CN1853448A - 电致发光器件 - Google Patents

电致发光器件 Download PDF

Info

Publication number
CN1853448A
CN1853448A CNA2004800268556A CN200480026855A CN1853448A CN 1853448 A CN1853448 A CN 1853448A CN A2004800268556 A CNA2004800268556 A CN A2004800268556A CN 200480026855 A CN200480026855 A CN 200480026855A CN 1853448 A CN1853448 A CN 1853448A
Authority
CN
China
Prior art keywords
electroluminescence layer
layer
group
solvent
monomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2004800268556A
Other languages
English (en)
Inventor
安妮特·施托伊德尔
奈杰尔·马莱
斯科特·沃特金斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Publication of CN1853448A publication Critical patent/CN1853448A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/30Doping active layers, e.g. electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1022Heterocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/917Electroluminescent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本发明涉及一种形成电致发光器件的方法,其包括如下步骤:提供包含用于注入第一种类型载流子的第一电极的基底;通过在所述基底上沉积包含基质材料和通式(1):A-C-(X) n的发光掺杂剂单体的组合物来形成具有表面的电致发光层,通式(1)中X代表可聚合基团,A代表发光基团,C代表键或间隔基团,并且n是整数;通过聚合通式(1)的单体使至少部分电致发光层不溶于溶剂中;将电致发光层暴露于所述溶剂中;以及在所述电致发光层上方沉积能够注入第二种类型载流子的第二电极。

