CN1707809A - 半导体器件 - Google Patents

半导体器件 Download PDF

Info

Publication number
CN1707809A
CN1707809A CNA2005100761183A CN200510076118A CN1707809A CN 1707809 A CN1707809 A CN 1707809A CN A2005100761183 A CNA2005100761183 A CN A2005100761183A CN 200510076118 A CN200510076118 A CN 200510076118A CN 1707809 A CN1707809 A CN 1707809A
Authority
CN
China
Prior art keywords
type impurity
conductive
sup
substrate
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2005100761183A
Other languages
English (en)
Inventor
椿茂树
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Compound Semiconductor Devices Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Compound Semiconductor Devices Ltd filed Critical NEC Compound Semiconductor Devices Ltd
Publication of CN1707809A publication Critical patent/CN1707809A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66659Lateral single gate silicon transistors with asymmetry in the channel direction, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/107Substrate region of field-effect devices
    • H01L29/1075Substrate region of field-effect devices of field-effect transistors
    • H01L29/1079Substrate region of field-effect devices of field-effect transistors with insulated gate
    • H01L29/1083Substrate region of field-effect devices of field-effect transistors with insulated gate with an inactive supplementary region, e.g. for preventing punch-through, improving capacity effect or leakage current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • H01L29/7835Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with asymmetrical source and drain regions, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • H01L29/1041Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with a non-uniform doping structure in the channel region surface
    • H01L29/1045Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with a non-uniform doping structure in the channel region surface the doping structure being parallel to the channel length, e.g. DMOS like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/4175Source or drain electrodes for field effect devices for lateral devices where the connection to the source or drain region is done through at least one part of the semiconductor substrate thickness, e.g. with connecting sink or with via-hole
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41758Source or drain electrodes for field effect devices for lateral devices with structured layout for source or drain region, i.e. the source or drain region having cellular, interdigitated or ring structure or being curved or angular

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

一种半导体器件,包括:包含注入其中的第一导电型杂质的半导体衬底(N+衬底110);第二导电型杂质注入层(P+注入层114),其以相对高的浓度形成在半导体衬底(N+衬底110)上;第二导电型杂质外延层(P外延层111),其以相对低的浓度形成在第二导电型杂质注入层上(P+注入层114);以及场效应晶体管(N沟道型横向MOSFET100),其由位于第二导电型杂质外延层(P外延层111)中的一对杂质扩散区(N+源扩散层115和N漏层116)和位于被一对杂质扩散区(N+源扩散层115和N漏层116)夹着的区域上的栅电极(117)构成。

