktionstemperatur erhitzt. Bei der kontinuierlichen Durchführung des Verfahrens leitet man zweckmäßig den Ausgangsstoff und Wasserstoff über einen fest angeordneten, auf die Reaktionstemperatur erhitzten Katalysator. Die Umsetzungsprodukte werden auf jeden Fall zweckmäßig durch Destillation gewonnen.
Die Alkohole, die man nach dem neuen Verfahren erhält, sind bekanntlich zum Teil Lösungsmittel, zum Teil wertvolle Zwischenprodukte, beispielsweise für die Herstellung von Weichmachern oder Kunststoffen.
Die in den folgenden Beispielen genannten Teile sind Gewichtsteile.
Beispiel 1
150 Teile Propionsäure und 150 Teile Wasser werden in einem Druckgefäß aus Edelstahl mit 25 Teilen Katalysator bei einem Wasserstoffdruck von 300 at und 200° C hydriert. Der Katalysator besteht aus 91 % Kobalt, 5°/o Mangan und 4°/0 Polyphosphorsäure. Die Wasserstoffaufnahme ist nach 2 Stunden beendet. Das Reaktionsgemisch ist fast farblos und ergibt bei der Destillation 114Teile n-Propanol vom Kp.r50 970C und 6 Teile Rückstand. Das Propanol ist gaschromatographisch rein. Die Ausbeute beträgt 94,5 % der Theorie.
Beispiel 2
150 Teile Propionsäure werden in Gegenwart von 150 Teilen rohem, wasserfreiem Hydrierprodukt nach Beispiel 1, von 150 Teilen Wasser und von 25 Teilen des im Beispiel 1 verwendeten Katalysators unter den im Beispiel 1 angegebenen Bedingungen hydriert. Man erhält 255 Teile n-Propanol und 6,5 Teile Rückstand. Die Ausbeute beträgt 96% der Theorie.
Beispiel 3
176 Teile Buttersäure werden in Gegenwart von 148 Teilen n-Butanol und 28 Teilen Wasser unter Verwendung von 20 Teilen Katalysator nach Beispiel 1 unter den im Beispiel 1 angegebenen Bedingungen hydriert. Man erhält 291 Teile, entsprechend 96,8% der Theorie, n-Butanol und 2,4 Teile Rückstand. Das n-Butanol ist frei von Säure.
Beispiel 4
Man hydriert 200 Teile Laurinsäure in Gegenwart von 1S6 Teilen Laurylalkohol und 40 Teilen Wasser unter Verwendung des im Beispiel 1 erwähnten Katalysators bei 17O0C und einem Wasserstoffdruck von 300 at. Man erhält durch Destillation 358 Teile Laurylalkohol und 11 Teile Rückstand. Die Ausbeute entspricht 96,4 °/o der Theorie. Die Hydroxylzahl des Alkohols beträgt 301.
Beispiel 5
141 Teile ölsäure werden im Gemisch mit 134 Teilen Octadecylalkohol und 12 Teilen Wasser in 25 Teilen des Katalysators nach Beispiel 1 hydriert. Die Temperatur beträgt 16CPC, der Wasserstoffdruck 300 at. Man erhäk durch Destillation des Reaktionsgemisches
260 Teile Octadecylalkohol, entsprechend 97°/0 der Theorie, tnd 4 Teile Rückstand. Die Hydroxylzahl des Produkts beträgt 217,5, der Erstarrungspunkt 57,8° C.
Beispiel 6
174 Teile Korksäure werden in Gegenwart von 146 Teilen Octandiol-(1,8) und 15 Teilen Wasser bei 200rC und. 300 at Wasserstoffdruck hydriert. Man verwendet 35 Teile eines Katalysators, der 71% Kobalt, 20°/0 Kupfer, 5% Mangan und 4°/0 Polyphosphorbäure enthält. Es werden 272 Teile Octandiol-(1,8), entsprechend 94,5 °/o der Theorie, und 10,2 Teile Rückstand erhalten. Die Hydroxylzahl des Octandiols-(l,8) beträgt 768.
Beispiel 7
94 Teile Azelainsäure werden im Gemisch mit 160 Teilen Nonandiol-(1,9) und 30 Teilen Wasser bei 190cC und 300 at Wasserstoffdruck hydriert. Der Katalysator (30 Teile) enthält 85% Kobalt, 6% Kupfer, 5% Mangan und 4% Polyphosphorsäure. Die Wasserstoffaufnahme ist nach einer Stunde beendet. Man erhält durch Destillation 218 Teile, entsprechend 93,2% der Theorie, Nonandiol-(1,9) und 9,8 Teile Rückstand. Die Hydroxylzahl des Reaktionsgemisches beträgt 696.
Beispiel 8
101 Teile Sebacinsäure werden zusammen mit
261 Teilen rückgeführtem Decandiol-(1,10) und 40 Teilen Wasser an 50 Teilen des im Beispiel 1 beschriebenen Katalysators hydriert. Die Temperatur beträgt 1800C, der Wasserstoffdruck 300 at. Man erhält 324 Teile, entsprechend 95,1 % der Theorie, schneeweißes kristallines Decandiol-(1,10) mit einer Hydroxylzahl von 639 sowie 12 Teile Rückstand.
Beispiel 9
230 Teile Dodecandisäure-(1,12) werden in Gegenwart von 202 Teilen rückgeführtem Dodecandiol-(1,12) und 60 Teilen Wasser in der im Beispiel 6 beschriebenen Weise hydriert. Man erhält 372 Teile, entsprechend 93,6% der Theorie, farbloses kristallines Dodecandiol-(l,12) mit der Hydroxylzahl 552 und 19,1 Teile Rückstand.
Beispiel 10
Man hydriert 122 Teile Benzoesäure in Gegenwart von 108 Teilen rückgeführtem Benzylalkohol und 50 Teilen Wasser unter den im Beispiel 6 genannten Bedingungen und erhält 187 Teile, entsprechend 98% der Theorie, Benzylalkohol sowie 20 Teile Rückstand.
Beispiel 11
128 Teile Hexahydrobenzoesäure werden in Gegenwart von 114 Teilen rückgeführtem Hexahydrobenzylalkohol und von 30 Teilen Wasser, wie im Beispiel 6 beschrieben, hydriert. Man erhält 199 Teile, entsprechend 90,5% der Theorie, Hexahydrobenzylalkohol und 18,5 Teile Rückstand. Die Hydroxylzahl des Reaktionsprodukts beträgt 489.
Beispiel 12
136 Teile Phenylessigsäure werden in Gegenwart von 122 Teilen /J-Phenyläthylalkohol (durch Hydrierung von Phenylessigsäure gewonnen) und 25 Teilen Wasser in der im Beispiel 1 beschriebenen Weise hydriert. Es werden 202 Teile, entsprechend 84% der Theorie, p'-Phenyläthylalkohol mit einer Hydroxylzahl von 458 sowie 17,1 Teile Rückstand erhalten.
Beispiel 13
138 Teile Salicylsäure werden in Gegenwart von 124 Teilen o-Hydroxybenzylalkohol und 25 Teilen Wasser unter den im Beispiel 6 beschriebenen Bedingungen hydriert. Man verwendet einen Katalysator, der aus 70% Kobalt, 25% Kupfer und 5% Mangan besteht. Es werden 212 Teile, entsprechend 89,5% der Theorie. o-Hydroxybenzylalkohol und 9,3 Teile Rückstand erhalten. Die Hydroxylzahl des Produkts beträgt 898.