Description

电致发光器件
                      技术领域
本发明涉及有机电致发光器件,具体地说是磷光有机电致发光器件。
                      背景技术
将半导体有机材料用于发光(电致发光器件)或者用作光电池或光检测器(“光伏打”器件)的活性组分的光电器件正越来越引起人们的关注。这些器件的基本结构是在向有机层注入或接受负载流子(电子)的阴极和注入或接受正载流子(空穴)的阳极之间插入半导体有机层。
在有机发光器件(OLED)中,电子和空穴被注入半导体有机层中,在那里复合以产生进行辐射衰变的激子。许多有机发光材料是已知的,具体地说有:聚合物,例如聚对苯乙炔(poly(p-phenylenevinylene))(在WO90/13148中公开)、聚芴和聚亚苯;例如US 4,539,507中公开的三-(8-羟基喹啉)铝(“Alq3”)的小分子材料;以及例如WO 99/21935中公开的树枝状聚合物(dendrimers)的一类材料。这些材料通过单线态激子的辐射衰变而电致发光(即荧光),但是自旋统计学表明75%以上的激子是经历非辐射衰变的三线态激子,即理论上最大的荧光OLED量子效率为25%,例如参见Chem,Phys.Lett.,1993,210,61;Nature(London),2001,409,494;Svnth.Met.,2002,125,55,以及其中引用的参考文献。
因此,人们进行了大量的研究旨在借助能够使三线态激子经历辐射衰变的金属络合物中的自旋-轨道耦合效应,由三线态激子(磷光)产生发光。为此研究的络合物的实例包括镧系金属螯合物[Adv.Mater.,1999,11,1349]、铂(II)卟啉[Nature(London),1998,395,151]和三苯基吡啶铱(III)(下文中为Ir(ppy)3)[Appl.Phys.Lett.,1999,75,4;Appl.Phys,Lett.,2000,77,904]。对这些络合物更全面的评述可以在下面的文献中找到:Pure Appl.Chem.,1999,71,2095;Materials Science &Engineering,R;Reports(2002),R39(5-6),143-222和PolymericMaterials Science and Engineering(2000),83,202-203。
OLED的发光层由位于阳极和阴极之间的平滑的薄膜组成,任选还具有电荷传输层。在可选的布置中,以电荷传输基质材料内的掺杂剂的形式提供发光材料。这种布置可以通过提高电荷传输和/或从基质材料向发光材料提供激子传输而增加器件效率。基质-掺杂剂布置可以适用于例如在J.Appl.Phys.,65,3610,1989中描述的荧光材料或者在上述磷光OLED发明中描述的磷光材料。
OLED的发光层可以交联的以使其在沉积后是不可溶的。在发光材料是可溶的并且如果接着经历溶液处理步骤可能会被溶解的情况中,交联是特别有利的。
可以使用交联来通过溶液处理形成另外的器件层。举例来说,US 6107452公开了形成多层器件的方法,其中从溶液中沉积包含具有乙烯端基的低聚物的芴并且交联形成不可溶的聚合物,其上可以沉积其它层。类似地,Kim等,Synthetic Metals 122(2001),363.368中公开了包含在聚合物沉积后可以交联的包含三芳胺基团和乙炔基团的聚合物。
交联还可以用于光刻电致发光层图案,其中使用掩模进行电致发光层的UV交联,接着用溶剂洗涤电致发光层,除去未交联的材料。例如,为了从溶液中沉积和/或洗去另外的器件层,优选进行进一步的溶液处理。例如,Nature 421,829-833,2003公开了通过在沉积后用合适的辐射进行曝光,借助光酸(photoacid)产生剂交联带有氧杂环丁烷(oxetane)侧基的红、绿和蓝色电致发光聚合物而形成全色显示器的方法。类似地,JP 2003-142272公开了在电致发光层沉积之前任选经光学图案化(photopatterned)的空穴传输层的交联。
硫醇-烯(thiol-ene)聚合物公知用于光刻中(尽管不是OLED的光刻),例如参见Jacobine,Radiat.Curing Polym.Scl.Technol.,1993,3,219-68。
共同待审申请PCT/GB 03/00899描述了将硫醇-烯聚合物用于OLED的光学图案化,特别是包含如上所述的基质-掺杂剂体系的OLED。该申请描述了在例如Ir(ppy)2的发光材料存在下可以聚合形成电致发光层的包含硫醇或烯烃的电荷传输部分,所述电致发光层包含基质内含有发光掺杂剂材料的电荷传输主体聚合物基质。然后,使所述电致发光层接受例如光学图案化的溶液处理。尽管这种途径用于提供功能性的图案化OLED,但是本发明人已经发现电致发光层沉积后的加工步骤导致根据所述途径制造的光学图案化器件效率较低。
WO03/01616公开了具有丙烯酸基团的磷光络合物单体,例如三苯基吡啶铱(III)。可以通过聚合丙烯酸基团,然后将聚合物溶液沉积到OLED基底上,或者在其沉积后聚合所述单体的方法来形成包含这些络合物的OLED。如果聚合物中的交联程度使其不可溶,后一方案是优选的。该文献公开了可溶和不可溶的聚合物,并且没有进一步公开这些聚合物沉积后的溶液处理步骤。
从上述低效率的问题来看,特别是对于例如光学图案化器件的器件来说,本发明的目的是提供形成效率提高的包含基质-掺杂剂电致发光层的电致发光器件的方法。
                      发明内容
本发明人已经发现向不溶性的聚合物中结合基质-掺杂剂体系的掺杂剂使得器件效率显著提高。
因此,在本发明的第一方面中,提供了一种形成电致发光器件的方法,其包括步骤:
—提供包含用于注入第一种类型载流子的第一电极的基底;
—通过在所述基底上沉积包含基质材料和通式(1)的发光掺杂剂单体的组合物而形成具有表面的电致发光层:
                      A-C-(X)n
                         (I)
其中X代表可聚合基团,A代表发光基团,C代表键或间隔基团,并且n是整数;
—通过聚合通式(1)的单体使至少部分电致发光层不溶于溶剂中;
—将所述电致发光层暴露于所述溶剂中;以及
—在所述电致发光层上方沉积能够注入第二种类型载流子的第二电极。
优选所述组合物包含用于和X共聚合的第二种可聚合基团Y。
X和Y可以选自相同或不同类型的可聚合基团。
在一个优选的实施方案中,X和Y选自不同类型的可聚合基团。更优选地,X和Y之一是任选取代的硫醇,并且另一个包含反应性的不饱和碳-碳键,优选是任选取代的烯烃。更优选地,X包含反应性的不饱和碳-碳键,优选是任选取代的烯烃。
在另一个优选的实施方案中,X和Y选自相同类型的可聚合基团。更优选地,X和Y是相同或不同的,并且两者均是优选取代的硫醇或者都是反应性的不饱和碳-碳键,优选是任选取代的烯烃。在此情况下,X和Y可以直接一起聚合。可选地,X和Y可以通过交联剂聚合。在特别优选的实施方案中,X和Y都包含不饱和的碳键并且所述交联剂包含多个硫醇基团。
“反应性的不饱和碳-碳键”意指能够自身或者与共聚单体聚合的基团。
优选,n至少为2。
优选地,所述基质材料与另外的第一种可聚合基团X或者第二种可聚合基团Y结合。更优选地,所述基质材料与至少2个另外的第一种可聚合基团X或者第二种可聚合基团Y结合。优选,所述基质材料与至少1个另外的第一种可聚合基团X结合。
优选地,所述发光基团是磷光化合物。优选地,所述磷光化合物是金属络合物。
聚合通式(I)的单体的合适方法包括使单体暴露于紫外光下或者热处理。在一个优选的实施方案中,聚合通式(I)的单体的步骤包括仅将电致发光层的部分表面暴露于紫外光下。随后将电致发光层暴露于溶剂中的步骤导致可溶性材料被洗去,留下图案化的不溶性的电致发光层。
在另一个优选的实施方案中,使所述电致发光层的整个表面不可溶。在该实施方案中,优选将电致发光层暴露于溶剂中的随后步骤包括通过在电致发光层上方沉积包含溶剂和电活性材料的组合物而形成电活性层。
优选地,所述电活性层是包含电荷传输材料的电荷传输(即空穴或电子传输)层。
在第二方面中,本发明提供了通过本发明第一方面的方法可以获得的电致发光器件。
                      附图说明
现在将参照附图详细地描述本发明,其中:
图1显示了根据本发明方法制造的器件,且
图2显示了通式(I)的化合物的合成。
                    具体实施方式
参照图1,根据本发明的电致发光器件的标准结构包括透明玻璃或塑料基底1、氧化铟锡2和阴极4。根据本发明的电致发光层是介于阳极2和阴极4之间的层3。
除了层3外,可以提供单独的空穴传输层和/或电子传输层。
尽管不是必需的,但是在阳极2和电致发光层3之间优选是有机空穴注入材料层(未显示)。有机空穴注入材料包括导电聚合物,例如在EP 0901176和EP 0947123中公开的聚(乙烯二氧噻吩)(PEDT/PSS),或者在US 5723873和US 6798170中公开的聚苯胺。