Description

半导体器件
本申请基于日本专利申请No.2004-170536,其内容在此作为参考引进。
技术领域
本发明涉及一种半导体器件。
背景技术
在场效应晶体管(FET)中,诸如在背表面上具有源电极(背表面源极)的横向功率金属氧化物半导体场效应晶体管(MOSFET)中,有效外延层的厚度(在下文中称为“有效外延厚度”)对漏极-源极击穿电压(BVdss)和漏极-源极电容(Cds)有显著影响,具有较厚的有效外延厚度是优选的,以增加漏极-源极击穿电压和降低漏极-源极电容。
此外,经常将杂质扩散到衬底中,以便使源极和衬底的背表面接触,而由于杂质的扩散而发生衬底的多余的扩展,由此降低了有效外延厚度。使源极和衬底的背表面接触的原因在于当布线从衬底的前表面侧上的源电极耦合到其上时,由布线产生的源极电感使射频(RF)特性大大地恶化,而在这种情况下,在其背表面上布置源电极以提供衬底的背表面到封装框架的直接耦合。
因此,在将杂质扩散到衬底中以提供源极和衬底的背表面之间的接触时,阻止衬底的扩展以提供较厚的有效外延厚度是非常关键的。这对于将衬底的电阻最大可能地降低也是非常关键的。
在以日本专利未决公开No.2004-063,922和日本专利未决公开No.2002-343,960所述的技术为典型代表的现有技术中,诸如N沟道横向MOSFET的场效应晶体管(FET)包括在P+衬底10上的P-外延层11,如图7的截面图所示,并且在其上形成诸如MOSFET等的场效应晶体管结构,其典型地包括N+源扩散层15、N-漏层16和栅电极17。这里,N+源扩散层15通过源电极18耦合到P+掩埋层12a。P+掩埋层12耦合到P+衬底10以形成背表面源极-接地结构。
用于形成背表面源极-接地结构的P+掩埋层12a可通过如下步骤形成,如图8A至8D的截面工艺视图所示,在P+衬底10上生长P-外延层11(图8A和8B)、此后进行用于形成P+掩埋层12a的扩散或P+离子注入(图8C)、并且然后进行用于形成掩埋结构的热处理(图8D)。
发明内容
但是,现在已经发现在包括上述参考文献中公开的技术的现有技术在如下方面有改进余地。
图7、图8A至8D以及图9包括了用于描述在现有技术中诸如MOSFET的场效应晶体管的图和分布图。在典型地采用硼作为用于图7和图8A至8D中的P+衬底10和P-外延层11的P型杂质时,硼是轻元素而由此具有较大的扩散系数,因此由用于外延生长的衬底的热处理或由用于源扩散的衬底的热处理而引起在衬底上较大的扩展。
例如,当10Ωcm(大约1×1015cm-3)的硼被引入到含有0.0075Ωcm(大约2×1019cm-3)的硼的P+衬底中以形成具有厚度10μm的P-外延层并且所形成的P-外延层接着被热处理时,在2×1015cm-3处确定有效外延厚度的情况下,如表示沿图7的A-A’的硼分布的图9所示,由于在衬底上引起较大的扩展,如图9中箭头所示,有效外延厚度在大约3μm的量级。因此,改进的余地在于难以增加漏极-源极击穿电压(BVdss)和降低漏极-源极电容(Cds)。
根据本发明,提供一种半导体器件,包括:半导体衬底,其包含在半导体衬底中注入的第一导电型的杂质;相对高浓度的第二导电型杂质注入层,其形成在半导体衬底上;相对低浓度的第二导电型杂质外延层,其形成在第二导电型杂质注入层上;以及场效应晶体管,其由位于第二导电型杂质外延层中的一对杂质扩散区和位于该一对杂质扩散区所夹着的区域上的栅电极构成。
根据本发明,由于包含在半导体衬底中的第一导电型杂质和包含在第二导电型杂质注入层中的第二导电型杂质由于库仑力而彼此相互吸引,所以能够防止半导体衬底的扩展。因此,可以实现用于有效外延厚度的膜厚度的增加,并由此可以实现包括具有较大漏极-源极击穿电压和较小漏极-源极电容的场效应晶体管的半导体器件。
根据本发明的半导体器件还可以包括第二导电型杂质源掩埋层,其与半导体衬底和第二导电型杂质注入层相接触。
根据本发明的半导体器件可以进一步具有如下结构,其中第一导电型杂质可以包括As或Sb。通过将具有较小电阻率的As或Sb作为第一导电型杂质注入到半导体衬底中能够减小半导体衬底的电阻。因此,可以实现包括具有背表面源极-接地结构的场效应晶体管的半导体器件,其中该源极-接地结构包括具有低电阻率的半导体衬底。此外,通过在用具有较小扩散系数的As或Sb注入的半导体衬底上形成第二导电型杂质注入层可以进一步抑制半导体衬底的扩展。因此,可以实现用于有效外延厚度的膜厚度的进一步增加。结果,可以实现包含具有较高漏极-源极击穿电压和较低漏极-源极电容的场效应晶体管的半导体器件。
根据本发明,提出了包含具有较高漏极-源极击穿电压和较低漏极-源极电容的场效应晶体管的半导体器件。
附图说明
从结合附图的如下说明中,本发明的上述和其他目的、优点和特征将更为明显,其中:
图1是根据本发明的实施例的MOSFET的示意性截面图;
图2是根据本发明的实施例的图1所示的MOSFET的B-B’面的平面图;
图3是根据本发明的实施例的MOSFET的D-D’面的平面图;
图4A至4F是层结构的截面图,示意性示出根据本发明的实施例的MOSFET的制造工艺;
图5G至5J是层结构的截面图,示意性示出根据本发明的实施例的MOSFET的制造工艺;
图6是示出了根据本发明的实施例的MOSFET的杂质分布和图7所示的MOSFET的杂质分布的图;
图7是现有技术的MOSFET的示意性截面图;
图8A至8D是层结构的截面图,示意性示出现有技术的MOSFET的制造工艺;以及
图9是示出了现有技术的MOSFET的杂质分布的图。
具体实施方式
现在将参考说明性实施例在此描述本发明。本领域技术人员将认识到使用本发明的讲述可以实现许多可选实施例并且本发明并不限于用于解释性目的所说明的实施例。
参考附图,将进一步详细如下说明根据本发明的实施例。在所有的图中,在附图中公共出现的元件用相同的标号表示,并且省略其详细说明。
虽然本实施例意图描述例如采用N型杂质作为第一导电型杂质和采用P型杂质作为第二导电型杂质的N沟道横向MOSFET,但是也可以对采用相反导电型杂质的P沟道横向MOSFET作相似的描述。
