DE10066506B3 - Radlageranordnung - Google Patents

Radlageranordnung Download PDF

Info

Publication number
DE10066506B3
DE10066506B3 DE10066506.3A DE10066506A DE10066506B3 DE 10066506 B3 DE10066506 B3 DE 10066506B3 DE 10066506 A DE10066506 A DE 10066506A DE 10066506 B3 DE10066506 B3 DE 10066506B3
Authority
DE
Germany
Prior art keywords
brake disc
wheel bearing
bearing arrangement
wheel
predetermined value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
DE10066506.3A
Other languages
English (en)
Inventor
Eiji Tajima
Shigeaki Fukushima
Akira Torii
Kazuhiro Azuma
Naoshi Kinpara
Hisashi Ohtsuki
Kazunari Yamamoto
Masuo Takaki
Motoharu Niki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP25657899A external-priority patent/JP2001080308A/ja
Priority claimed from JP28310899A external-priority patent/JP2001105807A/ja
Priority claimed from JP36306899A external-priority patent/JP4306903B2/ja
Priority claimed from JP36616999A external-priority patent/JP4282191B2/ja
Priority claimed from JP37327799A external-priority patent/JP4306905B2/ja
Priority claimed from JP2000006691A external-priority patent/JP2001191715A/ja
Priority claimed from JP2000047158A external-priority patent/JP2001233011A/ja
Priority claimed from JP2000130063A external-priority patent/JP2001311442A/ja
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Publication of DE10066506B3 publication Critical patent/DE10066506B3/de
Application granted granted Critical
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B27/00Hubs
    • B60B27/0078Hubs characterised by the fixation of bearings
    • B60B27/0084Hubs characterised by the fixation of bearings caulking to fix inner race
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B27/00Hubs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T1/00Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles
    • B60T1/02Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles acting by retarding wheels
    • B60T1/06Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles acting by retarding wheels acting otherwise than on tread, e.g. employing rim, drum, disc, or transmission or on double wheels
    • B60T1/065Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles acting by retarding wheels acting otherwise than on tread, e.g. employing rim, drum, disc, or transmission or on double wheels employing disc
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/02Braking members; Mounting thereof
    • F16D65/12Discs; Drums for disc brakes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • F16C19/181Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact
    • F16C19/183Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles
    • F16C19/184Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/01Parts of vehicles in general
    • F16C2326/02Wheel hubs or castors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/02Braking members; Mounting thereof
    • F16D2065/13Parts or details of discs or drums
    • F16D2065/1304Structure
    • F16D2065/1308Structure one-part
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/02Braking members; Mounting thereof
    • F16D2065/13Parts or details of discs or drums
    • F16D2065/134Connection
    • F16D2065/1384Connection to wheel hub
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49481Wheel making
    • Y10T29/49492Land wheel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49481Wheel making
    • Y10T29/49492Land wheel
    • Y10T29/49533Hub making
    • Y10T29/49536Hub shaping
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49636Process for making bearing or component thereof
    • Y10T29/49643Rotary bearing
    • Y10T29/49679Anti-friction bearing or component thereof
    • Y10T29/49682Assembling of race and rolling anti-friction members

Abstract

Radlageranordnung, umfassend ein Außenelement (3) mit zwei Laufbahnen (3a, 3b) auf dessen Innenfläche, ein Innenelement (1) mit zwei Laufbahnen (1a, 1b) auf dessen Außenfläche, welche den jeweiligen Laufbahnen (3a, 3b) auf dem Außenelement (3) gegenüberliegen, und zwei Reihen von Wälzkörpern (8), welche zwischen den gegenüberliegenden Laufbahnen (1a, 1b, 3a, 3b) angebracht sind, wobei ein Radbefestigungsflansch (2) an dem Außenelement (3) oder dem Innenelement (1) ausgebildet ist, wobei eine Bremsscheibe (5) auf einer axialen Seite (2a) des Radbefestigungsflansches (2) solcherart angebracht ist, dass die eine axiale Seite (2a) des Radbefestigungsflansches (2) als eine Bremsscheibe-Befestigungsfläche dient, und wobei die maximale Lauffehleränderung der Bremsscheibe-Befestigungsfläche auf einen vorbestimmten Wert begrenzt ist, dadurch gekennzeichnet, dass die Bremsscheibe-Befestigungsfläche eine axiale Außenseite (2a) des Radbefestigungsflansches (2) ist und hin zur Spitze des Radbefestigungsflansches (2) nach außen in Richtung der Bremsscheibe (5) geneigt ist, um sich dieser anzunähern, und dass eine Seitenfläche (5a) der Bremsscheibe (5) gegen die axiale Außenseite (2a) des Radbefestigungsflansches (2) gewandt ist.