电致发光层3包含其中掺杂剂基团以侧基或者聚合物骨架内的单元的形式与聚合物结合的聚合物。用来形成聚合物的单体优选是可溶的,但是其形成不可溶的聚合物。可以使用溶液处理技术,例如旋涂、喷墨印刷、浸涂液面(dipcoating meniscus)涂布或辊涂,或者其它印刷或涂布技术,或者热转移方法来沉积待聚合的单体。
单体可以通过任何合适的技术,包括热处理、化学引发和照射,特别是紫外照射来聚合。一类特别适合的聚合物是硫醇-烯聚合物。在根据本发明的方法中使用的单体包含反应性的不饱和碳-碳键的情况中,该键举例来说是具有碳-碳双键或三键的非芳香基团。当使用硫醇时,这些材料形成硫醚连接。由于位阻的原因,最具反应性的不饱和碳-碳键通常位于链或支链中的端部位置。
优选,通过在惰性气氛中暴露于光化学辐射来引发聚合,以避免在聚合物中形成例如过氧基团的化学引发剂。在洗涤或显影薄膜后,可以干燥薄膜或者进行其它图案化后处理。
使用合适的光掩模实现发光层的光刻图案化。沉积、图案化并且显影能够发射第一种颜色的薄膜,以形成能够发射第一种颜色的像素。在此阶段,因为第一种颜色的薄膜是不可溶的,所以允许沉积能够发射第二种颜色的材料的薄膜而不会干扰第一种颜色的薄膜。图案化并且显影所述第二种薄膜,形成能够发射第二种颜色的像素。重复该过程,沉积能够发射第三种颜色的材料。如果存在,可以合适地图案化电荷传输层,并且可以使用相同的掩模技术来进行。
通过自由基诱导的聚合形成例如硫醇-烯聚合物的聚合物。任选地,在自由基引发剂的存在下发生自由基诱导的聚合。所得聚合物在溶剂中的不溶性允许将未反应的单体洗去。优选通过聚合产生交联聚合物网络来实现不溶性。
在正确的条件下,硫醚和烯烃基团反应,形成硫醚连接。反应采用逐步生长机理进行,如同在Jacobine,Radiat.Curing Polym.Sci.Technol.,1993,3,219-68中所概括的。该反应如下所示,其中A是发光掺杂剂并且B是用来结合硫醇官能团的核。
如果每个单体具有两个官能团(n=m=2),那么可以形成线性聚合物。如果n或m至少一个大于2,那么可以形成交联聚合物。为了将基质材料结合入上面所示的聚合物中,可以向单体中添加至少包含两个反应性不饱和碳-碳键的基质材料。尽管上面作为具有烯烃反应性单元的单体说明了基质材料和发光掺杂剂,但是可以理解它们任何之一或者两者都具有硫醇反应性单元。此外,单体可以包含至少一个硫醇基团和至少一个反应性的不饱和碳-碳键。
上面所示的单体产生其中基团A和B位于聚合物骨架内的聚合物,但是应当理解单体是可以改变的,从而使A和B之一或两者作为聚合物骨架的侧链取代基存在。这种单体的一个实例如下所示:
Figure A20048002685500102
其中,n至少为2并且C代表可以合适地选自后述间隔基团的间隔基团。类似地,可以用硫醇基团取代双键和/或用电荷传输部分取代发光掺杂剂A。
原则上,为了完全反应,应该存在与Y基团一样多的X基团,如果一种基团过量,那么过量的基团将是未反应的。但是,众所周知,在多官能团单体的聚合反应中,假定迁移率不受限制,不是所有的官能团都反应(P.J.Flory,J.Am.Chem.Soc.1947,69,2893),所以据认为X和Y基团数目的平衡并不是关键的。
在使用硫醇-烯聚合物时,优选在发光部分和可聚合的硫醇或者反应性不饱和碳-碳键之间存在间隔链。这种间隔基改善了材料的成膜性质,允许从溶液中沉积良好质量的膜。所述间隔基还有助于聚合过程。间隔不应包含任何的羰基(包括酯、酰胺等形式的羰基)。所述间隔基可以包含烷基、醚、硫醚、芳基、硅氧烷、胺或者不饱和基团,或者例如硅、硼或磷的杂原子。
在文献S.Patal,第4章,The Chemistry of the Thiol Groups,JohnWiley & Sons,London 1974中可以找到形成包含硫醇的材料的合成途径,包括那些以硫脲、硫代硫酸根离子、硫醇酯和二硫代氨基甲酸酯为原料的途径。
在反应性的不饱和碳-碳键和分子剩余部分之间具有醚连接的烯烃材料的合成途径是在如图2所示的碱的存在下借助亲核取代来合成(从化合物10c到化合物10的步骤),Synthesis of ethers,Houben-Weyl,Mathaden der organlsche Chemie,V1/3,Georg ThiemeVerlag,Stuttgart1965。
硫醇-烯混合物可以被容易地热聚合和光聚合。光聚合具有可以获得良好分辨率图案的薄膜的优点,并因此光聚合对于OLED应用是优选。反应性的不饱和碳-碳键优选是富电子的,或者它们形成变形的环状体系的组成部分。在后一情况中,不饱和碳-碳键与硫醇的反应可以释放环的张力。所述反应性的不饱和碳-碳键优选由降冰片烯基或乙烯醚部分组成,其它有用的烯烃由烯丙基醚或者不饱和环体系组成。对于硫醇-烯体系,对于通过紫外光或可见光的活化存在一些合适的引发剂。为了成功地引发聚合,通常优选使用被引发剂所吸收但是薄膜其它组分不会强烈吸收的光波。在此情况下,引发剂工作良好并且使薄膜的光降解最小化。
此处提到的硫醇-烯体系不包含任何羰基,因此没有观察到发光的淬灭。
本发明的发光掺杂剂优选是通式(V)的任选取代的金属络合物:
                          ML1 qL2 rL3 s
                             (V)
其中M是金属,L1、L2和L3中每个都是配位基团;q是整数;r和s每个独立地是0或整数;并且(a.q)+(b.r)+(c.s)的和等于M上可获得的配位数目,其中a是L1上的配位数、b是L2上的配位数和c是L3上的配位数。
金属络合物可以基于能产生荧光的较轻的元素,例如铝络合物,尤其是J.Appl.Phys,65,3610,1989中公开的Alq3。可选地,所述络合物可以基于能诱导强的自旋-轨道耦合,从而允许快速系间跨越和从三线态发射(磷光)的重元素M。合适的重金属M包括:
—镧系金属,例如铈、钐、铕、铽、镝、铥、铒和钕;及
—d-区金属,特别是第2和3周期的那些元素,即第39至48号和第72至80号元素,特别是钌、铑、钯、铼、锇、铱、铂和金。
f区金属的合适的配位基团包括氧或氮的给体体系,例如羧酸、1,3-二酮、羟基羧酸、包括酰基酚和亚氨基酰基的席夫碱。已知发光的镧系金属络合物需要三线态激发能级高于金属离子第一激发态的敏化基团。发射来自金属的f-f跃迁,所以发射的颜色取决于金属的选择。尖锐的发射通常是窄的,导致对显示应用有用的纯色发射。
d区金属与例如卟啉或通式(VI)的双齿配体的碳或氮给体形成有机金属络合物:
Figure A20048002685500131
其中,Ar4和Ar5可以相同或不同,并且独立地选自任选取代的芳基或杂芳基;X1和Y1可以相同或不同,并且独立地选自碳和氮;并且Ar4和Ar5可以稠合在一起。其中X1是碳并且Y1是氮的配体是特别优选的。
双齿配体的实例如下所示:
Figure A20048002685500132
每个Ar4和Ar5可以具有一个或多个取代基。特别优选的取代基包括如WO 02/45466、WO 02/44189、US 2002-117662和US2002-182441中公开的可以用来蓝移络合物的发射的氟或三氟甲基;如JP 2002-324679中公开的烷基或烷氧基;如WO 02/81448中公开的当用作发射材料时可以用来辅助空穴向络合物传输的咔唑;如WO02/6B435和EP 1245659中公开的可以用来官能化用于连接其它基团的配体的溴、氟或碘;以及如WO 02/66552中公开的可以用来获得或增强金属络合物的溶液处理性能的树突(dendrons)。
其它适于与d区元素一起使用的配体包括二酮,特别是乙酰丙酮(acac)、三苄基膦和吡啶,所述每种配体都可以被取代。
主族金属络合物表现出基于配体的,或者电荷传输发射。对于这些络合物,发光颜色取决于配体和金属的选择。很多低分子量的荧光金属络合物已被人们所知并且在有机发光器件中得到证实[例如参见Macromol.Symp.125(1997)1-48、US-A 5,150,006、US-A 6,083,634和US-A5,432,014],特别是三-(8-羟基喹啉)铝。对于二价或三价金属合适的配体包括:oxinoids,例如具有氧-氮或氧-氧供给原子,通常是具有取代基氧原子的环氮原子,或者具有取代基氧原子的氮原子或氧原子,例如8-羟基喹啉盐和羟基喹喔啉醇-10-羟基苯并(h)喹啉(II)、苄咪唑(III)、席夫碱、偶氮吲哚、色酮衍生物、3-羟基黄酮和羧酸,例如水杨酸氨基羧酸酯和羧酸酯。任选的取代基包括可以调至发光颜色的(杂)芳环上的卤素、烷基、烷氧基、卤烷基、氰基、氨基、酰氨基、磺酰基、羰基、芳基或杂芳基。