图1所示的半导体器件包括:半导体衬底(N+衬底110),其包含在半导体衬底中注入的第一导电型杂质;相对高浓度的第二导电型杂质注入层(P+注入层114),其形成在半导体衬底(N+衬底110)上;相对低浓度的第二导电型杂质外延层(p-外延层111),其形成在第二导电型杂质注入层(P+注入层114)上;以及场效应晶体管(N沟道型横向MOSFET 100),其由一对杂质扩散区(N+源扩散层115和N-漏层116)和栅电极117构成,其中杂质扩散区位于第二导电型杂质外延层(P-外延层111)中而栅电极位于夹在该对杂质扩散区(N+源扩散层115和N-漏层116)之间的区域上。
根据本实施例的N沟道型横向MOSFET 100如图1所示。
N沟道型横向MOSFET 100包括源电极118、栅电极117以及漏电极119。N沟道型横向MOSFET 100包括:N+衬底110,其是掺杂有诸如As、Sb、磷等的N型杂质作为第一导电型杂质的硅衬底;P+注入层114,其是以相对高的浓度形成在N+衬底110上并包含注入其中的诸如硼、Al等的P型杂质的第二导电型杂质注入层;P-外延层111,其是以相对低的浓度形成在P+注入层114上并且包含离子注入其中的诸如硼、Al等的P型杂质的第二导电型外延层;P+源掩埋层112a,其是形成在N+衬底110上并且包含离子注入其中的诸如硼、Al等的P型杂质的第二导电型杂质源掩埋层;以及N+源掩埋层112b,其包含离子注入其中的诸如As、Sb、磷等的N型杂质。
在本实施例中,N+衬底110例如以2×1019cm-3的浓度注入As。此外,P+注入层114例如以1×1016cm-3的浓度注入硼,P-外延层111例如以1×1015cm-3的浓度注入硼,并且P+注入层114中杂质的浓度相对高于P-外延层111中的浓度。此外,P+源掩埋层112a例如以1×1019cm-3的浓度注入硼。
此外,N-漏层116、P+基层136以及N+接触138形成于p-外延层111中,并且栅电极117通过栅绝缘膜130耦合到P+基层136,其中N-漏层116是用诸如As、Sb、磷等N型杂质离子注入的漏扩散层,P+基层136用诸如硼、Al等P型杂质离子注入,N+接触138用诸如As、Sb、磷等N型杂质离子注入并且耦合到漏电极119。栅电极117的周边(上表面和侧表面)除了栅电极端114的部分之外被绝缘膜132覆盖。此外,绝缘膜132上形成层间膜134和多晶硅电极120,它们起到阻止栅电极117的电场增强并固定源参考电位的作用。漏电极119包括在其上部的漏电极端146。
此外,用诸如As、Sb、磷等N型杂质离子注入的N+源扩散层115形成在P+源掩埋层112a上,并且耦合到形成在N+源掩埋层112b中并且用诸如As、Sb、磷等N型杂质离子注入的N+接触140。N+接触140耦合到源电极118。
这里,P+注入层114用于防止N-漏层116和N+衬底110的击穿的目的,并且杂质的分布例如是以1×1016cm-3量级的浓度,并且其厚度在1μm的量级。此外,由于注入到N+衬底110中的杂质的导电型与注入到P+注入层114中的杂质的导电型相反,因此可以抑制N+衬底110的扩展。
这里,P+注入层114耦合到P+源掩埋层112a、而P+源掩埋层112a通过N+接触140(注入N型杂质的区域)耦合到源电极118,图2所示的P+源掩埋层112a的布图从上方看是图1的平面B-B′的平面视图。
此外,如图3所示,其是从上方看的图1所示的接触部分的平面D-D′的平面视图,通过将P+接触148布置在除了N+源扩散层115的区域之外的P+源掩埋层112a的区域之中来将P+源掩埋层112a耦合到源电极118。源电极118通过N+接触140耦合到N+源掩埋层112b。此外,由于N+源掩埋层112b耦合到背表面源电极141(另一个源电极),P+源掩埋层112a最终接地(耦合)到背表面源电极141,其中使背表面源电极141覆盖N+衬底110的整个背表面并且包括其下部中的背表面源极端142。
因此,如从N沟道型横向MOSFET 100一侧看N+衬底110时可以看出的,由于源极-接地(源极耦合)用N+衬底110的背表面上的相同P型杂质形成,所以起N沟道型横向MOSFET的作用。
下面将描述用于制造N沟道型横向MOSFET 100的工艺。
图4A到4F和图5G到5J是示出了用于制造N沟道型横向MOSFET 100的工艺的横截面视图。
通过将诸如硼等的P型杂质离子注入或将注入其中的诸如硼等的P型杂质离子扩散到具有诸如As、Sb、磷等的N型杂质的N+衬底110中来形成P+注入层114(图4A和4B)。然后,通过采用诸如硼等的P型杂质进行P-外延生长来形成P-外延层111(图4C)。
接着,在P-外延层111上形成光刻胶113,并且通过采用公知的光刻技术为了形成P+源掩埋层112a而选择性地扩散诸如硼的P型杂质(图4D)。可选地,可以进行用诸如硼的P型杂质的离子注入。
下一步,通过使用公知的光刻技术选择性地离子扩散诸如As、Sb、磷等的N型杂质来形成N+源掩埋层112b(图4E)。可选地,可以离子注入N型杂质。然后,在1,150℃量级的温度下进行5到6小时的热处理来掩埋P+源掩埋层112a和N+源掩埋层112b中的P型杂质和N型杂质(图4F)。
然后,在其上淀积栅绝缘膜130,并且在其一部分上形成多晶硅和钨硅(tungsten silicon)等的多层体以提供栅电极117(图5G)。接着,在其上形成光刻胶膜113,并且通过采用公知的光刻技术选择性地剥离形成的光刻胶膜113,并且此后,诸如硼等P型杂质被注入到栅电极117和P+基层136中,并且接着,诸如As、Sb、磷等的N型杂质被注入到源区(图5H)。然后,形成用于保护栅电极117的绝缘膜132,并且在其上形成多晶硅电极120和层间膜134,此后,使用化学机械抛光(CMP)技术使层间膜134平面化(图5I)。
然后,在层间膜134上淀积光刻胶膜(在图中未示出),并且在使用公知的光刻技术选择性地剥离光刻胶膜(在图中未示出)之后,使用等离子蚀刻技术等形成接触孔。接着,诸如As、Sb、磷等的N型杂质被离子注入到接触孔的底部以形成N+接触138和N+接触140。接着,在接触孔中淀积阻挡金属,并且在其上生长钨,然后,进行回蚀刻工艺。然后,使用溅射技术淀积铝等,并且此后,使用公知的光刻技术和蚀刻技术形成源电极118和漏电极119(图5J)。然后,布置栅电极端144、背表面源电极141、背表面源极端142和漏电极端146以形成N沟道型横向MOSFET 100(图1)。