Description

  • Die vorliegende Erfindung betrifft eine Radlageranordnung gemäß dem Oberbegriff des Patentanspruchs 1.
  • Verschiedene Arten von Radlageranordnungen sind bekannt, einschließlich solcher für Antriebsräder und solcher für Nicht-Antriebsräder. 27 zeigt eine Radlageranordnung für ein Antriebsrad. Diese umfasst ein Außenelement 3 mit zwei Laufbahnen 3a, 3b, welche auf dessen Innenumfangsfläche ausgebildet sind, ein Innenelement 1 mit zwei Laufbahnen 1a, 1b, welche den jeweiligen Laufbahnen 3a, 3b gegenüberliegen, und Wälzelemente bzw. Kugeln 8, welche zwischen den Laufbahnen 3a, 3b auf dem Außenemlement 3 und den Laufbahnen 1a, 1b auf dem Innenelement 1 in zwei Reihen angeordnet sind. Das Innenelement 1 weist einen Flansch 2 auf, welcher geeignet ist, an einem Rad befestigt zu werden, und ist mit einer keilverzahnten Bohrung 9 ausgebildet, in welche eine Antriebswelle eingesetzt wird.
  • Eine Bremsscheibe 5 ist durch Bolzen 18 an der Außenseite 2a des Flansches 2 angeordnet und zwischen der Außenseite 2a und der Radnabe durch Bolzen 7 befestigt. Jeder Lauffehler der Bremsscheibe 5 kann Schwingungen bzw. Quietschen während eines Bremsens bzw. einen ungleichmäßigen Verschleiß der Bremsscheibe und/oder der Bremsbacke bewirken.
  • Bremsscheiben und Radlager werden gewöhnlich an einen Automobilhersteller geliefert, der diese zusammenbaut. Es war übliche Praxis, eine Einstellung auf einen minimalen Lauffehler der Bremsscheibe 5 während bzw. nach Montieren der Scheibe und des Radlagers vorzunehmen, wobei dies beispielsweise durch Einstellen der Winkelposition der Befestigungsbolzen 7 erfolgte. Eine derartige Arbeit ist jedoch lästig und ineffizient.
    Eine dem Oberbegriff des Patentanspruchs 1 entsprechende, aus der EP 0 928 905 A2 bekannte Radlageranordnung umfasst eine Achsnabe, einen Radbefestigungsflansch und zwei Reihen von Wälzkörpern, die zwischen einer Außenfläche der Achsnabe und einer Innenfläche des Radbefestigungsflansches angeordnet sind und durch einen Käfig gehalten werden. Eine Lauffehleränderung einer Befestigungsfläche des Radbefestigungsflansches für eine Bremsscheibe ist auf einem vorbestimmten Wert begrenzt.
    Weitere Radlageranordnungen sind in der EP 0 860 626 A2 und in der WO 98/32639 A1 offenbart.
  • Es ist eine Aufgabe der Erfindung, eine Radlageranordnung zu schaffen, welche zuverlässig ist und keine Lauffehlereinstellung bei einem Automobilhersteller erfordert.
  • Diese Aufgabe wird durch die im Patentanspruch 1 angegebenen Merkmale gelöst.
  • Weiterbildungen der Erfindung sind Gegenstand von Unteransprüchen.
  • Durch die Grenzen der maximalen Änderung eines Lauffehlers der Bremsscheibe-Befestigungsfläche des Radbefestigungsflansches auf einen vorbestimmten Wert ist es möglich, einen Lauffehler der Bremsscheibe zu unterdrücken, ohne nach einer Montage eine lästige Lauffehlereinstellung vorzunehmen.
  • Erfindungsgemäß sollte der vorbestimmte Wert 50 µm und vorzugsweise 30 µm betragen.
  • Durch Begrenzen der Lauffehleränderung pro Zyklus der Bremsscheibe-Befestigungsfläche auf einen vorbestimmten Wert ist es möglich, den Lauffehler der Bremsscheibe zu glätten.
  • Durch Begrenzen der Maximaldifferenz zwischen den Spitzenwerten von Hochpunkten bzw. der Maximaldifferenz zwischen den Spitzenwerten von Tiefpunkten bei jedem Zyklus eines Lauffehlers der Bremsscheibe-Befestigungsfläche auf einen vorbestimmten Wert ist es möglich, den Lauffehler der Bremsfläche der Bremsscheibe zu unterdrücken.
  • Es ist vorzuziehen, dass die Frequenz pro Lauffehlerdrehung der Bremsscheibe-Befestigungsfläche ein Vielfaches der Anzahl der Radbefestigungsbolzen beträgt oder die Anzahl der Radbefestigungsbolzen ein Vielfaches der Frequenz beträgt. Dadurch ist es möglich, die Verformung der Bremsscheibe infolge einer Anzugskraft, welche auf den Befestigungsbolzen angewandt wird, gleichmäßig zu machen und den Lauffehler einer Bremsscheibe zu unterdrücken, welcher sich aus der Verformung der Bremsscheibe ergibt.
  • Ferner wird bei der Anordnung, bei welcher die Bremsscheibe-Befestigungsfläche die Außenseite des Radbefestigungsflansches ist, durch Neigen dieser Seite nach außen hin zu der Spitze des Radbefestigungsflansches, wenn die Bremsscheibe und die Radnabe übereinanderliegen und durch Radbefestigungsbolzen festgespannt sind, der Radbefestigungsflansch elastisch verformt, so dass der Außenumfangsabschnitt der Bremsscheibe-Befestigungsfläche hart gegen die Scheibenbremse gedrückt wird. So wird die Bremsscheibe durch den Außenumfangsabschnitt stabil gestützt. Auch in diesem Fall ist es durch Begrenzen der maximalen Lauffehleränderung der Bremsscheibe-Befestigungsfläche auf einen vorbestimmten Wert möglich, einen Lauffehler der Bremsfläche während einer Drehung der Bremsscheibe zu unterdrücken.
  • Der Neigungswinkel der Bremsscheibe-Befestigungsfläche beträgt vorzugsweise 20' oder weniger. Wenn dieser Winkel größer ist als erforderlich, so kann, selbst wenn der Radbefestigungsflansch elastisch verformt wird, der Innenumfangsabschnitt der Scheibenbremse einen Kontakt mit der Bremsscheibe-Befestigungsfläche verlieren, so dass die Befestigung der Bremsscheibe instabil wird. Die Obergrenze des Neigungswinkels, welcher nicht instabil wird, ist zu 20' bestimmt.
  • Durch Festlegen des Grades der Ebenheit und der Umfangsebenheit des Außenumfangsabschnittes der Bremsscheibe-Befestigungsfläche auf 30 µm oder weniger ist es möglich, einen Lauffehler der Bremsfläche während einer Drehung der Bremsscheibe, welche hart gegen den Außenumfangsabschnitt gedrückt wird, zu unterdrücken.
  • Wie in 26A dargestellt, wird die Umfangsebenheit, wie unten beschrieben, gemessen. Der Radbefestigungsflansch 2 wird gedreht, wobei der Fühler einer Messvorrichtung, wie einer Messuhr 22, in Kontakt mit dem Außenumfangsabschnitt der Seite 2a ist, welche die Bremsscheibe-Befestigungsfläche des Radbefestigungsflansches 2 ist. 26B ist ein Graph, welcher die durch den Fühler der Messuhr aufgenommene Welligkeit darstellt. Die Umfangsebenheit ist die Minimaldistanz δ zwischen zwei parallelen Linien L1 und L2, zwischen welchen die Welligkeit enthalten ist.
  • Der Radbefestigungsflansch kann einstückig mit dem Außenelement oder dem Innenelement ausgebildet sein.
  • Durch Befestigen der oben erwähnten Bremsscheibe mit einem geringeren Lauffehler auf der Bremsscheibe-Befestigungsfläche kann der Lauffehler der Bremsfläche der Bremsscheibe während einer Drehung unterdrückt werden.
  • Die maximale Lauffehleränderung einer Befestigungsfläche auf der Seite der Bremsscheibe, welche an das Drehelement angrenzt, ist auf einen vorbestimmten Wert begrenzt.
  • Durch Begrenzen der maximalen Lauffehleränderung der Befestigungsfläche auf der Seite der Bremsscheibe, welche an das Drehelement angrenzt, auf einen vorbestimmten Wert wird ein Lauffehler der Bremsscheibe, welche an dem Bremselement angebracht ist, auf einen niedrigen Wert innerhalb eines gewünschten Bereichs unterdrückt, und eine lästige Lauffehlereinstellung nach der Montage ist nicht mehr erforderlich.
  • Durch Begrenzen der maximalen Lauffehleränderung einer Rückseite der Befestigungsfläche, an welcher eine Radnabe angebracht wird, auf einen vorbestimmten Wert ist es möglich, den Lauffehler der Bremsscheibe zu unterdrücken.
    Durch dessen Begrenzung auf 50 µm oder weniger wird die Bremsscheibe zuverlässig und erfordert keinerlei Lauffehlereinstellung nach der Montage.
    Die Begrenzung der Lauffehleränderung pro Zyklus der Befestigungsfläche bzw. von deren Rückseite auf einen bestimmten Wert ist es möglich, den Lauffehler der Bremsscheibe zu glätten.
    Erfindungsgemäß sollte die Lauffehleränderung pro Zyklus der Befestigungsfläche auf 30 µm oder weniger begrenzt sein.
  • Erfindungsgemäß sollte die maximale Differenz zwischen den Spitzenwerten von Hochpunkten bzw. die Maximaldifferenz zwischen den Spitzenwerten von Tiefpunkten bei jedem Lauffehlerzyklus der Befestigungsfläche oder von deren Rückseite auf einen vorbestimmten Wert begrenzt sein. Dadurch ist es möglich, den Lauffehler der Bremsscheibe auf einen niedrigeren Wert zu unterdrücken. Der vorbestimmte Wert sollte nicht größer als 30 µm sein.
  • Erfindungsgemäß ist es vorzuziehen, dass die Frequenz pro Lauffehlerdrehung der Befestigungsfläche ein Vielfaches der Anzahl von Radbefestigungsbolzen beträgt oder die Anzahl von Befestigungsbolzen ein Vielfaches der Frequenz beträgt. Es ist daher möglich, die Verformung der Bremsscheibe infolge einer auf den Befestigungsbolzen angewandten Anzugskraft gleichmäßig zu machen und den Lauffehler der Bremsscheibe zu unterdrücken, welcher sich aus der Verformung der Bremsscheibe ergibt.
  • In bevorzugter Weise ist die maximale Lauffehleränderung der Bremsfläche der Bremsscheibe auf einen vorbestimmten Wert begrenzt.
  • Der vorbestimmte Wert beträgt 100 µm und vorzugsweise 50 µm.
  • In einer Ausführungsform der Erfindung ist eine Antriebswelle in dem Innenelement angebracht.
  • In bevorzugter Weise ist das Innenelement einstückig mit einer Außenverbindung eines Gleichlaufgelenks ausgebildet.
  • In einer Ausführungsform umfasst das Innenelement ein erstes Innenelement mit einer außenliegenden Laufbahn und ein zweites Innenelement mit einer innenliegenden Laufbahn, wobei das zweite Innenelement eine Außenverbindung bzw. eine Spindel eines Gleichlaufgelenks ist.
  • Bevorzugterweise sind das erste und das zweite Innenelement durch elastische Verformung untrennbar miteinander verbunden.
  • Gemäß der Erfindung ist ein dimensionsgesteuerter negativer Axialzwischenraum zwischen den Wälzkörpern und den Laufbahnen ausgebildet.
  • In einer Ausführungsform der Erfindung ist eine der beiden Laufbahnen auf dem Innenelement direkt auf dem Innenelement ausgebildet, und das andere auf einem getrennten Laufbahnelement, welches an dem Innenelement befestigt ist, ausgebildet.
  • In einer bevorzugten Ausführungsform der Erfindung sind das Innenelement und das getrennte Laufbahnelement durch plastische Verformung untrennbar miteinander verbunden.
  • Durch Begrenzen des maximalen Lauffehlers der Bremsfläche der Bremsscheibe auf unterhalb eines vorbestimmten Werts kann der Lauffehler der Bremsfläche der Bremsscheibe während einer Drehung unterdrückt werden, ohne dass eine lästige Lauffehlereinstellung beim Kunden erforderlich ist.
  • Der vorbestimmte Wert sollte 100 µm bzw. vorzugsweise 50 µm betragen.
  • Wenn der Radbefestigungsflansch auf dem Innenelement angebracht ist, kann eine Antriebswelle in dem Innenelement angebracht werden, oder das Innenelement kann einstückig mit einer Außenverbindung eines Gleichlaufgelenks ausgebildet werden.
  • Das Innenelement kann ein erstes Innenelement mit einer außenliegenden Laufbahn und ein zweites Innenelement mit einer innenliegenden Laufbahn umfassen, und das zweite Innenelement kann eine Außenverbindung bzw. Spindel eines Gleichlaufgelenks sein.
  • Durch untrennbares miteinander Verbinden des ersten und des zweiten Innenelements durch elastische Verformung sind keine Muttern sowie eine kleinere Anzahl von Bauteilen erforderlich, und es kann ein geringeres Gewicht sowie eine geringere Axiallänge der Anordnung erreicht werden.