合适的荧光蓝光发射体例如是二苯乙烯、香豆素、蒽(Kodak US5,927,247(1999)、Toshio等(Toyo Ink)EP 0765106(1996))和二萘嵌苯(So等(Motorola)US 5,853,905(1997)、Lee等(Motorola)US 5,747,183(1996))。其它合适的发射体是发射蓝光的铝络合物(Bryan等(Kodak)US 5,141,671、Van Slyke等(Kodak)US 5,150,006))。合适的绿光发射体是Alq3(Chen和Tang,Macromol.Symp.1997,125,1-48)、香豆素(Chen等(Kodak)US 6,020,078)和喹吖啶酮(Shi等(Kodak)US5,593,788)。合适的红光发射体是DCM及其衍生物(Chen等(Kodak)US 5,908,581)。所述荧光材料可以是分子或树枝状物质。合适的荧光树酯状聚合物的实例举例来说参见WO 99/21935。
在发光掺杂剂是磷光体的情况中,基质需要具有比掺杂剂更高的T1能级。合适基质材料的实例是那些包含三芳基胺单元(例如参见Shirota,J.Mater.Chem.2000,10,1-25)或者咔唑单元的材料,特别是聚(乙烯咔唑)。
基质材料还可以具有电荷传输性质。空穴传输基质材料是特别优选的,例如具有下面通式的空穴传输芳基胺:
Figure A20048002685500151
其中Ar是任选取代的芳香基团,例如苯基或
并且Ar1、Ar2、Ar3和Ar4是任选取代的芳香或杂芳香基团(Shi等(Kodak)US 5,554,450、Van Slyke等US 5,061,569、So等(Motorola)US5,853,905(1997))。Ar优选是联苯基。在本发明中,Ar1、Ar2、Ar3和Ar4中的至少两个与硫醇基团、X或包含反应性不饱和碳-碳键的基团中的任何一个结合;Y、Ar1和Ar2和/或Ar3和Ar4任选地连接形成例如含N的环,从而使N形成咔唑单元的一部分,例如:
电荷传输/基质材料可以是双极性的,即能够传输空穴和电子。合适的双极性材料优选包含至少两个咔唑单元(Shirota,J.Mater.Chem.,2000,10,1-25)。
基质材料中的荧光或磷光发光掺杂剂的浓度应该使薄膜具有高的光致发光和电致发光效率。如果发光物质的浓度太高,可能发生发光的淬灭。在0.01至49摩尔%范围内的浓度通常是合适的。
除了电致发光层外,OLED可以进一步包含半导体层。特别是使用电荷传输和/或耗尽层。适于形成空穴传输/电子耗尽层的材料是富π电子的,特别是三芳基胺(例如参见Shirota,J.Mater.Chem.,2000,10,1-25)和那些包含上述化合物作为基质材料的胺和咔唑。
如果发光体是磷光体,存在也起着空穴耗尽层作用的电子传输层,或者在发光层和电子传输层之间存在空穴耗尽层是特别有利的。
电子传输材料包含π电子不足的部分。合适的π电子不足部分的实例是噁二唑、三嗪、吡啶、嘧啶、喹啉和喹喔啉(Thelakkat,Schmidt,Polym.Adv.Technol,1998,9,429-42)。具体的实例包括Alq3[三-(8-羟基喹啉)铝]、TAZ(3-苯基-4-(1-萘基)-5-苯基-1,2,4-三唑)和OXD-7(1,3-双(N,N-t-丁基-苯基)-1,3,4-噁二唑)。
可以在电致发光层3和阴极层4之间提供电子传输和/或空穴耗尽材料层(未显示)。同空穴传输或注入层一样,电子传输和/或空穴耗尽材料层不是必需的。
阴极4选自其功函数允许向电致发光层或电子传输层(如果存在的话)中注入电子的材料。其它的因素也影响阴极的选择,例如阴极和电致发光材料之间不利的相互作用的可能性。阴极可以由例如铝层的单种材料组成。可选地,阴极可以包含许多种金属,例如在WO98/10621中公开的钙和铝的双层;在WO 98/57381、Appl.Phys.Lett.2002,81(4),634和WO 02/84759中公开的元素钡;或者辅助电子注入的介电材料薄层;例如在WO 00/48258中公开的氟化锂;或者在Appl.Phys.Lett.2001,79(5),2001中公开的氟化钡。
典型的电致发光器件包含功函为4.8eV的阳极。因此,如果存在的话,空穴传输材料的HOMO能级优选在大约4.8-5.5eV。类似地,典型器件的阴极具有大约3eV的功函。因此,如果存在的话,电子传输材料的LUMO能级优选在大约3-3.5eV。
电致发光层3可以只包含根据本发明的基质材料和发光材料,或者一种或多种附加材料。特别地,层3可以包含与WO 99/48160中公开的一种或多种空穴传输聚合物和电子传输聚合物混合的基质材料和发光材料。
电致发光器件可以是单色器件或者全色器件(即由红、绿和蓝色电致发光材料形成)。
所述器件可以是未图案化的被动驱动型(passive matrix)或主动驱动型(active matrix)器件。
                      实施例
A)材料
B)合成
4,4′-双(3-(烯丙氧基甲基)咔唑-9-基)(1)的合成
根据图2中所示路线合成通式(1)的化合物:
i)4,4′-双(咔唑-9-基)联苯(la)的合成
在氮气下将含磷的叔丁基膦(880毫克,4.35毫摩尔)的甲苯(88毫升)溶液加入咔唑(11.9克,71.0毫摩尔)、4,4’-二溴联苯(10.0克,32.11毫摩尔)、叔丁氧钠(23.2克,241毫摩尔)和乙酸钯(324毫克,1.34毫摩尔)的甲苯(50毫升)脱氧混合物中,并且将所得混合物在氮气下加热回流10天。冷却反应混合物至室温,然后用更多的甲苯(200毫升)稀释。过滤反应混合物以除去钠盐并且除去滤液中所有痕量产物。浓缩滤液至干,得到淡褐色固体粗产物。首先通过色谱在氧化硅色谱柱上使用二氯甲烷作为洗脱剂,接着通过从甲苯中重结晶来纯化粗产物。然后,在10-6毫米汞柱和280-281℃下升华该材料,得到熔点为280-281℃(lit.m.p.281℃)的淡白色固体产物4,4′-双(咔唑-9-基)联苯。
ii)4,4′-双(3-甲酰咔唑-9-基)联苯(1b)的合成
向N,N-二甲基甲酰胺(5.40毫升,5.10克,69.7毫摩尔)和4,4′-双(咔唑-9-基)联苯(7.72克,16.0毫摩尔)的搅拌混合物中逐滴加入三氯氧化磷(13毫升,21.5克,140毫摩尔),并且在室温下搅拌所得混合物5分钟,然后加热至90℃持续24小时。(注意借助TLC使用5%乙醇/二氯甲烷作为洗脱剂跟踪反应混合物)。将反应混合物倒入水(800毫升)中,并且将烧杯放入超声浴中2小时,破碎材料。进一步搅拌混合物2小时,然后过滤。残余物用水,然后用己烷洗涤,并且真空干燥2小时。用丙酮(3×400毫升)加热粗产物并且过滤。产物在大多数有机溶剂中是不溶的。用丙酮洗涤除去杂质。获得熔点为295℃(摄氏度)的产物,4,4′-双(3-甲酰咔唑-9-基)联苯,(7.92克,87%)。发现:C,81.74;H,4.71;和N,4.45。C38H28N2O2-(CH3)2CO需要C,82.25;H,5.05;N,4.68%。1H n.m.r.(300MHz,Me2SO):δ10.09(2H,s,CHO);8.88(2H,d,J0.88Hz,芳香H);8.41(2H,d,J7.61Hz,芳香H);8.41(4H,d,J8.49Hz,芳香H);8.00(2H,dd,J8.49,1.46Hz,芳香H);7.83(4H,d,J8.49Hz,芳香H);7.38-7.61(8H,m,芳香H)。λmax(CH2Cl2):215nm(∈/Lmol-1cm-19163),241(68488),272(65928),294(67 194)328(42 620)。FT-IR(固体):3045,2825,2730,1682,1623,1591,1505,1456,1438,1365,1319,1275,1230,1180,802,745cm-1
iii)4,4′-双(3-(羟甲基)咔唑-9-基)联苯(1c)的合成
向4,4′-双(3-甲酰咔唑-9-基)联苯(3.42克,6.33毫摩尔)的THF(1.2升)溶液中加入硼氢化钠(2.40克,63.4毫摩尔),并且在室温下搅拌所得悬浮液24小时。使用5%乙醇/二氯甲烷作为洗脱剂跟踪反应。一旦反应完成,将混合物缓慢倒入水(400毫升)中,并且在室温下进一步搅拌混合物30分钟。用盐酸(5M)将反应混合物酸化至pH为1。用二氯甲烷(3×300毫升)提取产物。合并的有机相用水(400毫升)和盐水(400毫升)洗涤、干燥(MgSO4)、过滤并且蒸发滤液至干。通过色谱在氧化硅色谱柱上使用50%THF/甲苯作为洗脱剂纯化粗产物。从乙醇中重结晶产物,得到熔点为268℃的淡黄色固体4,4′-双(3-(羟甲基)咔唑-9-基)联苯(3.22克,94%)。发现:C,82.51;H,4.64;和N,4.86。C38H28N2O2-EtOH需要C,81.33;H,5.80;N,4.74%。1H n.m.r.(300MHz,Me2SO):δ8.23(2H,d,J7.61Hz,芳香H);8.18(2H,s,芳香H);8.06(4H,dd,J8.19Hz,芳香H);7.75(4H,J8.19Hz,芳香H);7.38-7.50(8H,m,芳香H);7.29(2H,m,芳香H);5.25(2H,t,J5.58Hz,OH);4.68(4H,d,J5.56Hz,CH2)。λmax(CH2Cl2):216nm(∈/Lmol-1cm-1 177 455),240(57 873),271(56 595),294(55 330),329(37 758)。FTIR(固体):3343,1604,1500,1485,1455,1362,1330,1230,803,745cm-1
iv)4,4′-双(3-(烯丙氧基甲基)咔唑-9-基)联苯(1)的合成
DMSO用氢化钙干燥,然后真空蒸馏并保存在分子筛上。
向DMSO(20毫升)中加入氢氧化钾(2.07克,36.9毫摩尔),并且在室温和氮气下搅拌15分钟。然后,加入二醇(2.39克,4.39毫摩尔)的DMSO(20毫升)溶液,接着加入烯丙基溴(2毫升,2.80克,21.7毫摩尔),并且在室温和氮气下搅拌所得混合物过夜。将反应混合物倒入水(200毫升)中,并且用二氯甲烷(3×50毫升)提取产物。合并有机相并且用水(5×150毫升)、盐水(200毫升)洗涤,并且用硫酸镁干燥。过滤混合物并且蒸发滤液至干。材料用色谱在氧化硅色谱柱上使用二氯甲烷作为洗脱剂纯化。合并相关馏分并且减压除去溶剂。从二氯甲烷和己烷中磨碎产物,得到熔点为118-120℃的淡黄色固体。(发现:C,82.51;H,4.64;且N,4.86。C38H28N2O2·EtOH需要C,81.33;H,5.80;N,4.74%)。1H n.m.r.(300MHz,Me2SO):δ8.13-8.20(4H,m,芳香H);7.87-7.93(4H,m,芳香H);7.65-7.72(4H,m,芳香H);7.40-7.65(8H,芳香H);7.27-7.35(2H,m,芳香H);5.93-6.09,(2H,m,CH=CH),5.30-5.39(2H,m,CH=CH);5.20-5.29(2H,m,CH=CH);4.74(4H,s,CH2);(8H,m,CH2-CH=CH2)。λmax(CH2Cl2):241nm(∈/Lmol-1cm-1 88 506),296(40331),319(29657)。FT-IR(固体):3047,2852,1604,1500,1455,1359,1331,1230,1074,915,807,759cm-1
四硫代丙基季戊四醇(2)的合成
Nouguler R,Mchich M,J.Org.Chem.1985, 50,(3296-3298)中公开了由四烯丙基季戊四醇起始的在两步合成中制备通式(2)的化合物的方法。
Figure A20048002685500211
i)四硫代乙酰基丙基季戊四醇的合成
向配备有搅拌器的10毫升圆底烧瓶中加入2.0克(6.74毫摩尔)的四烯丙基季戊四醇。反应物在冰浴中冷却,其中以每份1毫升的量添加4.11克(53.98毫摩尔)新鲜蒸馏的硫羟乙酸。在添加完成后,加入5毫克AlBN并且搅拌反应物15分钟。当AlBN溶解后,在60℃加热反应混合物12小时,反应通过T.L.C.跟踪。反应产物在氧化硅上二氯甲烷(DCM)中具有0.05的Rf并且在乙醇中的Rf为0.9。在真空下除去反应混合物中过量的硫羟乙酸,并且将残留物在最少体积的DCM中施加到短的氧化硅柱上。用500毫升DCM,接着用500毫升乙醇洗脱柱子。收集乙醇部分并且除去溶剂。作为淡黄色油状物分离出2.9克(71.5%产率)的四硫代乙酰基丙基季戊四醇。
1H NMR(CDCl3)ppm:3.41(三重峰,8H)3.34(单峰,8H)2,92(三重峰,BH)2.32(单峰,12H)1.80(五重峰,8H)。I.R(cm-1):2666,1665,1354,1099,953。
ii)四硫代丙基季戊四醇(2)的合成
在100毫升圆底烧瓶中,向10毫升无水THF中加入1.8克(2.99毫摩尔)四硫代乙酰基丙基季戊四醇并且搅拌使混合物脱气。反应容器用氮气吹洗并且逐滴加入12.3毫升1M LiAlH4的THF溶液。使反应在室温下搅拌18小时,反应通过T.L.C.监控(二氯甲烷)。当反应完成时,用0.1M HCl酸化混合物至pH为3并且加入50毫升DCM。收集有机相,用2×50毫升的DCM萃取水相。合并有机相,并且用4×100毫升的盐水和2×50毫升的水提取。有机相用硫酸钠干燥、过滤并且除去溶剂。作为分离产物,得到0.92克(71.2%产率)的淡黄油状物。在Kugelrohr仪器上蒸馏产物,得到流动的无色油状物,B.P 230℃@10-4毫巴。
1H NMR(CDCl3)ppm:3.47(三重峰,8H)3.34(单峰,8H)2.60(四重峰,8H),1.84(五重峰,8H)1.38(三重峰,4H)。I.R(cm-1):2864,1368,1101。
按照WO 02/060910中所述合成Fac-三[2-(2-吡啶基-κN)苯基-κC]-铱(III)(3)。
按照WO 02/068435中所述合成Fac-[2-(2-吡啶基-κN)苯基-κC]-双[2-(2-吡啶基-κN)(5-溴苯基)-κC]铱(III)(4)。
通过Dondoni等(J.Org.Chem.,1998,63,9535)的方法合成3-苯乙烯基硼酸(5)。(5)的分析数据与Rush等(J.Org.Chem.,1962,27,2598)的报道一致。
Fac-[2-(2-吡啶基-κN)苯基-κC]-双[2-(2-吡啶基-κN){5-(3-苯乙烯基)苯基-κC}-铱(III)(6)。
用5(0.294克,1.79毫摩尔)的乙醇(40立方厘米)溶液、碳酸钠的水溶液(0.9立方厘米,1.79毫摩尔)和水(30立方厘米)处理4(0.582克,0.717毫摩尔)的甲苯(90立方厘米)悬浮液。用氮气吹洗混合物75分钟。对着氮气流,向混合物中添加固体四(三苯基膦)钯(0.040克,0.036毫摩尔)。然后,在氮气下将混合物加热至回流。在达到回流时,悬浮液澄清,从黄色悬浮液转变成桔黄色的混合物。在氮气下保持混合物回流14.5小时,然后冷却至室温。在冷却反应混合物至室温下时,两相均是澄清的。用二氯甲烷(100立方厘米)处理混合物并且分离有机相。用二氯甲烷(2×50立方厘米)洗涤水相。用水(40立方厘米)洗涤合并的有机提取液。然后,用硫酸镁干燥合并的有机提取液,过滤并且真空浓缩。使用色谱在氧化硅凝胶上用1∶1二氯甲烷/己烷的洗脱剂纯化粗产物。分离出作为黄色粉末的产物(0.560克,90%)。1H nmr(300MHz,CDCl3):8.1-7.4(16H,m),7.4-7.3(4H,m),7.2-7.1(2H,m),7.0-6.7(10H,m),5.79(2H,d,J=18Hz),5.30(CH2Cl2),5.25(2H,d,J=11Hz)。ES-MS:860.20(MH+)。EA:发现C:63.55,H:4.17,N:4.97,IrC48H36N3·CH2Cl2需要C:63.62,H:4.06,N:4.45。
C)制造掺杂有磷光发射剂的光可交联的OLED
在1.5毫升纯氯仿中溶解基质材料1(8毫克)、磷光掺杂剂3(8重量%)和硫醇2(1.8毫克)(总浓度为5-7毫克/毫升)。通过将该溶液旋涂到涂敷ITO的玻璃基底(事先在商购洗涤剂中超声清洗并用去离子水彻底漂洗并在Emitech K1050X等离子体装置中进行等离子体处理(加工气体氧气,100W,2分钟))上以形成发光层。在2000rpm和500rs-1的加速度下经过总共30秒将溶液旋涂到基底上,得到厚度约50纳米的发光层。然后,在惰性气氛(N2)下使用Hanovir UVA 250W UV光源聚合薄膜。通过5”×5”的玻璃光掩模照射该薄膜6-8分钟(cut-off 360纳米),得到矩形曝光面积15毫米×20毫米。透过用纯甲苯漂洗来显影光聚合的薄膜,在干氮气流下干燥并且转移到蒸镀设备(Kurt JLesker)上,通过蒸镀50纳米厚的电子传输层/空穴传输层TPBI(如下所述)和LIF(1.2纳米)和铝(100-150纳米)双层上电极(阴极)来完成OLED。阳极和阴极之间的重叠形成了由6个像素组成的活性区域,测量面积4毫米×5毫米。
为了比较,除了使用7重量%的Ir(ppy)3(3)代替可聚合的材料(6)外,制造相同的器件。
D)器件性能
在100cd/m2下的器件测试结果。
掺杂剂   效率(cd/A)   效率(lm/W)   操作电压(V)   开启电压(V)   最大亮度(cd/m2)(@V)   CIE坐标(x,y)
  3   8.22   3.49   7.4   5.2   911(10.0)   0.33,0.61
  6   22.6   12.5   5.7   4.4   2311(10.0)   0.34,0.61
从这些结果可以看出,根据本发明制造的器件在许多性能方面表现出极大的提高。
不愿受任何理论束缚,据信本发明的优点源于发光基团被固定到聚合物链上,阻止了其从基质中被洗去。此外,在聚合物骨架内固定发光剂和基质材料,由于发光剂和基质材料被设置成彼此相距固定的距离,因而有助于提高效率。
此外,本发明人已经发现通过使用硫醇-烯光学图案化的聚合物可以实现良好的分辨率。
尽管已经就具体的示例性实施方案说明了本发明,但是应当理解各种修改、变化和/或本文公开的特征组合对于本领域技术人员将是明显的,而不会背离所附的权利要求所提出的本发明的精神和范围。

