CN1719582A - 制备多晶硅薄膜的方法以及用其制备半导体器件的方法 - Google Patents

制备多晶硅薄膜的方法以及用其制备半导体器件的方法 Download PDF

Info

Publication number
CN1719582A
CN1719582A CNA2005100819292A CN200510081929A CN1719582A CN 1719582 A CN1719582 A CN 1719582A CN A2005100819292 A CNA2005100819292 A CN A2005100819292A CN 200510081929 A CN200510081929 A CN 200510081929A CN 1719582 A CN1719582 A CN 1719582A
Authority
CN
China
Prior art keywords
amorphous silicon
substrate
silicon membrane
membrane
polysilicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2005100819292A
Other languages
English (en)
Inventor
金道暎
野口隆
赵世泳
权章渊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of CN1719582A publication Critical patent/CN1719582A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02422Non-crystalline insulating materials, e.g. glass, polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02488Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02595Microstructure polycrystalline
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • H01L21/02686Pulsed laser beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/127Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement
    • H01L27/1274Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor
    • H01L27/1277Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor using a crystallisation promoting species, e.g. local introduction of Ni catalyst
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/1296Multistep manufacturing methods adapted to increase the uniformity of device parameters

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Recrystallisation Techniques (AREA)
  • Thin Film Transistor (AREA)

Abstract

本发明提供了一种制备多晶硅薄膜的方法和使用该方法制备半导体器件的方法。为了形成多晶硅薄膜,在形成于基板上的非晶硅薄膜中注入中性离子,然后进行退火。非晶硅薄膜可以在高能量密度下退火,并且可以在非耐热塑料基板上形成具有优异特性的多晶硅薄膜。因此,可以在比如Si晶片或玻璃基板的耐热基板,或比如塑料基板的非耐热基板上形成优异的多晶硅薄膜。