  • Durch Ausbilden eines dimensionsgesteuerten negativen Axialzwischenraums zwischen den Wälzkörpern und den Laufbahnen ist es möglich, eine Radlageranordnung mit hoher Steifigkeit zu schaffen, und in einem in einer Fahrzeugkarosserie eingebauten Zustand ist es, während das Fahrzeug gedreht wird, möglich, zu verhindern, dass sich das Element auf der Seite mit dem Radbefestigungsflansch hin zu dem Element auf der feststehenden Seite neigt, um einen ungleichmäßigen Kontakt zwischen der Bremsscheibe, welche an dem Radbefestigungsflansch angebracht ist, und den Bremsbacken zu eliminieren, wodurch ein ungleichmäßiger Verschleiß dieser beiden verhindert wird. So ist es in Verbindung mit der Wirkung durch Begrenzen der maximalen Änderung eines Lauffehlers der Bremsscheiben-Befestigungsfläche auf einen vorbestimmten Wert möglich, einen Lauffehler der Bremsfläche während einer Drehung der Bremsscheibe zu unterdrücken.
  • Mindestens eine der beiden Laufbahnen auf dem Innenelement kann auf einem getrennten Laufbahnelement ausgebildet sein, welches an dem Innenelement befestigt ist. Dies erleichtert eine Steuerung des Axialzwischenraumes zwischen den Wälzkörpern und den Laufbahnen.
  • Durch untrennbares miteinander Verbinden des Innenelements und des getrennten Laufbahnelements durch plastische Verformung sind keine Muttern sowie eine kleinere Anzahl von Bauteilen erforderlich, und es werden ein geringeres Gewicht und eine geringere Axiallänge der Anordnung erreicht.
  • Bevorzugt ist eine Radlageranordnung vorgesehen, bei welcher das Außenelement oder das Innenelement, welches den Radbefestigungsflansch trägt, drehbar ist und das andere nicht drehbar ist, und wobei das Außenelement und das Innenelement einen ringförmigen Raum zwischen diesen definieren, in welchem die Wälzkörper angeordnet sind, wobei die Radlageranordnung ferner einen Anschläger, welcher an dem Außen- oder dem Innenelement befestigt ist, Dichtungselemente zum Dichten beider Seiten des ringförmigen Raums, einen Codierer mit mehreren Magnetpolen, welcher an dem Anschläger befestigt ist, einen Sensor zum Erfassen von Schwankungen des Magnetflusses, welcher durch den Codierer erzeugt wird, wenn sich der Codierer dreht, und Erzeugen eines die Drehgeschwindigkeit des Codierers anzeigenden Signals sowie einen Drehgeschwindigkeitsdetektor zum Aufnehmen des Signals und Berechnen der Drehgeschwindigkeit des einen Elements auf der Grundlage des Signals umfasst.
  • Im Vergleich zu der Anordnung, bei welcher ein Drehgeschwindigkeitsdetektor getrennt vorgesehen ist, ist eine kompakte und leichtgewichtige Anordnung mit einer größeren Gestaltungsfreiheit ausgestattet.
  • Bevorzugt ist ferner eine Radlageranordnung vorgesehen, bei welcher der Radbefestigungsflansch mittels Bolzen, welche durch in dem Flansch ausgebildete Bolzenlöcher gesteckt werden, an der Bremsscheibe befestigt wird, wobei die Radlageranordnung ferner Anordnungen umfasst, welche ein Drehen der Bolzen in den jeweiligen Bolzenlöchern verhindern.
  • Dies verringert den Flächendruck zwischen Verzahnungen, welche an dem Schaft des Bolzens ausgebildet sind, und der Innenwand des Bolzenlochs und verhindert somit die Entstehung von Spannungen auf der Seite des Flansches, an welchem die Bremsscheibe angebracht ist.
  • Die Anordnung, welche ein Drehen der Bolzen verhindert, kann einen Bolzenkopf mit einem nichtkreisförmigen Querschnitt und einen Vorsprung umfassen, welcher auf dem Radbefestigungsflansch nahe jedes der Bolzenlöcher ausgebildet ist und mit dem Kopf in Eingriff ist, um zu verhindern, dass sich der jeweilige Bolzen in dem Bolzenloch dreht.
  • Der nichtkreisförmige Kopf kann eine darauf ausgebildete glatte Seitenfläche oder eine Rändelfläche oder einen ovalen Querschnitt aufweisen.
  • Die Vorsprünge können gegen die jeweiligen Köpfe durch plastische Verformung gedrückt werden.
  • Ausführungsformen der Erfindung werden anhand der Zeichnungen näher beschrieben
    • 1 ist eine Vertikalschnittansicht einer Bremsscheibe eines ersten Ausführungsbeispiels;
    • 2 ist eine Vertikalschnittansicht einer Radlageranordnung eines ersten Ausführungsbeispiels, auf welcher die Bremsscheibe von 1 angebracht ist;
    • 3 ist eine Vertikalschnittansicht, welche darstellt, wie der Lauffehler einer Befestigungsfläche der Scheibenbremse von 1 gemessen wurde;
    • 4 ist ein Graph, welcher die Messergebnisse des Lauffehlers von 3 darstellt;
    • 5 ist eine Vertikalschnittansicht, welche darstellt, wie ein Lauffehler einer Seite des Radbefestigungsflansches gemessen wurde;
    • 6 ist eine Vertikalschnittansicht eines abgewandelten Messverfahrens;
    • 7 ist ein Graph, welcher die Messergebnisse des Lauffehlers von 5 darstellt;
    • 8 ist ein Graph, welcher die Messergebnisse eines Lauffehlers darstellt, wenn die Scheibenbremse von 1 an der Radlageranordnung von 2 angebracht wurde;
    • 9 ist eine Vertikalschnittansicht einer Radlageranordnung eines zweiten Ausführungsbeispiels;
    • 10A, 10B sind vergrößerte Teilschnittansichten, welche ein Verfahren zur Messung eines Axialspielraums der Radlageranordnung von 9 darstellen;
    • 11 ist eine Vertikalschnittansicht der Radlageranordnung eines dritten Ausführungsbeispiels;
    • 12 ist eine Vertikalschnittansicht einer an der Radlageranordnung von 1 befestigten Radnabe;
    • 13 ist eine Vertikalschnittansicht einer Radlageranordnung eines vierten Ausführungsbeispiels;
    • 14A ist eine vergrößerte Schnittansicht des Drehgeschwindigkeitsdetektors der Anordnung von 13;
    • 14B ist eine perspektivische Ansicht des bei dem Drehgeschwindigkeitsdetektor verwendeten Codierers;
    • 15 ist eine Vertikalschnittansicht der Radlageranordnung eines fünften Ausführungsbeispiels;
    • 16 ist eine teilweise geschnittene, perspektivische Ansicht des Radbefestigungsbolzens an dessen Kopfabschnitt;
    • 16B ist eine Vorderansicht davon;
    • 17A bis 19A sind 16A ähnliche Ansichten abgewandelter Ausführungsbeispiele des Radbefestigungsbolzens an deren Kopfabschnitt;
    • 17B bis 19B sind Vorderansichten davon;
    • 20A ist eine einem anderen abgewandelten Ausführungsbeispiel des Radbefestigungsbolzens ähnliche Ansicht vor einer plastischen Verformung des Vorsprungs;
    • 20B ist eine dem gleichen Ausführungsbeispiel ähnliche Ansicht nach einer plastischen Verformung des Vorsprungs;
    • 21 ist eine Vertikalschnittansicht eines sechsten Ausführungsbeispiels;
    • 22 ist eine ähnliche Ansicht eines siebten Ausführungsbeispiels;
    • 23 ist eine ähnliche Ansicht eines achten Ausführungsbeispiels;
    • 24 ist eine ähnliche Ansicht eines neunten Ausführungsbeispiels;
    • 25 ist eine ähnliche Ansicht eines zehnten Ausführungsbeispiels;
    • 26A ist eine perspektivische Ansicht, welche darstellt, wie eine Umfangsebenheit eines Radbefestigungsflansches gemessen wurde;
    • 26B ist ein Graph zur Erläuterung, wie die Umfangsebenheit aus den Messergebnissen erhalten wird;
    • 27 ist eine Vertikalschnittansicht einer herkömmlichen Radlageranordnung.
  • Die Ausführungsbeispiele werden unter Bezugnahme auf 1 - 25 beschrieben.
  • 1 - 2 zeigen ein erstes Ausführungsbeispiel. 1 zeigt eine Bremsscheibe 5, welche die vorliegende Erfindung verkörpert. 2 zeigt eine Radlageranordnung, welche die Erfindung mit der darauf angebrachten Bremsscheibe 5 (nachfolgend auch als Scheibe bezeichnet) verkörpert. Elemente, welche den Elementen von 26 ähnlich bzw. mit diesen identisch sind, werden durch die gleichen Bezugszeichen bezeichnet.
  • Die Radlageranordnung von 2 ist für ein Antriebsrad bestimmt. Sie weist ein Innenelement 1 auf, welches mit einer keilverzahnten Bohrung 9 ausgebildet ist, in welcher eine Antriebswelle aufgenommen wird. Das Innenelement 1 ist ferner mit einem einstückigen Radbefestigungsflansch 2 ausgebildet, welcher sich ausgehend von der Außenfläche davon in Radialrichtung nach außen erstreckt, und mit einer Radführung 10, welche ausgehend von der Außenendfläche davon in Axialrichtung vorsteht. Die Radlageranordnung umfasst ferner ein Außenelement 3 mit einem Flansch 4, welcher mit Bolzenlöchern 12 ausgebildet ist, durch welche Bolzen gesteckt werden, um das Außenelement an einem stationären Teil der Fahrzeugkarosserie zu befestigen.
  • Eine Bremsscheibe 5 wird durch Bolzen 18 positioniert, wobei deren Seitenfläche 5a gegen eine Außenseite 2a des Flansches 2 gewandt ist. Sie wird in Position zwischen dem Flansch 2 der Radlageranordnung und einer Radnabe 14 durch Bolzen 7 befestigt, welche durch Bolzenlöcher 6 und 11, die in der Scheibe 5 bzw. dem Flansch 2 ausgebildet sind, gesteckt werden, wobei deren Rück- und deren Vorderseite 5a, 5b gegen die Außenseite 2a des Flansches 2 bzw. die Innenseite der Nabe 14 gedrückt werden. Durch Verzahnungen 7a wird der Radbefestigungsbolzen 7 daran gehindert, sich in dem Loch 11 zu drehen, welches in dem Radbefestigungsflansch 2 ausgebildet ist.
  • Das Innenelement 1 umfasst einen Hauptabschnitt, welcher mit einer ersten Laufbahn 1a auf dessen Außenfläche ausgebildet ist, und ein getrenntes Ringelement 15, welches in Presspassung auf einen gestuften bzw. vertieften Abschnitt des Hauptabschnitts aufgebracht und mit einer zweiten Laufbahn 1b auf dessen Außenfläche ausgebildet ist. Das Außenelement 3 weist zwei Laufbahnen 3a und 3b auf, welche direkt auf dessen Innenfläche derart ausgebildet sind, dass diese den Laufbahnen 1a und 1b auf dem Innenelement 1 gegenüberliegen. Wälzkörper bzw. Kugeln 8 werden zwischen den jeweiligen gegenüberliegenden Paaren von Laufbahnen 1a, 1b und 3a, 3b aufgenommen. Dichtungselemente 19 sind an beiden Axialenden des Raums vorgesehen, in welchem die Kugeln 8 gehalten werden, um diesen Raum zu dichten.
  • Als Material des Innenelements 1 und des Außenelements 3 wird ein Kohlenstoffstahl verwendet, dessen Kohlenstoffgehalt 0,45 - 1.10 Gew.-% und vorzugsweise 0,45 - 0,75 Gew.-% beträgt. Dessen Oberfläche wird durch Induktionshärten, Einsatzhärten oder Laserhärten behandelt, so dass die Oberflächenhärte etwa 500 - 900 Hv beträgt. Die Tiefe der gehärteten Schicht beträgt etwa 0,7 - 4,0 mm an Abschnitten, an welchen die Laufbahnen 1a, 3a, 3b ausgebildet sind, und etwa 0,3 - 2,0 mm an anderen Abschnitten.
  • 3 zeigt, wie der Lauffehler der Befestigungsseite 5a der Bremsscheibe 5 gemessen wurde. Die Scheibe 5 wurde auf einen Drehtisch 20 gesetzt, wobei deren Befestigungsseite 5a nach oben gewandt war, und eine Nabe 21 wurde in dem Mittenloch der Scheibe aufgenommen. Der Tisch 20 wurde anschließend um 360° gedreht, und der Lauffehler wurde unter Verwendung einer Messuhr 22 gemessen, welche an der Nabe 21 befestigt war. Anschließend wurde die Scheibe 5 umgedreht, und der Lauffehler wurde für die Rückseite 5b in der gleichen Weise wie oben beschrieben gemessen. Da der Lauffehler an dem in Radialrichtung äußeren Abschnitt des Rotors größer ist, wurde der Lauffehler an Mittelpunkten zwischen der Außenkante der Seite 5a und dem die Bolzenlöcher 6 definierenden Kreis gemessen, um eine strengere Lauffehlerkontrolle zu erhalten.
  • 4 zeigt die so gemessene Lauffehlerkurve der Seite 5a. Die maximale Lauffehleränderung in dem gesamten 360°-Intervall und die maximale Änderung in einem beliebigen Ein-Zyklus-Intervall betragen beide 20 µm und sind daher kleiner als die für diese Parameter bestimmten Standardwerte, das heißt, 50 µm bzw. 30 µm. Die Kurve weist eine Frequenz von 2 pro Drehung der Scheibe und somit 2 Hochpunkte (lokale Maxima) und Tiefpunkte (lokale Minima) je 360° auf. Wie dargestellt, beträgt die Differenz zwischen dem größten und dem kleinsten lokalen Maximum 4 µm, während die Differenz zwischen dem größten und dem kleinsten lokalen Minimum 3 µm beträgt. Diese Werte sind viel kleiner als 30 µm, was einen für diese Parameter bestimmten Standardwert darstellt.
  • Bei diesem Ausführungsbeispiel wird die Scheibe durch 4 Befestigungsbolzen 7 in Position befestigt. Die Pfeile in 4 zeigen die Positionen der Radbefestigungsbolzen 7, welche den Positionen der Hochpunkte eines Lauffehlers der Seite 2a entsprechen. Dies ist jedoch nicht zwingend der Fall. Obwohl nicht dargestellt, war die Lauffehlerkurve der Seite 5b beinahe die gleiche wie diejenige der Seite 5a, dargestellt in 4. Anders ausgedrückt, betrug die Frequenz zwei, und die Differenz zwischen dem größten und dem kleinsten lokalen Maximum, die Differenz zwischen dem größten und kleinsten lokalen Minimum und die maximale Änderung in einem beliebigen Ein-Zyklus waren die gleichen wie bei der Seite 5a. Diese waren kleiner als die jeweiligen Standardwerte.
  • Aus 4 ist ersichtlich, dass die maximale Änderung in dem gesamten 360°-Intervall der Lauffehlerkurve und die maximale Änderung in einem beliebigen Ein-Zyklus-Intervall einander gleich sind, wenn die Lauffehlerkurve eine Lauffehlerfrequenz von 2 oder weniger aufweist, wie in 4 dargestellt. Erstere ist nicht gleich letzterer, sondern größer als diese, wenn die Lauffehlerfrequenz 3 oder höher ist.
  • 5 zeigt, wie der Lauffehler der Außenseite 2a des Flansches 2 der Radlageranordnung gemessen wurde. Die Radlageranordnung ohne montierter Scheibe wurde mit dem Außenelement 3 montiert, welches an einer Bank 23 befestigt war, so dass das Innenelement 1 drehbar war. In diesem Zustand wurde das Innenelement 1 mit dem Radbefestigungsflansch 2 um 360° gedreht, und der Lauffehler der Seite 2a des Flansches 2 wurde durch eine Messuhr 22 gemessen. Da der Lauffehler davon ebenfalls an dem in Radialrichtung äußeren Abschnitt des Flansches größer ist, wurde der Lauffehler an Mittelpunkten zwischen der Außenkante des Flansches 2 und dem Umfangskreis der Bolzenlöcher 11 gemessen, um eine strengere Lauffehlerkontrolle zu erhalten.
  • Der Lauffehler der Seite 2a kann gemessen werden mit der Innenseite des Innenelements 1, welches in ein Loch 25a eines Drehrings 25, der an einem Messstand 24, wie in 6 dargestellt, angebracht ist, eingepasst und positioniert ist, und durch Drehen des Drehrings 25 zusammen mit dem Innenelement 1 um eine volle Umdrehung. Der Lauffehler wurde mittels einer Messuhr 22 gemessen, welche an dem Messstand 24 befestigt war.
  • 7 zeigt die Lauffehlerkurve (Volllinie) der Seite 2a, welche so gemessen wurde, und eine ähnliche Lauffehlerkurve (Strichlinie) für eine weitere Radlageranordnung als Vergleichsbeispiel, welches später beschrieben wird. Beide Kurven weisen eine Frequenz von vier pro Drehung der Scheibe und somit vier Hochpunkte (lokale Maxima) und Tiefpunkte (lokale Minima) auf. Die maximale Änderung in einem Ein-Zyklus-Intervall der Lauffehlerkurve und die maximale Änderung in dem gesamten 360°-Intervall betragen 25 µm bzw. 35 µm und sind somit kleiner als Standardwerte für diese Parameter, das heißt, 30 µm bzw. 50 µm. Wie dargestellt, beträgt die Differenz zwischen dem größten und dem kleinsten lokalen Maximum 10 µm, während die Differenz zwischen dem größten und dem kleinsten lokalen Minimum 15 µm beträgt. Somit sind diese Werte viel kleiner als 30 µm, was ein Standardwert für diese Parameter ist. Die Pfeile in 7 zeigen die Positionen der Radbefestigungsbolzen 7, welche den Positionen der Hochpunkte eines Lauffehlers der Seite 2a entsprechen.
  • 8 ist ein Graph, welcher die maximalen Lauffehleränderungen darstellt, wenn der Lauffehler bei der die in 7 dargestellten Lauffehlerkennlinien aufweisenden Bremsscheibe 5 gemessen wurde, welche an dem Flansch 2 der Radlageranordnung montiert ist, und wenn er nicht nur mit der Bremsscheibe, sondern auch mit der an der Seite 5b der Bremsscheibe 5 angebrachten Radnabe 14 gemessen wurde. Die Volllinie steht für die Radlageranordnung, welche die vorliegende Erfindung verkörpert, und die Strichlinie steht für das Vergleichsbeispiel der Radlageranordnung. Der Lauffehler wurde an einer Außenseite der Fläche 5c der Scheibe gemessen, gegen welche die Bremsbacke gedrückt wird.
  • Wie aus diesen Ergebnissen ersichtlich, erfolgte, während die maximale Lauffehleränderung der Scheibe allein etwa 20 µm betrug, ein sprunghafter Anstieg dieses Werts auf etwa 70 µm, wenn die Scheibe an dem Vergleichsbeispiel der Radlageranordnung angebracht wurde, und der Wert überstieg 70 µm, wenn ferner die Radnabe angebracht wurde. Hingegen wurde dieser Wert auf etwa 35 µm unterdrückt, selbst wenn die Scheibe an der Radlageranordnung der Erfindung und ferner die Radnabe angebracht wurden. Dies zeigt deutlich, dass es mit der Bremsscheibe und der Radlageranordnung, welche die vorliegende Erfindung verkörpern, möglich ist, den Lauffehler der Scheibe in einer tatsächlichen Fahrsituation erheblich zu verringern.
  • Bei dem zweiten bis neunten Ausführungsbeispiel, welche unten beschrieben werden, wurden die Differenz zwischen dem größten und dem kleinsten lokalen Maximum, die Differenz zwischen dem größten und dem kleinsten lokalen Minimum und die maximale Änderung in einem beliebigen Ein-Zyklus-Intervall sowie die maximale Änderung in dem gesamten 360°-Intervall für die Vorder- und die Rückseite 5a, 5b der Scheibe 5 und die Seite 2a des Flansches 2 gemessen. Diese Werte waren, obwohl nicht dargestellt, kleiner als die jeweiligen Standardwerte, abgesehen von der Rückseite 5b der Scheibe 5 beim vierten Ausführungsbeispiel. Die Frequenz eines Lauffehlers pro Drehung betrug ein Vielfaches der Anzahl der Befestigungsbolzen 7. Oder Letztere betrugen ein Vielfaches der Ersteren.
  • Bei der Beschreibung der in 9 - 25 dargestellten Ausführungsbeispiele sind gleiche Elemente durch die gleichen Bezugszeichen wie in 2 bezeichnet.
  • 9 zeigt ein zweites Ausführungsbeispiel. Diese Radlageranordnung dient für ein Antriebsrad, und ein dimensionsgesteuerter negativer Axialzwischenraum ist zwischen den Wälzkörpern 8 und den Laufbahnen 1a, 1b, 3a, 3b ausgebildet. Mit dem auf den gestuften Abschnitt 17 des Innenelements 1 mit einem negativen Axialzwischenraum gepressten Innenring 15 wird das Innenende 17a des gestuften Abschnitts 17 durch Verstemmen plastisch verformt, um den Ring 15 in diesem Zustand zu erhalten. Sonst ist dieses Ausführungsbeispiel in seiner Struktur das gleiche wie das erste Ausführungsbeispiel.
  • Bei den Lagerbearbeitungsschritten kann der negative Axialzwischenraum auf einen gewünschten Wert festgelegt werden, in dem der Abstand P0 zwischen den Laufbahnen 3a, 3b auf dem Außenelement 3, der Abstand P1 zur Mitte der Außenlaufbahn 1a und der Abstand P2 zur Mitte der Innenlaufbahn 1b von einer Grenzposition 17b des gestuften Abschnitts 17 gesteuert werden, in welchen das Innenelement 15 auf den Außenumfang des Innenelements 1 gepresst ist, und in dem diese derart ausgewählt werden, dass die Beziehung P0 > P1 + P2 gilt.
  • Genauer können die Festlegung und Steuerung des negativen Axialzwischenraums in den folgenden Schritten ausgeführt werden. Zuerst wird, wie in 10A dargestellt, der Innenring 15 in den gestuften Abschnitt 17 gedrückt, wobei das Ende 17a davon nicht plastisch verformt wurde, und vorübergehend gestoppt. Im gestoppten Zustand wird das Außenelement 3 in Axialrichtung hin und her bewegt, um den Bewegungshub Δ S zu messen.
  • Als nächstes wird, wie in 10B dargestellt, der Innenring 15 gedrückt, bis die Endfläche des Innenrings 15 gegen die Grenzposition 17b des gestuften Abschnitts 17 anschlägt, und der Eindrückhub C wird gemessen. Die Differenz (Δ S-C)zwischen den gemessenen Werten des Bewegungshubs Δ S und dem Eindrückhub C ist der festgelegte Axialzwischenraum, und dieser Wert wird auf einen gewünschten negativen Wert gesteuert.
  • Der Eindrückhub C kann gemessen werden, in dem das Innenende 17a des vertieften Abschnitts 17 (vor einer plastischen Verformung) zu einer Bezugsfläche gemacht wird und der Abstand A von der Bezugsfläche zu der inneren Endfläche des Innenrings 15 und der Abstand B von der Bezugsfläche zu der inneren Endfläche des Innenrings nach Abschluss eines Drückens in 10B gemessen werden und B von A abgezogen wird (C = B - A).
  • Das Innenelement 1 besteht aus einem Kohlenstoffstahl und wird auf eine Oberflächenhärte von etwa 500 - 900 Hv wie beim ersten Ausführungsbeispiel gehärtet, abgesehen von dem Ende 17a des vertieften Abschnitts 17, welches nicht gehärtet wird und eine Oberflächenhärte von etwa 200 - 300 Hv aufweist, so dass dieser Abschnitt ausreichend formbar ist, um plastisch verformt zu werden.
  • 11 zeigt ein drittes Ausführungsbeispiel. Diese Radlageranordnung ist ebenfalls für ein Antriebsrad bestimmt und weist die gleiche Struktur wie das erste Ausführungsbeispiel auf. Die Außenseite 2a des Radbefestigungsflansches 2, an welchem die Bremsscheibe 5 angebracht ist, ist um den Neigungswinkel θ zur Außenseite hin zu der Spitze des Radbefestigungsflansches 2 leicht geneigt ausgebildet. Bei diesem Ausführungsbeispiel ist der Neigungswinkel θ auf 10' festgelegt.
  • Wie in 12 dargestellt, wird der Radbefestigungsflansch 2, wenn die Bremsscheibe 5 und die Radnabe 14 zu der Seite 2a überlagert und durch Radbefestigungsbolzen 7 und Muttern 7b an dem Radbefestigungsflansch 2 mit einem vorbestimmten Anzugsdrehmoment befestigt werden, einer elastischen Verformung unterzogen, so dass der Außenumfangsabschnitt der Seite 2a, welcher die Bremsscheibenbefestigungsfläche ist, hart gegen die Bremsscheibe 5 gedrückt wird. So wird die Bremsscheibe durch den Außenumfangsabschnitt stabil gestützt. In Verbindung mit der Wirkung durch ein Begrenzen der maximalen Änderung eines Lauffehlers der Seite 2a ermöglicht dies eine Unterdrückung eines Lauffehlers der Bremsfläche 5c während einer Drehung der Bremsscheibe 5.
  • Wenn der Neigungswinkel θ größer ist als nötig, hat der Innenumfangsabschnitt der Bremsscheibe 5, selbst wenn der Radbefestigungsflansch 2 elastisch verformt wird, keinen Kontakt mit der Seitenfläche 2a, so dass die Befestigung der Bremsscheibe instabil wird. Daher sollte der Neigungswinkel θ vorzugsweise nicht größer als 20' sein.
  • Der Grad der Ebenheit und der Umfangsebenheit des Außenumfangsabschnitts der Seite 2a des Flansches 2 sollten beide 30 µm oder weniger betragen, um einen Lauffehler der Bremsfläche 5c während einer Drehung der Bremsscheibe 5 zu unterdrücken, welche hart gegen den Außenumfangsabschnitt gedrückt wird.
  • 13 zeigt ein viertes Ausführungsbeispiel, welches ebenfalls eine Radlageranordnung für ein Antriebsrad ist. Es umfasst ein Dichtungselement 19a zum Dichten der Innenseite des ringförmigen Raums, in welchem die Wälzkörper 8 aufgenommen werden. Wie in 14A dargestellt, umfasst das Dichtungselement 19a einen Dichtungsring 26, welcher an dem Außenelement 3 angebracht ist, das befestigt ist, und einen Anschläger 27, welcher an dem sich drehenden Innenelement 1 befestigt ist. Der Anschläger 27 umfasst einen Zylinderabschnitt 27b, welcher auf den Steg 15a des Innenrings 15 gepresst wird, und einen Radialflansch 27a, welcher in Radialrichtung nach außen ausgehend von dem innen liegenden Ende des Zylinderabschnitts 27b verläuft.