Claims (10)

1.一种形成电致发光器件的方法,其包括步骤:
—提供包含用于注入第一种类型载流子的第一电极的基底;
—通过在所述基底上沉积包含基质材料和通式(1)的发光掺杂剂单体的组合物而形成具有表面的电致发光层:
                   A-C-(X)n
                      (I)
其中X代表可聚合基团,A代表发光基团,C代表键或间隔基团,并且n是整数;
—通过聚合通式(1)的单体使至少部分电致发光层不溶于溶剂中;
—将所述电致发光层暴露于所述溶剂中;以及
—在所述电致发光层上方沉积能够注入第二种类型载流子的第二电极。
2.权利要求1的方法,其中所述组合物包含用于和X共聚合的第二种可聚合基团Y。
3.权利要求2的方法,其中所述X和Y之一是任选取代的硫醇,并且另一种是包含反应性不饱和碳-碳键的基团。
4.前述权利要求中任一项所述的方法,其中所述n至少为2。
5.权利要求2或3的方法,其中所述基质材料与另外的第一种可聚合基团X或者第二种可聚合基团Y结合。
6.前述权利要求中任一项所述的方法,其中所述发光基团是磷光化合物。
7.前述权利要求中任一项所述的方法,其中所述聚合通式(I)的单体的步骤包括仅将电致发光层的部分表面暴露于紫外光下,所述将电致发光层暴露于溶剂中的步骤导致可溶性材料被洗去,留下图案化的不溶性的电致发光层。
8.权利要求1-5任何一项的方法,其中使所述电致发光层的整个表面不可溶。
9.权利要求7的方法,其中所述将电致发光层暴露于溶剂中的步骤包括通过在电致发光层上方沉积包含溶剂和电活性材料的组合物而形成电活性层。
10.采用前述权利要求中任一项所述的方法制得的电致发光器件。
CNA2004800268556A 2003-09-17 2004-09-17 电致发光器件 Pending CN1853448A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GBGB0321781.7A GB0321781D0 (en) 2003-09-17 2003-09-17 Electroluminescent device
GB0321781.7 2003-09-17

Publications (1)

Publication Number Publication Date
CN1853448A true CN1853448A (zh) 2006-10-25

Family

ID=29227256

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2004800268556A Pending CN1853448A (zh) 2003-09-17 2004-09-17 电致发光器件

Country Status (7)

Country Link
US (1) US7700148B2 (zh)
EP (1) EP1665895A1 (zh)
JP (1) JP4582093B2 (zh)
KR (1) KR101116047B1 (zh)
CN (1) CN1853448A (zh)
GB (1) GB0321781D0 (zh)
WO (1) WO2005027583A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104995187A (zh) * 2013-02-06 2015-10-21 株式会社Lg化学 新的化合物和使用其的有机电子器件

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6360310A (ja) * 1986-08-29 1988-03-16 芝浦メカトロニクス株式会社 軌条清掃車
CN100559629C (zh) 2005-05-17 2009-11-11 住友化学株式会社 有机电致发光用高分子组合物
JP2007257897A (ja) * 2006-03-20 2007-10-04 Seiko Epson Corp 発光素子の製造方法、発光装置の製造方法および電子機器の製造方法
KR20090013826A (ko) 2006-05-15 2009-02-05 닛토덴코 가부시키가이샤 발광 소자 및 조성물
EP2069419A2 (en) * 2006-08-24 2009-06-17 E.I. Du Pont De Nemours And Company Hole transport polymers
US8119255B2 (en) 2006-12-08 2012-02-21 Universal Display Corporation Cross-linkable iridium complexes and organic light-emitting devices using the same
US8778508B2 (en) 2006-12-08 2014-07-15 Universal Display Corporation Light-emitting organometallic complexes
US8465848B2 (en) * 2006-12-29 2013-06-18 E I Du Pont De Nemours And Company Benzofluorenes for luminescent applications
WO2008108162A1 (ja) * 2007-03-05 2008-09-12 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス素子の製造方法、表示装置及び照明装置
US9130177B2 (en) 2011-01-13 2015-09-08 Universal Display Corporation 5-substituted 2 phenylquinoline complexes materials for light emitting diode
TWI510598B (zh) 2007-03-08 2015-12-01 Universal Display Corp 磷光材料
WO2008114690A1 (ja) * 2007-03-15 2008-09-25 Hodogaya Chemical Co., Ltd. 置換されたビピリジル基とピリドインドール環構造がフェニレン基を介して連結した化合物および有機エレクトロルミネッセンス素子
TW200911735A (en) * 2007-06-01 2009-03-16 Du Pont Hole transport materials
CN102617266A (zh) 2007-06-01 2012-08-01 E.I.内穆尔杜邦公司 电荷传输化合物和含该化合物的材料
WO2009006550A1 (en) 2007-07-05 2009-01-08 Nitto Denko Corporation Light emitting devices and compositions
GB2458096A (en) * 2007-10-20 2009-09-09 Polymertronics Ltd Organic electroluminescent devices
US20090179552A1 (en) 2007-11-15 2009-07-16 Jesse Froehlich Light emitting devices and compositions
US8063399B2 (en) 2007-11-19 2011-11-22 E. I. Du Pont De Nemours And Company Electroactive materials
WO2009073246A1 (en) 2007-12-06 2009-06-11 Universal Display Corporation Method for the synthesis of iridium (iii) complexes with sterically demanding ligands
US8343381B1 (en) 2008-05-16 2013-01-01 E I Du Pont De Nemours And Company Hole transport composition
JP2012505298A (ja) 2008-10-13 2012-03-01 日東電工株式会社 印刷可能な発光組成物
JP5293120B2 (ja) * 2008-11-28 2013-09-18 住友化学株式会社 有機エレクトロルミネッセンス素子およびその製造方法
EP2352801B1 (en) * 2008-12-01 2017-06-21 E. I. du Pont de Nemours and Company Electroactive materials
EP2352802A4 (en) * 2008-12-01 2012-10-31 Du Pont ELECTROACTIVE MATERIALS
WO2010065700A2 (en) * 2008-12-04 2010-06-10 E. I. Du Pont De Nemours And Company Electroactive materials
US8759818B2 (en) 2009-02-27 2014-06-24 E I Du Pont De Nemours And Company Deuterated compounds for electronic applications
KR101582707B1 (ko) * 2009-04-03 2016-01-05 이 아이 듀폰 디 네모아 앤드 캄파니 전기활성 재료
TW201111326A (en) 2009-09-29 2011-04-01 Du Pont Deuterated compounds for luminescent applications
CN102596950A (zh) 2009-10-29 2012-07-18 E.I.内穆尔杜邦公司 用于电子应用的氘代化合物
US8617720B2 (en) 2009-12-21 2013-12-31 E I Du Pont De Nemours And Company Electroactive composition and electronic device made with the composition
JP2012043912A (ja) * 2010-08-17 2012-03-01 Fujifilm Corp 有機電界発光素子用材料、該有機電界発光素子用材料を含む組成物、並びに、該組成物により形成された膜、及び有機電界発光素子
KR101873378B1 (ko) * 2010-10-13 2018-07-02 신닛테츠 수미킨 가가쿠 가부시키가이샤 유기 전계 발광 소자
JP2012089261A (ja) * 2010-10-15 2012-05-10 Showa Denko Kk 有機エレクトロルミネッセント素子およびその製造方法
KR101547410B1 (ko) 2010-12-20 2015-08-25 이 아이 듀폰 디 네모아 앤드 캄파니 전자적 응용을 위한 조성물
US10008677B2 (en) 2011-01-13 2018-06-26 Universal Display Corporation Materials for organic light emitting diode
JP5866902B2 (ja) * 2011-09-12 2016-02-24 国立大学法人山形大学 カルバゾール誘導体及びそれを用いた有機エレクトロルミネッセンス素子
US8994013B2 (en) * 2012-05-18 2015-03-31 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, display device, electronic device, and lighting device
WO2015084090A1 (ko) * 2013-12-06 2015-06-11 한국화학연구원 가교결합이 가능한 이중결합을 포함하는 고분자 정공수송물질 및 티올기를 2개 이상 포함하는 가교제를 포함하는 정공수송층 조성물 및 이의 용도
JP2015193632A (ja) * 2015-06-02 2015-11-05 ユー・ディー・シー アイルランド リミテッド 有機電界発光素子用材料、該有機電界発光素子用材料を含む組成物、並びに、該組成物により形成された膜、及び有機電界発光素子
KR102606283B1 (ko) * 2018-07-09 2023-11-27 삼성디스플레이 주식회사 유기 발광 소자

Family Cites Families (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3028741A1 (de) * 1980-07-29 1982-02-18 Massimo Dipl.-Kfm. Spiritini Vorrichtung zum auftragen von strassenbaumaterial
US4539507A (en) 1983-03-25 1985-09-03 Eastman Kodak Company Organic electroluminescent devices having improved power conversion efficiencies
GB8909011D0 (en) 1989-04-20 1989-06-07 Friend Richard H Electroluminescent devices
JP2774351B2 (ja) * 1990-03-26 1998-07-09 出光興産株式会社 有機薄膜エレクトロルミネッセンス素子及びその製造方法
US5061569A (en) 1990-07-26 1991-10-29 Eastman Kodak Company Electroluminescent device with organic electroluminescent medium
US5167882A (en) 1990-12-21 1992-12-01 Loctite Corporation Stereolithography method
US5141671A (en) 1991-08-01 1992-08-25 Eastman Kodak Company Mixed ligand 8-quinolinolato aluminum chelate luminophors
US5150006A (en) 1991-08-01 1992-09-22 Eastman Kodak Company Blue emitting internal junction organic electroluminescent device (II)
US5432014A (en) 1991-11-28 1995-07-11 Sanyo Electric Co., Ltd. Organic electroluminescent element and a method for producing the same
EP0704094B1 (en) * 1993-06-10 2001-08-08 Cambridge Display Technology Limited Polymers for optical devices
US5723873A (en) 1994-03-03 1998-03-03 Yang; Yang Bilayer composite electrodes for diodes
DE69526614T2 (de) 1994-09-12 2002-09-19 Motorola, Inc. Lichtemittierende Vorrichtungen die Organometallische Komplexe enthalten.
US5554450A (en) 1995-03-08 1996-09-10 Eastman Kodak Company Organic electroluminescent devices with high thermal stability
EP0765106B1 (en) 1995-09-25 2002-11-27 Toyo Ink Manufacturing Co., Ltd. Light-emitting material for organic electroluminescence device, and organic electroluminescence device for which the light-emitting material is adapted
US5593788A (en) 1996-04-25 1997-01-14 Eastman Kodak Company Organic electroluminescent devices with high operational stability
US5798170A (en) 1996-02-29 1998-08-25 Uniax Corporation Long operating life for polymer light-emitting diodes
WO1998005187A1 (en) 1996-07-29 1998-02-05 Cambridge Display Technology Limited Electroluminescent devices with electrode protection
WO1998010621A1 (en) 1996-09-04 1998-03-12 Cambridge Display Technology Limited Organic light-emitting devices with improved cathode
JP4164885B2 (ja) * 1996-09-12 2008-10-15 三菱化学株式会社 有機電界発光素子及びその製造方法
US5747183A (en) 1996-11-04 1998-05-05 Motorola, Inc. Organic electroluminescent light emitting material and device using same
JPH118069A (ja) * 1997-02-17 1999-01-12 Nippon Steel Corp 有機エレクトロルミネッセンス素子およびその製造方法
US5908581A (en) 1997-04-07 1999-06-01 Eastman Kodak Company Red organic electroluminescent materials
US6452218B1 (en) 1997-06-10 2002-09-17 Uniax Corporation Ultra-thin alkaline earth metals as stable electron-injecting electrodes for polymer light emitting diodes
GB9718393D0 (en) 1997-08-29 1997-11-05 Cambridge Display Tech Ltd Electroluminescent Device
US5853905A (en) 1997-09-08 1998-12-29 Motorola, Inc. Efficient single layer electroluminescent device
JP4963754B2 (ja) 1997-10-23 2012-06-27 イシス イノベイション リミテッド 光放射デンドリマー及び光放射装置
GB9805476D0 (en) 1998-03-13 1998-05-13 Cambridge Display Tech Ltd Electroluminescent devices
US5972247A (en) 1998-03-20 1999-10-26 Eastman Kodak Company Organic electroluminescent elements for stable blue electroluminescent devices
US6107452A (en) 1998-10-09 2000-08-22 International Business Machines Corporation Thermally and/or photochemically crosslinked electroactive polymers in the manufacture of opto-electronic devices
US6020078A (en) 1998-12-18 2000-02-01 Eastman Kodak Company Green organic electroluminescent devices
JP2000204364A (ja) * 1999-01-14 2000-07-25 Oki Electric Ind Co Ltd 発光材料およびこれを用いた有機el素子
GB9903251D0 (en) 1999-02-12 1999-04-07 Cambridge Display Tech Ltd Opto-electric devices
US8206838B2 (en) * 2000-06-12 2012-06-26 Sumitomo Chemical Co., Ltd. Polymer matrix electroluminescent materials and devices
US6939624B2 (en) 2000-08-11 2005-09-06 Universal Display Corporation Organometallic compounds and emission-shifting organic electrophosphorescence
AU2002222565A1 (en) 2000-11-30 2002-06-11 Canon Kabushiki Kaisha Luminescent element and display
KR100825183B1 (ko) 2000-11-30 2008-04-24 캐논 가부시끼가이샤 발광 소자 및 표시 장치
US6693295B2 (en) 2000-12-25 2004-02-17 Fuji Photo Film Co., Ltd. Indole derivative, material for light-emitting device and light-emitting device using the same
DE10104426A1 (de) 2001-02-01 2002-08-08 Covion Organic Semiconductors Verfahren zur Herstellung von hochreinen, tris-ortho-metallierten Organo-Iridium-Verbindungen
WO2002066552A1 (en) 2001-02-20 2002-08-29 Isis Innovation Limited Metal-containing dendrimers
DE10109027A1 (de) 2001-02-24 2002-09-05 Covion Organic Semiconductors Rhodium- und Iridium-Komplexe
SG92833A1 (en) 2001-03-27 2002-11-19 Sumitomo Chemical Co Polymeric light emitting substance and polymer light emitting device using the same
MXPA03009097A (es) 2001-04-05 2004-02-12 Sankyo Co Derivados de benzamidina.
KR20030024690A (ko) 2001-04-17 2003-03-26 코닌클리케 필립스 일렉트로닉스 엔.브이. 저 황산염 및 고 금속 이온 함량을 갖는 전도성 투명중합체 층을 포함하는 led
JP2002324679A (ja) 2001-04-26 2002-11-08 Honda Motor Co Ltd 有機エレクトロルミネッセンス素子
EP1407501B1 (en) 2001-06-20 2009-05-20 Showa Denko K.K. Light emitting material and organic light-emitting device
JP3969152B2 (ja) * 2001-06-21 2007-09-05 昭和電工株式会社 有機発光素子および発光材料
JP2003142272A (ja) 2001-11-01 2003-05-16 Nichia Chem Ind Ltd 高分子正孔輸送材およびそれを用いた有機電界発光素子
GB0204989D0 (en) 2002-03-04 2002-04-17 Opsys Ltd Phosphorescent compositions and organic light emitting devices containing them
JP4381821B2 (ja) * 2002-03-09 2009-12-09 シーディーティー オックスフォード リミテッド 重合組成物及びそれを含む有機発光装置
KR100483986B1 (ko) * 2002-06-20 2005-04-15 삼성에스디아이 주식회사 인광 재료의 혼합물을 발광 재료로 사용한 고분자 유기전계 발광 소자

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104995187A (zh) * 2013-02-06 2015-10-21 株式会社Lg化学 新的化合物和使用其的有机电子器件

Also Published As

Publication number Publication date
US20060216411A1 (en) 2006-09-28
EP1665895A1 (en) 2006-06-07
JP2007506237A (ja) 2007-03-15
US7700148B2 (en) 2010-04-20
WO2005027583A1 (en) 2005-03-24
KR101116047B1 (ko) 2012-03-14
JP4582093B2 (ja) 2010-11-17
GB0321781D0 (en) 2003-10-15
KR20060085243A (ko) 2006-07-26

Similar Documents

Publication Publication Date Title
CN1853448A (zh) 电致发光器件
CN1643107A (zh) 可聚合组合物和含有它的有机发光器件
Ding et al. Highly efficient green‐emitting phosphorescent iridium dendrimers based on carbazole dendrons
US8729536B2 (en) Organic luminescent materials, coating solution using same for organic emitting layer, organic light emitting device using coating solution and light source device using organic light emitting device
EP1481036B1 (en) Phosphorescent compositions and organic light emitting devices containing them
CN1847248A (zh) 甲硅烷基取代的环金属化过渡金属络合物及利用它的有机电致发光器件
CN1772839A (zh) 有机发光器件
CN1388801A (zh) 新的芳基胺化合物和有机电致发光装置
CN101077971A (zh) 一种有机电致磷光发光材料及其应用
CN1840535A (zh) 环金属化过渡金属络合物及使用该络合物的有机电致发光器件
CN1733730A (zh) 铱化合物和使用铱化合物的有机电致发光器件
CN1800298A (zh) 蓝光发射聚合物和使用其的有机电致发光器件
JP2008013700A (ja) 発光材料及び発光素子
CN101054515A (zh) 有机el用化合物和有机el器件
CN1772757A (zh) 树枝状铱配合物及使用该化合物的有机电致发光器件
CN1610467A (zh) 双核有机金属配合物和使用其的有机电致发光器件
CN1820061A (zh) 有机发射半导体和基质的混合物、它们的用途及包括所述材料的电子元件
CN1749352A (zh) 载流子传输能力可调的有机稀土配合物及其制备方法和应用
CN1243778C (zh) 聚合方法
CN1761693A (zh) 聚酯及其制备和用途
JP5649029B2 (ja) 発光性組成物、有機電界発光素子、及びベンゾジフラン誘導体
JP7298984B2 (ja) 有機電界発光素子用材料及び有機電界発光素子
CN1846320A (zh) 电致发光器件
CN1673312A (zh) 发光材料及应用其的有机电激发光器件
CN1790771A (zh) 菲系衍生物及含有此菲系衍生物作为发光材料的有机发光二极管

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication