CN1572816A - 硅氧烷基的树脂和使用其制造的半导体器件的层间绝缘膜 - Google Patents

硅氧烷基的树脂和使用其制造的半导体器件的层间绝缘膜 Download PDF

Info

Publication number
CN1572816A
CN1572816A CNA2004100474061A CN200410047406A CN1572816A CN 1572816 A CN1572816 A CN 1572816A CN A2004100474061 A CNA2004100474061 A CN A2004100474061A CN 200410047406 A CN200410047406 A CN 200410047406A CN 1572816 A CN1572816 A CN 1572816A
Authority
CN
China
Prior art keywords
solvent
siloxane
based resin
resin
monomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2004100474061A
Other languages
English (en)
Other versions
CN100422241C (zh
Inventor
柳利烈
林珍亨
柳俊城
宋其熔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of CN1572816A publication Critical patent/CN1572816A/zh
Application granted granted Critical
Publication of CN100422241C publication Critical patent/CN100422241C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/48Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • C08G77/50Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms by carbon linkages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02203Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being porous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02214Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen
    • H01L21/02216Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen the compound being a molecule comprising at least one silicon-oxygen bond and the compound having hydrogen or an organic group attached to the silicon or oxygen, e.g. a siloxane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/312Organic layers, e.g. photoresist
    • H01L21/3121Layers comprising organo-silicon compounds
    • H01L21/3122Layers comprising organo-silicon compounds layers comprising polysiloxane compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31652Of asbestos
    • Y10T428/31663As siloxane, silicone or silane

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Silicon Polymers (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

本发明公开了一种具有新型结构的硅氧烷基树脂,以及用它形成的半导体器件的层间绝缘膜。该硅氧烷基树脂除了具有优异的机械性能、耐热性和耐裂性之外,还具有如此低的介电常数,以至于它们可用作半导体器件互连层之间的绝缘膜材料。