Verwendet man einen Katalysator, der zusätzlich 1% tert.-Natriumphosphat enthält, so beträgt die Ausbeute an o-Hydroxybenzylalkohol 93,4%.
Beispiel 14
Ein Carbonsäuregemisch, das durch Überleiten über einen organischen Ionenaustauscher von Schwermetallionen, insbesondere von Eisen, befreit wurde und 50 Gewichtsprozent Wasser, 1,1 Gewichtsprozent Bernsteinsäure, 3,5 Gewichtsprozent Glutarsäure, 16,5 Gewichtsprozent Adipinsäure, 11,7 Gewichtsprozent oHydroxycapronsäure, 0,7 Gewichtsprozent Buttersäure, 4,5 Gewichtsprozent Valeriansäure, 0,3 Gewichtsprozent Capronsäure und, nach der Esterzahl, 7,5 Gewichtsprozent ε-Hydroxycaprolacton enthält, wird durch Abdestillieren eines Teils des Wassers auf einen Wassergehalt von 5 Gewichtsprozent eingestellt. Man leitet stündlich 300 Teile dieses Carbonsäuregemisches zusammen mit Wasserstoff über 8400 Teile eines Katalysators, der 91 % Kobalt, 5% Mangan und 3% Phosphorsäure enthält. Die Temperatur beträgt 1703C, der Wasserstoffdruck 300 at, die durchschnittliche Verweilzeit 7 Minuten. Man führt so viel Wasserstoff im Kreislauf, daß die Temperatur am Ende der Katalysatorzone 210JC beträgt.
Das rohe, fast farblose, klare Reaktionsgemisch hat eine Säurezahl von 1,5 und eine Esterzahl von 4,2. Man destilliert zunächst das Wasser und die Monoalkohole ab. Die letzteren werden aus dem Kondensat als obere Schicht vom Wasser abgetrennt. Der Rückstand wird dann fraktioniert destilliert. Man erhält stündlich aus 300 Teilen Hydrieraustrag 50,5 Teile Wasser, 37,4 Teile Monoalkohole, 3,9 Teile Butandiol-(l,4), 14,4 Teile Pentandiol-(1,5), 176 Teile Hexandiol-(l,6) und 12 Teile Rückstand.
Die destillierten Diole sind ester- und säurefrei. Der Katalysator ist auch nach 12 Wochen unverändert aktiv und chemisch nicht angegriffen.
Beispiel 15
Man arbeitet wie im Beispiel 14, verdünnt jedoch das Ausgangsgemisch der vierfachen Gewichtsmenge an Hydrieraustrag aus Beispiel 14. Der Wassergehalt des verdünnten Ausgangsgemisches beträgt 12%. Man leitet stündlich 1200 Teile des verdünnten Ausgangsgemisches über einen Katalysator, der 71% Kobalt, 20% Kupfer, 5% Mangan und 4% Phosphorsäure
enthält. Sobald genügend Reaktionsgemisch vorhanden ist, verdünnt man das Ausgangsgemisch mit den anfallenden rohen Monoalkoholen, deren Wassergehalt auf 7°/o eingestellt ist. Wenn sich stationäre Verhältnisse eingestellt haben, ist der Austrag fast farblos und klar. Die Säurezahl beträgt 0,7, die Esterzahl 0,8. 1000 Teile Hydrieraustrag ergeben durch Abdesiillieren des Wassers, der Monoalkohole und Abdesiillieren der Diole vom Rückstand 191 Teile Wasser, das noch 1,9 Gewichtsprozent Monoalkohole enthält, 89 Teile Monoalkohole, 678 Teile Diole und 42 Teile Rückstand. Aus dem Diolgemisch lassen sich durch sorgfältige Destillation 17 Teile Butandiol-(1,4), 57 Teile Pentandiol-(1,5) und 614 Teile He<candiol-(1,6) gewinnen. Diese Produkte sind frei von Säure und Ester. Die Ausbeute an Diolen beträgt 95,8 % der Theorie.
Der Katalysator zeigt auch nach 12 Wochen eine unveränderte Aktivität. Wenn die Aktivität nachläßt, erhöht man die Hydriertemperatur um 10 bis 15CC, wodurch sich die Zusammensetzung des Reaktionsgemisches nur unwesentlich ändert. Bei weiterer Temperaturerhöhung steigt der Anteil der Monoalkohole geringfügig an.
Verwendet man unter sonst gleichen Bedingungen einen Katalysator, der keine Phosphorsäure enthält, so muß man nach 10 Wochen die Temperatur erhöhen, um die Aktivität des Katalysators zu erhalten. Im übrigen sind die Verhältnisse die gleichen wie bei Verwendung des Katalysators mit Phosphorsäure.
Beispiel 16
Man arbeitet wie im Beispiel 15, setzt jedoch dem Phosphorsäure enthaltenden Katalysator noch 2% Trinatriumphosphat zu. Die Reaktionstemperatur muß erst nach 14 Wochen gesteigert werden, damit die Aktivität des Katalysators erhalten bleibt. Das gleiche Ergebnis erzielt man, wenn man dem Ausgangsgemisch 0,1 Gewichtsprozent Trinatriumphosphat zusetzt.
Beispiel 17
Man arbeitet wie im Beispiel 15, verwendet jedoch einen Katalysator, der 86°/0 Kobalt, 50/? Kupfer, 5% Mangan und 4°/o Phosphorsäure enthält, und stellt den Wassergehalt des Zulaufs auf 30°/o ein· Man erhält die gleichen Ausbeuten, jedoch ist bereits das Gemisch der rohen Diole frei von Säuren und Estern.
Beispiel 18
In eine senkrecht stehende Hochdruckapparatur füllt maa 1000 Teile des im Beispiel 15 verwendeten Katalysators und reduziert ihn bei 300° C mit Wasserstoff. Über den Katalysator leitet man stündlich 350 Teile einer auf 600C erhitzten 30gewichtsprozentigen Lösung von Adipinsäure in Wasser. Der Wasserstoffdruck beträgt 300 at; die Temperatur steigt längs der Katalysatorschicht von 17O0C auf 195°C an.
Der Reaktionsaustrag wird bis auf einen Wassergehalt von 15% eingedampft. In 2800 Teilen des eingedampften Austrags löst man 590 Teile Adipinsäure.
to Von dieser Lösung, die 13 Gewichtsprozent Wasser enthält, führt man stündlich 500 Teile über den Katalysator. Die Temperatur steigt längs der Katalysatorschicht von 180 auf 2100C an. Der Wasserstoff wird zur Wärmeabführung im Kreis geführt.
Der Hydrieraustrag enthält 16 Gewichtsprozent Wasser, 83 Gewichtsprozent Hexandiol und 1,8 Gewichtsprozent Rückstand. Die Ausbeute an Hexandiol, bezogen auf zugeführte Adipinsäure, entspricht 96,8 % der Theorie. Durch Destillation des Hydrieraustrags gewonnenes HeKandiol-(l,6) hat die Säure- und die Esterzahl 0 und einen Erstarrungspunkt von 41°C
Verwendet man einen Katalysator, der anstatt Phosphorsäure 2°/o Vanadin oder 2% Molybdänsäure enthält, so erhält man die gleichen Ergebnisse. Bei einem Molybdänsäurezusatz ist die Hydriertemperatur um 20 °C tiefer als bei dem Phosphorsäure-Katalysator, jedoch ist die Lebensdauer des Katalysators etwas geringer.