这里,通过上述工艺完成了N沟道型横向MOSFET 100。
根据本实施例的N沟道型横向MOSFET 100的有利效果将说明如下。
在本实施例中,在进行P+源掩埋层112a等的热处理时,诸如As、Sb、磷等的N型杂质被引入到N+衬底110中,从而由包含在P+注入层114中的诸如硼、Al等原子和包含在N+衬底110中的诸如As、Sb、磷等原子之间的库仑力引起吸引,由此抑制了N+衬底110的扩展。这样,能够增加其有效外延层厚度。因此,给出了具有较大漏极-源极击穿电压(BVdss)和减少的漏极-源极电容(Cds)的N沟道型横向MOSFET 100。
此外,考虑到用硼注入的衬底,这是在以日本专利未决公开No.2004-063,922所述的技术为代表的现有技术中通常被采用的衬底,为了保持制造的稳定性,难以增加诸如硼的注入杂质的浓度。因此,难以降低衬底的电阻率,并且电阻率的值例如为0.005Ωcm到0.01Ωcm的量级。另一方面,在N沟道型横向MOSFET 100中,N+衬底110的电阻率可以通过注入As和Sb来降低,二者是能够以相对高的浓度注入到N+衬底110中并且具有相对低的电阻率的N型杂质。更具体地说,N+衬底110的电阻率能够在0.001Ωcm到0.003Ωcm的量级,这是等于或小于现有衬底的电阻率的三分之一的水平。因此,可以实现具有背表面源极-接地结构和较低衬底电阻的N沟道型横向MOSFET100。
此外,和用于以现有技术注入到衬底中的硼相比较,在本实施例中,具有较小扩散系数的As和Sb被注入到N+衬底110中。例如,当在包含以0.0015Ωcm(大约8×1019cm-3)注入其中的As的N+衬底110上形成厚度10μm的P+注入层114和包含由以10Ωcm(大约1×1015cm-3)注入其中的诸如硼的P型杂质的P-外延层111时,其有效外延厚度大约为5μm,如图6所示,其示出了沿图1的N沟道型横向MOSFET 100的线C-C′的方向的分布。这样,同由使用硼的现有技术提供的大约3μm的有效外延厚度(图9)相比,N+衬底110的扩展较小,如图6中的箭头所示,因此实现了有效外延厚度的膜厚度增加约2μm。因此,通过将有效外延厚度的膜厚度增加约2μm,使漏极-源极击穿电压和现有技术相比增加了例如约50V。其原因在于横向MOSFET的漏极-源极击穿电压(BVdss)大大地依赖于有效外延厚度,换句话说,电场加强发生在N-漏层116和P-外延层111之间的PN结中,由此导致了击穿电压的产生。较厚的P-外延层111提供了对这种电场加强的更大的缓解,这是由于作为具有少量导电电子的区域的耗尽层在施加电压时易于扩展。因此,在本实施例中,能够通过较大的有效外延厚度实现具有较大漏极-源极击穿电压(BVdss)的N沟道型横向MOSFET 100。此外,通过与采用硼的现有技术的有效外延厚度的膜厚度相比使有效外延厚度的膜厚度增加大约2μm,能够使漏极-源极电容(Cds)同采用硼的现有技术相比降低例如大约30%。这是由于漏极-源极电容受N-漏层116和P-外延层111之间的PN结电容的影响相当大。这样,在施加电压的情况下,较厚的P-外延层111有进一步扩展耗尽区的趋势,其中耗尽区是具有少量导电电子的区域。因此,由于PN结电容被降低,所以呈现漏极-源极电容(Cds)的进一步降低。结果,能够实现具有进一步降低的漏极-源极电容(Cds)的N沟道型横向MOSFET 100。
尽管在上面参考附图描述了本发明的实施例,但是应该理解的是上述描述只是为了说明本发明,并且还可以采用除了上述结构之外的各种结构。
例如,尽管在上述实施例中已经描述了用于通过采用N型杂质作为第一导电型杂质和采用P型杂质作为第二导电型杂质来实现漏极-源极击穿电压(BVdss)的提高和漏极-源极电容(Cds)的降低的结构,但是也可以采用P型杂质作为第一导电型杂质并采用N型杂质作为第二导电型杂质。更具体地说,在上述实施例中已经描述了通过在N+衬底110上形成P+注入层114而由库仑力来抑制N+衬底110的扩展所获得的具有增加的漏极-源极击穿电压(BVdss)和降低的漏极-源极电容(Cds)的N沟道型横向MOSFET 100。可以替换地,可以在包含其中注入了硼、Al等的P+衬底上形成包含其中注入了诸如As、Sb、磷等的N型杂质的N+注入层。具有这种结构,通过库仑力抑制P+衬底的扩展能够实现有效外延厚度的增加,并由此实现了具有较高漏极-源极击穿电压(BVdss)和降低的漏极-源极电容(Cds)的P沟道型横向MOSFET。
此外,尽管上述实施例对金属氧化物半导体场效应晶体管(MOSFET)进行了描述,但是也可以采用诸如金属绝缘半导体场效应晶体管(MISFET)的其他类型的场效应晶体管,只要:第一导电型杂质用于衬底,并且通过在包含在衬底中的第一导电型杂质和包含在第二导电型杂质注入层中的第二导电型杂质之间提供由库仑力引起的相互吸引来抑制衬底的扩展来实现有效外延厚度的增加,由此实现了具有增加的漏极-源极击穿电压(BVdss)和降低的漏极-源极电容(Cds)的场效应晶体管。此外,另一个可选方案是通过将具有相对较低电阻率的从As和Sb构成的组中选择的一种或两种材料作为第一导电型杂质引入到衬底中以降低衬底的电阻,来实现具有包括具有降低的电阻的衬底的背表面源极-接地结构的场效应晶体管。此外,进一步可选的方案通过在包含注入其中的As和Sb的衬底上形成第二导电型杂质注入层来实现具有较大漏极-源极击穿电压和较小漏极-源极电容的场效应晶体管以进一步抑制衬底的扩展,由此实现有效外延厚度的进一步增加,其中衬底中注入的元素是具有较小扩散系数的元素。
尽管上面已经描述了本发明的优选实施例,但是应该理解的是本发明的结构并不限于上述实施例。例如,本发明可以包括下面的方面。
(i)一种具有源电极、栅电极和漏电极的场效应晶体管,包括:包含在衬底中注入的第一导电型杂质的衬底;在衬底上形成的具有相对高浓度的第二导电型杂质注入层;以及在第二导电型杂质注入层上形成的具有相对低浓度的第二导电型杂质外延层。
(ii)在该场效应晶体管中,还包括与衬底和第二导电型杂质注入层接触的第二导电型杂质源掩埋层。
(iii)在该场效应晶体管中,其中第一导电型杂质是从由As和Sb构成的组中选择的一种或两种材料。
很明显,本发明并不限于上述实施例,并且可以在不偏离本发明的范围和精神的情况下进行修改和变化。