Description

硅氧烷基的树脂和使用其制造的半导体器件的层间绝缘膜
按照35U.S.C.ξ119(a),本非临时申请要求2003年6月2日提交的韩国专利申请2003-35276号的优先权,其全部内容在此引入作为参考。
                           技术领域
本发明涉及一种硅氧烷基树脂和采用它制备的半导体器件的层间绝缘膜。更具体地,本发明涉及具有新型结构的硅氧烷基树脂和用作半导体器件互连层之间的绝缘膜的树脂膜。
                           背景技术
随着多层集成电路器件的电路密度的增加,不断地要求减小半导体器件的形体尺寸。减小半导体器件形体尺寸的主要障碍是R(电阻)×C(电容)延迟,由于互连层之间的交扰(crosstalk)。该问题的解决方案是降低层间绝缘膜的介电常数,以便尽量降低R×C延迟。所以,已经有多种提供低介电常数的绝缘膜的尝试。
传统上,在半导体器件领域,已经使用介电常数4.0的SiO2的CVD(化学汽相沉积)法形成了层间绝缘膜。但是,US 3615272、4399266、4756977和4999397公开了使用介电常数2.5~3.1,以及良好平坦化性质的聚倍半硅氧烷的SOD(旋涂沉积)法,形成绝缘膜。
聚倍半硅氧烷及其制备方法在本领域中是公知的。例如,US 3615272公开了完全缩合的,可溶的氢倍半硅氧烷树脂的制备方法,其包含在硫酸介质中缩合三氯硅烷和用水或硫酸水溶液洗涤得到的树脂的步骤。US 5010159也公开了合成可溶的、缩合的氢化硅树脂的方法,其包含在含有芳基磺酸水合物的水解介质中水解氢化硅烷以及使得到的树脂与中和剂接触的步骤。US6232424描述了具有卓越溶液稳定性的高可溶硅树脂组合物,其在水和催化剂存在下,通过四烷氧基硅烷、有机硅烷和有机三烷氧基硅烷单体的水解和缩聚而制备。US 6000339描述了二氧化硅基的化合物有助于改进涂层膜对氧等离子体的抵抗和物理性质以及厚度,可以在水和催化剂存在下,使选自烷氧基硅烷、含氟烷氧基硅烷和烷基烷氧基硅烷的单体与钛或锆-醇盐化合物反应而获得。US 5853808描述了有助于形成富SiO2陶瓷涂层的硅氧烷和倍半硅氧烷聚合物,可以通过具有β取代的烷基的有机硅烷的水解和缩聚而获得。同时,EP 0997497A1公开了包含单、二、三、四烷氧基硅烷的烷氧基硅烷和三烷氧基硅烷二聚物某种结合的水解和缩聚,可以提供用于绝缘膜的树脂材料。
                       发明内容
本发明的特征在于具有卓越机械性能以及非常低的介电常数的硅氧烷基树脂的制备,和使用该硅氧烷基树脂的低介电绝缘膜的形成。
本发明的一方面涉及于有机溶剂中,在酸或碱催化剂和水存在下,水解和缩聚式(1)的第一单体和式(2)的第二单体制备硅氧烷基树脂:
式中,
R1为H、C1-3烷基或C6-15芳基;
X1、X2和X3各自独立为C1-3烷基、C1-10烷氧基或卤素,条件是它们至少之一为可水解的;
m为0~10的整数;
P为3~8的整数;
Figure A20041004740600052
式中,
R2为H、C1-3烷基或C6-15芳基;
X4为C1-10烷氧基;
Y1为C1-3烷基或C1-10烷氧基;
n为0~10的整数。
本发明的另一方面涉及半导体器件的互连层之间形成绝缘膜的方法,该方法包含下列步骤:将本发明的硅氧烷基树脂溶于有机溶剂中,提供树脂溶液;用该树脂溶液涂布硅片;热固化得到的涂层膜。
本发明的再一方面涉及使用本发明的硅氧烷基树脂制造的层间绝缘膜。
从本发明下面的描述中,可以成功的达到本发明所有上述特征和其它特征。
                        优选实施方式
本发明通过缩聚式(1)的环硅氧烷单体和式(2)的直链硅氧烷单体,而提供具有3.0或更低的介电常数的硅氧烷基树脂。
Figure A20041004740600061
式中,
R1为H、C1-3烷基或C6-15芳基;
X1、X2和X3各自独立为C1-3烷基、C1-10烷氧基或卤素,条件是它们至少之一为可水解的;
m为0~10的整数;
P为3~8的整数;
Figure A20041004740600062
式中,
R2为H、C1-3烷基或C6-15芳基;
X4为C1-10烷氧基;
Y1为C1-3烷基或C1-10烷氧基;
n为0~10的整数。
在本发明的硅氧烷基树脂的制备中,以摩尔比1∶99~99∶1混合式(1)单体和式(2)单体。
优选的制备本发明的硅氧烷基树脂的酸或碱催化剂可以举例为但不限于盐酸、硝酸、苯磺酸、草酸、甲酸、氢氧化钾、氢氧化钠、三乙胺、碳酸氢钠和吡啶。使用此种催化剂,使得催化剂对单体的摩尔比为0.000001∶1~10∶1。
在制备本发明的硅氧烷基树脂中,水的用量为1~10000摩尔/摩尔单体,使得水对单体的摩尔比为1∶1~1000∶1。
用于制备本发明的硅氧烷基树脂的有机溶剂非限定性的实例包括脂肪烃溶剂例如己烷;芳香烃溶剂例如苯甲醚、三甲苯和二甲苯;酮基溶剂例如甲基异丁基酮、1-甲基-2-吡咯烷酮(pyrrolidinone)和丙酮;醚基溶剂例如环己酮、四氢呋喃和异丙醚;乙酸酯基溶剂例如乙酸乙酯、乙酸丁酯、丙二醇甲基醚乙酸酯;醇基溶剂例如异丙醇和丁醇;酰胺基溶剂例如二甲基乙酰胺和二甲基甲酰胺;硅基溶剂;及其混合物。
根据本发明,在0~200℃,优选50~110℃,水解和缩聚反应进行0.1~100小时,优选5~48小时。
由此得到的该硅氧烷基树脂Mw为3000~300000。在全部端基中Si-OR含量优选为大于5摩尔%。
本发明也提供使用本发明的硅氧烷基树脂形成半导体器件的层间绝缘层的方法。该绝缘层具有低于3.0的低介电常数,并表现出卓越的机械性能和耐热性。根据本发明,此绝缘层可以通过用在有机溶剂中的含有本发明的硅氧烷基树脂溶液,涂布硅片,然后热固化得到的涂层膜而获得。即,将溶解于有机溶剂中的本发明的树脂涂布到基材上。然后,通过简单常温干燥,或在接下来的热固化步骤的开始,通过使基材处于真空条件或在200℃或更低温度下适度加热,蒸发有机溶剂,使得树脂涂层膜可以沉积在基材的表面上。由此,通过在150~600℃,优选200~450℃加热基材1~150分钟,使树脂涂层膜固化,以便获得不溶、无裂纹膜。如在此使用的,“无裂纹膜”指没有任何使用光学显微镜,在放大率1000X下而可以观察到的裂纹的膜。如在此使用的,“不溶膜”指基本不溶于被描述用于溶解本发明的硅氧烷基树脂的任何溶剂的膜。