Description

制备多晶硅薄膜的方法以及用其制备半导体器件的方法
技术领域
本发明涉及一种制备多晶硅薄膜的方法以及使用该方法来制备半导体器件的方法,更具体地,本发明涉及一种制备大晶粒尺寸的多晶硅薄膜的方法,以及使用该方法制备电子器件的方法。
背景技术
多晶硅(poly-Si)由于比非晶硅(a-Si)具有更大的迁移率,所以被应用于比如平板显示器和太阳能电池的多种电子装置。
通常,多晶硅电子装置形成在比如玻璃的耐热材料基板上。当多晶硅薄膜形成在比如玻璃基板的耐热基板上时,常规使用比如化学气相沉积(CVD)或等离子增强CVD(PECVD)的高温沉积方法来沉积非晶硅膜。通过这样的常规方法所获得的晶粒的最大尺寸是约3000至4000,而且已知要获得4000或更大的晶粒尺寸非常地困难。因此,制备大晶粒尺寸的多晶硅薄膜依然是一个亟待解决的问题。
最近人们已经开发了一种在塑料基板上制备多晶硅电子装置的方法。为了防止电子装置中的热变形,需要使用诸如溅镀的低温层形成技术,其中多晶硅电子装置在低温下形成。为了防止在制备过程中对基板的热冲击并抑制在高温发生的工艺缺陷,就需要这样的低温工艺。因为塑料基板重量轻、柔软且坚固,所以已经开发了用于平板显示器的塑料基板。
Carry等人的美国专利No.5817550提出了一种防止在塑料基板上形成Si沟道时损坏塑料基板的方法。
通常,在通过CVD或PECVD形成的非晶硅膜中保留有10-20%的氢。这样的残余气体导致在通过比如ELA退火得到的Si晶体中出现很多的缺陷。
为了防止由于残余气体所导致出现的缺陷,优选地使用采用例如Ar的惰性气体的溅镀来获得优异的多晶硅。溅镀致使在非晶硅膜中捕获的Ar减少1-3%。由于在多晶硅中吸附的气体的比率减少,所以多晶硅的质量变得更好了。用来沉积非晶硅薄膜的溅镀要求惰性气体,因此在硅中不会留下氢。但是,由于硅膜在预定或更高能量水平进行退火时可能从比如塑料基板的非耐热基板上脱落,所以难于在高能量水平下进行退火来获得优异的多晶硅。
发明内容
本发明提供了一种制备多晶硅薄膜的方法以及使用该方法来制备电子装置的方法,其中可以形成大晶粒尺寸的多晶硅。
此外,本发明提供了一种制备多晶硅薄膜的方法以及使用该方法来制备电子装置的方法,其中可以使用在低温下获得的非晶硅薄膜来制备大晶粒尺寸的多晶硅薄膜。
而且,本发明提供了一种使用低成本的工艺制备优异多晶硅薄膜的方法。
根据本发明的一个方面,提供了一种制备多晶硅薄膜的方法。该方法包括在基板上形成非晶硅薄膜;向非晶硅薄膜中注入中性离子(neutralizedion);以及将非晶硅薄膜退火。
该基板是玻璃基板或塑料基板。使用离子注入装置进行中性离子的注入。通过准分子激光退火(ELA)进行非晶硅薄膜的退火。
使用比如溅镀的物理气相沉积(PVD)来形成非晶硅薄膜。通过ELA来对非晶硅薄膜退火。
根据本发明的另一个方面,提供了一种制备半导体装置的方法,该半导体装置包括基板和在基板上形成的多晶硅薄膜。该方法包括在基板上形成非晶硅薄膜;向非晶硅薄膜中注入中性离子;以及将非晶硅薄膜退火。
根据本发明的再一个方面,提供了一种制备薄膜晶体管(TFT)的方法,薄膜晶体管包括基板、形成在基板上的多晶硅有源层、形成在多晶硅有源层上的栅极绝缘层、形成在栅极绝缘层上的栅极,其中多晶硅有源层是通过如下步骤形成:在基板上形成非晶硅薄膜;向非晶硅薄膜中注入中性离子;以及将非晶硅薄膜退火。
中性离子是选自由Si、Ge、Ar和C构成的组中的一种离子。
附图说明
通过参考附图详细地描述本发明的示范性实施例,本发明的上述和其他特征和优点将变得更加清楚,在附图中:
图1A至图1D是图示根据本发明的制备多晶硅薄膜的方法的横截面视图;
图2A是根据本发明制备的多晶硅薄膜的SEM照片;
图2B和图2C是根据传统方法形成的多晶硅薄膜的SEM照片;
图3A是根据传统方法制备的a-Si薄膜的TEM照片;
图3B是根据本发明制备的a-Si薄膜的TEM照片;
图4是根据本发明的制备薄膜晶体管(TFT)的方法的流程图;
图5是根据本发明制备的TFT的横截面视图。
具体实施方式
下面,将参考附图对根据本发明的制备多晶硅薄膜的方法以及使用该方法来制备薄膜晶体管(TFT)的方法进行详细地说明。
图1A至图1D是图示根据本发明的制备多晶硅薄膜的方法的横截面视图。具体地,在该方法中,多晶硅薄膜是通过注入比如Si+离子的中性离子而形成的。
参考图1A,制备Si晶片或者玻璃或塑料基板1来形成多晶硅薄膜。在玻璃或塑料基板1上形成SiO2氧化层来确保电绝缘。如果使用的是Si晶片而非基板1,那么可以在其上形成天然氧化物(native oxide)。
参考图1B,在基板1上形成非晶硅(a-Si)薄膜3。a-Si薄膜3是通过比如溅镀的物理气相沉积(PVD)形成的。此时,用于能够实现低温沉积的溅镀的溅镀气体是惰性气体,例如Ar。保持200W的溅镀功率和5mTorr的气压。
参考图1C,比如Si+离子的中性离子被注入到a-Si薄膜3中。中性离子是从由Si、Ge、Ar和C构成的组中选择的一种的离子。优选地使用Si离子作为中性离子。使用公知的离子注入装置来进行离子注入工艺。
比如Si+离子的中性离子的注入使得离子在a-Si薄膜3中轰击,并且一部分注入的中性离子穿透了a-Si薄膜3。
参考图1D,注入了中性离子的a-Si薄膜3在炉中或通过准分子激光(ELA)退火,由此获得所需要的多晶硅薄膜。对a-Si薄膜3的退火优选地使用ELA进行。
图2A是根据本发明的通过将Si+离子注入到a-Si薄膜中形成的多晶硅薄膜的SEM照片,图2B和图2C是根据传统方法形成的多晶硅薄膜的SEM照片。
为了获得图2A至图2C所示的样品,使用溅镀在室温下形成50nm厚的a-Si薄膜。根据本发明,图2A所示的样品是通过五次照射准分子激光退火的,其能量密度为235mJ/cm2,持续时间为20ns。在图2B中所示的现有技术样品是通过五次照射准分子激光退火的,其能量密度为240mJ/cm2,持续时间为20ns。同样,为了将图2C中所示的另一个现有技术的样品退火,五次照射准分子激光,其能量密度为150mJ/cm2,持续时间为20ns。
如图2A所示的多晶硅薄膜具有大约600至800nm的晶粒尺寸,而图2B所示的现有技术的多晶硅薄膜具有大约200至300nm的晶粒尺寸。与图2A和2B所示的多晶硅薄膜相比,在图2C的多晶硅薄膜具有要小得多的晶粒尺寸。如从图2A至图2C所示的样品所看到的那样,根据本发明的样品可以获得晶粒尺寸大于现有技术样品的多晶硅薄膜。
在本发明中,用来溅镀并保留在a-Si薄膜中的例如Ar的惰性气体的区域由于在退火之后注入中性离子期间的轰击而被破坏。此外,通过将a-Si薄膜中的部分晶粒转变为非晶相,通过随后的退火而均匀地进行a-Si晶粒的结晶。于是,可以推断能够进行较大尺寸的晶粒的生长。
通过上述方法形成的多晶硅薄膜是成品,以及适于在电子装置中使用的单个部件。这样的多晶硅薄膜可以应用于多种应用装置,比如TFT和太阳能电池,只要它们具有上述的多晶硅薄膜结构就不会偏离本发明的范围。
如所知的那样,获得优异多晶硅薄膜的最适当能量密度是约250mJ/cm2。考虑到这一事实,本发明的制备方法能够使用适当的能量对Si退火,致使形成好的多晶硅薄膜。
下面的表格中示出了根据本发明和传统方法的多晶硅薄膜在退火期间的耐热性试验结果。
                          表1
                        无Si+注入
                         氩(Ar)
                         氙(Xe)
                          表2
                        有Si+注入
                         氩(Ar)
Figure A20051008192900091
                         氙(Xe)
Figure A20051008192900092
通过比较表1和表2,可以发现,本发明的制备方法能够产生优异的多晶硅薄膜。在表1和表2中,符号○和×对应于试验样品。这里,○表示即使在每次退火后多晶硅依然存在的情形,而×表示多晶硅由于退火而导致脱落或损坏的情形。如表1所示,没有注入中性离子的Si在低的200mJ/cm2的能量密度下被破坏或损坏。但是,根据本发明,可以在200mJ/cm2或更高的能量密度下成功形成多晶硅。而从表2可以看到,Ar溅镀使得多晶硅形成得比Xe溅镀时更稳定。
图3A是根据传统方法制备的a-Si薄膜的TEM照片;图3B是根据本发明制备的a-Si薄膜的TEM照片。
参考图3A,现有技术的a-Si薄膜尽管是非晶相的但是包括一些可察觉得晶界。相反,图3B中所示得根据本发明的a-Si薄膜几乎没有晶界而且总体上是均匀的。
图3A和图3B小框中的图像示出了电子衍射图案。如从小框中的图像所看到的那样,本发明形成的a-Si薄膜比现有技术的a-Si薄膜更均匀。图3B的TEM照片比图3A的更分散。
上述工艺是在形成例如TFT的半导体装置中最重要的工艺。其他工艺是使用传统方法进行的,并简要地说明。
在根据本发明实施例的TFT制备方法中,在室温或更高的温度下制备多晶硅薄膜。所以,可以在Si晶片或例如塑料基板的非耐热基板上获得特性优异的TFT。
图4是根据本发明的制备TFT的方法的流程图。
参考图4,可以在基板上形成氮化硅(SiNx)层,并可以在SiNx层上形成多晶硅薄膜。如上所述,使用诸如PVD工艺在基板上形成非晶硅膜,并随后执行ELA以形成多晶硅薄膜。非晶硅薄膜的形成可以包括利用Xe溅镀沉积非晶硅。沉积之后,用中性离子,例如中性Si+离子注入非晶硅薄膜,并可以使用诸如ELA的工艺对非晶硅薄膜逐步退火,以形成多晶硅薄膜(操作10)。
可以利用常规构图工艺,例如反应离子束蚀刻(RIE)构图所得的多晶硅薄膜以形成有源区(操作11)。其后,可以形成SiO2薄膜作为栅极绝缘层(操作12)。
可以在例如120℃的温度下,在所得结构的表面上沉积诸如铝(Al)层的金属层(操作13)并加以构图以完成栅极电极(操作14)。为了形成源极(s)和漏极(d)区域,可以注入杂质离子(操作15)并利用ELA退火(操作16)。
可以在150℃温度下使用诸如感性耦合等离子体化学气相沉积(ICP-CVD)的工艺在所得结构上沉积SiO2作为金属间介质(操作17)。可以形成接触孔和金属图案(操作18)以完成多晶硅TFT的制作。
图5是根据本发明制备的TFT的横截面视图。
参考图5,在基板1上形成预防层(prevention layer)2,在预防层2上,提供多晶硅薄膜3,并将其划分为源极、漏极和在其之间设置的沟道。栅极绝缘层4形成在多晶硅薄膜3上。在对应于源极和漏极的部分栅极绝缘层4上,形成孔以使得源极和漏极分别与源极电极和漏极电极相接触。
栅极(电极)形成于在源极和漏极之间设置的沟道上方,并且在其上形成层间电介质(ILD)。类似地,在对应于源极和漏极的部分ILD中形成孔。源极电极连接到多晶硅薄膜的源极,而漏极电极连接到多晶硅薄膜的漏极。
根据前面所述,在本发明中,可以获得优异的多晶硅薄膜和包括其的半导体器件。在进行退火之前,将中性离子注入到非晶硅薄膜中,由此形成优异的多晶硅薄膜。本发明的制备方法可以不仅应用于Si晶片或玻璃基板,而且还可以应用于不耐热的基板,比如塑料基板。
根据本发明制备多晶硅薄膜的方法可以应用于平板显示器,具体地,可以应用于AMLCD、AMOLED、太阳能电池或半导体存储器。这样的多晶硅薄膜适于用在TFT中,其要求高的迁移率和快速的响应并使用塑料基板。这样的TFT可以用于任何电子装置,包括AMLCD、AMOLED、开关装置和放大装置。
尽管已经通过参考示范性实施例具体地示出和说明了本发明,但是本领域的技术人员应该理解,在不偏离权利要求所定义的本发明的精神和范围的情形下,可以进行各种形式和细节的变化。

Claims (15)

1.一种制备多晶硅薄膜的方法,所述方法包括:
使用物理气相沉积在基板上形成非晶硅薄膜;
向所述非晶硅薄膜中注入中性离子;以及
将所述非晶硅薄膜退火。
2.根据权利要求1的方法,其中所述基板是Si基板、玻璃基板或塑料基板中的一种。
3.根据权利要求1的方法,其中所述非晶硅薄膜是使用溅镀形成的。
4.根据权利要求1的方法,其中对所述非晶硅薄膜退火是通过准分子激光退火来进行的。
5.根据权利要求1的方法,其中所述中性离子是选自由Si、Ge、Ar和C构成的组中的一种的离子。
6.一种制备半导体装置的方法,所述半导体装置包括基板和在所述基板上形成的多晶硅薄膜,所述方法包括:
使用物理气相沉积在基板上形成非晶硅薄膜;
向所述非晶硅薄膜中注入中性离子;以及
将所述非晶硅薄膜退火。
7.根据权利要求6的方法,其中所述基板是Si基板、玻璃基板或塑料基板中的一种。
8.根据权利要求6的方法,其中所述非晶硅薄膜是使用溅镀形成的。
9.根据权利要求6的方法,其中对所述非晶硅薄膜退火是通过准分子激光退火来进行的。
10.根据权利要求6的方法,其中所述中性离子是选自由Si、Ge、Ar和C构成的组中的一种的离子。
11.一种制备薄膜晶体管的方法,所述薄膜晶体管包括基板、形成在所述基板上的多晶硅有源层、形成在所述多晶硅有源层上的栅极绝缘层、形成所述栅极绝缘层上的栅极,
其中所述多晶硅有源层通过如下步骤形成:
在所述基板上形成非晶硅薄膜;
向所述非晶硅薄膜中注入中性离子;以及
将所述非晶硅薄膜退火。
12.根据权利要求11的方法,其中所述基板是Si基板、玻璃基板或塑料基板中的一种。
13.根据权利要求11的方法,其中所述非晶硅薄膜是使用溅镀形成的。
14.根据权利要求11的方法,其中对所述非晶硅薄膜退火是通过准分子激光退火来进行的。
15.根据权利要求11的方法,其中所述中性离子是选自由Si、Ge、Ar和C构成的组中的一种的离子。
CNA2005100819292A 2004-07-08 2005-07-08 制备多晶硅薄膜的方法以及用其制备半导体器件的方法 Pending CN1719582A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR52981/04 2004-07-08
KR1020040052981A KR100624427B1 (ko) 2004-07-08 2004-07-08 다결정 실리콘 제조방법 및 이를 이용하는 반도체 소자의제조방법