Claims (2)

Patentansprüche:
1. Verfahren zur Herstellung von Alkoholen durch katalytische Hydrierung von Carbonsäuren bei erhöhter Temperatur, vorzugsweise unter erhöhtem Druck und gegebenenfalls in Anwesenheit eines inerten Lösungsmittels, dadurch gekennzeichnet, daß man einen Kobaltkatalysator verwendet, der einen Gehalt an Kupfer, Mangan und bzw. oder Chrom aufweist.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man einen Katalysator verwendet, der zusätzlich anorganische Säuren, vorzugsweise solche, die Polysäuren zu bilden vermögen, oder Salze solcher Säuren enthält.
In Betracht gezogene Druckschriften:
Französische Patentschrift Nr. 1 044 574;
USA.-Patentschrift Nr. 2 650 204;
Journal of the Applied Chemistry, 8 (1958), S. 163 bis 167.
DEB75933A 1964-03-17 1964-03-17 Verfahren zur Herstellung von Alkoholen durch katalytische Hydrierung von Carbonsaeuren Pending DE1235879B (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
DEB75933A DE1235879B (de) 1964-03-17 1964-03-17 Verfahren zur Herstellung von Alkoholen durch katalytische Hydrierung von Carbonsaeuren
CH340665A CH444834A (de) 1964-03-17 1965-03-11 Verfahren zur Herstellung von Alkoholen durch katalytische Hydrierung von Carbonsäuren
US439439A US3478112A (en) 1964-03-17 1965-03-12 Production of alcohols by catalytic hydrogenation of carboxylic acids
GB11040/65A GB1094727A (en) 1964-03-17 1965-03-16 Production of alcohols by catalytic hydrogenation of carboxylic acids
NL6503332A NL6503332A (de) 1964-03-17 1965-03-16
BE661258D BE661258A (de) 1964-03-17 1965-03-17
FR9533A FR1426720A (fr) 1964-03-17 1965-03-17 Procédé de préparation d'alcools par hydrogénation catalytique d'acides carboxyliques

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DEB75933A DE1235879B (de) 1964-03-17 1964-03-17 Verfahren zur Herstellung von Alkoholen durch katalytische Hydrierung von Carbonsaeuren

Publications (1)

Publication Number Publication Date
DE1235879B true DE1235879B (de) 1967-03-09

Family

ID=6978874

Family Applications (1)

Application Number Title Priority Date Filing Date
DEB75933A Pending DE1235879B (de) 1964-03-17 1964-03-17 Verfahren zur Herstellung von Alkoholen durch katalytische Hydrierung von Carbonsaeuren

Country Status (7)

Country Link
US (1) US3478112A (de)
BE (1) BE661258A (de)
CH (1) CH444834A (de)
DE (1) DE1235879B (de)
FR (1) FR1426720A (de)
GB (1) GB1094727A (de)
NL (1) NL6503332A (de)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2513377A1 (de) * 1975-03-26 1976-09-30 Henkel & Cie Gmbh Verfahren zur kontinuierlichen herstellung einfach ungesaettigter hoehermolekularer fettalkohole
DE2605107A1 (de) * 1976-02-10 1977-08-11 Veba Chemie Ag Verfahren zur herstellung von alkoholen durch saeuredirekthydrierung
DE2938656A1 (de) * 1979-09-25 1981-03-26 Beiersdorf Ag, 20253 Hamburg Verfahren zur herstellung von wollwachsalkoholen aus wollwachssaeuren oder wollwachssaeureestern niederer alkohole
EP0383132A1 (de) 1989-02-11 1990-08-22 BASF Aktiengesellschaft Kobaltkatalysatoren
US6008418A (en) * 1996-03-01 1999-12-28 Basf Aktiengesellschaft Process for preparing 1,6 hexanediol with a level of purity over 99%
WO2010115738A1 (de) 2009-04-07 2010-10-14 Basf Se Verfahren zur herstellung von 1,6-hexandiol
WO2010115798A2 (de) 2009-04-07 2010-10-14 Basf Se Verfahren zur herstellung von 1,6-hexandiol und caprolacton
WO2010063659A3 (de) * 2008-12-05 2010-10-21 Basf Se Verfahren zur herstellung von 1,6-hexandiol
DE102009047193A1 (de) 2009-11-26 2011-06-01 Basf Se Verfahren zur Herstellung von Diolen durch Hydrierung eines Carbonsäure enthaltenden Gemisches mittels Kobalt enthaltenden Katalysatoren

Families Citing this family (148)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4021497A (en) * 1966-06-25 1977-05-03 Badische Anilin- & Soda-Fabrik Aktiengesellschaft Production of 2-ethylhexanol-(1) by hydrogenation of 2-ethylhexen-(2)-al-(1)
US3752861A (en) * 1970-08-17 1973-08-14 Celanese Corp Production of hydroxy compounds by hydrogenolysis of buffered carboxylate salts
US3947563A (en) * 1974-10-07 1976-03-30 Celanese Corporation Hydrogenolysis of formates
US4088682A (en) * 1975-07-03 1978-05-09 Jordan Robert Kenneth Oxalate hydrogenation process
GB1583091A (en) * 1976-05-10 1981-01-21 Exxon Research Engineering Co Process for the manufacture of styrene
DE2715666A1 (de) * 1977-04-07 1978-10-12 Hoechst Ag Verfahren zur herstellung von aethylenglykol
DE2756270A1 (de) * 1977-12-16 1979-06-21 Bayer Ag Verfahren zur herstellung von niedermolekularen polyhydroxylverbindungen
US4203870A (en) * 1978-04-17 1980-05-20 Ppg Industries, Inc. Catalyst for hydrogenation of glycolic acid
DE2845905C3 (de) * 1978-10-21 1983-05-26 Chemische Werke Hüls AG, 4370 Marl Verfahren zur kontinuierlichen Herstellung von Butandiol-1,4
US4258221A (en) * 1979-04-11 1981-03-24 Phillips Petroleum Company Cleavage of alkylenebisphenols
US4482764A (en) * 1980-11-03 1984-11-13 Basf Aktiengesellschaft Preparation of diols
DE3106819A1 (de) * 1981-02-24 1982-09-09 Basf Ag, 6700 Ludwigshafen Verfahren zur herstellung von 1,4-butandiol
US4398039A (en) * 1981-05-18 1983-08-09 The Standard Oil Company Hydrogenation of carboxylic acids
US4443639A (en) * 1981-05-18 1984-04-17 The Standard Oil Company (Indiana) Hydrogenation of carboxylic acids
DE3221077A1 (de) * 1982-06-04 1983-12-08 Basf Ag, 6700 Ludwigshafen Verfahren zur kontinuierlichen herstellung von ethanol
US4588848A (en) * 1984-11-01 1986-05-13 Air Products And Chemicals, Inc. Synthesis of neoalkanols
US4593147A (en) * 1984-11-01 1986-06-03 Air Products And Chemicals, Inc. Synthesis of neoalkanes
JP2666151B2 (ja) * 1988-12-14 1997-10-22 東燃株式会社 1,4−ブタンジオールの製造法
DE3903363A1 (de) * 1989-02-04 1990-08-23 Basf Ag Verfahren zur herstellung von alkanolen
GB9520231D0 (en) * 1995-10-04 1995-12-06 Cerestar Holding Bv Method for the production of tetritols,specifically meso-erythritol
US6641591B1 (en) * 1999-08-26 2003-11-04 John H. Shadduck Instruments and techniques for controlled removal of epidermal layers
CN1224597C (zh) * 1999-11-05 2005-10-26 旭化成株式会社 二醇混合物的生产方法
US6968782B2 (en) * 2003-02-03 2005-11-29 Creo Inc. Printing plate registration and imaging
US20080248540A1 (en) * 2007-04-03 2008-10-09 The Ohio State University Methods of producing butanol
US8309773B2 (en) 2010-02-02 2012-11-13 Calanese International Corporation Process for recovering ethanol
US8309772B2 (en) 2008-07-31 2012-11-13 Celanese International Corporation Tunable catalyst gas phase hydrogenation of carboxylic acids
US8546622B2 (en) 2008-07-31 2013-10-01 Celanese International Corporation Process for making ethanol from acetic acid using acidic catalysts
US8637714B2 (en) 2008-07-31 2014-01-28 Celanese International Corporation Process for producing ethanol over catalysts containing platinum and palladium
US8471075B2 (en) 2008-07-31 2013-06-25 Celanese International Corporation Processes for making ethanol from acetic acid
US8680317B2 (en) 2008-07-31 2014-03-25 Celanese International Corporation Processes for making ethyl acetate from acetic acid
US8501652B2 (en) 2008-07-31 2013-08-06 Celanese International Corporation Catalysts for making ethanol from acetic acid
US7863489B2 (en) * 2008-07-31 2011-01-04 Celanese International Corporation Direct and selective production of ethanol from acetic acid utilizing a platinum/tin catalyst
US8304586B2 (en) 2010-02-02 2012-11-06 Celanese International Corporation Process for purifying ethanol
US8338650B2 (en) 2008-07-31 2012-12-25 Celanese International Corporation Palladium catalysts for making ethanol from acetic acid
US7608744B1 (en) 2008-07-31 2009-10-27 Celanese International Corporation Ethanol production from acetic acid utilizing a cobalt catalyst
US8357519B2 (en) * 2008-11-19 2013-01-22 The Ohio State University Methods and processes for producing esters
US8450535B2 (en) 2009-07-20 2013-05-28 Celanese International Corporation Ethanol production from acetic acid utilizing a cobalt catalyst
US8680321B2 (en) 2009-10-26 2014-03-25 Celanese International Corporation Processes for making ethanol from acetic acid using bimetallic catalysts
US8710277B2 (en) 2009-10-26 2014-04-29 Celanese International Corporation Process for making diethyl ether from acetic acid
US8211821B2 (en) 2010-02-01 2012-07-03 Celanese International Corporation Processes for making tin-containing catalysts
US8680343B2 (en) 2010-02-02 2014-03-25 Celanese International Corporation Process for purifying ethanol
US8932372B2 (en) 2010-02-02 2015-01-13 Celanese International Corporation Integrated process for producing alcohols from a mixed acid feed
US8552226B2 (en) 2010-02-02 2013-10-08 Celanese International Corporation Process for heat integration for ethanol production and purification process
US8394985B2 (en) * 2010-02-02 2013-03-12 Celanese International Corporation Process for producing an ester feed stream for esters production and co-production of ethanol
US8552224B2 (en) 2010-05-07 2013-10-08 Celanese International Corporation Processes for maximizing ethanol formation in the hydrogenation of acetic acid
US8460405B2 (en) 2010-02-02 2013-06-11 Celanese International Corporation Ethanol compositions
US8552225B2 (en) 2010-02-02 2013-10-08 Celanese International Corporation Process for vaporizing acetic acid for hydrogenation processes to produce ethanol
BR112012019418A2 (pt) 2010-02-02 2018-03-20 Celanese Int Corp preparação e uso em um catalsiador para produção de etanol compreendendo um modificador de suporte cristalino
US8222466B2 (en) 2010-02-02 2012-07-17 Celanese International Corporation Process for producing a water stream from ethanol production
US8728179B2 (en) 2010-02-02 2014-05-20 Celanese International Corporation Ethanol compositions
US8575403B2 (en) 2010-05-07 2013-11-05 Celanese International Corporation Hydrolysis of ethyl acetate in ethanol separation process
US8394984B2 (en) 2010-02-02 2013-03-12 Celanese International Corporation Process for producing an ethyl acetate solvent and co-production of ethanol
US8668750B2 (en) 2010-02-02 2014-03-11 Celanese International Corporation Denatured fuel ethanol compositions for blending with gasoline or diesel fuel for use as motor fuels
US8747492B2 (en) 2010-02-02 2014-06-10 Celanese International Corporation Ethanol/fuel blends for use as motor fuels
US8541633B2 (en) 2010-02-02 2013-09-24 Celanese International Corporation Processes for producing anhydrous ethanol compositions
US8344186B2 (en) 2010-02-02 2013-01-01 Celanese International Corporation Processes for producing ethanol from acetaldehyde
US8858659B2 (en) 2010-02-02 2014-10-14 Celanese International Corporation Processes for producing denatured ethanol
US8318988B2 (en) 2010-05-07 2012-11-27 Celanese International Corporation Process for purifying a crude ethanol product
US8314272B2 (en) 2010-02-02 2012-11-20 Celanese International Corporation Process for recovering ethanol with vapor separation
US8754267B2 (en) 2010-05-07 2014-06-17 Celanese International Corporation Process for separating acetaldehyde from ethanol-containing mixtures
US8680342B2 (en) 2010-05-07 2014-03-25 Celanese International Corporation Process for recovering alcohol produced by hydrogenating an acetic acid feed stream comprising water
US8704011B2 (en) 2010-05-07 2014-04-22 Celanese International Corporation Separating ethanol and ethyl acetate under low pressure conditions
US8569551B2 (en) 2010-05-07 2013-10-29 Celanese International Corporation Alcohol production process integrating acetic acid feed stream comprising water from carbonylation process
US8704010B2 (en) 2010-05-07 2014-04-22 Celanese International Corporation Alcohol production process with impurity removal
US8604255B2 (en) 2010-05-07 2013-12-10 Celanese International Corporation Process for recovering ethanol with sidedraws to regulate C3+ alcohols concentrations
US8575404B2 (en) 2010-05-07 2013-11-05 Celanese International Corporation Process for recycling gas from acetic acid hydrogenation
US8710279B2 (en) 2010-07-09 2014-04-29 Celanese International Corporation Hydrogenolysis of ethyl acetate in alcohol separation processes
US8884080B2 (en) 2010-07-09 2014-11-11 Celanese International Corporation Reduced energy alcohol separation process
US9150474B2 (en) 2010-07-09 2015-10-06 Celanese International Corporation Reduction of acid within column through esterification during the production of alcohols
US8664454B2 (en) 2010-07-09 2014-03-04 Celanese International Corporation Process for production of ethanol using a mixed feed using copper containing catalyst
US9126125B2 (en) 2010-07-09 2015-09-08 Celanese International Corporation Reduced energy alcohol separation process having water removal
US8846986B2 (en) 2011-04-26 2014-09-30 Celanese International Corporation Water separation from crude alcohol product
US8809597B2 (en) 2010-07-09 2014-08-19 Celanese International Corporation Separation of vapor crude alcohol product
US8901358B2 (en) 2010-07-09 2014-12-02 Celanese International Corporation Esterification of vapor crude product in the production of alcohols
CA2800319A1 (en) 2010-07-09 2012-01-12 Celanese International Corporation Finishing reactor for purifying ethanol
US9272970B2 (en) 2010-07-09 2016-03-01 Celanese International Corporation Hydrogenolysis of ethyl acetate in alcohol separation processes
WO2012148509A1 (en) 2011-04-26 2012-11-01 Celanese International Corporation Process for producing ethanol using a stacked bed reactor
US8536384B2 (en) 2010-07-09 2013-09-17 Celanese International Corporation Recovering ethanol sidedraw by separating crude product from hydrogenation process
US8846988B2 (en) 2010-07-09 2014-09-30 Celanese International Corporation Liquid esterification for the production of alcohols
US8350098B2 (en) 2011-04-04 2013-01-08 Celanese International Corporation Ethanol production from acetic acid utilizing a molybdenum carbide catalyst
US8686200B2 (en) 2011-04-26 2014-04-01 Celanese International Corporation Process to recover alcohol from an acidic residue stream
US8933278B2 (en) 2011-04-26 2015-01-13 Celanese International Corporation Process for producing ethanol and reducing acetic acid concentration
US8907141B2 (en) 2011-04-26 2014-12-09 Celanese International Corporation Process to recover alcohol with secondary reactors for esterification of acid
US8592635B2 (en) 2011-04-26 2013-11-26 Celanese International Corporation Integrated ethanol production by extracting halides from acetic acid
US8927788B2 (en) 2011-04-26 2015-01-06 Celanese International Corporation Process to recover alcohol with reduced water from overhead of acid column
US9000233B2 (en) 2011-04-26 2015-04-07 Celanese International Corporation Process to recover alcohol with secondary reactors for hydrolysis of acetal
US9000232B2 (en) 2011-04-26 2015-04-07 Celanese International Corporation Extractive distillation of crude alcohol product
WO2012149137A1 (en) 2011-04-26 2012-11-01 Celanese International Corporation Process for the production of ethanol from an acetic acid feed and a recycled ethyl acetate feed
US9024085B2 (en) 2011-04-26 2015-05-05 Celanese International Corporation Process to reduce ethanol recycled to hydrogenation reactor
US9024082B2 (en) 2011-04-26 2015-05-05 Celanese International Corporation Using a dilute acid stream as an extractive agent
US8754268B2 (en) 2011-04-26 2014-06-17 Celanese International Corporation Process for removing water from alcohol mixtures
US8927787B2 (en) 2011-04-26 2015-01-06 Celanese International Corporation Process for controlling a reboiler during alcohol recovery and reduced ester formation
US9073816B2 (en) 2011-04-26 2015-07-07 Celanese International Corporation Reducing ethyl acetate concentration in recycle streams for ethanol production processes
US8927784B2 (en) 2011-04-26 2015-01-06 Celanese International Corporation Process to recover alcohol from an ethyl acetate residue stream
US9024084B2 (en) 2011-04-26 2015-05-05 Celanese International Corporation Reduced energy alcohol separation process having controlled pressure
US8927780B2 (en) 2011-04-26 2015-01-06 Celanese International Corporation Process for removing aldehydes from ethanol reaction mixture
US8461399B2 (en) 2011-04-26 2013-06-11 Celanese International Corporation Separation process having an alcohol sidestream
US8686199B2 (en) 2011-04-26 2014-04-01 Celanese International Corporation Process for reducing the concentration of acetic acid in a crude alcohol product
US8748675B2 (en) 2011-06-16 2014-06-10 Celanese International Corporation Extractive distillation of crude alcohol product
US8884081B2 (en) 2011-04-26 2014-11-11 Celanese International Corporation Integrated process for producing acetic acid and alcohol
US8927783B2 (en) 2011-04-26 2015-01-06 Celanese International Corporation Recovering ethanol with sidestreams to regulate C3+ alcohols concentrations
US8704012B2 (en) 2011-06-16 2014-04-22 Celanese International Corporation Distillation of crude alcohol product using entrainer
US8884079B2 (en) 2011-08-03 2014-11-11 Celanese International Corporation Reducing impurities in hydrogenation processes with multiple reaction zones
US8877987B2 (en) 2011-08-03 2014-11-04 Celanese International Corportation Process for producing anhydrous ethanol using extractive distillation column
US8575405B2 (en) 2011-08-03 2013-11-05 Celanese International Corporation Reducing acetals during ethanol separation process
US8748676B2 (en) 2011-08-03 2014-06-10 Celanese International Corporation Process for purifying a crude ethanol product
US8877986B2 (en) 2011-08-03 2014-11-04 Celanese International Corporation Process for recovering alcohol
US8927782B2 (en) 2011-08-03 2015-01-06 Celanese International Corporation Vapor separation in alcohol production
US8895786B2 (en) 2011-08-03 2014-11-25 Celanese International Corporation Processes for increasing alcohol production
US8440866B2 (en) 2011-08-03 2013-05-14 Celanese International Corporation Process for separating ethanol having low acid
US8853467B2 (en) 2011-08-19 2014-10-07 Celanese International Corporation Integrated process for producing ethanol
US8853466B2 (en) 2011-08-19 2014-10-07 Celanese International Corporation Integrated process for producing ethanol from methanol
US8829253B2 (en) 2011-08-19 2014-09-09 Celanese International Corporation Integrated process for producing ethanol from methanol
US9109174B2 (en) 2011-09-20 2015-08-18 Phillips 66 Company Advanced cellulosic renewable fuels
US8658843B2 (en) 2011-10-06 2014-02-25 Celanese International Corporation Hydrogenation catalysts prepared from polyoxometalate precursors and process for using same to produce ethanol while minimizing diethyl ether formation
US8536382B2 (en) 2011-10-06 2013-09-17 Celanese International Corporation Processes for hydrogenating alkanoic acids using catalyst comprising tungsten
US8686201B2 (en) 2011-11-09 2014-04-01 Celanese International Corporation Integrated acid and alcohol production process having flashing to recover acid production catalyst
US8614359B2 (en) 2011-11-09 2013-12-24 Celanese International Corporation Integrated acid and alcohol production process
US8704013B2 (en) 2011-11-09 2014-04-22 Celanese International Corporation Integrated process for producing ethanol
US8809598B2 (en) 2011-11-09 2014-08-19 Celanese International Corporation Producing ethanol using two different streams from acetic acid carbonylation process
US8809599B2 (en) 2011-11-09 2014-08-19 Celanese International Corporation Integrated process for producing ethanol and water balance control
US8703868B2 (en) 2011-11-28 2014-04-22 Celanese International Corporation Integrated process for producing polyvinyl alcohol or a copolymer thereof and ethanol
US8927790B2 (en) 2011-12-15 2015-01-06 Celanese International Corporation Multiple vapor feeds for hydrogenation process to produce alcohol
US8575406B2 (en) 2011-12-22 2013-11-05 Celanese International Corporation Catalysts having promoter metals and process for producing ethanol
US9000234B2 (en) 2011-12-22 2015-04-07 Celanese International Corporation Calcination of modified support to prepare hydrogenation catalysts
US9233899B2 (en) 2011-12-22 2016-01-12 Celanese International Corporation Hydrogenation catalysts having an amorphous support
US8907142B2 (en) 2011-12-29 2014-12-09 Celanese International Corporation Process for promoting catalyst activity for ethyl acetate conversion
US9333496B2 (en) 2012-02-29 2016-05-10 Celanese International Corporation Cobalt/tin catalyst for producing ethanol
US9079172B2 (en) 2012-03-13 2015-07-14 Celanese International Corporation Promoters for cobalt-tin catalysts for reducing alkanoic acids
US8455702B1 (en) 2011-12-29 2013-06-04 Celanese International Corporation Cobalt and tin catalysts for producing ethanol
CN103282334B (zh) 2011-12-30 2015-11-25 国际人造丝公司 用于从加氢方法进行乙醇生产和回收的压力驱动蒸馏
US8981164B2 (en) 2012-01-06 2015-03-17 Celanese International Corporation Cobalt and tin hydrogenation catalysts
EP2800625A1 (de) 2012-01-06 2014-11-12 Celanese International Corporation Hydrierkatalysatoren mit kobaltmodifizierten trägern
US9018127B2 (en) 2012-01-12 2015-04-28 Bioamber International S.A.R.L. Preparation of catalyst for selective hydrogenation of hydrogenatable precursors
US8802588B2 (en) 2012-01-23 2014-08-12 Celanese International Corporation Bismuth catalyst composition and process for manufacturing ethanol mixture
US9353034B2 (en) 2012-02-07 2016-05-31 Celanese International Corporation Hydrogenation process with reduced residence time for vapor phase reactants
US9051235B2 (en) 2012-02-07 2015-06-09 Celanese International Corporation Process for producing ethanol using a molar excess of hydrogen
US8729311B2 (en) 2012-02-10 2014-05-20 Celanese International Corporaton Catalysts for converting acetic acid to acetone
US9050585B2 (en) 2012-02-10 2015-06-09 Celanese International Corporation Chemisorption of ethyl acetate during hydrogenation of acetic acid to ethanol
US9126194B2 (en) 2012-02-29 2015-09-08 Celanese International Corporation Catalyst having support containing tin and process for manufacturing ethanol
US8802903B2 (en) 2012-03-13 2014-08-12 Celanese International Corporation Stacked bed reactor with diluents for producing ethanol
US8927786B2 (en) 2012-03-13 2015-01-06 Celanese International Corporation Ethanol manufacturing process over catalyst having improved radial crush strength
US8536383B1 (en) 2012-03-14 2013-09-17 Celanese International Corporation Rhodium/tin catalysts and processes for producing ethanol
US9073042B2 (en) 2012-03-14 2015-07-07 Celanese International Corporation Acetic acid hydrogenation over a group VIII metal calcined catalyst having a secondary promoter
US8975452B2 (en) 2012-03-28 2015-03-10 Celanese International Corporation Process for producing ethanol by hydrocarbon oxidation and hydrogenation or hydration
US8772553B2 (en) 2012-10-26 2014-07-08 Celanese International Corporation Hydrogenation reaction conditions for producing ethanol
US10399062B2 (en) 2015-03-31 2019-09-03 Basf Corporation Hydrogenation and ethynylation catalysts
CN108779049A (zh) 2016-03-31 2018-11-09 巴斯夫欧洲公司 氢化羧酸以形成醇的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2650204A (en) * 1949-05-04 1953-08-25 Ici Ltd Preparation of catalysts
FR1044574A (fr) * 1950-12-29 1953-11-19 Rhone Poulenc Sa Nouveaux catalyseurs d'hydrogénation et leur procédé de préparation

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1271013A (en) * 1914-06-04 1918-07-02 Basf Ag Hydrogenization and dehydrogenization of carbon compounds.
US2322098A (en) * 1931-04-01 1943-06-15 Gen Aniline & Film Corp Catalytic hydrogenation of alicyclic carboxylic acids
US2110483A (en) * 1934-07-07 1938-03-08 Firm Chemical Works Formerly S Process for the manufacture of high molecular aliphatic alcohols
US2480990A (en) * 1947-04-11 1949-09-06 Shell Dev Preparation of cyclopentane carboxaldehydes and derivatives thereof
US3213145A (en) * 1960-03-28 1965-10-19 Standard Oil Co Catalytic hydrogenation of esters of aromatic monocarboxylic acids to aryl-substituted methanols
DE1188572B (de) * 1960-05-18 1965-03-11 Basf Ag Verfahren zur Herstellung von Alkoholen durch Hydrieren von Carbonsaeuren
BE622053A (de) * 1961-09-02 1900-01-01

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2650204A (en) * 1949-05-04 1953-08-25 Ici Ltd Preparation of catalysts
FR1044574A (fr) * 1950-12-29 1953-11-19 Rhone Poulenc Sa Nouveaux catalyseurs d'hydrogénation et leur procédé de préparation

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2513377A1 (de) * 1975-03-26 1976-09-30 Henkel & Cie Gmbh Verfahren zur kontinuierlichen herstellung einfach ungesaettigter hoehermolekularer fettalkohole
DE2605107A1 (de) * 1976-02-10 1977-08-11 Veba Chemie Ag Verfahren zur herstellung von alkoholen durch saeuredirekthydrierung
DE2605107C3 (de) * 1976-02-10 1983-12-29 Chemische Werke Hüls AG, 4370 Marl Verfahren zur Herstellung von Diolen durch katalytische Hydrierung der entsprechenden Dicarbonsäuren
DE2938656A1 (de) * 1979-09-25 1981-03-26 Beiersdorf Ag, 20253 Hamburg Verfahren zur herstellung von wollwachsalkoholen aus wollwachssaeuren oder wollwachssaeureestern niederer alkohole
EP0383132A1 (de) 1989-02-11 1990-08-22 BASF Aktiengesellschaft Kobaltkatalysatoren
US6008418A (en) * 1996-03-01 1999-12-28 Basf Aktiengesellschaft Process for preparing 1,6 hexanediol with a level of purity over 99%
WO2010063659A3 (de) * 2008-12-05 2010-10-21 Basf Se Verfahren zur herstellung von 1,6-hexandiol
WO2010115738A1 (de) 2009-04-07 2010-10-14 Basf Se Verfahren zur herstellung von 1,6-hexandiol
WO2010115798A2 (de) 2009-04-07 2010-10-14 Basf Se Verfahren zur herstellung von 1,6-hexandiol und caprolacton
US8471042B2 (en) 2009-04-07 2013-06-25 Basf Se Method for producing 1,6-hexanediol and caprolactone
US8629306B2 (en) 2009-04-07 2014-01-14 Basf Se Method for producing 1,6-hexanediol
DE102009047193A1 (de) 2009-11-26 2011-06-01 Basf Se Verfahren zur Herstellung von Diolen durch Hydrierung eines Carbonsäure enthaltenden Gemisches mittels Kobalt enthaltenden Katalysatoren
WO2011064182A1 (de) 2009-11-26 2011-06-03 Basf Se Verfahren zur herstellung von diolen durch hydrierung eines carbonsäure enthaltenden gemisches mittels kobalt enthaltenden katalysatoren
US8383866B2 (en) 2009-11-26 2013-02-26 Basf Se Process for preparing diols by hydrogenating a carboxylic acid-comprising mixture by means of cobalt-comprising catalysts

Also Published As

Publication number Publication date
FR1426720A (fr) 1966-01-28
CH444834A (de) 1967-10-15
GB1094727A (en) 1967-12-13
US3478112A (en) 1969-11-11
BE661258A (de) 1965-09-17
NL6503332A (de) 1965-09-20

Similar Documents

Publication Publication Date Title
DE1235879B (de) Verfahren zur Herstellung von Alkoholen durch katalytische Hydrierung von Carbonsaeuren
DE2321101C2 (de) Verfahren zur Herstellung im wesentlichen trägerfreier Kobaltkatalysatoren
DE3221077A1 (de) Verfahren zur kontinuierlichen herstellung von ethanol
EP0070397A1 (de) Verfahren und Katalysator zur Herstellung von cyclischen Iminen
DD158912A5 (de) Verfahren zur herstellung eines als kraftstoff geeigneten gemisches aus methanol und hoeheren alkoholen
EP0235651A1 (de) Verfahren zur Herstellung von N-Methylpiperazin
DE1228603B (de) Verfahren zur Herstellung ungesaettigter Fettalkohole
DE2131753A1 (de) Verfahren zum Umwandeln der Carboxylgruppen von Carbonsaeuren in Hydroxymethylgruppen durch Hydrogenolyse
EP0011842B1 (de) Verfahren zum Abbau von Ameisensäureestern
DE2314813B2 (de) Kontinuierliches verfahren zur herstellung von d,l-menthol
DE1193931B (de) Verfahren zur einstufigen Herstellung von Methylisobutylketon
DE3246978A1 (de) Verfahren zur herstellung von aminen
EP0402727A1 (de) Verfahren zur Herstellung eines Eisenkatalysators und ein Verfahren zur Herstellung von primären Aminen durch Hydrierung von Nitrilen unter Verwendung dieses Eisenkatalysators
DE1668837C (de)
DE552987C (de) Verfahren zur Hydrierung von Nitrilen ungesaettigter Fettsaeuren
DE2102263A1 (de) Verfahren zur kontinuierlichen Herstellung ungesättigter Nitrile
DE2916589A1 (de) Verfahren zur herstellung von terephthalsaeure
DE2461092A1 (de) Verfahren zur behandlung von organische verbindungen enthaltenden waessrigen loesungen von hohem chemischen sauerstoffbedarf
DE892893C (de) Verfahren zur Herstellung von Carbonsaeureestern
DE732112C (de) Verfahren zur Herstellung von Benzol und seinen Homologen durch spaltende Druckhydrierung von Naphthalin oder Hydronaphthalinen
DE857373C (de) Aufarbeitungsverfahren fuer waessrige Loesungen von Acrylnitril
AT226674B (de) Verfahren zur Herstellung von Cyclohexanon
DE626290C (de) Verfahren zur Herstellung hoeher molekularer Alkohole
DE887497C (de) Verfahren zur Herstellung von Carbonsaeuren
AT216482B (de) Kontinuierliches Verfahren zur direkten Hydratation von gasförmigen Olefinen zu Alkoholen mit Hilfe von Aluminiumverbindungen als Katalysator