根据本发明,成孔剂(porogen)与本发明的硅氧烷基树脂结合使用,可以进一步降低最终绝缘膜的介电常数至2.50或更低。如在此使用的,“成孔剂”指产生孔的(pore-generating)任何化合物。在使用成孔剂的情况下,需要加热树脂膜至成孔剂的分解温度上的附加步骤,使得成孔剂可以分解。
用于本发明的成孔剂可以是本领域众所周知的任何成孔化合物,其非限定性实例为环糊精、聚己内酯,及其衍生物。将成孔剂与本发明的硅氧烷基树脂混合,使得成孔剂与树脂的重量比为1∶99~70∶30,其中成孔剂与树脂都为固体粉末形式。
溶解硅氧烷基树脂或成孔剂,来提供液态涂布组合物的溶剂的非限定性实例优选为脂族烃溶剂例如己烷;芳香烃溶剂例如苯甲醚、三甲苯和二甲苯;酮基溶剂例如甲基异丁基酮、1-甲基-2-吡咯烷酮和丙酮;醚基溶剂例如环己酮、四氢呋喃和异丙醚;乙酸酯基溶剂例如乙酸乙酯、乙酸丁酯和丙二醇甲基醚乙酸酯;醇基溶剂例如异丙醇和丁醇;酰胺基溶剂例如二甲基乙酰胺和二甲基甲酰胺;硅基溶剂;及其混合物。
在液态涂布组合物的制备中,有机溶剂的用量应足以将包含硅氧烷基树脂和成孔剂的固体成分均匀涂布到晶片的表面。因此,有机溶剂应该为液态涂布组合物的20~99.9重量%,优选70~95重量%。如果液态涂布组合物的有机溶剂含量小于20重量%,部分硅氧烷基树脂仍未溶解。另一方面,如果有机溶剂的含量超过99.9重量%,最终树脂膜的厚度将薄至1000或更薄。
在本发明中,可以使用本领域中公知的各种涂布方法,将由此获得的液态涂布组合物涂布到硅片上。可用于本发明的涂布方法的非限定性实例包括旋涂、浸涂、喷涂、流涂和丝网印刷,而旋涂是最优选的。
参考下面的实施例,可以更清楚地理解本发明。应该理解,下面的实施例并不意图以任何方式限制本发明的范围。
实施例1:硅氧烷单体的合成
实施例1-1:环硅氧烷单体(A)的合成
将10.0g(29.014毫摩尔)2,4,6,8-四甲基-2,4,6,8-四乙烯基环四硅氧烷和0.164g铂(O)-1,3-二乙烯基-1,1,3,3-四甲基二硅氧烷络合物(在二甲苯中的溶液)加入烧瓶中,然后用300ml二乙醚稀释。接着,烧瓶冷却到-78℃,然后其中缓慢加入17.29g(127.66毫摩尔)三氯硅烷,将其缓慢加热到室温。在室温下持续反应20小时,在大约0.1托的减压下从反应混合物中除去挥发材料。将100ml戊烷加入到反应混合物中,并搅拌1小时,接着用硅藻土过滤得到无色清澈的溶液。在减压下从溶液中除去甲苯,得到由式[Si(CH3)(CH2CH2SiCl3)O-]4代表的液体化合物,产率为95%。10.0g(11.28毫摩尔)液体化合物用500ml四氢呋喃稀释,加入13.83g(136.71毫摩尔)三乙胺。接着,将混合物冷却至-78℃,缓慢加入4.38g(136.71毫摩尔)甲醇,然后缓慢加热到室温。在室温下继续反应15小时,并用硅藻土过滤,从得到的滤出液中,在0.1托的减压下蒸发挥发材料。接下来,100ml戊烷加入到剩下的滤出液中,并搅拌1小时,接着用硅藻土过滤。5g活性炭加入到滤出液中并搅拌10小时。将从过滤搅拌的溶液获得的滤出液减压,从中除去己烷,获得无色液体的单体(A)。从NMR分析溶解在CDCl3中的此单体获得的结果如下:
1H-NMR(300MHz):δ0.09(s,12H,4×CH3),0.52-0.64(m,16H,4×CH2-CH2-),3.58(s,36H,4×[OCH3]3)
实施例1-2:直链硅氧烷单体(B)的合成
将10.0g(249.208毫摩尔)1,3-二氯四甲基二硅氧烷加入烧瓶中,然后用500ml四氢呋喃稀释。接着,烧瓶冷却到-78℃,然后其中缓慢加入10.95g(108.212毫摩尔)三乙胺,接着缓慢加入3.46g(107.90毫摩尔)甲醇。然后将反应温度缓慢升至室温。在室温下继续反应15小时。在反应结束时,将反应混合物用硅藻土过滤,在大约0.1托的减压下蒸发挥发材料。接下来,100ml戊烷加入到剩下的滤出液中,并搅拌1小时,接着用硅藻土过滤。在减压下从滤出液中除去己烷,获得无色液体。从简单蒸馏该液体可以获得无色液体单体(B)。从NMR分析溶解在CDCl3中的此单体获得的结果如下:
1H-NMR(300MHz):δ0.068(s,12H,4×CH3),3.45(s,6H,2×OCH3)。
实施例1-3:直链硅氧烷单体(C)的合成
Figure A20041004740600101
按照与上面实施例1-2相同的方式进行实施例1-3,但是用1,5-二氯六甲基三硅氧烷代替1,3-二氯四甲基二硅氧烷。
从NMR分析由此获得并溶解在CDCl3中的此单体(C)获得的结果如下:
1H-NMR(300MHz):δ0.068(s,12H,4×CH3),0.077(s,3H,-CH3),3.44(s,6H,2×OCH3)。
实施例1-4:直链硅氧烷单体(D)的合成
按照与上面实施例1-2相同的方式进行实施例1-4,但是用1,7-二氯八甲基四硅氧烷代替1,3-二氯四甲基二硅氧烷。
从NMR分析由此获得并溶解在CDCl3中的此单体(C)获得的结果如下:
1H-NMR(300MHz):δ0.068(s,24H,8×CH3),3.45(s,6H,2×OCH3)。
实施例1-5:直链硅氧烷单体(E)的合成
从Sigma Aldrich(USA)得到环硅氧烷单体(E)。
实施例2:硅氧烷基树脂(a)~(m)的合成
按照下表1,将从上面的实施例1中得到的环硅氧烷单体(A)和直链硅氧烷单体(B)~(E)定量,并引入烧瓶中,接着用15倍的四氢呋喃稀释。接下来,在烧瓶降温至-78℃后,缓慢加入一定量的去离子水和HCl。然后,加热烧瓶到70℃,在此温度下,烧瓶保持20小时,以使反应可以继续。在反应结束时,反应混合物转移到分液漏斗中,接着加入与先前稀释单体时使用的四氢呋喃一样多的二乙醚和四氢呋喃。然后进行三次洗涤,每次使用达到分液漏斗中总溶液的十分之一的水。在洗涤后,从剩下的溶液中蒸发挥发分,得到白色粉末状聚合物。将粉末完全溶解于少量丙酮中获得清澈溶液,用0.2μm注射器过滤器(syringe filter)过滤,除去杂质而得到清澈滤出液,然后向该滤出液中缓慢加入去离子水。结果,形成了白色粉末状材料,然后从液相(丙酮和水的混合溶液)分离出来,并在0~20℃,大约0.1托的减压下干燥10小时,以生成分级的硅氧烷基树脂。
                                     表1
树脂                  单体(毫摩尔)  HCl(毫摩尔)   H2O(毫摩尔) 产量(g)
  单体(A)   单体(B)   单体(C)   单体(D)   单体(E)