Publications (1)

Publication Number Publication Date
CN1719582A true CN1719582A (zh) 2006-01-11

Family

ID=35541918

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2005100819292A Pending CN1719582A (zh) 2004-07-08 2005-07-08 制备多晶硅薄膜的方法以及用其制备半导体器件的方法

Country Status (4)

Country Link
US (1) US20060009014A1 (zh)
JP (1) JP2006024946A (zh)
KR (1) KR100624427B1 (zh)
CN (1) CN1719582A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103177947A (zh) * 2011-12-22 2013-06-26 无锡华润上华科技有限公司 Mos晶体管的多晶硅栅电极的制备方法
CN110752274A (zh) * 2019-09-12 2020-02-04 常州比太科技有限公司 一种用阴罩掩膜镀膜制造hbc电池片及电池的方法
CN111430226A (zh) * 2020-04-10 2020-07-17 中国科学院微电子研究所 一种多晶硅的沉积方法及其应用
CN113745099A (zh) * 2021-09-06 2021-12-03 长江存储科技有限责任公司 多晶硅层、其制作方法以及半导体器件

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7391654B2 (en) * 2005-05-11 2008-06-24 Micron Technology, Inc. Memory block erasing in a flash memory device
US20080000880A1 (en) * 2006-06-30 2008-01-03 Bao Feng System and method for treating a coating on a substrate
KR102074431B1 (ko) 2013-07-19 2020-03-03 삼성디스플레이 주식회사 박막 트랜지스터 기판 및 이의 제조방법, 이를 이용한 유기 발광 표시 장치
US9836205B2 (en) * 2014-02-27 2017-12-05 Dropbox, Inc. Activating a camera function within a content management application
CN104241140A (zh) * 2014-09-25 2014-12-24 上海和辉光电有限公司 形成多晶硅薄膜的方法及薄膜晶体管制造方法
CN106783563A (zh) * 2016-12-21 2017-05-31 武汉华星光电技术有限公司 一种准分子激光退火后对多晶硅薄膜表面粗糙度进行改善的方法及装置
KR20200111868A (ko) 2019-03-19 2020-10-05 삼성디스플레이 주식회사 다결정 실리콘층을 포함하는 표시 장치, 다결정 실리콘층의 제조 방법, 및 표시 장치의 제조 방법

Family Cites Families (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU530905B2 (en) * 1977-12-22 1983-08-04 Canon Kabushiki Kaisha Electrophotographic photosensitive member
JPS5676522A (en) * 1979-11-29 1981-06-24 Toshiba Corp Formation of semiconductor thin film
JPH0817157B2 (ja) * 1984-11-30 1996-02-21 ソニー株式会社 薄膜トランジスタの製造方法
US4795656A (en) * 1986-08-26 1989-01-03 Kozo Iizuka, Director-General, Agency Of Industrial Science And Technology Cluster ion plating method for producing electrically conductive carbon film
JP2696818B2 (ja) * 1986-08-30 1998-01-14 ソニー株式会社 半導体層の結晶成長方法
JP2850319B2 (ja) * 1987-04-28 1999-01-27 ソニー株式会社 シリコン薄膜の形成方法
DE69030822T2 (de) * 1989-02-14 1997-11-27 Seiko Epson Corp Halbleitervorrichtung und Verfahren zu ihrer Herstellung
JP2773203B2 (ja) * 1989-03-27 1998-07-09 セイコーエプソン株式会社 半導体装置の製造方法
US5366917A (en) * 1990-03-20 1994-11-22 Nec Corporation Method for fabricating polycrystalline silicon having micro roughness on the surface
JP2882844B2 (ja) * 1990-03-29 1999-04-12 富士ゼロックス株式会社 薄膜半導体装置の製造方法
JPH0461318A (ja) * 1990-06-29 1992-02-27 Toshiba Corp 半導体装置およびその製造方法
DE69327559T2 (de) * 1992-03-25 2000-07-06 Kanegafuchi Chemical Ind Dünnfilm aus polysilizium und verfahren zu seiner herstellung
US5372836A (en) * 1992-03-27 1994-12-13 Tokyo Electron Limited Method of forming polycrystalling silicon film in process of manufacturing LCD
US6413805B1 (en) * 1993-03-12 2002-07-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device forming method
JP3193803B2 (ja) * 1993-03-12 2001-07-30 株式会社半導体エネルギー研究所 半導体素子の作製方法
TW241377B (zh) * 1993-03-12 1995-02-21 Semiconductor Energy Res Co Ltd
JP3141909B2 (ja) * 1993-05-14 2001-03-07 株式会社半導体エネルギー研究所 半導体装置作製方法
US6875628B1 (en) * 1993-05-26 2005-04-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and fabrication method of the same
JPH08172201A (ja) * 1994-12-20 1996-07-02 Matsushita Electric Ind Co Ltd 薄膜の製造方法および薄膜トランジスタ
JPH08255753A (ja) * 1995-03-16 1996-10-01 Sharp Corp 結晶性半導体薄膜の製造方法
US6352910B1 (en) * 1995-07-11 2002-03-05 Applied Komatsu Technology, Inc. Method of depositing amorphous silicon based films having controlled conductivity
US5902650A (en) * 1995-07-11 1999-05-11 Applied Komatsu Technology, Inc. Method of depositing amorphous silicon based films having controlled conductivity
US5817550A (en) * 1996-03-05 1998-10-06 Regents Of The University Of California Method for formation of thin film transistors on plastic substrates
JPH10229201A (ja) * 1997-02-14 1998-08-25 Sony Corp 薄膜半導体装置の製造方法
US6559036B1 (en) * 1998-08-07 2003-05-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
US6509217B1 (en) * 1999-10-22 2003-01-21 Damoder Reddy Inexpensive, reliable, planar RFID tag structure and method for making same
US6429097B1 (en) * 2000-05-22 2002-08-06 Sharp Laboratories Of America, Inc. Method to sputter silicon films
KR100387122B1 (ko) * 2000-09-15 2003-06-12 피티플러스(주) 백 바이어스 효과를 갖는 다결정 실리콘 박막 트랜지스터의 제조 방법
US6589866B1 (en) * 2000-10-19 2003-07-08 Advanced Micro Devices, Inc. Metal gate with PVD amorphous silicon layer having implanted dopants for CMOS devices and method of making with a replacement gate process
US6830965B1 (en) * 2000-10-25 2004-12-14 Sharp Laboratories Of America, Inc. Semiconductor device and a method of creating the same utilizing metal induced crystallization while suppressing partial solid phase crystallization
TWI313059B (zh) * 2000-12-08 2009-08-01 Sony Corporatio
US7115453B2 (en) * 2001-01-29 2006-10-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method of the same
JP2002231627A (ja) * 2001-01-30 2002-08-16 Semiconductor Energy Lab Co Ltd 光電変換装置の作製方法
US6518113B1 (en) * 2001-02-06 2003-02-11 Advanced Micro Devices, Inc. Doping of thin amorphous silicon work function control layers of MOS gate electrodes
US6855584B2 (en) * 2001-03-29 2005-02-15 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device
US6649032B2 (en) * 2001-05-21 2003-11-18 Sharp Laboratories Of America, Inc. System and method for sputtering silicon films using hydrogen gas mixtures
JP4439794B2 (ja) * 2001-09-10 2010-03-24 株式会社半導体エネルギー研究所 半導体装置の作製方法
JP5072157B2 (ja) * 2001-09-27 2012-11-14 株式会社半導体エネルギー研究所 半導体装置の作製方法
US20040087116A1 (en) * 2002-10-30 2004-05-06 Junichiro Nakayama Semiconductor devices and methods of manufacture thereof
TWI300950B (en) * 2002-11-29 2008-09-11 Adv Lcd Tech Dev Ct Co Ltd Semiconductor structure, semiconductor device, and method and apparatus for manufacturing the same
TW591702B (en) * 2003-05-12 2004-06-11 Au Optronics Corp A method for transforming amorphous silicon substrate to poly-silicon substrate
US6925216B2 (en) * 2003-05-30 2005-08-02 The Regents Of The University Of California Direct-patterned optical waveguides on amorphous silicon films
KR100611224B1 (ko) * 2003-11-22 2006-08-09 삼성에스디아이 주식회사 금속 유도 측면 결정화 방법을 이용한 박막 트랜지스터 및그의 제조 방법
KR100577795B1 (ko) * 2003-12-30 2006-05-11 비오이 하이디스 테크놀로지 주식회사 다결정 실리콘막 형성방법
KR100662782B1 (ko) * 2004-04-14 2007-01-02 엘지.필립스 엘시디 주식회사 레이저 마스크 및 이를 이용한 결정화방법

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103177947A (zh) * 2011-12-22 2013-06-26 无锡华润上华科技有限公司 Mos晶体管的多晶硅栅电极的制备方法
CN110752274A (zh) * 2019-09-12 2020-02-04 常州比太科技有限公司 一种用阴罩掩膜镀膜制造hbc电池片及电池的方法
CN111430226A (zh) * 2020-04-10 2020-07-17 中国科学院微电子研究所 一种多晶硅的沉积方法及其应用
CN111430226B (zh) * 2020-04-10 2023-04-07 中国科学院微电子研究所 一种多晶硅的沉积方法及其应用
CN113745099A (zh) * 2021-09-06 2021-12-03 长江存储科技有限责任公司 多晶硅层、其制作方法以及半导体器件

Also Published As

Publication number Publication date
KR100624427B1 (ko) 2006-09-19
KR20060004788A (ko) 2006-01-16
JP2006024946A (ja) 2006-01-26
US20060009014A1 (en) 2006-01-12

Similar Documents

Publication Publication Date Title
CN1719582A (zh) 制备多晶硅薄膜的方法以及用其制备半导体器件的方法
CN1638043A (zh) 制造多晶硅薄膜的方法及用其制造晶体管的方法
CN1144275C (zh) 薄膜晶体管制造方法及薄膜晶体管
CN1182570C (zh) 场效应晶体管的制造方法
CN1734787A (zh) 薄膜晶体管及其制造方法
CN1691340A (zh) 电子装置及制造该电子装置的方法
JP2002053954A (ja) 物理蒸着真空チャンバ、物理蒸着方法、薄膜デバイスおよび液晶ディスプレイ
CN101409222A (zh) Soi衬底的制造方法
CN1716552A (zh) 半导体器件的制造方法及通过该方法制造的半导体
CN1725440A (zh) 制造半导体器件的方法和由此方法制造的半导体器件
Theiss et al. Polysilicon thin film transistors fabricated at 100/spl deg/C on a flexible plastic substrate
CN1131342A (zh) 制造结晶硅半导体和薄膜晶体管的方法
CN1722385A (zh) 半导体器件的制造方法及通过该方法制造的半导体器件
CN101068030A (zh) 半导体器件和制造半导体器件的方法
US20070077735A1 (en) Element of low temperature poly-silicon thin film and method of making poly-silicon thin film by direct deposition at low temperature and inductively-coupled plasma chemical vapor deposition equipment therefor
CN1251331C (zh) 半导体器件
CN1076877C (zh) 不残留氢的非单晶薄膜晶体管的半导体器件的制造方法
US20060088961A1 (en) Method of fabricating poly crystalline silicon TFT
TW201306126A (zh) 在矽基材上形成高生長速率低電阻率的鍺膜之方法(二)
CN1666347A (zh) 薄膜晶体管电子器件及其制造
CN1610129A (zh) 为高级mis半导体器件形成带凹槽的栅绝缘层的方法及用该方法获得的器件
CN1317735C (zh) 可促进电子迁移率提高的缓冲层及含该层的薄膜晶体管
CN1731571A (zh) 薄膜晶体管及其制造方法
CN1126154C (zh) 有源矩阵型显示装置
JP2004288864A (ja) 薄膜半導体、薄膜トランジスタの製造方法、電気光学装置及び電子機器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
AD01 Patent right deemed abandoned
C20 Patent right or utility model deemed to be abandoned or is abandoned