CN1894810A - 蓄电池糊状物材料及方法 - Google Patents

蓄电池糊状物材料及方法 Download PDF

Info

Publication number
CN1894810A
CN1894810A CNA200480037336XA CN200480037336A CN1894810A CN 1894810 A CN1894810 A CN 1894810A CN A200480037336X A CNA200480037336X A CN A200480037336XA CN 200480037336 A CN200480037336 A CN 200480037336A CN 1894810 A CN1894810 A CN 1894810A
Authority
CN
China
Prior art keywords
lead sulfate
tetravalent
battery
paste
tetravalent lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA200480037336XA
Other languages
English (en)
Other versions
CN100527486C (zh
Inventor
拉尔夫·A.·彼得森
罗斯·A.·亨宁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Johnson Controls Technology Co
Original Assignee
Johnson Controls Technology Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Johnson Controls Technology Co filed Critical Johnson Controls Technology Co
Publication of CN1894810A publication Critical patent/CN1894810A/zh
Application granted granted Critical
Publication of CN100527486C publication Critical patent/CN100527486C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/14Electrodes for lead-acid accumulators
    • H01M4/16Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/14Electrodes for lead-acid accumulators
    • H01M4/16Processes of manufacture
    • H01M4/20Processes of manufacture of pasted electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/14Electrodes for lead-acid accumulators
    • H01M4/16Processes of manufacture
    • H01M4/20Processes of manufacture of pasted electrodes
    • H01M4/21Drying of pasted electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/56Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of lead
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/72Grids
    • H01M4/73Grids for lead-acid accumulators, e.g. frame plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • Y10T29/49115Electric battery cell making including coating or impregnating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

制造蓄电池极板的方法,其包括将四价硫酸铅颗粒与铅的氧化物混合以形成糊状物材料。所述颗粒的平均球形粒径小于约2.5微米。该方法还包括在蓄电池栅板上提供至少一部分所述糊状物材料,在低于约48℃的温度下固化蓄电池栅板和糊状物材料,从而制得其上具有已固化的糊状物的蓄电池极板。

Description

蓄电池糊状物材料及方法
相关专利申请的交叉引用
本申请要求享受于2003年10月21日递交的第60/512,951号未决美国临时专利申请的优先权。这里将以下专利申请的全部内容并入本申请中作为参考:于2003年10月21日递交的第60/512,951号未决美国临时专利申请。
技术领域
本发明概括地涉及蓄电池领域(例如铅酸蓄电池,如汽车的启动、照明和点火(SLI)用蓄电池;工业蓄电池;商用蓄电池;以及船舶蓄电池)。更具体而言,本发明涉及用于蓄电池活性材料中的材料以及制造该材料的方法。
背景技术
用于铅酸蓄电池中的正极及负极极板或栅板是由铅或铅合金制造的,并且包括连接到多个节点的多条线(例如,蓄电池极板可包括含有四个侧面的框架,其具有从一个侧面延伸出的接线片或集电器以及与多个节点相互连接的线或栅格元件的网络)。
至少一部分正极栅板或极板上被施加了一种材料(如糊状物)。典型的糊状物包括氧化铅(PbO)。活性材料还可包括四价硫酸铅(4PbO·PbSO4)(通常简写为“4BS”)和三价硫酸铅(3PbO·PbSO4·H2O)(通常简写为“3BS”)中的一种或两种。根据一个示例性的具体实施方案,活性材料可包含约40%的PbO和60%的4BS。根据其他示例性的具体实施方案,活性材料可具有不同的组成(例如,活性材料可包括约10%至100%的4BS等)。所提供的四价硫酸铅和三价硫酸铅可为混入氧化铅糊状物材料内的单晶的形式。根据一个示例性的具体实施方案,在合适的混合和极板固化的条件下通过将酸加入糊状混合物,可提供四价硫酸铅和三价硫酸铅。
使涂覆了糊状物的正极板固化或干燥以去除糊状物中过多的液体,并装入蓄电池中(例如,蓄电池容器中的正极与负极极板之间设置了隔离物之后,将酸(如硫酸)加入该蓄电池中)。在固化过程中,四价硫酸铅和/或三价硫酸铅晶体长大或尺寸变大。
在蓄电池形成过程中(例如,对该蓄电池初次充电),糊状物的成分转化为正极板上的活性材料,如二氧化铅(PbO2),以及负极板上的海绵状铅(Pb)。根据一个示例性的具体实施方案,将酸加入蓄电池时,硫酸盐化反应根据下式进行:
     