  (a)   6.621   15.450   0.110   310   4.85
  (b)   15.450   15.450   0.216   721   9.70
  (c)   11.998   5.142   0.145   514   6.85
  (d)   11.998   5.142   0.145   514   6.70
  (e)   11.998   5.142   0.145   514   7.55
  (f)   11.998   5.142   0.145   857   7.60
  (g)   11.998   5.142   1.450   514   7.85
  (h)   11.998   5.142   0.101   514   7.80
  (i)   11.998   5.142   0.080   514   7.10
  (j)   11.998   5.142   0.048   514   6.35
  (k)   9.599   22.397   0.102   627   7.53
  (l)   7.199   28.796   0.101   617   7.56
  (m)   4.799   43.194   0.115   705   7.71
实施例3:树脂组合物的分析
从上面实施例2获得的硅氧烷基树脂分别按如下所述分析了Si-OH、Si-OCH3和Si-CH3的含量。结果在表2中。
                           表2
    树脂     Si-OH(%)     Si-OCH3(%)     Si-CH3(%)
    (a)     6.2     0.3     93.5
    (b)     14.3     0.5     85.1
    (c)     28.6     0.7     70.7
    (d)     30.6     1.0     68.4
    (e)     28.1     0.9     71.0
    (f)     29.9     0.6     69.5
    (g)     18.3     0.7     81.0
    (h)     32.4     0.9     66.7
    (i)     33.3     1.0     65.7
    (j)     41.2     1.4     57.4
    (k)     33.2     1.8     65.0
    (l)     32.1     1.5     66.4
    (m)     27.3     1.5     71.2
使用NMR(Bruker Co.)以及下面的方程得到了Si-OH、Si-OCH3和Si-CH3的含量(%):
Si-OH(%)=(Si-OH)面积÷[(Si-OH)面积+(Si-OCH3)面积/3+(Si-CH3)面积/3]×100
Si-OCH3(%)=(Si-OCH3)面积/3÷[(Si-OH)面积+(Si-OCH3)面积/3+(Si-CH3)面积/3]×100
Si-CH3(%)=(Si-CH3)面积/3÷[(Si-OH)面积+(Si-OCH3)面积/3+(Si-CH3)面积/3]×100
实施例4:树脂膜的厚度和折射率测量
从上面实施例2得到的硅氧烷基树脂,及其与七(2,3,6-三-O-甲氧基)-β-环糊精的混合物分别溶解于丙二醇甲基醚乙酸酯(PGMEA),使得在得到的液体涂布组合物中固体物质的最终浓度为25重量%。然后,涂布组合物各自在硅片上旋涂30秒,保持旋转速度3000rpm。在氮气氛下,在热盘上相继软烘焙(在100℃下1分钟,在250℃下又1分种),以便充分蒸发有机溶剂。之后,温度以3℃/分钟的速度,在真空条件下升高到420℃,在此温度下,使涂层膜固化1小时,得到试验片。
如此制备的试验片各自分析膜厚和折射率。分别用剖面测量仪和棱镜偶合器在每个膜的5个点上测量膜厚和折射率。平均厚度和折射率连同其均匀性一起在表3示出。
                                              表3
            树脂膜组成   厚度()   R.I.*   R.I.均匀性(%)   厚度均匀性(%)
  树脂     树脂(重量%)     成孔剂(重量%)
  (a)     100     -   9647   1.4056   0.0174   2.09
  (a)     70     30   8946   1.3614   0.158   1.53
  (b)     100     -   11665   1.4204   0.049   0.45
  (b)     70     30   9283   1.3412   0.037   1.99
  (c)     100     -   10193   1.4299   0.031   0.62
  (c)     70     30   8983   1.3298   0.105   1.81
  (d)     100     -   11131   1.4355   0.010   0.45
  (d)     70     30   10075   1.3278   0.196   1.10
  (e)     100     -   10289   1.4395   0.052   2.56
  (e)     70     30   9604   1.3202   0.216   2.34
  (f)     100     -   12051   1.4358   0.081   1.23
  (f)     70     30   7540   1.3290   0.107   1.57
  (g)     100     -   13453   1.4207   0.047   0.92
  (g)     70     30   8829   1.3385   0.089   1.04
  (h)     100     -   12011   1.4397   0.023   1.38
  (h)     70     30   9739   1.3225   0.059   1.97
  (i)     100     -   11513   1.4403   0.072   2.52
  (i)     70     30   8508   1.3217   0.126   1.48
