CN1823406A - 低介电常数膜及其制造方法、以及使用它的电子器件 - Google Patents

低介电常数膜及其制造方法、以及使用它的电子器件 Download PDF

Info

Publication number
CN1823406A
CN1823406A CNA2004800205881A CN200480020588A CN1823406A CN 1823406 A CN1823406 A CN 1823406A CN A2004800205881 A CNA2004800205881 A CN A2004800205881A CN 200480020588 A CN200480020588 A CN 200480020588A CN 1823406 A CN1823406 A CN 1823406A
Authority
CN
China
Prior art keywords
film
dielectric constant
low dielectric
diamond particle
general formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2004800205881A
Other languages
English (en)
Other versions
CN1823406B (zh
Inventor
樱井俊男
高萩隆行
坂上弘之
新宮原正三
富本博之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rorze Corp
Original Assignee
Japan Science and Technology Agency
Rorze Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, Rorze Corp filed Critical Japan Science and Technology Agency
Publication of CN1823406A publication Critical patent/CN1823406A/zh
Application granted granted Critical
Publication of CN1823406B publication Critical patent/CN1823406B/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02115Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material being carbon, e.g. alpha-C, diamond or hydrogen doped carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02203Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being porous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/3146Carbon layers, e.g. diamond-like layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02214Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen
    • H01L21/02216Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen the compound being a molecule comprising at least one silicon-oxygen bond and the compound having hydrogen or an organic group attached to the silicon or oxygen, e.g. a siloxane

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Formation Of Insulating Films (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

已知多孔金刚石微粒膜是高耐热性低介电常数膜,而且机械强度和热传导性高,被期待作为半导体集成电路元件的多层线路用绝缘膜,但因为电流-电压特性不足,没有被实用化。本发明中,通过将多孔金刚石微粒膜用碳酸盐·硫酸盐不溶或溶解度低的钡、钙等金属盐水溶液和六甲基二硅氮烷或三甲基一氯硅烷等疏水化试剂以及含有二氯四甲基二硅氧烷或二甲氧基四甲基二硅氧烷中任意一种的增强剂进行处理,可以使绝缘击穿电压和漏电流在实际应用标准的规定范围内。

Description

低介电常数膜及其制造方法、以及使用它的电子器件
技术领域
本发明涉及作为绝缘膜的、结合金刚石微粒的多孔结构的低介电常数薄膜及其制造方法,以及使用它的高集成度、高速运作型的半导体集成电路元件等电子器件。
背景技术
半导体集成电路元件中,特别是超LSI器件,随着线路的精细化·高集成化,通过制作在器件中的线路的信号的延迟与电能消耗的下降成为巨大的课题。尤其在高速逻辑器件中,因线路的电阻和分布电容产生的RC延迟成为最大的课题,特别是为了减小分布电容,必须使用低介电常数的材料作为线路间的绝缘材料。
以往,半导体集成电路内的绝缘膜使用二氧化硅膜(SiO2)、氧化钽膜(Ta2O5)、氧化铝膜(Al2O3)、氮化膜(Si3N4)等,特别是作为多层线路间的绝缘材料,正在使用或研究添加氮化膜、有机物或氟的二氧化硅膜作为低介电常数膜。此外,作为进一步低介电常数化的绝缘膜,正在研究烧结含氟树脂、发泡性有机二氧化硅膜得到的二氧化硅膜,层积二氧化硅微粒的多孔二氧化硅膜等。
另一方面,由于金刚石的热传导性和机械强度比其它材料更优异,所以近年来被作为集成度高、发热量多的半导体器件中用于散热的材料进行研究。例如,日本专利特开平6-97671号公报中提出了通过溅射法、离子电镀法、离子束法等制膜方法制作的厚5μm的金刚石膜。此外,日本专利特开平9-263488号公报中提出了将金刚石颗粒散布在基板上并将其作为核、通过CVD(化学蒸镀)法供给碳来使金刚石结晶生长的制膜方法。
如已经在日本专利特开2002-110870号公报中所揭示,本发明人通过多孔结构的金刚石微粒膜获得了2.72的介电常数。此外,在日本专利特开2002-289604号公报中揭示了,由于金刚石微粒之间不结合,所以存在膜的强度低的问题,为了解决它而提出了通过六氯二硅氧烷处理使金刚石微粒间交联结合来强化的方法,通过该处理,也可以获得与日本专利特开2002-110870号公报同等的介电常数。
另外,本发明人在学会(第50届应用物理学相关联合演讲会试讲集No.2p913(2003))发表了,通过将金刚石微粒在硫酸/硝酸构成的混合酸中加热纯化,可以获得2.1的介电常数。
在此,于下表中列举以往已知的低介电常数的材料。
[表1]
 材料名称   介电常数
 二氧化硅(等离子CVD)   4.2~5.0
 加氟二氧化硅   3.7
 金刚石(单晶)   5.68
 多孔二氧化硅   1.5~2.5
 多孔金刚石   2.1~2.72
 聚酰亚胺   3.0~3.5
 聚四氟乙烯   1.9
 气体   1
专利文献1:日本专利特开平6-97671号公报
专利文献2:日本专利特开平9-263488号公报
专利文献3:日本专利特开2002-110870号公报
专利文献4:日本专利特开2002-289604号公报
非专利文献1:第50届应用物理学相关联合演讲会试讲集No.2 p913(2003)
发明内容
发明要解决的课题
如前所述,为了要进一步提高集成度,而获得比表中的加氟二氧化硅3.7的介电常数更低的材料,进行了各种研究。二氧化硅膜由于其本身由电负性高的氧和硅这两种元素构成,所以定向极化残留,不足以作为低介电常数膜,因此研究了通过发泡法或微粒得到的多孔二氧化硅。但是,它们的机械强度不充分,无法实现实用化。此外,表中的含氟树脂聚四氟乙烯具有适合的介电常数,但是由于无法满足半导体制造工艺中要求300℃~400℃以上的耐热性的苛刻的条件,因此无法使用。聚酰亚胺是耐热性树脂,但是在400℃以上碳化,还是无法使用。
进一步研究发现,绝缘击穿电压和绝缘电阻不充分。这是由于如日本专利特开平9-263488号公报所揭示,金刚石微粒作为杂质含有非结晶性碳和石墨。因此,将粗的原料金刚石微粒通过浓硫酸和浓硝酸氧化除去杂质,但还是不够充分,进一步研究了提高所述酸处理的氧化温度等各种方法,仍然无法获得足够高的电阻值和足够高的绝缘击穿电压。
在这样的研究过程中,本发明人发现,若用硝酸处理金刚石微粒,则表面生成羟基和羧基,而若再用硫酸处理,则除此之外还生成磺酸基。即,由于与这些亲水基亲和的水分子和所含的微量杂质产生漏电流,绝缘击穿电压也无法提高。
此外,进一步研究发现,如图3的□标记所示,绝缘击穿电压需要在1.0MV/cm以上,实际为0.58MV/cm,而作为绝缘电阻的倒数的漏电流值应该为10-6A/cm2以下,而0.58MV/cm处为10-4A/cm2,电气特性不充分。
用红外吸收光谱法查找原因,结果发现若将纯化金刚石微粒用六氯二硅氧烷处理,则波数3400cm-1处羟基的宽吸收谱增加。该羟基是六氯二硅氧烷中未反应的Cl-S键以空气中的水分水解,形成HO-Si键而产生的。在这样的研究过程中,本发明人发现,由于与该羟基亲和的水分子和所含的微量杂质产生漏电流,绝缘击穿电压也无法提高。
解决课题的方法
本发明人为了抑制所述氢离子的产生而认真研究之后,开发出了至少具有金刚石微粒和空隙的优异的低介电常数膜,所述低介电常数膜的特征在于,含有选自对水的溶解度在常温下为1g/100g以下的各种金属碳酸盐物质和各种金属硫酸盐物质的至少一种物质所具有的金属,从而完成了本发明。
除了一部分,对于大多数的金属,单质和溶解于水中的金属离子具有导电性,但金属氧化物、水不溶性金属盐是绝缘体。本发明中,通过将前述的金刚石微粒表面的离子性基团羧基和磺酸基非离子化、即水不溶化或难溶化,可以提高绝缘击穿电压和绝缘电阻。在这里,关于难溶化的标准,研究金属碳酸盐或金属硫酸盐对水的溶解度与绝缘击穿电压和绝缘电阻的关系,结果发现常温下至少在1g/100g以下才具有提高它们的效果。所述金属碳酸盐或金属硫酸盐对水的溶解度越低越好,更好是在0.01g/100g以下,可以是公知的不溶的物质。
本发明的低介电常数膜所含的金属特别好是选自钙、锶、钡、汞、银、铅、镭的至少1种。这些金属的碳酸盐常温下对水的溶解度都低,为10-3~10-4g/100g,而硫酸盐常温下对水的溶解度都低,为0.6~10-6g/100g,符合本发明的目的。这些金属中最好是钙、钡、锶、银。
使低介电常数膜含有这些金属的方法为,以公知的方法形成具有空隙的金刚石微粒膜后,选择所述的金属碳酸盐或金属硫酸盐对水的溶解度为0.1g/100g以下的金属金属的氢氧化物、盐酸盐、硝酸盐等水溶性盐,将其溶解于水中,将该溶液浸透到所述金刚石微粒膜的空隙中,与结合在金刚石微粒表面的羧基或/和磺酸基结合、使其不溶化后,水洗、干燥。由此,可以获得本发明的不溶化金属盐处理了的低介电常数膜。
本发明中所用的处理液有例如氢氧化钙、氯化钙、硝酸钙、氯化锶、硝酸锶、氢氧化钡、氯化钡、硝酸钡、硝酸汞、硝酸银、硝酸铅、氯化镭的水溶液等。处理液的浓度较好是在0.1重量%~20重量%之间。浓度不到0.1重量%时处理速度慢,所以是不理想的。超过20重量%或饱和浓度的水溶液的情况下,难以充分将浸入空隙中的多余的盐水洗除去,所以是不理想的。
具有空隙的金刚石微粒膜通过在绘制了电路的单晶硅基板、导电膜或绘制了电路的玻璃基板上涂布其水分散液,经干燥后制成。可以将该金刚石微粒膜直接用所述的本发明的处理液处理,也可以将该金刚石微粒膜用六氯二硅氧烷强化后再进行处理。处理方法有将涂布于基板上的金刚石微粒膜浸渍在处理液中的方法、将本发明的高浓度的处理液涂布在所述膜上的方法、将本发明的处理液微粒化并喷涂在所述膜上的方法等。
本发明也包括将前述那样的低介电常数膜作为结构要素之一的电子器件。其中,电子器件最好是高集成度、高速运作型的半导体集成电路,也可以是一般的半导体元件和微型机械、一般的电容器等,且所述器件具有含有所述金属的由空隙和金刚石微粒构成的低介电常数膜(多孔金刚石微粒膜)。
本发明中所用的金刚石微粒较好是粒径1nm~1000nm的固体粒子,纯度精制到95%以上。此外,本发明的低介电常数膜的空隙率较好是40%~70%。
由于本发明的金刚石微粒膜具有空隙,当然其表面是粗糙的,所以可以进行细致化。为此,可以使用SOG(旋涂玻璃(Spin on G1ass))法、SG(硅酸盐玻璃)膜法、BPSG(硼磷SG)膜法、等离子CVD法等公知的方法。
此外,本发明人为了提高所述电阻值、即降低漏电流,认真研究之后,开发出了至少具有金刚石微粒和空隙的低介电常数膜,所述低介电常数膜的特征在于,该金刚石微粒表面具有比-OH(羟基)疏水性强的通式为-X的基团,从而完成了本发明。
所述通式为-X的基团中的X较好是氢、氟、C1~C4的烷氧基、苯氧基、o-(m-或p-)烷基苯氧基(其中,烷基为C1~C4)、OCOR、OCONRR’、OSiR3〔其中,R、R’为氢、C1~C4的烷基、苯基、o-(m-或p-)烷基苯基〕。
所述通式为-X的基团中,耐热性更好的基团是可以耐受300℃下的热处理条件的氟、OSiR3〔其中,R、R’为氢、C1~C4的烷基、苯基、o-(m-或p-)烷基苯基〕。
制造本发明的低介电常数膜的方法为,首先将金刚石微粒悬浮于水等溶剂中,以公知的方法涂布在基板上,干燥后生成膜,在气体状态或液体状态下使疏水化试剂与位于金刚石微粒表面上的活性羟基反应。这时的反应条件设定为对于各种疏水化试剂和羟基的反应性最适的温度、浓度、时间。
作为所述通式为-X的基团中的X形成OSiR3基团的疏水化试剂有三甲基一氯硅烷、二甲基二氯硅烷等烷基卤代硅烷,六甲基二硅氮烷、七甲基二硅氮烷等二(四、六或七)烷基二硅氮烷,二烷基胺基三甲基硅烷等二烷基胺基三烷基硅烷,三甲基一甲氧基硅烷等三烷基一烷氧基硅烷,N,O-二(三甲基硅烷基)乙酰胺等N,O-二(三烷基硅烷基)乙酰胺,N,O-二(三甲基硅烷基)三氟乙酰胺等N,O-二(三烷基硅烷基)三卤代乙酰胺,三甲基硅烷基咪唑和丁基二甲基硅烷基咪唑等烷基硅烷基咪唑,三苯基一氯硅烷、一苯基一氯二甲基硅烷和二苯基一氯一甲基硅烷等芳基化烷基一卤代硅烷,三苯基一甲氧基硅烷、一苯基二甲基甲氧基硅烷和二苯基一甲氧基一甲基硅烷等芳基化一烷氧基烷基硅烷等。
此外,作为X基形成烷氧基的疏水化试剂有重氮甲烷和重氮乙烷等重氮烯烃,作为X基形成OCOR基的疏水化试剂有乙酰氯、丙酰氯、丁酰氯等,作为X基形成OCONHR基的疏水化试剂有异氰酸甲酯、异氰酸乙酯、异氰酸丙酯、异氰酸丁酯等异氰酸烷基酯。此外,X为氢时可以使用氢气、硅烷、乙硅烷和氢氧化锂铝等,X为氟时可以使用氟气、氟化氙、四氟化硅、一(二、三或四)氟甲烷等氟化烷烃。
具有空隙的金刚石微粒膜通过在绘制了电路的单晶硅基板、导电膜或绘制了电路的玻璃基板上涂布其水分散液,干燥而制成。可以将该金刚石微粒膜直接用所述的本发明的疏水化试剂处理,也可以将该金刚石微粒膜用六氯二硅氧烷、1,3-二氯四甲基二硅氧烷、二氯二甲基硅烷等粒子间交联强化后再进行疏水化处理。疏水化处理方法有将涂布于基板上的金刚石微粒膜浸渍在疏水化试剂溶液中的方法、将疏水化试剂溶液涂布在所述膜上的方法、将本发明的处理液微粒化后喷涂在所述膜上的方法、将疏水化试剂单独或用溶剂稀释后加热或在常温下气化来使其反应的方法、在氢或氟等气体物质的情况下在等离子气氛下使其反应的方法。
本发明所用的金刚石微粒的表面如前所述会有磺酸基和羧基。这种情况下,可以使选自钙、锶、钡、汞、银、铅、镭的至少1种与这些基团结合。使低介电常数膜含有这些金属的方法可以是公知的方法。即,形成具有空隙的金刚石微粒膜后,选择所述金属的氢氧化物、盐酸盐、硝酸盐等水溶性盐,将其溶于水,将该溶液浸透所述金刚石微粒膜的空隙,使其与结合于金刚石微粒表面的羧基和/或磺酸基结合并不溶化后,水洗、干燥。或者,还有在金刚石微粒分散液中添加稀的所述金属盐溶液的方法等。在该金属盐处理和上述疏水化试剂处理都要进行的情况下,可以先进行任一种处理,但先进行前一种时更容易处理。若组合所述金属盐处理和上述疏水化试剂处理,表现出两方面的效果,还可以提高绝缘电阻、绝缘击穿电压。
本发明也包括将前述那样的低介电常数膜作为结构要素之一的电子器件。其中,电子器件最好是高集成度、高速运作型的半导体集成电路,也可以是一般的半导体元件和微型机械、一般的电容器等,且所述器件具有含所述金属的由空隙和金刚石微粒构成的低介电常数膜(多孔金刚石微粒膜)。
本发明中所用的金刚石微粒较好是粒径1nm~1000nm的固体粒子,纯度精制到95%以上。此外,本发明的低介电常数膜的空隙率较好是40%~80%。如果在40%以下,则主要是在金刚石微粒的粒径分别较宽时,介电常数在3以上,是不理想的。此外,空隙率在80%以上时,无法获得机械强度,缺乏实用性。
由于本发明的金刚石微粒膜具有空隙,当然其表面是粗糙的,所以较好是进行细致化。为此,可以使用SOG(旋涂玻璃)法、SG(硅酸盐玻璃)膜法、BPSG(硼磷SG)膜法、等离子CVD法等公知的方法,或者采用5nm以下的金刚石超微粒子分散液的涂布法等。
本发明人为了改良所述电气特性,对于金刚石微粒膜的增强剂认真研究之后,开发出了至少具有金刚石微粒和空隙的低介电常数膜,所述低介电常数膜的特征在于,通过所述金刚石微粒表面至少用下述通式(a)所表示的物质中的至少1种进行处理,进行金刚石微粒之间交联的强化处理,电气特性能够获得许多改善。
(a)通式XnR3-nSi(Osi)mR3-nXn
(其中,n=1或2,m=0~3的整数。X为卤素基团、C1~C6的烷氧基或苯氧基,R为C1~C6的烷基。)
另外,通过将所述金刚石微粒表面不只是单独用所述通式(a)所表示的物质,而是用下述通式(b)所表示的物质中的至少1种与所述(a)所表示的物质的混合物质进行处理,可以得到具有能够满足充分的强度的电气特性的低介电常数膜。
(b)通式X3Si(OSi)mX3所表示的物质。
(其中,m=0~3的整数。X为卤素基团、C1~C6的烷氧基或苯氧基)
处理金刚石微粒膜的方法有在含有至少所述(a)和/或通式(b)的化合物(后称增强剂)的液体中浸渍的方法、将含有增强剂的液体涂布在所述膜上的方法、将含有本发明所使用的物质的液体喷涂在所述膜上的方法、将增强剂单独或用溶剂稀释后加热或者在常温下暴露在其蒸气中进行处理的方法等。
混合所述通式(a)的化合物和所述通式(b)的化合物时,(a)和(b)以重量比表示可以为2∶98~98∶2,更好是70∶30~10∶90。该重量比为处理金刚石微粒表面前液体状态下的混合重量比。在气体状态下进行处理时,必须考虑各物质的处理温度下的蒸气压。对于羟基,六氯二硅氧烷比六甲氧基二硅氧烷反应性更高。但是,前者作为副产物分离氯化氢,后者为甲醇。在半导体电路的制造过程中,形成本发明的低介电常数膜时,氯离子会产生不良影响,较好是将后者作为处理剂。但是,在氯离子能被充分除去的环境中时,使用前者。因此,混合前者和后者使用时,根据各种半导体电路的制造工艺的情况,可以任意地选择混合比。
所述通式(a)和/或(b)中,X为选自氟、氯、溴、碘的至少1种卤素基团,或者具有C1~C6的烷基的烷氧基或苯氧基,R为C1~C6的烷基。在这里,如果不论烷氧基或烷基超过C6,则与羟基的反应速度都会变慢,是不理想的。此外,苯氧基(C6)具有反应性,可以使用于本发明。在这里,选择卤素基团或烷氧基作为X的标准可以是所述的反应性和氯离子的去除环境。
还有,所述通式(a)和/或(b)中,如果m超过3,则硅氧烷链变长,在液体状态下处理时粘度变高,难以浸入金刚石微粒间,是不理想的。此外,用这些硅氧烷化合物的蒸气进行处理时,如果m超过3,则沸点变高,也是不理想的。因此,最好是m为1的情况、即二硅氧烷化合物。
所述通式(a)和/或(b)中,X最好是选自反应性的氯、甲氧基、乙氧基的至少1种,R为疏水性的甲基或乙基。另外,较好是m为1、即二硅氧烷化合物,并且n为1或2,即氯、2个或4个甲氧基或乙氧基等烷氧基、2个或4个甲基或乙基。
本发明的具有空隙的金刚石微粒膜可以形成在单晶或多晶硅基板、化合物半导体基板、石英基板、陶瓷基板、玻璃基板等半导体基板上,或者形成了各种电路的半导体制造的中间产品基板上。这些基板表面氧化、进行亲水化处理后,涂布金刚石微粒胶体液。
除了如前所述地将涂布金刚石微粒胶体液、层积了的膜本身用本发明的所述(a)和/或通式(b)的化合物处理之外,有时还需要提高基板和膜之间的粘合性。这时,通过在所述亲水化处理和所述涂布之间用所述(a)和/或通式(b)的化合物、尤其是六氯二硅氧烷或六甲氧基二硅氧烷或者它们的混合物进行处理,可以提高基板和金刚石微粒膜之间的粘合性。这时,为了使其充分反应,可以根据需要适当进行干燥、加热等处理。
本发明中,通式(b)X3Si(OSi)mX3中,X为C1~C6的烷氧基或苯氧基时,可以不与(a)物质混合而作为处理剂。本物质可以在室温下或通过加热与金刚石微粒表面的羟基反应,在微粒间形成交联。
形成于基板上的强化后的金刚石微粒表面上残留羟基或六氯二硅氧烷的残基硅烷基的情况下,可以用六甲基二硅氮烷、一甲氧基硅烷、一氯硅烷等处理、进行疏水化。
由于在精制步骤中会使用硫酸或硝酸,所以本发明所用的金刚石微粒的表面会产生磺基或羧基。这时,可以使选自钙、锶、钡、汞、银、铅、镭的至少1种金属离子与这些基团结合。用这些金属离子处理低介电常数膜的方法有以下等方法:形成具有空隙的金刚石微粒膜后,选择所述金属的氢氧化物、盐酸盐、硝酸盐等水溶性盐,将其溶于水,将该溶液浸透到所述金刚石微粒膜的空隙中,使其与结合于金刚石微粒表面的羧基和/或磺基结合,或者在金刚石微粒分散液中添加所述金属盐溶液。在这里,为了除去不需要的所述金属盐,在充分水洗后进行干燥。此外,在金属盐处理和上述微粒结合处理都要进行的情况下,可以先进行任一种处理,但先进行前一种时更容易处理。
另外,若组合所述金属盐处理和上述使用六甲基二硅氮烷等的疏水化试剂处理,则表现出两方面的效果,还可以提高绝缘电阻、绝缘击穿电压。
本发明中所用的金刚石微粒较好是粒径1nm~1000nm的固体粒子,纯度精制到95%以上。此外,本发明的低介电常数膜的空隙率较好是40%~80%。如果在40%以下,则主要是在金刚石微粒的粒径分别较宽时,介电常数在3以上,是不理想的。此外,空隙率在80%以上时,无法获得机械强度,缺乏实用性。
金刚石微粒胶体的制作中一般使用水介质,较好是分散介质中的金刚石微粒以所述粒径的一级粒子形式分散,即使表观上凝集为30nm~1000nm形成二级粒子也可以使用。为了使其分散,在不使所述的介电常数、电阻值、绝缘击穿电压等特性下降的程度的范围内,可以使用公知的微粒分散剂和公知的粘度调整剂。
由于本发明的金刚石微粒膜具有空隙,当然其表面是粗糙的,所以较好是进行细致化。为此,可以使用SOG(旋涂玻璃)法、SG(硅酸盐玻璃)膜法、BPSG(硼磷SG)膜法、等离子CVD法等公知的方法,或者采用5nm以下的金刚石超微粒子分散液的涂布法等。
用至少含有所述通式(a)和/或(b)的化合物处理涂布金刚石微粒胶体液而形成的层积膜的温度实际可以是在室温~400℃的范围内。虽然也因稀释所述化合物的溶剂的沸点而不同,但较好是在50℃~150℃左右之间的温度下进行处理,同时进行反应。此外,也可以在室温下用含有所述化合物的蒸气或液体处理金刚石微粒层积膜后,在40℃~400℃、较好是50℃~150℃左右之间的温度下进行加热,使其反应。
本发明也包括将前述那样的低介电常数膜作为结构要素之一的电子器件。其中,电子器件最好是高集成度、高速运作型的半导体集成电路,也可以是一般的半导体元件和微型机械、一般的电容器等,且所述器件具有含所述金属的由空隙和金刚石微粒构成的低介电常数膜(多孔金刚石微粒膜)。
发明的效果
本发明的经不溶化金属盐处理的多孔金刚石微粒膜与以往的相比,绝缘电阻提高10~20倍,绝缘击穿电压也提高约3倍。此外,多孔金刚石微粒膜最大的特征——介电常数也在处理前后几乎保持在2.0,或者下降到1.8左右,充分维持了作为低介电常数膜的功能。
此外,本发明的具有比羟基疏水性更强的通式为-X的基团的化合物进行处理的多孔金刚石微粒膜与以往的相比,绝缘电阻提高100倍以上,绝缘击穿电压也提高3.5倍以上,达到了实际应用的标准。此外,多孔金刚石微粒膜最大的特征——介电常数也在处理前后几乎保持在2.1,或者下降到1.9左右,充分维持了作为低介电常数膜的功能。此外,金刚石微粒表面存在磺基和羧基的情况下,如果同时使用氯化钡等金属盐的处理,则可以进一步实现漏电流的下降、绝缘击穿电压的提高。另外,金刚石被公认为导热性好的材料,即使具有空隙,与以往的SOG膜相比,导热性方面也不会差。
附图的简单说明
[图1]表示本发明的多孔金刚石微粒膜在钡处理前后的电流-电压特性的图表。括号内的值表示介电常数。
[图2]表示本发明的多孔金刚石微粒膜在疏水化处理前后的电流-电压特性的图表。
[图3]表示本发明的多孔金刚石微粒膜的实施例1(■标记)和比较例1(□标记)中得到低介电常数膜的电流-电压特性的图表。
[图4]表示本发明的多孔金刚石微粒膜的实施例2中得到的电流-电压特性(■标记)的图表。
实施发明的最佳方式
以下记载本发明的实施例,但本发明并不局限于这些实施例。
实施例1
<胶体液的制备>在石英制烧杯中的纯水中加入精制的金刚石微粒、聚乙二醇600,使金刚石微粒达5重量%、聚乙二醇600达1重量%,将该烧杯浸入超声波槽中1小时充分分散,得到呈灰色的粘稠的分散液。
<旋涂步骤>将洗净的硅板放置在旋涂机的轴上,使所述的胶体液流下,以1500rpm旋转基板,用离心力均匀地进行涂布。
<干燥步骤>将涂布了金刚石微粒的硅板风干并形成膜后,放在300℃加热板上干燥1小时。
<膜结构强化处理>将该带有金刚石微粒膜的硅板放入容器中并密闭,在常温下将其暴露在以1%溶解于二氯甲烷中的六氯二硅氧烷的蒸气中1小时,使粒子间交联,然后再在300℃下进行1小时过热处理。
<金属盐处理>接着,将该带有膜的基板于常温下在1%氢氧化钡溶液中浸渍1小时,用纯水洗净后,于常温下在纯水中浸渍1小时,再用纯水洗净,在100℃下干燥1小时。
<电流-电压特性的测定>在大气中,将汞电极放在膜上,与硅板之间加上电压,测定电压、电流值、绝缘击穿电压,除以预先测定的膜厚,计算出电场强度。
实施例1中得到的膜厚540nm的膜的特性如图1所示。经氢氧化钡处理的多孔金刚石微粒膜与处理前的膜相比,绝缘击穿电压从0.32MV/cm到1.02MV/cm,提高了3倍多。表现绝缘电阻的漏电流在0.01MV/cm的电压下为1×10-9A/cm2,没什么差别,在0.3MV/cm的电压下从1×10-4A/cm2到2×10-5A/cm2,减少了20倍。此外,介电常数从金属盐处理前的2.0提高到1.8。
实施例2
除了用0.17%氢氧化钙代替实施例1中的1%氢氧化钡进行金属盐处理之外,以同样的方法进行实验。膜厚为430nm。其结果,通过进行钙处理,绝缘击穿电压从0.86MV/cm提高到1.05MV/cm,在0.82MV/cm的电压下的漏电流从1×10-4A/cm2减少到7×10-5A/cm2
以下记载本发明的实施例,但本发明并不局限于这些实施例。
实施例3
<胶体液的制备>在石英制烧杯中的纯水中加入精制的金刚石微粒、聚乙二醇600,使金刚石微粒达5重量%、聚乙二醇600达1重量%,将该烧杯浸入超声波槽中1小时充分分散,得到呈灰色的粘稠的分散液。
<旋涂步骤>将洗净的边长为约20mm的正方形形状的经亲水化表面处理的硅板放置在旋涂机的轴上,使所述的胶体液流下,以1500rpm旋转基板,用离心力均匀地进行涂布。
<干燥步骤>将涂布了金刚石微粒的硅板风干并形成膜后,放在300℃加热板上干燥1小时。
<膜结构强化处理>将该带有金刚石微粒膜的硅板放入密闭容器中,在常温下将其暴露在以1%溶解于二氯甲烷中的六氯二硅氧烷(HCDS)的蒸气中1小时,使粒子间交联,然后再在300℃下进行1小时过热处理。
<疏水化处理>接着,将该带有膜的基板放入装入了1%六甲基二硅氮烷(HMDS)/二氯甲烷混合溶液的容器并密闭,于常温下暴露在其蒸气中1小时,进行疏水化处理,然后再在300℃下进行1小时过热处理。
<电流-电压特性的测定>在大气中,将汞电极放在膜上,与硅板之间加上电压,测定电压、电流值、绝缘击穿电压,除以预先测定的膜厚,计算出电场强度。
实施例3中得到的膜厚430nm的膜的电压/电流特性如图2所示。经疏水化处理的多孔金刚石微粒膜与处理前的膜相比,绝缘击穿电压从0.57MV/cm到1.03MV/cm,提高了近2倍。表现绝缘电阻的漏电流在0.01MV/cm的电压下从1×10-7A/cm2下降到2×10-9A/cm2,在0.23MV/cm的电压下从1×10-5A/cm2到1×10-7A/cm2,减少到100分之1。此外,介电常数处理前后没有变化,为2.0。如图2中的虚线所示,一般要求绝缘击穿电压在1MV/cm以上,本发明达到了这一要求。此外,要求漏电流在1×10-6A/cm2以下,电压在0.4MV/cm以下时可以达到这一要求。
实施例4
除了用1%三甲基一氯硅烷/甲苯溶液的气体进行处理,代替实施例3中的1%六甲基二硅氮烷之外,以同样的方法进行实验。膜厚为530nm。其结果,通过进行三甲基一氯硅烷处理,绝缘击穿电压达到1MV/cm以上,为1.11MV/cm,漏电流在0.2MV/cm的电压下达到1.1×10-7A/cm2
实施例5
<胶体液的制备>在石英制烧杯中的纯水中加入精制的金刚石微粒、二甲胺、分子量500万的聚乙二醇,使金刚石微粒达5重量%、二甲胺达0.1重量%、聚乙二醇达1重量%,将该烧杯浸入超声波槽中1小时充分分散,得到呈灰色的粘稠的分散液。
<旋涂步骤>将洗净的硅板切割成边长为约20mm的正方形,对表面进行亲水化处理后,放置在旋涂机的轴上,使所述的胶体液流下,以1500rpm旋转基板,用离心力均匀地进行涂布。
<干燥步骤>将涂布了金刚石微粒的硅板风干并形成膜后,放在300℃加热板上干燥1小时。
<膜结构强化处理>将该带有金刚石微粒膜的硅板放入密闭容器中,在常温下将其暴露在以10%溶解于二氯甲烷中的二氯四甲基二硅氧烷(DCTMDS)的蒸气中1小时,充分浸透到粒子间,然后再在300℃下进行1小时过热处理。
<电流-电压特性的测定>在大气中,将汞电极放在膜上,与硅板之间加上电压,测定电压、电流值、绝缘击穿电压,除以预先测定的膜厚,计算出电场强度。
实施例5中得到的膜厚510nm的膜的电压/电流特性如图2所示。经DCTMDS处理的多孔金刚石微粒膜与后述的比较例1中得到的膜相比,绝缘击穿电压从0.57MV/cm到2.0MV/cm(测定极限)以上,提高了3.5倍以上。表现绝缘电阻的漏电流同样地进行比较,在0.57MV/cm的电压下从1×10-4A/cm2减少到7×10-8A/cm2,在1MV/cm的电压下减少到1×10-7A/cm2。此外,介电常数处理前后没有变化,为2.0。如图2中的虚线所示,一般要求绝缘击穿电压在1MV/cm以上、漏电流在1×10-6A/cm2以下,本发明中两项要求均实现,达到了实际应用的阶段。
此外,本实施例的多孔金刚石微粒膜与电气特性测定用探头接触时,或者手指触及摩擦,也不会出现破坏粒子间的结合等问题,保持足够的强度。
实施例6
除了用1重量%DCTMDS和1重量%六氯二硅氧烷的混合液体的气体进行处理,代替实施例5中的10%DCTMDS之外,以同样的方法进行实验。测定结果是,膜厚为680nm,介电常数为2.1。绝缘击穿电压达到1MV/cm以上,为1.43MV/cm,漏电流在1MV/cm的电压下达到1×10-6A/cm2以下,为2×10-7A/cm2。此外,本实施例的多孔金刚石微粒膜即使手指触及摩擦,也不会出现破坏粒子间的结合等问题,保持足够的强度。
比较例1
除了用1重量%六氯二硅氧烷溶液的气体进行处理,代替实施例5中的10%DCTMDS之外,以同样的方法进行实验。膜厚为510nm。该多孔金刚石微粒膜中,绝缘击穿电压为0.6MV/cm,击穿前的漏电流为1×10-4A/cm2,没有达到作为实用化标准的绝缘击穿电压在1MV/cm以上、漏电流在1×10-6A/cm2以下的要求。
产业上利用的可能性
本发明中,使用作为耐热性和热传导性高的无机低介电常数膜的多孔金刚石微粒膜,首次实现1.8的介电常数。此外,绝缘击穿电压实现了1MV/cm的实际应用的标准,漏电流在实际应用电压下为10-8A/cm2~10-9A/cm2左右。由此,不仅是多层线路半导体元件和半导体电容器,还可以制造高性能电容器等其它通用的高性能电子器件。
此外,本发明中,使用作为耐热性和热传导性高的无机低介电常数膜的多孔金刚石微粒膜,实现2.0的介电常数。此外,绝缘击穿电压实现了1MV/cm的实际应用的标准,漏电流在实际应用电压下为10-7A/cm2~10-9A/cm2左右。由此,不仅是多层线路半导体元件和半导体电容器,还可以制造高性能电容器、线路间绝缘体等其它通用的高性能电子器件。
另外,本发明中,使用作为耐热性和热传导性高的无机低介电常数膜的多孔金刚石微粒膜,实现2.0的介电常数。此外,绝缘击穿电压超过了1MV/cm的实际应用的标准,达到2.0MV/cm(测定极限)以上,漏电流在1MV/cm的电压下达到1×10-7A/cm2。由此,不仅是多层线路半导体元件和半导体电容器,还可以制造高性能电容器、线路间绝缘体等其它通用的高性能电子器件,可以对以电子计算机为首的电子产业的发展作出巨大的贡献。

Claims (20)

1.低介电常数膜,它是由至少具有金刚石微粒和空隙的膜构成的低介电常数膜,其特征在于,所述低介电常数膜含有选自常温下的碳酸盐或硫酸盐的溶解度在1g/100g以下的金属的至少一种金属。
2.如权利要求1所述的低介电常数膜,其特征还在于,所述金属为选自钙、锶、钡、汞、银、铅、镭的至少1种。
3.低介电常数膜,它是至少具有金刚石微粒和空隙的低介电常数膜,其特征在于,所述低介电常数膜用选自常温下的碳酸盐或硫酸盐的溶解度在1g/100g以下的金属的至少一种金属的盐的水溶液处理。
4.如权利要求3所述的低介电常数膜,其特征还在于,用选自钙、锶、钡、汞、银、铅、镭的至少1种金属的盐的水溶液处理。
5.电子器件,其特征在于,至少将权利要求1~4中的任一项所述的低介电常数膜作为结构要素之一。
6.低介电常数膜,它是由至少具有金刚石微粒和空隙的膜构成的低介电常数膜,其特征在于,所述金刚石微粒表面具有比羟基疏水性强的通式为-X的基团来代替羟基。
7.如权利要求1所述的低介电常数膜,其特征还在于,所述通式为-X的基团中的X为选自氢、氟、C1~C4的烷氧基、苯氧基、o-(m-或p-)烷基苯氧基、OCOR、OCONRR’、OSiR3的至少1种,其中,o-(m-或p-)烷基苯氧基中的烷基为C1~C4的烷基,R、R’为氢、C1~C4的烷基、苯基、o-(m-或p-)烷基苯基。
8.如权利要求1或2所述的低介电常数膜,其特征还在于,所述通式为-X的基团中的X为OSiR3,其中,R为C1~C4的烷基。
9.电子器件,其特征在于,至少将权利要求1~3中的任一项所述的低介电常数膜作为结构要素之一。
10.低介电常数膜的制造方法,其特征在于,使疏水化试剂与位于金刚石微粒表面上的活性羟基反应。
11.如权利要求5所述的低介电常数膜的制造方法,其特征还在于,所述疏水化试剂为选自六烷基二硅氮烷、三烷基一卤代硅烷、三苯基一卤代硅烷、芳基化烷基一卤代硅烷、二烷基二卤代硅烷、三烷基一甲氧基硅烷、三苯基一甲氧基硅烷、芳基化一烷氧基烷基硅烷、二烷基二甲氧基硅烷、重氮烯烃的至少一种。
12.低介电常数膜,它是由至少具有金刚石微粒和空隙的膜构成的低介电常数膜,其特征在于,所述金刚石微粒表面用下述(a)所示的至少一种物质单独进行处理,或者用下述(a)所示的至少一种和下述(b)所示的至少一种的混合物质进行处理;
(a)通式XnR3-nSi(OSi)mR3-nXn所表示的物质,
(b)通式X3Si(OSi)mX3所表示的物质,
其中,n=1或2,m=0~3的整数,X为卤素基团、C1~C6的烷氧基或苯氧基,R为C1~C6的烷基。
13.如权利要求1所述的低介电常数膜,其特征还在于,所述通式(a)和通式(b)中,X为选自氯、甲氧基、乙氧基的至少1种,R为甲基或乙基。
14.如权利要求1或2所述的低介电常数膜,其特征还在于,所述通式(a)和通式(b)中,m为1。
15.如权利要求1~3中的任一项所述的低介电常数膜,其特征还在于,所述通式(a)中,n为1。
16.如权利要求1所述的低介电常数膜,其特征还在于,所述通式(a)的物质为选自二氯四甲基二硅氧烷、二甲氧基四甲基二硅氧烷、四氯二甲基二硅氧烷、四甲氧基二甲基二硅氧烷的至少1种,所述通式(b)的物质为选自六氯二硅氧烷、六甲氧基二硅氧烷、六乙氧基二硅氧烷的至少1种。
17.低介电常数膜,它是由至少具有金刚石微粒和空隙的膜构成的低介电常数膜,其特征在于,将所述金刚石微粒表面用X为C1~C6的烷氧基或苯氧基的所述通式(b)的至少1种进行处理。
18.电子器件,其特征在于,至少将权利要求1~6中的任一项所述的低介电常数膜作为结构要素之一。
19.低介电常数膜的制造方法,其特征在于,使位于金刚石微粒表面上的羟基与所述(a)的至少一种物质单独进行化学反应,或者与所述(a)的至少一种和所述(b)的至少一种的混合物质进行化学反应。
20.如权利要求8所述的低介电常数膜的制造方法,其特征还在于,所述通式(a)的物质为选自二氯四甲基二硅氧烷、二甲氧基四甲基二硅氧烷、四氯二甲基二硅氧烷、四甲氧基二甲基二硅氧烷的至少1种,所述通式(b)的物质为选自六氯二硅氧烷、六甲氧基二硅氧烷、六乙氧基二硅氧烷的至少1种。
CN2004800205881A 2003-07-17 2004-06-25 低介电常数膜及其制造方法、以及使用它的电子器件 Expired - Fee Related CN1823406B (zh)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP2003276147 2003-07-17
JP276147/2003 2003-07-17
JP2003304153 2003-08-28
JP304153/2003 2003-08-28
JP073600/2004 2004-03-15
JP2004073600 2004-03-15
PCT/JP2004/009009 WO2005008762A1 (ja) 2003-07-17 2004-06-25 低誘電率膜、及びその製造方法、並びにそれを用いた電子部品

Publications (2)

Publication Number Publication Date
CN1823406A true CN1823406A (zh) 2006-08-23
CN1823406B CN1823406B (zh) 2011-04-20

Family

ID=34084270

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2004800205881A Expired - Fee Related CN1823406B (zh) 2003-07-17 2004-06-25 低介电常数膜及其制造方法、以及使用它的电子器件

Country Status (7)

Country Link
US (2) US7749920B2 (zh)
JP (1) JP4148969B2 (zh)
KR (1) KR100830090B1 (zh)
CN (1) CN1823406B (zh)
DE (2) DE112004003075B4 (zh)
TW (1) TWI256090B (zh)
WO (1) WO2005008762A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1871697B (zh) * 2003-10-22 2010-12-01 日商乐华股份有限公司 液状组合物、其制造方法、低介电常数膜、研磨料及电子部件

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7345000B2 (en) * 2003-10-10 2008-03-18 Tokyo Electron Limited Method and system for treating a dielectric film
US7875347B2 (en) * 2003-12-29 2011-01-25 General Electric Company Composite coatings for groundwall insulation, method of manufacture thereof and articles derived therefrom
EP1925024B1 (en) * 2005-09-01 2012-01-25 Freescale Semiconductor, Inc. Capping layer formation onto a dual damescene interconnect
KR100717132B1 (ko) * 2005-11-02 2007-05-11 한국과학기술연구원 중공형 다이아몬드 쉘이 충전된 복합재
WO2007087831A1 (en) * 2006-02-03 2007-08-09 Freescale Semiconductor, Inc. 'universal' barrier cmp slurry for use with low dielectric constant interlayer dielectrics
US20090301867A1 (en) * 2006-02-24 2009-12-10 Citibank N.A. Integrated system for semiconductor substrate processing using liquid phase metal deposition
JP2009094183A (ja) * 2007-10-05 2009-04-30 Nec Electronics Corp 疎水化多孔質膜の製造方法
WO2011056742A1 (en) 2009-11-04 2011-05-12 Ssw Holding Company, Inc. Cooking appliance surfaces having spill containment pattern and methods of making the same
WO2011063370A2 (en) * 2009-11-23 2011-05-26 3M Innovative Properties Company Treated porous particles and methods of making and using the same
AT512730B1 (de) 2012-03-22 2014-06-15 Koller Gunar Schutzkörper zum Einbringen in eine Körperhöhle
KR101771749B1 (ko) * 2012-12-28 2017-08-25 삼성전기주식회사 인덕터
WO2014138731A1 (en) * 2013-03-08 2014-09-12 University Of Florida Research Foundation, Inc. Quantum levitation for permanent superlyophobic and permanent self-cleaning materials
US9165822B2 (en) * 2013-03-11 2015-10-20 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor devices and methods of forming same
US10515834B2 (en) 2015-10-12 2019-12-24 Lam Research Corporation Multi-station tool with wafer transfer microclimate systems
WO2018224163A1 (en) * 2017-06-09 2018-12-13 Abb Schweiz Ag Electrical machine with a conductor arrangement and insulation therefore
KR20200125582A (ko) * 2018-03-02 2020-11-04 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 알루미나의 보호액, 보호방법 및 이것을 이용한 알루미나층을 가지는 반도체 기판의 제조방법
CN116490640A (zh) * 2020-10-20 2023-07-25 弗萨姆材料美国有限责任公司 烷氧基二硅氧烷和由其制备的致密有机硅膜

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS616198A (ja) * 1984-06-19 1986-01-11 Meidensha Electric Mfg Co Ltd ダイヤモンド薄膜の製造法
US5332697A (en) * 1989-05-31 1994-07-26 Smith Rosemary L Formation of silicon nitride by nitridation of porous silicon
JPH0697671A (ja) 1992-09-14 1994-04-08 Toshiba Corp 回路基板
JP3087555B2 (ja) * 1993-12-24 2000-09-11 三菱マテリアル株式会社 耐チッピング性のすぐれたダイヤモンド基超高圧焼結材料製切削工具およびその製造法
JP3465829B2 (ja) 1994-05-26 2003-11-10 電気化学工業株式会社 絶縁材料組成物及びそれを用いた回路基板とモジュール
JPH09263488A (ja) 1996-03-27 1997-10-07 Matsushita Electric Ind Co Ltd ダイヤモンド膜の製造方法
JP3561465B2 (ja) * 2000-09-27 2004-09-02 独立行政法人 科学技術振興機構 回路基板とその製造方法
JP3590776B2 (ja) * 2001-03-27 2004-11-17 独立行政法人 科学技術振興機構 回路基板とその製造方法
US6512037B1 (en) * 2001-06-06 2003-01-28 Dow Corning Corporation Silicone composition and cured silicone product
TWI273090B (en) * 2002-09-09 2007-02-11 Mitsui Chemicals Inc Method for modifying porous film, modified porous film and use of same
JP2004238256A (ja) 2003-02-06 2004-08-26 Japan Science & Technology Agency ダイヤモンド粒子の精製方法及び高純度ダイヤモンド粒子
JP4675053B2 (ja) 2004-03-19 2011-04-20 ローツェ株式会社 高純度ダイヤモンド粒子の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1871697B (zh) * 2003-10-22 2010-12-01 日商乐华股份有限公司 液状组合物、其制造方法、低介电常数膜、研磨料及电子部件

Also Published As

Publication number Publication date
TW200511442A (en) 2005-03-16
US20100237476A1 (en) 2010-09-23
KR100830090B1 (ko) 2008-05-19
DE112004001324B4 (de) 2011-02-24
US8158536B2 (en) 2012-04-17
JPWO2005008762A1 (ja) 2006-11-02
KR20060059961A (ko) 2006-06-02
TWI256090B (en) 2006-06-01
JP4148969B2 (ja) 2008-09-10
US7749920B2 (en) 2010-07-06
US20060244034A1 (en) 2006-11-02
DE112004003075B4 (de) 2013-08-01
WO2005008762A1 (ja) 2005-01-27
DE112004001324T5 (de) 2006-06-08
CN1823406B (zh) 2011-04-20

Similar Documents

Publication Publication Date Title
CN1823406A (zh) 低介电常数膜及其制造方法、以及使用它的电子器件
KR0176259B1 (ko) 실리카 전구체를 실리카로 저온 전환시키는 방법
CN1125138C (zh) 用于制造绝缘薄膜的烷氧基硅烷/有机聚合物组合物及其用途
CN1279588C (zh) 恢复电介质膜及电介质材料中疏水性的方法
CN1261509C (zh) 具有低介电常数的多孔硅质膜和半导体装置及涂料组合物
JPH0922903A (ja) エレクトロニクス用基板へのコーティング方法及びコーティング組成物
KR101105622B1 (ko) 다공질막의 전구체 조성물 및 그 조제 방법, 다공질막 및 그 제조 방법, 그리고 반도체 장치
CN1189927C (zh) 绝缘膜形成材料,绝缘膜,形成绝缘膜的方法及半导体器件
KR100671850B1 (ko) 다공질 필름의 개질 방법 및 개질된 다공질 필름 및 그 용도
JPH06345417A (ja) 水素シルセスキオキサンを用いた塗布剤
JP2004312041A (ja) 低誘電率材料およびcvdによる処理方法
CN1313371C (zh) 含有中孔二氧化硅层的电子器件及制备该中孔二氧化硅层的组合物
KR100956046B1 (ko) 다공질막의 전구체 조성물 및 그 제조 방법, 다공질막 및 그 제작 방법, 그리고 반도체 장치
CN1360559A (zh) 具有低介电常数的多孔硅石涂层、半导体设备和涂料组合物
CN1680466A (zh) 用多面体分子倍半硅氧烷,形成半导体器件用层间电介质膜的方法
US20060127587A1 (en) Organic silicate polymer and insulation film comprising the same
CN1646605A (zh) 有机硅酸盐聚合物和包含该有机硅酸盐聚合物的绝缘薄膜
CN1572816A (zh) 硅氧烷基的树脂和使用其制造的半导体器件的层间绝缘膜
WO2008026387A1 (fr) Procédé de formation d&#39;un revêtement de silice amorphe à faible constante diélectrique et revêtement de silice amorphe à faible constante diélectrique obtenu grâce à celui-ci
CN100336183C (zh) 用多官能碳硅烷制造介电层的方法
CN1759135A (zh) 有机硅氧烷树脂以及使用该有机硅氧烷树脂的绝缘膜
JP2012104616A (ja) 低誘電率膜の前駆体組成物及びこれを用いた低誘電率膜の製造方法
JP4734815B2 (ja) 組成物、その組成物を用いた低誘電率膜の形成方法、低誘電率膜及びその低誘電率膜を有する電子部品
CN1245743C (zh) 涂层的处理方法及利用该方法制造半导体器件的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20090508

Address after: Hiroshima County

Applicant after: Rorze Corp.

Address before: Hiroshima County, Japan

Applicant before: Japanese merchant Le Hua Limited by Share Ltd

Co-applicant before: Independent Administrative Corporation Japan Science & Tech Corp.

C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20110420

Termination date: 20140625

EXPY Termination of patent right or utility model