在形成过程中,根据一个示例性的具体实施方案,正极和负极极板处的反应根据下式进行:
正极板
负极板
总反应
与使用三价硫酸铅作为糊状物中的一种组分的已固化正极板相比,包含四价硫酸铅作为涂覆于其上的糊状物的一种组分的已固化正极板具有改进的深度放电循环寿命。B.Culpin在J.Power Sources,25,p.305-311(1989)中提供了对4BS正极板化学和其优点的综述。
另一个潜在的优势性特征在于,与使用三价硫酸铅的极板相比,使用四价硫酸铅的正极板可获得改进的放电容量。例如,使用四价硫酸铅正极板技术制成的蓄电池在储备容量方面提高了约20%(其中,储备容量定义为在80下以25安放电直至蓄电池电压降至10.5伏时所需的分钟数)。
传统上提供的四价硫酸铅的晶体厚度约为10至20微米,长度约为60至90微米。使用该四价硫酸铅的一个困难在于,在形成过程中允许糊状物材料转化为二氧化铅的晶体尺寸可能不是最佳的。使用该四价硫酸铅的另一个困难在于,正极板需实施约1小时或更久的高温蒸汽固化。
使用传统的四价硫酸铅晶体的一个不利影响在于,使用该晶体的极板可能出现不完整的形成过程(例如,在初次充电过程中,并非所有的四价硫酸铅均转化为二氧化铅活性材料)。因此,由该极板制造的蓄电池可能要求随后的急充电以完成该形成过程。与不完整的形成过程有关的大晶体也可能造成该形成的正极板的翘曲变形。
使用四价硫酸铅化学的另一个困难之处在于,糊状物混合过程和/或极板固化步骤必须在至少70℃的提高的温度下进行,而更典型为超过80℃。对于该制造过程而言,该提高的温度可能是不期望的,这可能会导致制造成本的增加以及生产效率的降低。
因此,需要提供一种制造用于蓄电池糊状物中的四价硫酸铅材料的改进方法。还需要提供一种包含具有最佳晶体尺寸的四价硫酸铅的蓄电池糊状物,该晶体尺寸能够相对有效地将四价硫酸铅转化成二氧化铅活性材料。进一步还需要提供一种制造用于铅酸蓄电池中的蓄电池糊状物的相对有效且成本低廉的方法。进一步还需要提供一种制造用于蓄电池糊状物中的材料的方法,该方法降低了制造蓄电池所需的材料,而不牺牲蓄电池性能或循环寿命,并且不降低生产效率。这些或其他需要可通过此处所述的一个或更多个示例性的具体实施方案得到满足。
发明内容
本发明涉及制造蓄电池极板的方法,其包括将四价硫酸铅颗粒与铅的氧化物混合以形成糊状物材料。该颗粒的平均球形粒径小于约2.5微米。该方法还包括在蓄电池栅板上提供至少一部分糊状物材料,在小于约48℃的温度下固化蓄电池栅板和糊状物材料,以制造其上具有已固化的糊状物的蓄电池极板。
本发明还涉及制造蓄电池用极板的方法,其包括将平均球形粒径小于约2微米的四价硫酸铅颗粒与铅的氧化物混合以形成糊状物。该方法还包括用该糊状物涂覆至少一部分蓄电池栅板,并在小于约48℃的温度下加热蓄电池栅板和糊状物材料,以制造其上具有已固化的糊状物的蓄电池极板。
本发明还涉及制造蓄电池的方法,其包括将平均球形粒径小于约2.5微米的四价硫酸铅颗粒加入铅的氧化物中以形成糊状物材料。该方法还包括在蓄电池栅板上提供至少一部分糊状物材料,并在小于约48℃的温度下固化蓄电池栅板和糊状物材料,以形成其上具有已固化的糊状物的蓄电池极板。该方法还包括在容器中提供该蓄电池极板,以制造蓄电池,并为蓄电池充电。
附图说明
图1所示为使用三价硫酸铅化学的传统正极板(即不使用四价硫酸铅)的放大2000倍的扫描电子显微镜照片,该极板已在95%的湿度及46℃的温度下固化16小时。
图2所示为已在与图1中所示极板相同的低温条件下固化的正极板的放大2000倍的扫描电子显微镜照片,但该极板使用了含有1重量%四价硫酸铅种晶添加剂的糊状物混合物。
图3所示为具有更大尺寸的四价硫酸铅晶体的正极板的放大2000倍的扫描电子显微镜照片,该极板是采用高温固化(约100℃)制得的,而不具有四价硫酸铅种晶添加剂的优点。
图4所示为四价硫酸铅在低温固化极板中的百分比转化率的理论预测值对种晶球形粒径的曲线图。
具体实施方式
根据一个示例性的具体实施方案,使用四价硫酸铅作为蓄电池糊状物(例如连同PbO)的一种组分的制造正极板或栅板的过程或方法,节约了正极板材料(例如4至8%之间),少量损失或不损失铅酸蓄电池的性能或循环寿命,并且小幅降低或不降低生产效率。
根据一个示例性的具体实施方案,该过程允许所用糊状物的混合温度低于60℃,并允许固化温度低于46℃。这些温度显著低于用于传统四价硫酸铅极板化学制造过程的温度,即可能约为70至80℃或更高的温度。
根据一个示例性的具体实施方案,在约1重量%的装载水平下,将精细研磨或碾磨的四价硫酸铅颗粒加入其他标准糊状物混合过程中的铅的氧化物中。根据一个示例性的具体实施方案,该颗粒的平均球形粒径小于约2.5微米(即该颗粒通常为球形,并且粒径小于约2.5微米)。根据一个示例性的具体实施方案,该颗粒的平均球形粒径最大约为2微米。根据一个示例性的具体实施方案,该颗粒的平均球形粒径约为1微米。根据一个示例性的具体实施方案,该颗粒的平均球形粒径约为2微米。根据一个示例性的具体实施方案,该颗粒的平均球形粒径约为1至2微米。根据一个示例性的具体实施方案,该颗粒可具有不同的平均球形粒径(例如2微米或更大)。
在相对较低的温度下固化蓄电池糊状物之后,该颗粒通过成核作用和晶粒生长作用增大到小于采用传统高温固化可能达到的尺寸(例如约为2至5微米厚,优选约为3微米厚,约为20至30微米长)。在导致四价硫酸铅晶体生长的固化步骤之后,该四价硫酸铅晶体包括约50至60重量%的已固化的糊状物。根据其他示例性的具体实施方案,该糊状物中更高或更低的酸含量可用于获得约为10至100重量%的已固化极板的四价硫酸铅的水平。还根据其他示例性的具体实施方案,四价硫酸铅的总重量还可随四价硫酸铅颗粒的使用量而改变。
使用相对更精细研磨的四价硫酸铅颗粒或“种晶”的一个优势性的特征在于,可使所有PbSO4的大于约90%转化为四价硫酸铅。无需进一步的固化过程(例如蒸汽固化过程)。相对而言,传统的四价硫酸铅的生产方法可能要求使用蒸汽固化过程,这将一个额外的步骤加入制造过程中。
若湿度保持在约95%的情况下,在约46至48℃的固化温度下四价硫酸铅颗粒或“种晶”催化所有三价硫酸铅化学完全转化成四价硫酸铅。根据其他示例性的具体实施方案,湿度可保持在不同的水平上(例如约为80至100%之间)。选择该温度的一个优势性的特征在于,更低的制造温度需要更少的能量,并且避免了涉及使用填充了抗翘曲纤维的塑料堆积板以在固化过程中固定极板的更高的成本。而且,高温糊状物混合过程可能需要更昂贵的加工设备(例如真空-冷却糊状物混合器)。
使用小的四价硫酸铅种晶的一个优势性的特征在于,减少了四价硫酸铅的需求量,因而降低了该糊状物混合添加剂的成本。根据一个示例性的具体实施方案,各种四价硫酸铅种晶发展为单固化的四价硫酸铅晶体。种晶的数量越多,则已固化晶体的数量越多。因为存在更大量的种晶,所以最终固化的晶体的尺寸小于使用常规方法制得者(例如,各种种晶生长为更大的已固化的晶体受到所提供的种晶数量的限制)。与固化温度无关,可获得相对较小的已固化晶体尺寸。
通过喷射碾磨较大的四价硫酸铅颗粒以获得约1至2微米的平均球形粒径,可产生四价硫酸铅颗粒。根据一个示例性的具体实施方案,可使用Fluid Energy Aljet Model 8Micro-Jet研磨系统(由Fluid Energy Aljet公司制造,Telford,Pennsylvania)生产具有减小的球形粒径(例如约为1至2微米)的四价硫酸铅种晶或颗粒。根据其他示例性的具体实施方案,可使用其他类型的喷射碾磨或其他碾磨或研磨设备。根据其他示例性的具体实施方案,还可使用制造四价硫酸铅颗粒的其他方法,其颗粒尺寸小于常规使用的颗粒。
根据其他示例性的具体实施方案,四价硫酸铅的平均球形颗粒尺寸可以不同。例如,可改变平均颗粒尺寸和装载水平以最优化形成过程中四价硫酸铅至二氧化铅的转化率。根据一个具体实施方案,四价硫酸铅颗粒的球形粒径可在约2至5微米之间的范围内。根据另一个示例性的具体实施方案,提供的四价硫酸铅颗粒可具有多种颗粒尺寸(例如,约10%的四价硫酸铅颗粒的平均球形粒径约为10至20微米,而90%的四价硫酸铅颗粒的球形粒径约为1微米)。特定颗粒尺寸的混合物可根据不同的考虑而改变。根据另一个示例性的具体实施方案,含有四价硫酸铅种晶的糊状物的装载量可在约0.5至10.0重量%之间的范围内。根据其他示例性的具体实施方案,还可采用其他装载量。
使用具有减小尺寸的四价硫酸铅颗粒的一个优势性的特征在于,四价硫酸铅晶体使已固化的四价硫酸铅晶体尺寸足够小,以在铅酸蓄电池的第一次充电过程中(通常称作形成过程)相对有效地转化为二氧化铅正极活性材料。
图1所示为使用三价硫酸铅化学的传统正极板(即不使用四价硫酸铅)的放大2000倍的扫描电子显微镜照片,该极板已在95%的湿度及46℃的温度下固化16小时。显微照片中所示的小晶体结构是传统三价硫酸铅化学的特征,其已由X射线衍射和热重分析法加以确认(J.MaterialsScience Letters,Vol.11,pp 369-372(1992))。
相对而言,图2所示为已在与图1中所示极板相同的低温条件下固化的极板的放大2000倍的扫描电子显微镜照片,但该极板使用了含有1重量%四价硫酸铅种晶添加剂的糊状物混合物。根据一个示例性的具体实施方案,使用四价硫酸铅晶体提供了更大的2至3微米厚的晶体。该已固化的晶体尺寸是令人期望的,因为该晶体尺寸使蓄电池形成过程中向二氧化铅的转化过程最优化,同时与三价硫酸铅极板化学相比提高了使用寿命和性能。X射线衍射和热重分析法确认了超过90%的存在于极板中的PbSO4已转化为四价硫酸铅晶体的形式。
图3所示为具有更大尺寸的四价硫酸铅晶体的极板的放大2000倍的扫描电子显微镜照片,该极板是采用高温固化(约100℃)制得的,而不具有经研磨的四价硫酸铅种晶添加剂的优点。该极板在约100℃的温度下实施蒸汽固化。明显更大的约10微米厚的四价硫酸铅更难以在后序的蓄电池形成过程中转化为二氧化铅正极板活性材料。该极板在形成过程中也显示了更大的翘曲趋势。
使用标称为1至2微米的球形粒径的四价硫酸铅“晶种”,提供了相对简单且稳定的过程,其确保了在随后的关键性的极板固化步骤中极板中的四价硫酸铅种子材料合适的尺寸和数量。
PbSO4转化为期望的四价硫酸铅化学的程度还决定性地受控于在相对较低的固化温度下的四价硫酸铅种晶颗粒尺寸,其不会在固化过程中额外产生更多的四价硫酸铅晶体。图4所示为四价硫酸铅在低温固化极板中的百分比转化率的理论预测值对种晶粒径的曲线图。形成图4基础的假设是,低温固化的四价硫酸铅晶体不能长大至大于约3微米厚和30微米长。这些已固化晶体的数量决定了在已固化极板中生成四价硫酸铅的百分比转化率。通过产生更大量的成核位点以产生更大量已固化的四价硫酸铅晶体,由于颗粒尺寸的降低而提高每单位重量添加剂中四价硫酸铅种晶的数量,从而提高了已固化极板中四价硫酸铅的百分比转化率。
图4所示为,种晶球形粒径需要不大于约2微米,以确保在固化过程中完全转化为四价硫酸铅晶体。更小的种晶尺寸会更确定地保证在低的固化温度下完全转化成四价硫酸铅,并且能够使用更少量的种晶添加剂以降低生产成本。
由于避免了进行额外的高温蒸汽固化过程的需要,使用四价硫酸铅种晶的糊状物材料相对于传统的四价硫酸铅极板制造方法取得了进步。该方法还产生了最佳尺寸的后固化四价硫酸铅晶体,其与可能使用传统四价硫酸铅极板的制造方法相比,可以更有效地转化为二氧化铅。使用该种晶有利地保持了四价硫酸铅极板化学的优点,例如使正极板材料的使用率增加了5至15%,改进了重复储备容量测试中的放电容量的稳定性,并且提高了深度放电循环寿命。
利用本发明的教导可实现不同的优势性特征。例如,与传统方法相比,根据此处所述的教导使用四价硫酸铅糊状物化学制造或生产蓄电池极板的方法可采用更低的温度。也就是说,可采用低温以固化涂覆在极板或栅板上的蓄电池糊状物。
根据一个示例性的具体实施方案,与可能使用的常规方法相比,使用相对较小的四价硫酸铅种晶可在固化操作后形成更小的四价硫酸铅晶体,同时可在蓄电池形成过程中得到比传统制造方法更高的四价硫酸铅向二氧化铅的百分比转化率。该过程可提供用于制造已固化的铅酸蓄电池极板的相对更简单、稳定且廉价的方法,形成具有最佳尺寸(2至5微米厚)的四价硫酸铅的百分比转化率相对较高,这些四价硫酸铅可在蓄电池形成过程中相对更有效地依次转化成二氧化铅活性材料。
还可获得其他优势。例如,可减少活性材料糊状物的重量,而不降低蓄电池的性能或循环寿命,并且不明显增加生产成本或降低生产效率。
以下并非唯一的实施例阐述了本发明的特征:
实施例
根据Biagetti和Weeks在1970年9月出版的Bell System TechnicalJournal中描述的方法,在50加仑的热的含水浆料中,制备一批60磅的纯度大于90重量%的四价硫酸铅(三价硫酸铅杂质)。将经干燥的材料喷射碾磨至基于平均体积的1微米的球形粒径,其标称标准偏差为1微米。使用基于激光的颗粒尺寸分析仪以测定所有四价硫酸铅种子颗粒的尺寸。
将这些四价硫酸铅种子颗粒加入2400磅传统的铅的氧化物的糊状混合物中,以达到期望的1重量%的装载水平(例如,将24磅的硫酸铅种子加入该混合物中)。然后通过添加水实施本领域通常情况下的混合作用,紧接着在标称为10分钟的过程中适量加入比重为1.325的硫酸以达到60℃的标称峰值混合温度。
然后将机械糊状的极板迅速干燥至10%的标称湿度含量,然后在46℃及95%的湿度下实施固化16小时。该极板随后在60℃及不超过50%的低湿度下实施干燥,标称历时30小时。传统的蓄电池组装和形成过程后,紧接着测试蓄电池。使用国际电池委员会(BCI)的测试程序和设备测试所有蓄电池的性能和使用寿命。
根据Journal of Material Sciences Letters,Vol 11,pp369-372(1992)描述的过程,使用X射线衍射确认所有三价硫酸铅和四价硫酸铅固化的极板化学,而利用热重分析法连同化学硫酸盐分析法定量测定这些物质。
需着重指出的是,不同的示例性具体实施方案仅为说明性的。虽然在所公开的内容中仅详细描述了少量本发明的具体实施方案,但对于阅读了本发明所公开的内容的本领域技术人员而言,应容易理解许多改变方案是可能的(例如尺寸、大小、结构、形状以及不同元素的比例、参数值等的改变),而不实际上背离此处所引用主题的新颖性的教导和优势。对于优选的和其他示例性具体实施方案的设计、过程参数、材料特性、操作条件和其他特征,可以进行其他替代、修改、变化和省略,而不离开本发明的范围。

Claims (20)

1、制造蓄电池极板的方法,其包括:
将四价硫酸铅颗粒与铅的氧化物混合以形成糊状物材料,所述颗粒的平均球形粒径小于约2.5微米;
在蓄电池栅板上提供至少一部分所述糊状物材料;以及
在低于约48℃的温度下固化所述蓄电池栅板和所述糊状物材料,从而制得其上具有已固化的糊状物的蓄电池极板。
2、如权利要求1所述的方法,其中所述四价硫酸铅颗粒的平均球形粒径小于约2微米。
3、如权利要求1所述的方法,其中所述四价硫酸铅颗粒的平均球形粒径在约1至2微米之间。
4、如权利要求1所述的方法,其中在约95%的湿度水平下实施所述固化步骤。
5、如权利要求1所述的方法,其中所述已固化的糊状物包括厚度约为2至5微米的四价硫酸铅晶体。
6、如权利要求1所述的方法,其中在约46至48℃的温度下实施所述固化步骤。
7、如权利要求1所述的方法,其中将四价硫酸铅颗粒与铅的氧化物混合以形成糊状物材料的步骤包括在约0.1至10.0重量%的装载水平下将四价硫酸铅颗粒加入所述铅的氧化物。
8、如权利要求1所述的方法,其中在低于约60℃的温度下实施所述混合步骤。
9、如权利要求1所述的方法,其进一步包括碾磨四价硫酸铅以形成四价硫酸铅颗粒,然后将该四价硫酸铅颗粒与铅的氧化物混合。
10、制造蓄电池用极板的方法,其包括:
将平均球形粒径小于约2微米的四价硫酸铅颗粒与铅的氧化物混合以形成糊状物;
用所述糊状物涂覆至少一部分蓄电池栅板;以及
在小于约48℃的温度下加热所述蓄电池栅板和糊状物材料,从而制得其上具有已固化的糊状物的蓄电池极板。
11、如权利要求10所述的方法,其中所述四价硫酸铅颗粒的平均球形粒径约为2微米。
12、如权利要求10所述的方法,其中所述混合步骤包括在约1重量%的装载水平下将所述四价硫酸铅颗粒加入所述铅的氧化物。
13、如权利要求10所述的方法,其中在低于约60℃的温度下实施所述混合步骤。
14、制造蓄电池的方法,其包括:
将平均球形粒径小于约2.5微米的四价硫酸铅颗粒加入铅的氧化物以形成糊状物材料;
在蓄电池栅板上提供至少一部分所述糊状物材料;
在低于约48℃的温度下固化所述蓄电池栅板和所述糊状物材料,从而形成其上具有已固化的糊状物的蓄电池极板;
在容器中提供所述蓄电池极板,从而制得蓄电池;以及
对所述蓄电池充电。
15、如权利要求14所述的方法,其中所述四价硫酸铅颗粒的平均球形粒径在约1至2微米之间。
16、如权利要求14所述的方法,其中所述已固化的糊状物包括厚度约为2至5微米的四价硫酸铅晶体。
17、如权利要求16所述的方法,其中在所述固化步骤之后,所述已固化的糊状物包括50至60重量%的四价硫酸铅晶体。
18、如权利要求14所述的方法,其中在约46至48℃的温度下实施所述固化步骤。
19、如权利要求14所述的方法,其中将四价硫酸铅颗粒与铅的氧化物混合以形成糊状物材料的步骤包括将约1重量%的所述四价硫酸铅颗粒加入所述铅的氧化物。
20、如权利要求14所述的方法,其中所述对蓄电池充电的步骤使所述已固化的糊状物转化为二氧化铅。
CNB200480037336XA 2003-10-21 2004-10-21 蓄电池糊状物材料以及制造蓄电池极板的方法 Expired - Fee Related CN100527486C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US51295103P 2003-10-21 2003-10-21
US60/512,951 2003-10-21

Publications (2)

Publication Number Publication Date
CN1894810A true CN1894810A (zh) 2007-01-10
CN100527486C CN100527486C (zh) 2009-08-12

Family

ID=34549239

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB200480037336XA Expired - Fee Related CN100527486C (zh) 2003-10-21 2004-10-21 蓄电池糊状物材料以及制造蓄电池极板的方法

Country Status (9)

Country Link
US (2) US7517370B2 (zh)
EP (1) EP1680827B1 (zh)
JP (1) JP4505464B2 (zh)
KR (2) KR100828275B1 (zh)
CN (1) CN100527486C (zh)
AT (1) ATE527709T1 (zh)
BR (1) BRPI0415854B1 (zh)
MX (1) MXPA06004510A (zh)
WO (1) WO2005043651A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106531973A (zh) * 2016-11-15 2017-03-22 超威电源有限公司 一种铅蓄电池正极铅膏合膏的方法
CN114204033A (zh) * 2021-12-28 2022-03-18 河南超威正效电源有限公司 铅酸蓄电池铅膏及其制备方法、极板及其高温固化工艺

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU5596700A (en) * 1999-06-03 2000-12-28 Charles H. CELLA Contingency-based options and futures for contingent travel accommodations
MXPA06004510A (es) * 2003-10-21 2006-07-06 Johnson Controls Tech Co Material en pasta para pilas, y metodo.
US8021784B2 (en) * 2004-03-23 2011-09-20 Hammond Group, Inc. Cureless battery paste and method for producing battery plates
US7118830B1 (en) * 2004-03-23 2006-10-10 Hammond Group, Inc. Battery paste additive and method for producing battery plates
US20060110524A1 (en) * 2004-11-19 2006-05-25 Delphi Technologies, Inc. Additives and modified tetrabasic sulfate crystal positive plates for lead acid batteries
JP5183888B2 (ja) * 2006-01-17 2013-04-17 古河電池株式会社 鉛蓄電池用極板の製造方法
DE102008062765A1 (de) 2008-12-18 2010-07-01 Vb Autobatterie Gmbh & Co. Kgaa Textiles flächiges Material für eine Batterieelektrode
US8846252B2 (en) 2009-02-26 2014-09-30 Johnson Controls Technology Company Battery electrode and method for manufacturing same
RU2534129C2 (ru) 2009-09-29 2014-11-27 Джордж Э МАЙЕР Смесь основных сульфатов свинца
US10756335B2 (en) 2009-09-29 2020-08-25 George E. Mayer Mixture of basic lead sulfates
JP5533032B2 (ja) * 2010-03-01 2014-06-25 新神戸電機株式会社 ペースト式正極板
US10522883B2 (en) * 2010-05-10 2019-12-31 Rsr Technologies, Inc. Recycling electrochemical cells and batteries
CA2817815A1 (en) 2010-11-10 2012-05-18 Epic Ventures Inc. Lead acid cell with active materials held in a lattice
US8765297B2 (en) 2011-01-04 2014-07-01 Exide Technologies Advanced graphite additive for enhanced cycle-life of lead-acid batteries
CN104221189B (zh) * 2012-02-14 2017-02-22 新神户电机株式会社 铅蓄电池用正极板和该极板的制造方法以及使用该正极板的铅蓄电池
US20150298987A1 (en) * 2012-08-17 2015-10-22 Subhash Dhar Active materials for lead acid battery
US10014520B2 (en) 2012-10-31 2018-07-03 Exide Technologies Gmbh Composition that enhances deep cycle performance of valve-regulated lead-acid batteries filled with gel electrolyte
JP6447866B2 (ja) * 2014-11-14 2019-01-09 日立化成株式会社 制御弁式鉛蓄電池の製造方法
CN105070886B (zh) * 2015-09-21 2016-05-25 骆驼集团襄阳蓄电池有限公司 一种agm启停蓄电池正极板固化工艺
CN109742348B (zh) * 2018-12-27 2020-08-25 浙江天能动力能源有限公司 一种调节铅炭电池容量寿命的正极铅膏及其制备方法

Family Cites Families (143)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1572586A (en) 1923-11-06 1926-02-09 Prest O Lite Co Inc Composition for storage-battery electrodes and process of making the same
US2159226A (en) 1935-01-31 1939-05-23 U S L Battery Corp Electric storage battery plate and a method of treating such plate
US2182479A (en) 1936-01-30 1939-12-05 Glidden Co Lead oxide and method of preparation
US2165944A (en) 1937-05-22 1939-07-11 Gen Chemical Corp Manufacture of arsenic acid
US2479603A (en) * 1944-08-24 1949-08-23 Eagle Picher Co Storage battery plate and process for making the same
US2717903A (en) 1950-05-26 1955-09-13 Olin Mathieson Nitration of glycerine
US2686213A (en) 1953-02-12 1954-08-10 Electric Storage Battery Co Battery plate and method of making same
US3001013A (en) 1955-08-04 1961-09-19 Austin N Stanton Optical translating system
US3072693A (en) 1955-12-22 1963-01-08 Chemische Fabrik Hoesch Kg Basic complex lead compounds
NL106489C (zh) 1955-12-22
US2872333A (en) 1957-06-03 1959-02-03 Clovis H Adams Pyrotechnic method for increasing the basicity of lead sulfate containing pigments
US3186871A (en) 1959-01-22 1965-06-01 Electric Storage Battery Co Method for producing porous sintered plate
US3104946A (en) 1959-12-28 1963-09-24 Phillips Petroleum Co Manufacture of wet process phosphoric acid
NL271642A (zh) 1960-12-16
DE1188155B (de) 1960-12-24 1965-03-04 Varta Ag Verfahren zur Herstellung von Elektroden fuer Bleiakkumulatoren
BE12203A (zh) 1961-01-04
DE1276018B (de) 1963-10-10 1968-08-29 Chem Fab Hoesch K G Verfahren zur Herstellung von dibasischen Bleisalzen anorganischer Saeuren
US3252764A (en) 1963-12-13 1966-05-24 Grace W R & Co Apparatus for producing a fertilizer slurry
US3419431A (en) 1964-01-27 1968-12-31 Amicon Corp Polyelectrolyte gel separator and battery therewith
US3194685A (en) 1964-03-09 1965-07-13 Electric Storage Battery Co Method of manufacturing storage battery electrode active material
US3384458A (en) 1965-06-16 1968-05-21 Continental Oil Co Water hydrolysis reactor for making alumina
US3398024A (en) 1965-12-30 1968-08-20 Lucas Industries Ltd Battery plates
DE1596322A1 (de) 1966-02-12 1971-07-01 Waldhof Aschaffenburg Papier Verfahren zur Verbesserung der Haftfaehigkeit von in der aktiven Masse der Bleielektroden eingelagerten Teilchen an der aktiven Masse
DE1571941B2 (de) 1966-03-08 1971-10-21 Accumulatorenfabrik Sonnenschein GmbH, 6470 Büdingen Verfahren zum herstellen von pulverfoermigen fuellmassen fuer galvanische elemente
DE1694676C3 (de) 1966-04-06 1979-08-30 Lindgens & Soehne, 5000 Koeln Verwendung von mit basischem Bleisulfat modifiziertem Bleicarbonat als WärmestebiUsator für Polyvinylchlorid
US3552916A (en) 1966-11-04 1971-01-05 Nat Lead Co Acicular anhydrous tribasic lead sulfate and its method of preparation
US3747560A (en) 1967-02-17 1973-07-24 Lucas Industries Ltd Battery plate coating apparatus
US3734694A (en) 1968-04-25 1973-05-22 Gen Electric Apparatus for producing uo2 powder
US3779962A (en) 1970-10-09 1973-12-18 G Koenen Stabilizer-lubricant combinations for halogen-containing polymers
US3765943A (en) 1970-12-09 1973-10-16 Bell Telephone Labor Inc Fabrication of lead-acid batteries
US3862066A (en) 1971-05-26 1975-01-21 Universal Pvc Resins Method for making rigid vinyl chloride polymer compounds
US4000100A (en) 1971-06-04 1976-12-28 W. R. Grace & Co. Thermal and light stabilized polyvinyl chloride resins
US3702265A (en) 1971-06-25 1972-11-07 Gen Motors Corp Lead-acid storage battery paste
US3770507A (en) 1972-01-24 1973-11-06 Globe Union Inc Electrochemical battery employing bonded lead dioxide electrode and fluoroboric acid electrolyte
US3819412A (en) 1972-02-07 1974-06-25 Tyco Laboratories Inc Plates for lead acid batteries
US3894886A (en) 1972-04-17 1975-07-15 Gates Rubber Co Apparatus for pasting battery plates
US3951688A (en) 1972-04-17 1976-04-20 The Gates Rubber Company Method and apparatus for pasting battery plates
DD105188A5 (zh) 1972-05-26 1974-04-12
US3788898A (en) 1972-06-07 1974-01-29 Bell Telephone Labor Inc Fabrication of negative electrodes in lead-acid batteries
US3942433A (en) 1972-07-07 1976-03-09 Maschinenfabrik Andritz Ag Roller arrangement in presses for the removal of water from materials
US3973991A (en) 1973-02-13 1976-08-10 Nl Industries, Inc. Light-weight lead-acid battery with laminated electrodes
US3864169A (en) 1973-02-13 1975-02-04 Nl Industries Inc A method for making laminated electrodes
CH563867A5 (zh) 1973-03-01 1975-07-15 Escher Wyss Gmbh
US4019431A (en) 1973-03-17 1977-04-26 Alb. Klein Kg Method of dewatering sludge
US3899349A (en) 1974-02-06 1975-08-12 Bell Telephone Labor Inc Carbon dioxide curing of plates for lead-acid batteries
US3881954A (en) 1974-03-18 1975-05-06 Westinghouse Electric Corp Method of producing a lead dioxide battery plate
US4024055A (en) 1974-08-01 1977-05-17 Globe-Union Inc. Method of reducing lead and acid waste contamination in battery plant operation
US4020882A (en) 1975-10-20 1977-05-03 Chloride Group Limited Manufacture of battery plates
US4110519A (en) 1975-12-29 1978-08-29 Aktiebolaget Tudor Method for the production of electrodes for lead storage batteries
NZ183268A (en) 1976-02-19 1978-09-20 Gould Inc Process for recycling junk lead-acid batteries comprising the formation of lead carbonate lead monoxide
US4050482A (en) 1976-03-31 1977-09-27 The Gates Rubber Company Battery plate pasting method and apparatus
GB1581641A (en) 1976-09-14 1980-12-17 Secr Defence Methods of heat treatment of graft copolymer films
US4064725A (en) 1976-10-18 1977-12-27 The Gates Rubber Company Apparatus for making spirally wound electrochemical cells
DE2656927C2 (de) 1976-12-16 1983-03-03 Akzo Gmbh, 5600 Wuppertal Gleitmittel aus Polyalkylenoxiden für die formgebende Verarbeitung von Kunststoffen
US4140589A (en) 1977-03-28 1979-02-20 Solargen Electronics, Ltd. Method for lead crystal storage cells and storage devices made therefrom
DE2723946C3 (de) 1977-05-27 1982-04-22 Nordiska Ackumulatorfabriker Noack AB, Stockholm Anwendung von Überzügen aus Kunststoffen zur Verhinderung der Staubbildung bei der Herstellung von Elektrodenplatten für Bleiakkumulatoren
JPS5468793A (en) 1977-11-12 1979-06-02 Mizusawa Industrial Chem Manufacture of lead compounds
US4315829A (en) 1978-01-27 1982-02-16 Exide Corporation Method of preparing a battery paste containing fibrous polyfluoroethylene for use in the plates of a lead-acid storage battery
US4319002A (en) 1978-02-28 1982-03-09 Hooker Chemicals & Plastics Corp. Vinyl halide polymer blends of enhanced impact resistance
US4212179A (en) 1978-10-12 1980-07-15 The Gates Rubber Company Driven mandrel and method
SE7900812L (sv) 1979-01-30 1980-07-31 Magnusson R C G Anordning vid elektrokemiska ackumulatorceller
JPS55118764A (en) * 1979-03-08 1980-09-11 Takada Kogyo Kk Seat belt that use waist belt with energy absorbing power
US4346022A (en) 1979-04-13 1982-08-24 General Electric Company Method and apparatus for preparing lead-acid battery pastes
US4388210A (en) 1979-11-19 1983-06-14 St. Joe Minerals Corporation High surface area lead oxide composite and method for making the same
US4423188A (en) 1980-07-28 1983-12-27 Occidental Chemical Corporation Vinyl halide polymer blends of enhanced impact resistance
US4323470A (en) 1980-08-25 1982-04-06 Globe-Union Inc. Battery paste for lead-acid storage batteries
US4422917A (en) 1980-09-10 1983-12-27 Imi Marston Limited Electrode material, electrode and electrochemical cell
US4407911A (en) 1980-10-01 1983-10-04 General Electric Company Rechargeable electrochemical cell pack having resistance to impact and vibration
US4401730A (en) 1980-10-03 1983-08-30 Gnb Batteries Inc. Sealed deep cycle lead acid battery
US4329182A (en) * 1980-10-14 1982-05-11 Mizusawa Kagaku Kogyo Kabushiki Kaisha Granular stabilizer for chlorine-containing polymers
US4381250A (en) 1980-12-03 1983-04-26 Allied Corporation Curing of tetrabasic lead pasted battery electrodes
US4338163A (en) 1980-12-03 1982-07-06 Eltra Corporation Curing of tetrabasic lead pasted battery electrodes
US4331516A (en) 1980-12-03 1982-05-25 Eltra Corporation Curing of tetrabasic lead pasted battery electrodes
US4346151A (en) 1980-12-29 1982-08-24 The Gates Rubber Company Multicell sealed rechargeable battery
US4383011A (en) 1980-12-29 1983-05-10 The Gates Rubber Company Multicell recombining lead-acid battery
US4326017A (en) 1981-01-26 1982-04-20 General Electric Company Positive electrode for lead acid battery
US4475453A (en) 1981-02-17 1984-10-09 Envirotech Corporation Liquid-solid separation utilizing pressure rolls covered with elastomeric layers
US4697511A (en) 1981-02-17 1987-10-06 Envirotech Corporation Composite roll covering for expressing machines
US4336236A (en) 1981-03-25 1982-06-22 Nl Industries, Inc. Double precipitation reaction for the formation of high purity basic lead carbonate and high purity normal lead carbonate
US4421832A (en) 1981-08-24 1983-12-20 The Gates Rubber Company Electrochemical cell
US4414301A (en) 1981-12-10 1983-11-08 Allied Corporation Formed separator set for lead acid batteries
SE429723B (sv) 1982-01-04 1983-09-26 Johnson Axel Eng Ab Forfarande och anordning for avvattning av en suspension, speciellt slam
US4414295A (en) 1982-05-06 1983-11-08 Gates Energy Products, Inc. Battery separator
US4415410A (en) 1983-02-28 1983-11-15 Allied Corporation Forming of tetrabasic lead sulfate battery electrodes
US4507372A (en) 1983-04-25 1985-03-26 California Institute Of Technology Positive battery plate
US4618478A (en) 1983-04-29 1986-10-21 Oxide & Chemical Corporation Apparatus for the production of lead oxide
DE3318599C2 (de) 1983-05-21 1986-12-04 Hubert Eirich Ansatzweises Verfahren zur Herstellung von Bleipaste für Batterien
US4648177A (en) 1983-10-21 1987-03-10 Gates Energy Products, Inc. Method for producing a sealed lead-acid cell
US4637966A (en) 1983-10-21 1987-01-20 Gates Energy Products, Inc. Sealed lead-acid cell
US4547443A (en) 1983-11-14 1985-10-15 Atlantic-Richfield Company Unitary plate electrode
US4551401A (en) 1984-04-13 1985-11-05 Chloride, Inc. Method of suppressing lead dust
DE3503819A1 (de) 1984-12-21 1986-06-26 Sulzer-Escher Wyss GmbH, 7980 Ravensburg Hydraulischer pressschuh sowie dessen verwendung und betrieb
CH669740A5 (zh) 1985-03-18 1989-04-14 Von Roll Ag
US4606982A (en) 1985-05-09 1986-08-19 Gates Energy Products, Inc. Sealed lead-acid cell and method
US4656706A (en) 1986-01-06 1987-04-14 Globe-Union, Inc. Formation efficiency of positive plates of a lead-acid battery
US4713304A (en) 1986-06-18 1987-12-15 Gnb Incorporated Method of preparing lead-acid battery plates and lead-acid batteries containing plates so prepared
US4889778A (en) 1987-07-29 1989-12-26 C & D Power Systems, Inc. Alkali metal polysilica gel electrolyte lead-acid battery and method for making the same
US4780379A (en) 1987-10-06 1988-10-25 Gates Energy Products, Inc. Multicell recombinant lead-acid battery with vibration resistant intercell connector
US4900643A (en) 1988-04-08 1990-02-13 Globe-Union Inc. Lead acid bipolar battery plate and method of making the same
US4867886A (en) 1988-07-25 1989-09-19 Westvaco Corporation Method and apparatus for controlling sludge flocculant flow
US4973391A (en) * 1988-08-30 1990-11-27 Osaka Gas Company, Ltd. Composite polymers of polyaniline with metal phthalocyanine and polyaniline with organic sulfonic acid and nafion
IE71168B1 (en) * 1988-09-30 1997-01-29 Torpey Patrick A method and an apparatus for extracting liquid from a sludge
US5096611A (en) * 1989-05-25 1992-03-17 Globe-Union Inc. Process for the production of battery paste
US5198313A (en) * 1989-06-14 1993-03-30 Bolder Battery, Inc. Battery end connector
US4902532A (en) 1989-08-03 1990-02-20 Gates Energy Products, Inc. Method for preparing lead-acid electrochemical cell electrode plates
US5017446A (en) * 1989-10-24 1991-05-21 Globe-Union Inc. Electrodes containing conductive metal oxides
US5092404A (en) * 1989-11-01 1992-03-03 Marathon Oil Company Polyvinyl sulfonate scale inhibitor
US5091273A (en) * 1990-06-11 1992-02-25 Optima Batteries, Inc. Method of applying a tail wrap to a wound electrochemical cell and cell produced by the method
US5022700A (en) * 1990-07-19 1991-06-11 Auto Wrap, Inc. Mounting system for an automobile cover
US5120620A (en) * 1990-08-24 1992-06-09 Gates Energy Products, Inc. Binary lead-tin alloy substrate for lead-acid electrochemical cells
US5302476A (en) * 1990-12-03 1994-04-12 Globe-Union Inc. High performance positive electrode for a lead-acid battery
US5434025A (en) * 1991-03-26 1995-07-18 Gnb Battery Technologies Inc. Battery grids and plates and lead-acid batteries made using such grids and plates
US5874186A (en) * 1991-03-26 1999-02-23 Gnb Technologies, Inc. Lead-acid cells and batteries
US6180286B1 (en) * 1991-03-26 2001-01-30 Gnb Technologies, Inc. Lead-acid cells and batteries
US5384217A (en) * 1992-07-06 1995-01-24 Globe-Union Inc. Battery plates having rounded lower corners
US5382482A (en) * 1992-08-07 1995-01-17 Nippon Oil Company, Limited Zinc electrode for alkaline storage battery
US5314766A (en) * 1992-10-19 1994-05-24 General Motors Corporation Lead-acid battery electrode and method of manufacture
US5426144A (en) * 1993-08-11 1995-06-20 Alliedsignal Inc. External lubricant and stabilizer compositions for rigid vinyl polymers
DK0713510T3 (da) * 1993-08-11 1997-09-01 Allied Signal Inc Eksterne smøremiddelsammensætninger til stive vinylpolymerer
US5780913A (en) * 1995-11-14 1998-07-14 Hamamatsu Photonics K.K. Photoelectric tube using electron beam irradiation diode as anode
US5652074A (en) * 1996-01-11 1997-07-29 Gnb Technologies, Inc. Battery grids, a method for making such battery grids and lead-acid batteries using such battery grids
US6036945A (en) * 1997-04-11 2000-03-14 Shamrock Technologies, Inc. Delivery systems for active ingredients including sunscreen actives and methods of making same
US5871862A (en) * 1997-05-08 1999-02-16 Optima Batteries, Inc. Battery paste compositions and electrochemical cells for use therewith
US6014798A (en) * 1998-01-05 2000-01-18 Accumulatorenwerke Hoppecke Carol Zoellner Method and device for manufacturing lead plates for lead/acid batteries
US6168661B1 (en) * 1998-04-10 2001-01-02 Johnson Controls Technology Company Battery cell coating apparatus and method
US6531526B1 (en) * 1998-09-10 2003-03-11 Noveon Ip Holdings Corp. Halogen containing polymer compounds containing modified zeolite stabilizers
US6228527B1 (en) * 1999-03-02 2001-05-08 The United States Of America As Represented By The Secretary Of The Navy Magnesium solution phase catholyte seawater electrochemical system
US6414071B1 (en) * 1999-07-29 2002-07-02 Pq Corporation Aluminosilicate stabilized halogenated polymers
JP4374725B2 (ja) * 1999-09-22 2009-12-02 パナソニック株式会社 通信方法及び通信局
JP4669098B2 (ja) * 2000-01-11 2011-04-13 水澤化学工業株式会社 ホウ酸亜鉛、その製法及び用途
JP2001229920A (ja) * 2000-02-21 2001-08-24 Shin Kobe Electric Mach Co Ltd 密閉形鉛蓄電池の製造方法
US6755874B2 (en) * 2001-01-11 2004-06-29 Delphi Technologies, Inc. Plate making process for lead acid battery
JP2002231234A (ja) * 2001-01-30 2002-08-16 Shin Kobe Electric Mach Co Ltd 正極用ペースト状活物質の製造方法
US6617071B2 (en) * 2001-05-24 2003-09-09 Delphi Technologies, Inc. Active material for high power and high energy lead acid batteries and method of manufacture
WO2003010091A1 (en) * 2001-07-26 2003-02-06 Mizusawa Industrial Chemicals, Ltd. Alkaline earth metal-basic silicate particle
US6733547B2 (en) * 2001-12-10 2004-05-11 Delphi Technologies, Inc. Method of making a paste composition for lead acid battery
US6803151B2 (en) * 2002-02-21 2004-10-12 Delphi Technologies, Inc. Electrode
US6749950B2 (en) * 2002-03-28 2004-06-15 Delphi Technologies, Inc. Expanded grid
US7091250B2 (en) * 2002-12-24 2006-08-15 Penox Gmbh Additive for producing a positive active material for lead-acid storage batteries, a method for its production and a method for its use
MXPA06004510A (es) * 2003-10-21 2006-07-06 Johnson Controls Tech Co Material en pasta para pilas, y metodo.
US7011805B2 (en) * 2004-03-19 2006-03-14 Ges Technologies Ip Gmbh Production of tetrabasic lead sulfate from solid state reactions for the preparation of active plates to be used in lead-acid batteries
BRPI0517329A (pt) * 2004-09-23 2008-10-07 Maxtech Inc aditivo para cura de pasta
US20060110524A1 (en) * 2004-11-19 2006-05-25 Delphi Technologies, Inc. Additives and modified tetrabasic sulfate crystal positive plates for lead acid batteries

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106531973A (zh) * 2016-11-15 2017-03-22 超威电源有限公司 一种铅蓄电池正极铅膏合膏的方法
CN114204033A (zh) * 2021-12-28 2022-03-18 河南超威正效电源有限公司 铅酸蓄电池铅膏及其制备方法、极板及其高温固化工艺

Also Published As

Publication number Publication date
BRPI0415854A (pt) 2007-01-02
WO2005043651A1 (en) 2005-05-12
EP1680827A1 (en) 2006-07-19
US7517370B2 (en) 2009-04-14
CN100527486C (zh) 2009-08-12
US20080087868A1 (en) 2008-04-17
KR20080031531A (ko) 2008-04-08
US20070269592A1 (en) 2007-11-22
BRPI0415854B1 (pt) 2014-11-18
KR20060086434A (ko) 2006-07-31
ATE527709T1 (de) 2011-10-15
JP2007509484A (ja) 2007-04-12
MXPA06004510A (es) 2006-07-06
EP1680827B1 (en) 2011-10-05
JP4505464B2 (ja) 2010-07-21
KR100828275B1 (ko) 2008-05-07

Similar Documents

Publication Publication Date Title
CN1894810A (zh) 蓄电池糊状物材料及方法
CN1069088C (zh) 锂蓄电池负极用石墨系材料、碳覆盖碳材及其制备方法
CN1495944A (zh) 负极活物质及其制造方法,负极和非水电解质电池
JP2009048800A (ja) ペースト式正極板の製造方法
JP2001229920A (ja) 密閉形鉛蓄電池の製造方法
CN1166063A (zh) 铅蓄电池用负极板
JP6112225B2 (ja) 制御弁式鉛蓄電池
CN1209834C (zh) 二次电池用的正极活性材料、其制备方法以及含有该材料的非水电解质二次电池
CN100338795C (zh) 锂二次电池用负极及其制造方法以及使用其的锂二次电池
CN1163995C (zh) 碱性贮能电池的电极、制作方法和碱性贮能电池
CN1337750A (zh) 碱性蓄电池正极活性物质的制备方法,以及镍电极和碱性蓄电池
JP2008071717A (ja) 鉛蓄電池の化成方法
CN1688054A (zh) 纳米碳胶体阀控式密封铅酸蓄电池
CN112670458B (zh) 一种硅碳材料的制备方法及其应用
KR100266133B1 (ko) 고온 숙성 활물질을 이용한 납축전지 양극판의 제조방법
JP6283996B2 (ja) 鉛蓄電池用の負極板及び鉛蓄電池
JP2000357532A (ja) 鉛蓄電池の製造法
US3259522A (en) Manufacture of active mass for leadacid storage battery plates, active masses so produced, and plates with such masses
KR20080055533A (ko) 납축전지 양극판 제조방법
CN118073531A (zh) 一种提高铅酸电池的部分荷电状态下高倍率循环寿命的方法
CN1252851C (zh) 将纳米含铟化合物用于生产碱性电池的工艺
CN112310369A (zh) 一种碳量子点/二氧化钛/二氧化锌复合材料的制备方法
KR20230078281A (ko) 리튬 이차전지용 음극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
CN116581265A (zh) 一种复合硅氧碳基负极材料及其制备方法
WO2021055974A1 (en) Naples and pb-sb-sn yellows - composition and methods of use

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20220919

Address after: New York, United States

Patentee after: JOHNSON CONTROLS TECHNOLOGY Co.

Address before: Michigan

Patentee before: JOHNSON CONTROLS TECHNOLOGY Co.

TR01 Transfer of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090812

CF01 Termination of patent right due to non-payment of annual fee