  (j)     100     -   12485   1.4454   0.032   0.72
  (j)     70     30   9787   1.3170   0.089   0.91
  (k)     100     -   10138   1.4249   0.081   1.31
  (k)     70     30   9387   1.3128   0.031   1.02
  (l)     100     -   7681   1.4190   0.076   1.30
  (l)     70     30   7489   1.3065   0.030   0.94
  (m)     100     -   8245   1.4086   0.082   1.05
  (m)     70     30   7958   1.3206   0.028   0.75
*R.I.:折射率
实施例5:树脂膜的介电常数测量
硼掺杂的P型硅片用3000热氧化硅膜涂布,接着使用金属蒸发器相继沉积100钛层、2000铝层和100钛层。按照上面实施例4中相同的方式,在这些晶片的表面各自形成树脂膜。接着,在树脂膜上通过硬质掩膜沉积1mm直径的环电极,其包含100厚的钛层和5000厚的铝层,从而提供具有MIM(金属-绝缘体-金属)结构的试验片。利用具有精密控制器(Micromanipulator 6200)探针的精密电感电容电阻测定计(HP4284A)平台在100kHz测量如此获得的试验片的电容。从下面的方程计算每个测试膜的介电常数,其中“d”值使用椭率计获得:
                    k=(C×d)/(ε0×A)
注)k:介电率
   C:电容
   d:膜厚
  ε0:真空中介电常数
   A:电极接触面积
计算的介电常数如表4所示。
                表4
           树脂膜组成   介电常数
    树脂   树脂(重量%)   成孔剂(重量%)
    (a)   100   -   2.83
    (a)   70   30   2.67
    (b)   100   -   2.72
    (b)   70   30   2.23
    (c)   100   -   2.74
    (c)   70   30   2.37
    (d)   100   -   2.79
    (d)   70   30   2.25
    (e)   100   -   2.71
    (e)   70   30   2.17
    (f)   100   -   2.78
    (f)   70   30   2.19
    (g)   100   -   2.80
    (g)   70   30   2.28
    (h)   100   -   2.80
    (h)   70   30   2.21
    (i)   100   -   2.81
    (i)   70   30   2.20
    (j)   100   -   2.66
    (j)   70   30   2.10
    (k)   100   -   2.76
    (k)   70   30   2.26
    (l)   100   -   2.75
    (l)   70   30   2.26
    (m)   100   -   2.71
    (m)   70   30   2.20
实施例6:树脂膜机械性能测试
使用Nanoindenter II(MIS Co.)测量上面实施例4制备的试验片的硬度和弹性模量。对每个树脂膜的试验片形成凹陷,直至凹口深度达到总厚度的10%。此时,为保证可实现该测量,每个试验片凹陷6点,测量平均硬度和模量。结果见表5。
                            表5
              树脂膜组成   硬度(GPa)     模量(GPa)
  树脂     树脂(重量%)     成孔剂(重量%)
  (a)     100     -   0.40     2.47
  (a)     70     30   0.27     2.06
  (b)     100     -   0.59     3.62
  (b)     70     30   0.39     2.46
  (c)     100     -   1.00     5.33
  (c)     70     30   0.51     2.84
  (d)     100     -   0.97     5.44
  (d)     70     30   0.44     2.57
  (e)     100     -   1.19     6.27
  (e)     70     30   0.48     2.70
  (f)     100     -   1.12     6.01
  (f)     70     30   0.52     3.18
  (g)     100     -   0.70     3.97
  (g)     70     30   0.37     2.60
  (h)     100     -   1.24     6.72
  (h)     70     30   0.47     2.93
  (i)     100     -   1.25     6.58
  (i)     70     30   0.48     2.98
  (j)     100     -   1.33     6.97
  (j)     70     30   0.50     3.00
  (k)     100     -   1.15     6.33
  (k)     70     30   0.40     2.51
  (l)     100     -   1.11     5.94
  (l)     70     30   0.39     2.78
  (m)     100     -   1.04     5.50
  (m)     70     30   0.36     2.46
对本领域技术人员,对本发明简单的改进和变化很容易获得,应该理解所有这种改进和变化都在本发明的范围内。

Claims (18)

1.一种硅氧烷基树脂,其是在有机溶剂中及,在酸或碱催化剂和水存在下,通过水解和缩聚下面式(1)的第一单体与下面式(2)的第二单体而制备的:
Figure A2004100474060002C1
式中,
R1为H、C1-3烷基或C6-15芳基;
X1、X2和X3各自独立为C1-3烷基、C1-10烷氧基或卤素,条件是它们中至少有一个是可水解的;
m为0~10的整数;
p为3~8的整数;
式中,
R2为H、C1-3烷基或C6-15芳基;
X4为C1-10烷氧基;
Y1为C1-3烷基或C1-10烷氧基;及
n为0~10的整数。
2.根据权利要求1的硅氧烷基树脂,其中所述式(1)的第一单体与式(2)的第二单体的摩尔比为1∶99~99∶1。
3.根据权利要求1的硅氧烷基树脂,其中所述催化剂为盐酸、硝酸、苯磺酸、草酸、甲酸、氢氧化钾、氢氧化钠、三乙胺、碳酸氢钠或吡啶。
4.根据权利要求1的硅氧烷基树脂,其中所述单体与催化剂的摩尔比为1∶0.000001~1∶10。
5.根据权利要求1的硅氧烷基树脂,其中所述单体与水的摩尔比为1∶1~1∶1000。
6.根据权利要求1的硅氧烷基树脂,其中所述水解和缩聚反应在0~200℃下进行0.1~100小时。
7.根据权利要求1的硅氧烷基树脂,其中所述有机溶剂为脂族烃溶剂、芳香烃溶剂、酮基溶剂、醚基溶剂、乙酸酯基溶剂、醇基溶剂、酰胺基溶剂、硅基溶剂或其混合物。
8.根据权利要求1的硅氧烷基树脂,其中所述树脂的Mw为3000~300000。
9.一种在半导体器件的互连层之间形成绝缘膜的方法,该方法包括下列步骤:
通过将权利要求1的硅氧烷基树脂溶于有机溶剂中,提供液态涂布组合物;
用该液态涂布组合物涂布硅片,形成涂层膜;及
热固化该涂层膜。
10.根据权利要求9的方法,其中所述硅氧烷基树脂与成孔剂混合,使得树脂与成孔剂的重量比为99∶1~30∶70。
11.根据权利要求9的方法,其中所述成孔剂为环糊精、聚己内酯,或其衍生物。
12.根据权利要求9的方法,其中所述有机溶剂为脂族烃溶剂、芳香烃溶剂、酮基溶剂、醚基溶剂、乙酸酯基溶剂、醇基溶剂、酰胺基溶剂、硅基溶剂或其混合物。
13.根据权利要求9的方法,其中所述有机溶剂的量为液态涂布组合物的20~99.9重量%。
14.根据权利要求9的方法,其中所述液态涂布组合物通过旋涂涂布在硅片上。
15.根据权利要求9的方法,其中所述热固化在150~600℃下进行1~150分钟。
16.一种用于半导体器件的层间绝缘膜,其中所述绝缘膜是由权利要求1的硅氧烷基树脂制成的。
17.根据权利要求16的层间绝缘膜,其中通过使用成孔剂形成贯穿于所述绝缘膜的微孔。
18.根据权利要求16的层间绝缘膜,其中所述成孔剂为环糊精、聚己内酯,或其衍生物。
CNB2004100474061A 2003-06-02 2004-05-27 硅氧烷基的树脂和使用其制造的半导体器件的层间绝缘膜 Expired - Fee Related CN100422241C (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2003-0035276A KR100506695B1 (ko) 2003-06-02 2003-06-02 실록산계 수지 및 이를 이용한 반도체 층간 절연막
KR35276/03 2003-06-02
KR35276/2003 2003-06-02