Claims (7)

1.一种半导体器件,包括:
半导体衬底,其包含在所述半导体衬底中注入的第一导电型杂质;
第二导电型杂质注入层,其以相对高的浓度形成在所述半导体衬底上;
第二导电型杂质外延层,其以相对低的浓度形成在所述第二导电型杂质注入层上;以及
场效应晶体管,其由位于所述第二导电型杂质外延层中的一对杂质扩散区和位于被所述一对杂质扩散区夹着的区域上的栅电极构成。
2.根据权利要求1的半导体器件,还包括:
第二导电型杂质源掩埋层,其与所述半导体衬底和所述第二导电型杂质注入层相接触。
3.根据权利要求1的半导体器件,其中所述第一导电型杂质包括As或Sb。
4.根据权利要求1的半导体器件,其中布置绝缘膜以覆盖所述栅电极的上面和侧面,并且布置多晶硅电极使其与所述绝缘膜的上面相接触。
5.根据权利要求2的半导体器件,其中源电极位于所述杂质扩散区的上部,与所述源电极不同的另一个源电极位于所述半导体衬底的背表面上,并且所述第二导电型杂质源掩埋层耦合到所述另一个源电极。
6.根据权利要求5的半导体器件,其中布置所述另一个源电极使其覆盖所述半导体衬底的整个背表面。
7.根据权利要求5的半导体衬底,其中布置注入有第一导电型杂质的区域使其与所述源电极的下表面接触,并且所述第二导电型杂质源掩埋层通过注入有第一导电型杂质的所述区域耦合到所述源电极。
CNA2005100761183A 2004-06-08 2005-06-08 半导体器件 Pending CN1707809A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004170536 2004-06-08
JP2004170536A JP2005353703A (ja) 2004-06-08 2004-06-08 電界効果型トランジスタ