  • Diese Lageranordnung umfasst ferner einen Radgeschwindigkeitsdetektor 30, welcher einen mehrpoligen Codierer 28, der an der Außenfläche des Radialflansches 27a des Anschlägers 27 angebracht ist, und einen Sensor 29 umfasst, der an dem innen liegenden Ende des Außenelements 3 befestigt ist, gegenüber dem Codierer 28, um jede Änderung des Magnetflusses zu erfassen. Die außen liegende Seite des ringförmigen Lagerraums ist ebenfalls durch ein Dichtungselement 19b ähnlich dem Dichtungselement 19a abgedichtet. Sonst ist dieses Ausführungsbeispiel in seiner Struktur das gleiche wie das zweite Ausführungsbeispiel.
  • Wie in 14A dargestellt, umfasst der Dichtungsring 26 einen Metallkernring 31 mit einem Zylinderabschnitt 31a, welcher in das Außenelement 3 gepresst ist, und einen Dichtungsgummi 32, welcher an dem Kernring 31 angebracht ist, um dessen eine Seite abzudecken. Der Dichtungsgummi 32 weist zwei in Radialrichtung innere Lippen 32a, 32b auf, welche elastisch gegen die Außenfläche des Zylinderabschnitts 27b des Anschlägers 27 gepresst werden, und eine Seitenlippe 32c, welche elastisch gegen die Innenfläche des Radialflansches 27a des Anschlägers gepresst werden, um den ringförmigen Raum abzudichten.
  • Wie in 14B dargestellt, ist der Codierer 28 ein Ring, welcher aus einem elastischen magnetisierbaren Material hergestellt und derart magnetisiert ist, dass zahlreiche N- und S-Pole abwechselnd in einer Umfangsrichtung angeordnet sind. Genauer wird der Codierer 28 durch gleichmäßiges Kneten beispielsweise eines Gummis oder eines gummiartigen Kunstharzes, wie Polyamid, Polyolefin oder Ethylenpolymer, mit einem Magnetpulver, wie Bariumferrit oder einem Seltenerd-Magnetpulver, um ein magnetisierbares Verbundmaterial zu erhalten, Vernetzen des so erhaltenen Materials, wenn es Gummi ist, Formen zu einem Ring und Magnetisieren durch eine gewöhnliche Magnetisiereinrichtung, wie etwa ein Mehrfachpolarisierungsjoch, ausgebildet. Der so ausgebildete Codiererring wird durch Vulkanisation oder mittels eines Klebstoffes an dem Radialflansch 27a des Anschlägers 27 angebracht. Gummis, welche für den Codierer verwendet werden können, umfassen NBR (Nitrilbutylgummi), Acrylelastomere, fluorierte Elastomere und Siliconelastomere. Unter diesen werden Acrylelastomere, fluorierte Elastomere und Siliconelastomere besonders bevorzugt, da diese wärmebeständig sind und somit den Einfluss von Wärme, welche während eines Bremsens erzeugt wird, minimieren können.
  • Der Sensor 29, welcher an dem Ende des Außenelements 3 durch Schrauben 33 befestigt ist (14A), erzeugt ein Signal, welches die Anzahl von Drehungen des Innenelements 1 und somit der Drehungen des Rades anzeigt, auf der Grundlage einer Änderung des schwankenden Magnetflusses, welcher durch den sich drehenden Codierer 28 erzeugt wird. Das erzeugte Signal wird beispielsweise in eine ABS-Steuerung eingegeben. Der Sensor 29 kann ein aktiver Sensor sein, welcher ein Magnetdetektorelement, wie etwa ein Magnetwiderstandselement, dessen Ausgangssignal sich mit der Flussrichtung des Magnetflusses ändert, und ein IC (integrierte Schaltung) mit einer Wellenformungsschaltung umfasst.
  • 15 zeigt ein fünftes Ausführungsbeispiel, welches ebenfalls eine Radlageranordnung für ein Antriebsrad ist. Das Innenelement 1 dieses Lagers umfasst zwei getrennte Innenringe 15, welche auf die Außenfläche des Innenelements 1 gepresst und jeweils mit einer Laufbahn 1a, 1b ausgebildet sind. Das Außenelement 3 umfasst einen getrennten Außenring 16, welcher in die Innenfläche des Außenelements gepresst und mit Laufbahnen 3a, 3b ausgebildet ist. Wie in 16A und 16B dargestellt, ist der Kopf 34 jedes Radbefestigungsbolzens 7 ausgeschnitten, um eine ebene Seite 34a zu bilden. Nahe der Kante des Bolzenlochs 11 ist der Flansch 2 mit einem Vorsprung 35a mit einer ebenen Fläche ausgebildet, welche sich in Angrenzung an die ebene Fläche 34a des Bolzenkopfes 34 befindet, um zu verhindern, dass der Bolzen 7 sich in dem Bolzenloch 11 dreht. Sonst ist dieses Ausführungsbeispiel in seiner Struktur das gleiche wie das erste Ausführungsbeispiel.
  • Diese Anordnung verringert den Flächendruck zwischen Verzahnungen 7a, welche auf dem Schaft des Bolzens 7 ausgebildet sind, und der Innenwand des Bolzenlochs 11 und verhindert somit die Entstehung von Spannungen auf der Seite 2a des Flansches 2, an welchen die Bremsscheibe 5 angebracht wird.
  • Einige Anordnungen zum Erreichen des gleichen Zwecks sind in 17 - 20 dargestellt. Bei der Anordnung von 17A und 17B ist der Kopf 34 jedes Bolzens 7 mit zwei ebenen Seiten 34b ausgebildet, und ein Vorsprung 35b mit zwei ebenen Flächen, welche sich in Anschlag mit den beiden ebenen Seiten 34b befinden, ist an dem Flansch 2 um das Bolzenloch 11 ausgebildet.
  • Bei der Anordnung von 18A und 18B weist jeder Bolzen einen Sechskantkopf 34 mit sechs Seiten 34c auf, welcher in einer komplementären Sechskantbohrung eines Vorsprungs 35c aufgenommen wird, der an dem Flansch 2 um das Bolzenloch 11 ausgebildet ist.
  • Bei der Anordnung von 19A und 19B weist jeder Bolzen einen ovalen Kopf 34 auf, welcher in einer komplementären ovalen Bohrung eines Vorsprungs 35d aufgenommen wird, der an dem Flansch 2 um das Bolzenloch 11 ausgebildet ist.
  • Bei der Anordnung von 20A und 20B weist der Bolzenkopf 34 eine gerändelte Seite 36 auf. Ein ringförmiger Vorsprung 35e ist an dem Flansch 2 um das Bolzenloch 11 ausgebildet und wird gegen die gerändelte Fläche 36 gedrückt, in dem dieser durch Schmieden plastisch verformt wird. Da der Bolzen durch diese Anordnung zwangsläufig daran gehindert wird, sich zu drehen, werden die Verzahnungen an dem Schaft nicht benötigt und somit weggelassen.
  • 21 zeigt ein sechstes Ausführungsbeispiel, welches für ein Antriebsrad bestimmt ist. Die Bremsscheibe 5 ist an der Innenseite 2b des Flansches 2 angebracht, und lediglich die Nabe 14 ist an der Außenseite 2a davon angebracht. Sonst ist dieses Ausführungsbeispiel hinsichtlich seiner Struktur identisch mit dem ersten Ausführungsbeispiel.
  • 22 zeigt das siebte Ausführungsbeispiel, welches für ein Antriebsrad bestimmt ist. Bei diesem Ausführungsbeispiel ist das Innenelement 1 einstückig mit einer Außenverbindung eines Gleichlaufgelenks 13. Die Laufbahnen 1a, 1b des Innenelements 1 sind direkt auf der Außenfläche der Außenverbindung des Gelenks 13 ausgebildet. Sonst ist dieses Ausführungsbeispiel hinsichtlich seiner Struktur identisch mit dem ersten Ausführungsbeispiel.
  • 23 zeigt das achte Ausführungsbeispiel, welches für ein Nichtantriebsrad bestimmt ist. Ebenso wie die oben beschriebenen Radlageranordnungen für ein Antriebsrad umfasst die Lageranordnung dieses Ausführungsbeispiels ein Innenelement 1, welches mit einem einstückigen Radbefestigungsflansch 2 ausgebildet ist, der ausgehend von dessen Außenfläche in Radialrichtung nach außen verläuft, und eine Radführung 10, welche in Axialrichtung ausgehend von der äußeren Endfläche davon vorsteht. Die Bremsscheibe 5 wird durch die Befestigungsbolzen 7 in Position zwischen der Außenseite 2a des Flansches 2 und der Radnabe 14 gehalten. Die Radlageranordnung umfasst ferner ein Außenelement 3 mit einem Flansch 2, ausgebildet mit Bolzenlöchern 11, durch welche Bolzen gesteckt werden, um das Außenelement an einem stationären Teil der Fahrzeugkarosserie zu befestigen.
  • Das Innenelement 1 umfasst einen Hauptabschnitt, welcher mit einer ersten Laufbahn 1a auf dessen Außenfläche ausgebildet ist, und ein getrenntes Ringelement 15, welches mit einer zweiten Laufbahn 1b auf der Außenfläche davon ausgebildet ist. Das Außenelement 3 weist zwei Laufbahnen 3a und 3b auf, welche auf dessen Innenfläche derart ausgebildet sind, dass diese den Laubahnen 1a und 1b gegenüberliegen.
  • 24 zeigt das neunte Ausführungsbeispiel, welches ebenfalls für ein Nichtantriebsrad bestimmt ist, jedoch von dem neunten Ausführungsbeispiel darin abweicht, dass der Flansch 2 einstückig mit dem Außenelement 3 ist und das Innenelement 1 aus zwei Innenringen 15 besteht. Ebenso wie bei dem achten Ausführungsbeispiel ist die Scheibe 5 an der Außenseite 2a des Flansches 2 befestigt.
  • Das Außenelement 3 ist mit Laufbahnen 3a, 3b ausgebildet, welche direkt auf dessen Innenumfang ausgebildet sind, und die Innenringe 15 (welche das Innenelement 1 bilden), die mit Laufbahnen 1a, 1b ausgebildet sind, sind durch Wälzkörper 8 im Inneren des Außenelements 3 angebracht.
  • Die Radlageranordnung dieses Ausführungsbeispiels wird mit dem an einer stationären Achse angebrachten Innenelement 1 befestigt. Um den Lauffehler der Seite 2a des Radbefestigungsflansches 2, wie in 5 dargestellt, zu messen, wurde das Innenelement 1 auf einer Bezugswelle befestigt und das Außenelement 3, welches mit dem Radbefestigungsflansch 2 ausgebildet ist, wurde um eine volle Umdrehung gedreht, und der Lauffehler der Seite 2a des Flansches 2 wurde mittels einer Messuhr 22 gemessen.
  • 25 zeigt ein zehntes Ausführungsbeispiel, welches eine Radlageranordnung für ein Antriebsrad ist. Es umfasst ein Innenelement 1 mit einem ersten Innenelement 1c und einem zweiten Innenelement 1d, welches eine Außenverbindung des Gleichlaufgelenks 13 ist. Das erste Innenelement 1c ist mit einem Radbefestigungsflansch 2 ausgebildet, mit welchem die Bremsscheibe 5 einstückig ausgebildet ist. Das erste Innenelement 1c ist mit einer keilverzahnten Bohrung 9 in dessen Innenumfang ausgebildet. Das zweite Innenelement 1d weist einen Zylinderabschnitt auf, welcher in die keilverzahnte Bohrung 9 des ersten Innenelements 1c eingesetzt ist. Durch elastisches Verformen des Endes des Zylinderabschnitts werden das erste und das zweite Innenelement 1c, 1d untrennbar miteinander verbunden.
  • Die außenliegende Laufbahn 1a ist auf einem getrennten Innenring 15 ausgebildet, welcher auf den Zylinderabschnitt des ersten Innenelements 1c gepresst wird, und die innen liegende Laufbahn 1b ist direkt auf dem zweiten Innenelement 1d ausgebildet. Sonst ist dieses Ausführungsbeispiel das gleiche wie das erste Ausführungsbeispiel. Die maximale Lauffehleränderung der Scheibenbremsfläche 5c ist auf nicht mehr als 50 µm begrenzt.
  • Ferner ist es bei der erfindungsgemäßen Radlageranordnung aufgrund der Tatsache, dass die maximale Änderung eines Lauffehlers der Bremsscheiben-Befestigungsfläche des Radbefestigungsflansches, welcher an dem Innen- oder dem Außenelement vorgesehen ist, auf einen vorbestimmten Wert begrenzt ist, und ein dimensionsgesteuerter negativer Axialzwischenraum zwischen der Vielzahl von Reihen von Wälzkörpern und Laufbahnen ausgebildet ist, um die Steifigkeit der Radlageranordnung zu erhöhen, oder die Bremsscheiben-Befestigungsfläche als Außenseite des Radbefestigungsflansches ausgeführt ist und diese Außenseite zur Außenseite hin zur Spitzenseite des Radbefestigungsflansches geneigt ist, so dass die Bremsscheibe durch den Außenumfangsabschnitt dieser Seite mit hoher Stabilität gestützt wird, möglich, einen Lauffehler der Bremsflächen während einer Drehung der Bremsscheibe zu unterdrücken.

Claims (22)

  1. Radlageranordnung, umfassend ein Außenelement (3) mit zwei Laufbahnen (3a, 3b) auf dessen Innenfläche, ein Innenelement (1) mit zwei Laufbahnen (1a, 1b) auf dessen Außenfläche, welche den jeweiligen Laufbahnen (3a, 3b) auf dem Außenelement (3) gegenüberliegen, und zwei Reihen von Wälzkörpern (8), welche zwischen den gegenüberliegenden Laufbahnen (1a, 1b, 3a, 3b) angebracht sind, wobei ein Radbefestigungsflansch (2) an dem Außenelement (3) oder dem Innenelement (1) ausgebildet ist, wobei eine Bremsscheibe (5) auf einer axialen Seite (2a) des Radbefestigungsflansches (2) solcherart angebracht ist, dass die eine axiale Seite (2a) des Radbefestigungsflansches (2) als eine Bremsscheibe-Befestigungsfläche dient, und wobei die maximale Lauffehleränderung der Bremsscheibe-Befestigungsfläche auf einen vorbestimmten Wert begrenzt ist, dadurch gekennzeichnet, dass die Bremsscheibe-Befestigungsfläche eine axiale Außenseite (2a) des Radbefestigungsflansches (2) ist und hin zur Spitze des Radbefestigungsflansches (2) nach außen in Richtung der Bremsscheibe (5) geneigt ist, um sich dieser anzunähern, und dass eine Seitenfläche (5a) der Bremsscheibe (5) gegen die axiale Außenseite (2a) des Radbefestigungsflansches (2) gewandt ist.
  2. Radlageranordnung nach Anspruch 1, wobei der vorbestimmte Wert 50 µm und vorzugsweise 30 µm beträgt.
  3. Radlageranordnung nach Anspruch 1 oder 2, wobei die Lauffehleränderung pro Zyklus der Bremsscheibe-Befestigungsfläche auf einen vorbestimmten Wert begrenzt ist.
  4. Laufradanordnung nach Anspruch 3, wobei der vorbestimmte Wert 30 µm beträgt.
  5. Radlageranordnung nach einem der Ansprüche 1 bis 4, wobei die maximale Differenz zwischen den Spitzenwerten von Hochpunkten oder die maximale Differenz zwischen den Spitzenwerten von Tiefpunkten bei jedem Zyklus eines Lauffehlers der Bremsscheibe-Befestigungsfläche auf einen vorbestimmten Wert begrenzt ist.
  6. Radlageranordnung nach Anspruch 5, wobei der vorbestimmte Wert 30 µm beträgt.
  7. Radlageranordnung nach einem der Ansprüche 1 bis 6, wobei die Frequenz pro Drehung eines Lauffehlers der Bremsscheibe-Befestigungsfläche ein Vielfaches der Anzahl von Radbefestigungsbolzen (7) beträgt oder die Anzahl der Radbefestigungsbolzen (7) ein Vielfaches der Frequenz beträgt.
  8. Radlageranordnung nach einem der Ansprüche 1 bis 7, wobei der Neigungswinkel der Bremsscheibe-Befestigungsfläche nicht größer als 20' ist.
  9. Radlageranordnung nach einem der Ansprüche 1 bis 8, wobei der Ebenheitsgrad des Außenumfangsabschnitts der Bremsscheibe-Befestigungsfläche nicht größer als 30 µm ist.
  10. Radlageranordnung nach einem der Ansprüche 1 bis 9, wobei die Umfangsebenheit des Außenumfangsabschnitts der Bremsscheibe-Befestigungsfläche nicht größer als 30 µm ist.
  11. Radlageranordnung nach einem der Ansprüche 1 bis 10, wobei der Radbefestigungsflansch (2) einstückig mit dem Außenelement (3) ausgebildet ist.
  12. Radlageranordnung nach einem der Ansprüche 1 bis 11, wobei der Radbefestigungsflansch (2) einstückig mit dem Innenelement ausgebildet ist.
  13. Radlageranordnung nach einem der Ansprüche 1 bis 12, wobei die maximale Lauffehleränderung einer Befestigungsfläche auf einer Seite (5a) der Bremsscheibe (5), welche an das Drehelement (1) angrenzt, auf einen vorbestimmten Wert begrenzt ist.
  14. Radlageranordnung nach Anspruch 13, wobei die maximale Lauffehleränderung einer Rückseite (5b), welche der einen Seite (5a) der Bremsscheibe (5) gegenüberliegt, auf einen vorbestimmten Wert begrenzt ist.
  15. Radlageranordnung nach Anspruch 13 oder 14, wobei der vorbestimmte Wert 50 µm beträgt.
  16. Radlageranordnung nach einem der Ansprüche 13 bis 15, wobei die Lauffehleränderung pro Zyklus der Befestigungsfläche auf einen vorbestimmten Wert begrenzt ist.
  17. Radlageranordnung nach Anspruch 16, wobei die Lauffehleränderung pro Zyklus einer Rückseite (5b) der Befestigungsfläche auf einen vorbestimmten Wert begrenzt ist.
  18. Radlageranordnung nach Anspruch 16 oder 17, wobei der vorbestimmte Wert 30 µm beträgt.
  19. Radlageranordnung nach einem der Ansprüche 13 bis 18, wobei mindestens die maximale Differenz zwischen den Spitzenwerten von Hochpunkten oder die maximale Differenz zwischen den Spitzenwerten von Tiefpunkten bei jedem Zyklus eines Lauffehlers der Befestigungsfläche auf einen vorbestimmten Wert begrenzt ist.
  20. Radlageranordnung nach Anspruch 19, wobei mindestens die maximale Differenz zwischen den Spitzenwerten von Hochpunkten oder die maximale Differenz zwischen den Spitzenwerten von Tiefpunkten bei jedem Zyklus eines Lauffehlers der Rückseite der Befestigungsfläche auf einen vorbestimmten Wert begrenzt ist.
  21. Radlageranordnung nach Anspruch 19 oder 20, wobei der vorbestimmte Wert 30 µm beträgt.
  22. Radlageranordnung nach einem der Ansprüche 13 bis 21, wobei die Frequenz pro Drehung eines Lauffehlers der Befestigungsfläche ein Vielfaches der Anzahl von Befestigungsbolzen (7) beträgt oder die Anzahl der Befestigungsbolzen (7) ein Vielfaches der Frequenz beträgt.
DE10066506.3A 1999-09-10 2000-09-08 Radlageranordnung Expired - Lifetime DE10066506B3 (de)

Applications Claiming Priority (16)

Application Number Priority Date Filing Date Title
JP25657899A JP2001080308A (ja) 1999-09-10 1999-09-10 車輪軸受装置
JP11-256578 1999-09-10
JP28310899A JP2001105807A (ja) 1999-10-04 1999-10-04 ブレーキロータおよびそれを具備した車輪軸受装置
JP11-283108 1999-10-04
JP36306899A JP4306903B2 (ja) 1999-12-21 1999-12-21 車輪軸受装置
JP11-363068 1999-12-21
JP11-366169 1999-12-24
JP36616999A JP4282191B2 (ja) 1999-12-24 1999-12-24 車輪軸受装置
JP11-373277 1999-12-28
JP37327799A JP4306905B2 (ja) 1999-12-28 1999-12-28 車輪軸受装置
JP2000-6691 2000-01-14
JP2000006691A JP2001191715A (ja) 2000-01-14 2000-01-14 車輪軸受装置
JP2000-47158 2000-02-24
JP2000047158A JP2001233011A (ja) 2000-02-24 2000-02-24 車輪軸受装置
JP2000130063A JP2001311442A (ja) 2000-04-28 2000-04-28 ブレーキロータおよびそれを具備した車輪軸受装置
JP2000-130063 2000-04-28

Publications (1)

Publication Number Publication Date
DE10066506B3 true DE10066506B3 (de) 2020-07-30

Family

ID=27573556

Family Applications (2)

Application Number Title Priority Date Filing Date
DE10066506.3A Expired - Lifetime DE10066506B3 (de) 1999-09-10 2000-09-08 Radlageranordnung
DE10044509.8A Expired - Lifetime DE10044509B4 (de) 1999-09-10 2000-09-08 Bremsscheibe und Radlageranordnung

Family Applications After (1)

Application Number Title Priority Date Filing Date
DE10044509.8A Expired - Lifetime DE10044509B4 (de) 1999-09-10 2000-09-08 Bremsscheibe und Radlageranordnung

Country Status (3)

Country Link
US (2) US6575637B1 (de)
KR (1) KR20010050398A (de)
DE (2) DE10066506B3 (de)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040046440A1 (en) * 2001-12-14 2004-03-11 Daniel Brinker Knuckle hub assembly and method for making same
JP3896751B2 (ja) * 2000-02-23 2007-03-22 日本精工株式会社 車輪用軸受ユニットの製造方法
US6666303B2 (en) * 2000-07-04 2003-12-23 Ntn Corporation Wheel bearing assembly
EP1396354A4 (de) * 2001-06-13 2004-10-06 Ntn Toyo Bearing Co Ltd Lagervorrichtung für antriebsrad und verfahren zur herstellung der lagervorrichtung
JP4911333B2 (ja) * 2001-07-18 2012-04-04 株式会社ジェイテクト 車輪用軸受装置における車輪取付け構造
US20030059138A1 (en) * 2001-09-25 2003-03-27 The Torrington Company Assembly forming a seal with a bulit-in encoder
JP2005256846A (ja) * 2002-02-26 2005-09-22 Nsk Ltd 車輪用軸受ユニット
JP2006132547A (ja) 2002-10-25 2006-05-25 Nsk Ltd 車輪用軸受ユニット
US6829825B1 (en) * 2003-01-31 2004-12-14 Robert Bosch Corporation Process of manufacturing a corner assembly
JP2005214300A (ja) * 2004-01-29 2005-08-11 Ntn Corp 車軸用軸受装置
DE102004035689A1 (de) * 2004-07-22 2006-03-16 Bpw Bergische Achsen Kg Radbolzen zur Befestigung von Fahrzeugrädern
JP3917992B2 (ja) * 2004-08-03 2007-05-23 Ntn株式会社 車輪用軸受装置
WO2006040897A1 (ja) * 2004-10-08 2006-04-20 Ntn Corporation 車輪用軸受装置
US7159316B2 (en) * 2004-10-28 2007-01-09 Robert Bosch Gmbh Method of manufacturing a modular corner assembly
JP4947535B2 (ja) * 2005-02-01 2012-06-06 内山工業株式会社 磁気エンコーダ用ゴム組成物およびそれを用いた磁気エンコーダ
EP1729021B1 (de) * 2005-06-02 2010-01-20 Ntn Corporation Radlagereinheit
JP4812376B2 (ja) * 2005-09-09 2011-11-09 Ntn株式会社 車輪用軸受装置の製造方法
US20070116889A1 (en) * 2005-11-18 2007-05-24 Federal Mogul World Wide, Inc. Laser treatment of metal
US20090154856A1 (en) * 2005-12-05 2009-06-18 Ntn Corporation Wheel Support Bearing Assembly and Method of Manufacturing the Same
US20070254111A1 (en) * 2006-04-26 2007-11-01 Lineton Warran B Method for forming a tribologically enhanced surface using laser treating
JP2008175262A (ja) * 2007-01-17 2008-07-31 Ntn Corp 車輪用軸受装置およびその製造方法
US20090078343A1 (en) * 2007-09-24 2009-03-26 Atlas Copco Secoroc Llc Earthboring tool and method of casehardening
JP5045461B2 (ja) 2008-01-30 2012-10-10 株式会社ジェイテクト 車両用ハブユニット
DE102008027137A1 (de) * 2008-05-30 2009-12-03 Dr.Ing.H.C.F.Porsche Aktiengesellschaft Radverschraubung
JP5109852B2 (ja) * 2008-07-22 2012-12-26 株式会社ジェイテクト ハブユニットのフランジ面振れ測定治具及び面振れ測定方法
US8353369B2 (en) 2008-08-06 2013-01-15 Atlas Copco Secoroc, LLC Percussion assisted rotary earth bit and method of operating the same
JP5752873B2 (ja) * 2008-10-23 2015-07-22 Ntn株式会社 車輪用軸受装置
JP5506181B2 (ja) * 2008-11-05 2014-05-28 Ntn株式会社 車輪用軸受装置
KR101112987B1 (ko) * 2009-09-02 2012-02-24 주식회사 데크 탄소-세라믹 브레이크 디스크 조립체
DE102013103619A1 (de) 2012-12-12 2014-06-26 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Radnaben-Bremsscheiben-Verbund
JP6444716B2 (ja) * 2014-12-10 2018-12-26 Ntn株式会社 車輪用軸受装置およびその取付構造
DE102017200338A1 (de) 2017-01-11 2017-04-27 Audi Ag Radlager für ein Kraftfahrzeug
US11865862B2 (en) * 2017-05-25 2024-01-09 Hendrickson Usa, L.L.C. Hub and rotor assembly
US11858481B2 (en) * 2021-12-15 2024-01-02 Sigma Powertrain, Inc. Rotational lock module assembly

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2828109A1 (de) * 1978-06-27 1980-01-10 Knorr Bremse Gmbh Bremsscheibe fuer scheibenbremseinrichtungen von schienenfahrzeugen
DE3012420A1 (de) * 1980-03-29 1981-10-15 Skf Kugellagerfabriken Gmbh, 8720 Schweinfurt Befestigung einer bremsscheibe an einem fahrzeug
DE3024397A1 (de) * 1980-06-28 1982-01-21 Skf Kugellagerfabriken Gmbh Waelzlager
DE9320283U1 (de) * 1993-06-04 1994-05-19 Kellermann Fa Rudolf Preßpaßverbindungselement, insbesondere Radbolzen
WO1998021055A1 (en) * 1996-11-14 1998-05-22 Kelsey Hayes Company Vehicle wheel hub mounting system
WO1998032639A1 (en) 1997-01-24 1998-07-30 Accu Industries, Inc. Method and apparatus for correcting brake rotor runout
EP0860626A2 (de) 1997-02-21 1998-08-26 SKF INDUSTRIE S.p.A. Verbindung zwischen einer Radnaben-Lagereinheit und einem Bremsrotor
US5842388A (en) * 1996-12-10 1998-12-01 Bosch Braking System Vehicle hub and brake machining method
EP0928905A2 (de) 1997-12-29 1999-07-14 Ford Global Technologies, Inc. Methode zum Befestigen von Bremsrotoren an Radnaben
DE69725496T2 (de) * 1996-05-10 2004-06-24 Skf Industrie S.P.A. Verbesserte Lagerungs- und Bremsanordnung für Kraftfahrzeuge versehen mit einem Verbindungselement zwischen der Lagerung und dem Bremselement

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6035507A (en) * 1997-02-13 2000-03-14 Kelsey-Hayes Company Method for coordinating a rotor and hub
US6364426B1 (en) * 1998-08-05 2002-04-02 Kelsey-Hayes Company Vehicle wheel hub and bearing unit assembly and method for producing same
KR20000035349A (ko) * 1998-11-11 2000-06-26 이토오 도요아키 자동차의 휠베어링 조립체 및 이를 제조하는 방법
JP2000227132A (ja) * 1998-12-02 2000-08-15 Ntn Corp ブレーキロータ付き車輪軸受装置
US6415508B1 (en) * 1999-06-09 2002-07-09 The Timken Company Hub assembly having minimum runout and process for producing the same
US6361426B1 (en) * 2000-01-27 2002-03-26 American Seafoods Company Fish processing machine with a fish meat recovery unit and methods for extracting additional meat from a waste body part of a fish

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2828109A1 (de) * 1978-06-27 1980-01-10 Knorr Bremse Gmbh Bremsscheibe fuer scheibenbremseinrichtungen von schienenfahrzeugen
DE3012420A1 (de) * 1980-03-29 1981-10-15 Skf Kugellagerfabriken Gmbh, 8720 Schweinfurt Befestigung einer bremsscheibe an einem fahrzeug
DE3024397A1 (de) * 1980-06-28 1982-01-21 Skf Kugellagerfabriken Gmbh Waelzlager
DE9320283U1 (de) * 1993-06-04 1994-05-19 Kellermann Fa Rudolf Preßpaßverbindungselement, insbesondere Radbolzen
DE69725496T2 (de) * 1996-05-10 2004-06-24 Skf Industrie S.P.A. Verbesserte Lagerungs- und Bremsanordnung für Kraftfahrzeuge versehen mit einem Verbindungselement zwischen der Lagerung und dem Bremselement
WO1998021055A1 (en) * 1996-11-14 1998-05-22 Kelsey Hayes Company Vehicle wheel hub mounting system
US5842388A (en) * 1996-12-10 1998-12-01 Bosch Braking System Vehicle hub and brake machining method
WO1998032639A1 (en) 1997-01-24 1998-07-30 Accu Industries, Inc. Method and apparatus for correcting brake rotor runout
EP0860626A2 (de) 1997-02-21 1998-08-26 SKF INDUSTRIE S.p.A. Verbindung zwischen einer Radnaben-Lagereinheit und einem Bremsrotor
EP0928905A2 (de) 1997-12-29 1999-07-14 Ford Global Technologies, Inc. Methode zum Befestigen von Bremsrotoren an Radnaben

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Burckhardt: Fahrwerkstechnik. 1. Auflage. Waldbüttelbrunn : Vogel-Verlag, 1991. S 291- S 293. - ISBN 3-8023-0184-6 *

Also Published As

Publication number Publication date
DE10044509B4 (de) 2014-01-09
KR20010050398A (ko) 2001-06-15
US20030121153A1 (en) 2003-07-03
US6959493B2 (en) 2005-11-01
US6575637B1 (en) 2003-06-10
DE10044509A1 (de) 2001-04-26

Similar Documents

Publication Publication Date Title
DE10066506B3 (de) Radlageranordnung
DE60031180T2 (de) Radlagereinheit und Verfahren zu deren Herstellung
DE60014221T2 (de) Kombinationsdichtungsring mit Encoder
EP0725243B1 (de) Dichtungsanordnung
DE69912862T2 (de) Wälzlagereinheit mit Drehgeschwindigkeitsmessung
DE112007002015B4 (de) Radlagervorrichtung
DE10132429A1 (de) Radlageranordnung
DE112008002882B4 (de) Radlagervorrichtung für ein Fahrzeug
DE112007001917B4 (de) Radlagervorrichtung
DE102006002058A1 (de) Lagerbaugruppe mit Drehzahldetektor
DE19847863A1 (de) Wälzlagereinheit mit Drehzahlsensor
DE10037530A1 (de) Dichtungsvorrichtung für Lager
DE3014446A1 (de) Waelzlager mit doppelreihig angeordneten waelzelementen und vorrichtung zur montage von fahrzeugraedern
DE112009001563T5 (de) Lagerdichtung
DE602004004181T2 (de) Lageranordnung einer Radhalterung mit magnetischer Kodiereinrichtung
DE112010004041T5 (de) Radlager mit Sensor
DE112016003207T5 (de) Radlagervorrichtung
DE112007000320T5 (de) Lagervorrichtung für ein Fahrzeugrad
DE3909557A1 (de) Waelzlagerung
DE112007003123T5 (de) Radgeschwindigkeitsfeststellvorrichtung mit einer Radgeschwindigkeitsfeststellvorrichtung vereinigte Radlagervorrichtung
DE4231332C2 (de) Lager mit passivem Impulsgeber-Ring
DE10333496A1 (de) Verfahren für die Herstellung einer Radaufhängung zur Reduzierung der Spurungenauigkeit
EP3794248B1 (de) Bremsanordnung für einen elektromotor
DE10242341B4 (de) Radlager-Baugruppe
DE69927569T2 (de) Radnabeeinheit

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R129 Divisional application from

Ref document number: 10044509

Country of ref document: DE

Effective date: 20130826

R016 Response to examination communication
R016 Response to examination communication
R016 Response to examination communication
R018 Grant decision by examination section/examining division
R071 Expiry of right
R020 Patent grant now final