Publications (2)

Publication Number Publication Date
CN1572816A true CN1572816A (zh) 2005-02-02
CN100422241C CN100422241C (zh) 2008-10-01

Family

ID=33157370

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004100474061A Expired - Fee Related CN100422241C (zh) 2003-06-02 2004-05-27 硅氧烷基的树脂和使用其制造的半导体器件的层间绝缘膜

Country Status (6)

Country Link
US (1) US7014917B2 (zh)
EP (1) EP1484354B1 (zh)
JP (1) JP2004359953A (zh)
KR (1) KR100506695B1 (zh)
CN (1) CN100422241C (zh)
DE (1) DE602004018426D1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101646736B (zh) * 2007-04-05 2012-08-29 新日铁高新材料株式会社 表面平坦性绝缘膜形成用涂布溶液、表面平坦性绝缘膜被覆基材和该基材的制造方法
CN101611043B (zh) * 2007-02-14 2013-03-13 Jsr株式会社 含硅膜形成用材料、以及含硅绝缘膜及其形成方法
CN108043367A (zh) * 2018-01-08 2018-05-18 海信(山东)空调有限公司 一种防凝露材料及其制备方法和应用

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100507967B1 (ko) * 2003-07-01 2005-08-10 삼성전자주식회사 실록산계 수지 및 이를 이용한 반도체 층간 절연막
KR100504291B1 (ko) * 2003-07-14 2005-07-27 삼성전자주식회사 게르마늄을 포함하는 실록산계 수지 및 이를 이용한반도체 층간 절연막 형성 방법
US7504470B2 (en) * 2004-08-31 2009-03-17 Silecs Oy Polyorganosiloxane dielectric materials
KR20060068348A (ko) * 2004-12-16 2006-06-21 삼성코닝 주식회사 실록산계 중합체 및 상기 중합체를 이용한 절연막 제조방법
KR20060090483A (ko) * 2005-02-07 2006-08-11 삼성코닝 주식회사 풀러렌을 포함하는 저유전 박막 형성용 조성물, 이를이용한 저유전 박막 및 저유전 박막의 제조방법
KR101078150B1 (ko) * 2005-03-17 2011-10-28 삼성전자주식회사 유기-무기 복합체 다공성 물질을 이용한 비휘발성 나노 채널 메모리 소자
KR101386215B1 (ko) * 2006-06-07 2014-04-17 삼성디스플레이 주식회사 전도성 고분자 조성물 및 이를 채용한 유기 광전 소자
US20070284687A1 (en) * 2006-06-13 2007-12-13 Rantala Juha T Semiconductor optoelectronics devices
US8182872B2 (en) * 2008-09-25 2012-05-22 Imec Method of fabricating a porous elastomer
KR101290260B1 (ko) * 2011-07-15 2013-07-26 주식회사 케이씨씨 알칼리 가용성 실리콘 수지, 이를 포함하는 실리콘 수지 조성물 및 그 제조방법
CN108699389B (zh) 2016-02-24 2020-10-27 日产化学株式会社 含有硅的图案反转用被覆剂

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3615272A (en) * 1968-11-04 1971-10-26 Dow Corning Condensed soluble hydrogensilsesquioxane resin
EP0046695B1 (en) * 1980-08-26 1986-01-08 Japan Synthetic Rubber Co., Ltd. Ladder-like lower alkylpolysilsesquioxanes and process for their preparation
US4756977A (en) * 1986-12-03 1988-07-12 Dow Corning Corporation Multilayer ceramics from hydrogen silsesquioxane
US4999397A (en) * 1989-07-28 1991-03-12 Dow Corning Corporation Metastable silane hydrolyzates and process for their preparation
US5010159A (en) * 1989-09-01 1991-04-23 Dow Corning Corporation Process for the synthesis of soluble, condensed hydridosilicon resins containing low levels of silanol
US5378790A (en) * 1992-09-16 1995-01-03 E. I. Du Pont De Nemours & Co. Single component inorganic/organic network materials and precursors thereof
AU3460095A (en) * 1994-06-30 1996-01-25 Hitachi Chemical Company, Ltd. Material for forming silica-base coated insulation film, process for producing the material, silica-base insulation film, semiconductor device, and process for producing the device
US5468829A (en) * 1994-10-11 1995-11-21 Dow Corning Corporation In-situ reinforced silicone elastomer using resin precursor
AU6973296A (en) * 1995-09-12 1997-04-01 Gelest, Inc. Beta-substituted organosilsesquioxanes and use thereof
US6413638B1 (en) * 1997-05-23 2002-07-02 Agfa Gevaert Ag Coated particles containing a monomeric, polyfunctional organosilane coating
WO1999003926A1 (fr) 1997-07-15 1999-01-28 Asahi Kasei Kogyo Kabushiki Kaisha Composition alcoxysilane/polymere organique destinee a la production de fines pellicules isolantes et procede d'utilisation
DE19814060A1 (de) * 1998-03-30 1999-10-07 Bayer Ag Borhaltige Mischungen, Hybridmaterialien und Beschichtungen
DE19824188A1 (de) * 1998-05-29 1999-12-02 Bayer Ag Wäßrige Zubereitung zur Behandlung mineralischer Baustoffe
JP2001115028A (ja) * 1999-08-12 2001-04-24 Jsr Corp 膜形成用組成物、膜の形成方法およびシリカ系膜
TR200200411T2 (tr) * 1999-08-20 2002-06-21 Bayer Aktiengesellschaft Inorganik kaplama bileşimi, üretimi için bir işlem, kullanımı ve bu şekilde elde edilen yapışmaz bir kaplama.
US6232424B1 (en) * 1999-12-13 2001-05-15 Dow Corning Corporation Soluble silicone resin compositions having good solution stability
KR100343938B1 (en) * 2000-11-29 2002-07-20 Samsung Electronics Co Ltd Preparation method of interlayer insulation membrane of semiconductor
DE60135540D1 (de) * 2001-03-27 2008-10-09 Samsung Electronics Co Ltd noporen
US6623711B2 (en) * 2001-03-27 2003-09-23 Samsung Electronics Co., Ltd. Siloxane-based resin and method for forming insulating film between interconnect layers in semiconductor devices by using the same
DE60204502T2 (de) * 2001-03-27 2006-05-18 Samsung Electronics Co., Ltd., Suwon Polysiloxanharz und Verfahren zur Herstellung einer Zwischenschicht daraus für Wafer
KR100507967B1 (ko) * 2003-07-01 2005-08-10 삼성전자주식회사 실록산계 수지 및 이를 이용한 반도체 층간 절연막

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101611043B (zh) * 2007-02-14 2013-03-13 Jsr株式会社 含硅膜形成用材料、以及含硅绝缘膜及其形成方法
CN101646736B (zh) * 2007-04-05 2012-08-29 新日铁高新材料株式会社 表面平坦性绝缘膜形成用涂布溶液、表面平坦性绝缘膜被覆基材和该基材的制造方法
CN108043367A (zh) * 2018-01-08 2018-05-18 海信(山东)空调有限公司 一种防凝露材料及其制备方法和应用

Also Published As

Publication number Publication date
CN100422241C (zh) 2008-10-01
EP1484354A1 (en) 2004-12-08
KR20040103659A (ko) 2004-12-09
JP2004359953A (ja) 2004-12-24
KR100506695B1 (ko) 2005-08-08
DE602004018426D1 (de) 2009-01-29
EP1484354B1 (en) 2008-12-17
US7014917B2 (en) 2006-03-21
US20040242013A1 (en) 2004-12-02

Similar Documents

Publication Publication Date Title
CN1246362C (zh) 一种制备有机硅酸盐聚合物的方法
CN1680466A (zh) 用多面体分子倍半硅氧烷,形成半导体器件用层间电介质膜的方法
US20060159938A1 (en) Composition for forming low dielectric thin film comprising polymer nanoparticles and method of preparing low dielectric thin film using the same
CN1260811A (zh) 低有机含量的有机氢化硅氧烷树脂
CN1572816A (zh) 硅氧烷基的树脂和使用其制造的半导体器件的层间绝缘膜
CN1597738A (zh) 新颖的硅氧烷基树脂和使用该树脂形成的间层绝缘膜
CN1616468A (zh) 多官能环状硅氧烷化合物和由该化合物制备的硅氧烷基聚合物和用该聚合物制备介电薄膜的方法
CN100349981C (zh) 多孔膜形成用组合物、多孔膜制造法、多孔膜、层间绝缘膜及半导体装置
CN1824691A (zh) 制备具有低介电常数的介孔薄膜的方法
CN100393777C (zh) 硅氧烷基树脂及用其制造的半导体的层间绝缘膜
CN1626537A (zh) 多官能环状硅酸盐(或酯)化合物,由该化合物制得的基于硅氧烷的聚合物和使用该聚合物制备绝缘膜的方法
CN1511881A (zh) 用于制备含有新型成孔材料之多孔电介质薄膜的组合物
CN1313371C (zh) 含有中孔二氧化硅层的电子器件及制备该中孔二氧化硅层的组合物
CN1576299A (zh) 包含锗的硅氧烷基树脂和使用该树脂的半导体器件用间层绝缘膜
CN1500846A (zh) 用于制备多孔介电薄膜的包含糖类成孔剂的组合物
CN1646605A (zh) 有机硅酸盐聚合物和包含该有机硅酸盐聚合物的绝缘薄膜
CN1662578A (zh) 有机硅酸盐聚合体和含有该有机硅酸盐聚合体的绝缘膜
CN107663275A (zh) 用于填充微细图案间隙的间隙填充聚合物及使用其制造半导体器件的方法
US7357961B2 (en) Composition for forming porous film, porous film and method for forming the same, interlevel insulator film, and semiconductor device
CN1535300A (zh) 硅氧烷树脂
CN1463279A (zh) 有机硅酸酯聚合物和从其得到的绝缘膜
CN1759135A (zh) 有机硅氧烷树脂以及使用该有机硅氧烷树脂的绝缘膜
US20040096398A1 (en) Siloxane-based resin and method of forming an insulating film between interconnect layers of a semiconductor device using the same
JP5133475B2 (ja) 良好な溶解性と安定性を有するシリコーン樹脂組成物
CN1535301A (zh) 硅氧烷树脂

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20081001

Termination date: 20100527