Publications (1)

Publication Number Publication Date
CN1707809A true CN1707809A (zh) 2005-12-14

Family

ID=34982159

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2005100761183A Pending CN1707809A (zh) 2004-06-08 2005-06-08 半导体器件

Country Status (4)

Country Link
US (1) US7253478B2 (zh)
EP (1) EP1610395A2 (zh)
JP (1) JP2005353703A (zh)
CN (1) CN1707809A (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102544120A (zh) * 2010-12-21 2012-07-04 上海华虹Nec电子有限公司 纵向pn结电压控制变容器及其制备方法
CN102569427A (zh) * 2010-12-21 2012-07-11 上海华虹Nec电子有限公司 电压控制变容器及其制备方法
CN102569426A (zh) * 2010-12-21 2012-07-11 上海华虹Nec电子有限公司 Pn结电压控制变容器及其制备方法
CN102569428A (zh) * 2010-12-21 2012-07-11 上海华虹Nec电子有限公司 纵向电压控制变容器及其制备方法
CN102610659A (zh) * 2011-01-19 2012-07-25 上海华虹Nec电子有限公司 电压控制变容器及其制备方法
CN102754211A (zh) * 2009-11-19 2012-10-24 苏州远创达科技有限公司 Ldmos功率器件
CN103779414A (zh) * 2012-10-18 2014-05-07 富士电机株式会社 半导体装置及半导体装置的制造方法

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7304354B2 (en) * 2004-02-17 2007-12-04 Silicon Space Technology Corp. Buried guard ring and radiation hardened isolation structures and fabrication methods
EP1949425A4 (en) * 2005-10-14 2010-08-18 Silicon Space Technology Corp RADIATION-HARDENED INSULATION STRUCTURES AND MANUFACTURING METHOD
JP4348644B2 (ja) * 2006-09-26 2009-10-21 セイコーエプソン株式会社 薄膜トランジスタ、電気光学装置および電子機器
EP2058862B1 (en) * 2007-11-09 2018-09-19 ams AG Field-effect transistor and method for producing a field-effect transistor.
WO2009128035A1 (en) * 2008-04-15 2009-10-22 Nxp B.V. High frequency field-effect transistor
JP4609907B2 (ja) * 2008-05-22 2011-01-12 ルネサスエレクトロニクス株式会社 半導体集積回路
JP5834520B2 (ja) * 2011-06-15 2015-12-24 富士通セミコンダクター株式会社 半導体装置の製造方法および半導体装置
US9339691B2 (en) 2012-01-05 2016-05-17 Icon Health & Fitness, Inc. System and method for controlling an exercise device
CN104051341B (zh) * 2013-03-13 2016-12-28 台湾积体电路制造股份有限公司 源极和漏极区的外延形成机制的非对称循环沉积和蚀刻工艺
US9254409B2 (en) 2013-03-14 2016-02-09 Icon Health & Fitness, Inc. Strength training apparatus with flywheel and related methods
US9583655B2 (en) 2013-10-08 2017-02-28 Taiwan Semiconductor Manufacturing Co., Ltd. Method of making photovoltaic device having high quantum efficiency
US9403047B2 (en) 2013-12-26 2016-08-02 Icon Health & Fitness, Inc. Magnetic resistance mechanism in a cable machine
US10433612B2 (en) 2014-03-10 2019-10-08 Icon Health & Fitness, Inc. Pressure sensor to quantify work
CN106470739B (zh) 2014-06-09 2019-06-21 爱康保健健身有限公司 并入跑步机的缆索系统
WO2015195965A1 (en) 2014-06-20 2015-12-23 Icon Health & Fitness, Inc. Post workout massage device
US10391361B2 (en) * 2015-02-27 2019-08-27 Icon Health & Fitness, Inc. Simulating real-world terrain on an exercise device
US10493349B2 (en) 2016-03-18 2019-12-03 Icon Health & Fitness, Inc. Display on exercise device
US10272317B2 (en) 2016-03-18 2019-04-30 Icon Health & Fitness, Inc. Lighted pace feature in a treadmill
US10625137B2 (en) 2016-03-18 2020-04-21 Icon Health & Fitness, Inc. Coordinated displays in an exercise device
US10038058B2 (en) 2016-05-07 2018-07-31 Silicon Space Technology Corporation FinFET device structure and method for forming same
CN105870078A (zh) * 2016-06-12 2016-08-17 浙江明德微电子股份有限公司 一种有效增加pn结结面积的芯片结构及其制造方法
US10671705B2 (en) 2016-09-28 2020-06-02 Icon Health & Fitness, Inc. Customizing recipe recommendations

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5591655A (en) * 1995-02-28 1997-01-07 Sgs-Thomson Microelectronics, Inc. Process for manufacturing a vertical switched-emitter structure with improved lateral isolation
JP4357127B2 (ja) * 2000-03-03 2009-11-04 株式会社東芝 半導体装置
US6528850B1 (en) * 2000-05-03 2003-03-04 Linear Technology Corporation High voltage MOS transistor with up-retro well
JP2002203956A (ja) * 2000-12-28 2002-07-19 Mitsubishi Electric Corp 半導体装置
JP2002343960A (ja) 2001-05-11 2002-11-29 Hitachi Ltd 半導体装置
JP2003007843A (ja) * 2001-06-20 2003-01-10 Toshiba Corp 半導体装置
JP2004063922A (ja) 2002-07-31 2004-02-26 Renesas Technology Corp 半導体装置

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102754211A (zh) * 2009-11-19 2012-10-24 苏州远创达科技有限公司 Ldmos功率器件
CN102754211B (zh) * 2009-11-19 2016-05-11 苏州远创达科技有限公司 Ldmos功率器件
CN102544120A (zh) * 2010-12-21 2012-07-04 上海华虹Nec电子有限公司 纵向pn结电压控制变容器及其制备方法
CN102569427A (zh) * 2010-12-21 2012-07-11 上海华虹Nec电子有限公司 电压控制变容器及其制备方法
CN102569426A (zh) * 2010-12-21 2012-07-11 上海华虹Nec电子有限公司 Pn结电压控制变容器及其制备方法
CN102569428A (zh) * 2010-12-21 2012-07-11 上海华虹Nec电子有限公司 纵向电压控制变容器及其制备方法
CN102569426B (zh) * 2010-12-21 2014-10-08 上海华虹宏力半导体制造有限公司 Pn结电压控制变容器及其制备方法
CN102569428B (zh) * 2010-12-21 2015-06-03 上海华虹宏力半导体制造有限公司 纵向电压控制变容器及其制备方法
CN102610659A (zh) * 2011-01-19 2012-07-25 上海华虹Nec电子有限公司 电压控制变容器及其制备方法
CN103779414A (zh) * 2012-10-18 2014-05-07 富士电机株式会社 半导体装置及半导体装置的制造方法
CN103779414B (zh) * 2012-10-18 2018-10-26 富士电机株式会社 半导体装置及半导体装置的制造方法

Also Published As

Publication number Publication date
US20050269601A1 (en) 2005-12-08
EP1610395A2 (en) 2005-12-28
US7253478B2 (en) 2007-08-07
JP2005353703A (ja) 2005-12-22

Similar Documents

Publication Publication Date Title
CN1707809A (zh) 半导体器件
US6501129B2 (en) Semiconductor device
CN100342505C (zh) 高压半导体器件及其制造方法
CN1240136C (zh) 横向半导体器件
US7943993B2 (en) Structure and method for forming field effect transistor with low resistance channel region
US20020053695A1 (en) Split buried layer for high voltage LDMOS transistor
CN1685523A (zh) 具有改良的载流子迁移率的垂直双栅极场效应晶体管及其形成方法
CN1977386A (zh) 碳化硅器件及其制造方法
JP4669191B2 (ja) 横形超接合半導体デバイス
CN1830092A (zh) 应变半导体cmos晶体管的制造结构和方法
CN1812129A (zh) 半导体器件及其制造方法
CN1586009A (zh) 场效应晶体管半导体器件
CN1540770A (zh) 半导体器件及其制造方法
CN101079447A (zh) 半导体元件、集成电路以及半导体元件的制造方法
CN1886835A (zh) 沟槽绝缘栅场效应晶体管
CN1663049A (zh) 横向半导体器件
CN1589499A (zh) 具有多晶硅源极接触结构的沟槽mosfet器件
CN1421909A (zh) 半导体装置的制造方法
JP2003500826A (ja) 低インピーダンスvdmos半導体素子
CN1819271A (zh) 硅覆盖绝缘层装置、晶片及其形成方法
CN1191639C (zh) 一种金属氧化物半导体场效应晶体管及其制作方法
WO2001047025A1 (en) Silicon carbide lateral mosfet and method of making the same
CN1266750C (zh) 在绝缘衬底上形成的场效应晶体管以及集成电路
TW202234712A (zh) 具有縮短溝道長度和高Vth的碳化矽金屬氧化物半導體場效電晶體
CN108565286B (zh) 高k介质沟槽横向双扩散金属氧化物元素半导体场效应管及其制作方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Owner name: NEC ELECTRONICS TAIWAN LTD.

Free format text: FORMER OWNER: NEC COMPUND SEMICONDUCTOR DEVICES CO LTD

Effective date: 20060519

C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20060519

Address after: Kanagawa

Applicant after: NEC Corp.

Address before: Kanagawa

Applicant before: NEC Compund semiconductor Devices Co., Ltd.

C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication