具体实施方式
下面将根据图1(a)、1(b)和图2来解释本发明的第一实施例。
如在图1(b)中所示,载体板11设有非伸缩的支承主体12(作为加强板)以及硅酮弹性体层13。在该实施例中,支承主体12由铝板制成。
如在1(a)和1(b)中所示,载体板11设有两个用于定位的第一孔14以及多个用于定位的第二孔16,其中第一孔14对应于安装设备的安装部分31(见图2),第二孔16对应于矩形FPC基底15(在图1(a)中用双点划线表示)。第一孔14形成在载体板11的纵向方向上的两端上,并穿透支承主体12和硅酮弹性体层13。每个第二孔16都穿透支承主体12和硅酮弹性体层13。在该实施例中,载体板11的面积为使得六个FPC基底15可彼此靠近放置。多个第二孔16中的一对与一个FPC基底15的一条对角线上的两角相对应。
构成硅酮弹性体层13的硅酮弹性体可通过交联具有硅氧烷骨架的聚硅氧烷而获得,如在下式中所示:
硅酮弹性体包括聚二甲基硅氧烷并混合有单一类型或两种或多种类型的聚硅氧烷,在上述公式中聚二甲基硅氧烷的所有Rs都为甲基,而聚硅氧烷的一些甲基可被一个或多个其他烷基、乙烯基、苯基或氟代烷基替代。
交联方法并没有特别限制性,且可使用公知领域中的常规方法。例如,可使用通过自由基反应来交联聚硅氧烷的甲基或乙烯基的方法。此外,可使用这样的方法,即,通过聚硅氧烷的缩合反应,在甲烷的端部与具有水解官能团的硅烷复合物交联,或者使用这样的方法,即,通过氢化硅烷基的加成反应与乙烯基等交联。
硅酮弹性体层13和支承主体12之间的粘合可使用一种公知领域中的方法来实现,这种方法通常作为在硅酮弹性体层和其他材料之间粘合的方法而执行。在该实施例中,首先对支承主体12进行适当的预处理,而后形成没有交联的硅酮弹性体层。硅酮弹性体层13和支承主体12通过硫化作用而粘合到一起。
根据动态粘弹性测量方法来测量硅酮弹性体层13的横向弹性模量G′。更具体地,通过在20℃温度条件下并以10Hz频率使硅酮弹性体层13样件振动来计算硅酮弹性体层13的横向弹性模量G′。硅酮弹性体层13的横向弹性模量G′的范围为从5.0×105Pa到5.0×106Pa。
当横向弹性模量G′下降到低于5.0×105Pa时,硅酮弹性体变得太软,并且硅酮弹性体层13过分地附着于FPC基底15,使得FPC基底15难于移除。另一方面,当横向弹性模量G′超过5.0×106Pa时,硅酮弹性体变得太硬,并且硅酮弹性体层13难于附着在FPC基底15上,使得FPC基底15难于定位。这样形成硅酮弹性体层13以使其横向弹性模量G′落在上述范围内,使得硅酮弹性体层13以适当的硬度附着在FPC基底15上。通过适当地调节硅酮弹性体的组成成分(例如,聚硅氧烷的类型、分子量和增强填充剂)和交联程度(level),来获得优选的硅酮弹性体层13的横向弹性模量G′。
在将半导体芯片安装到FPC基底15上的步骤中,温度可升高到大约200℃到240℃,或在新的无铅条焊接的情况下高达280℃。基于此原因,即使硅酮弹性体层13的横向弹性模量G′的值落在这个温度范围内,它的范围也优选地为从5.0×105Pa到5.0×106Pa。
接着,将解释使用具有这种结构的载体板11来将半导体芯片安装到FPC基底15上的方法。
如在图2中所示,安装设备的安装部分31设有凹口32,凹口32与载体板11的第一孔14相对应。通过使载体板11的支承主体12面向安装部分31,将载体板11放在安装部分31上。接着,第一销33穿过第一孔14与凹口32接合,从而将载体板11定位并安装到安装部分31上。
FPC基底15在对应于第二孔16的位置处设有通孔34。第二销35穿过通孔34和第二孔16,从而将FPC基底15定位在载体板11上,并将FPC基底15固定到硅酮弹性体层13上。
接着,通过加热回流焊接步骤,将半导体芯片(未示出)安装到FPC基底15上。然后,将FPC基底15从载体板11上移除,就完成了安装步骤。随后的FPC基底15粘接到载体板11上,并以相同的方式重复安装半导体芯片的步骤。当已重复使用的载体板11被处理掉时,硅酮弹性体层13从支承主体12上剥离,并且支承主体12和硅酮弹性体层13分别被处理掉。
(实际示例和比较示例)
下面使用实际示例和比较示例来更具体地解释上述实施例。
在实际示例1和比较示例1的各载体板11中,准备了这样的样件,即,它具有由0.8mm厚的铝板形成的支承主体12和形成为200μm厚的硅酮弹性体层13。在实际示例1和比较示例1中的每一硅酮弹性体层13的横向弹性模量G′的值,都通过在20℃温度和10Hz频率下振动样件来测量,结果如下所示:
|
横向弹性模量G′[Pa] |
实际示例1 |
1.5×106 |
比较示例1 |
1.0×107 |
在实际示例1和比较示例1中的每一载体板11都设有第一孔14和第二孔16,第一孔14对应于安装部分31,第二孔16对应于FPC基底15。接着,每一FPC基底15都粘接到相应载体板11的预定位置上,并进行加热回流焊接步骤。
结果是,在实际示例1中,半导体芯片可被没有任何错位地正确安装。此外,可重复使用载体板11。另一方面,在比较示例1中,FPC基底15从硅酮弹性体层13浮动,从而在加热回流焊接步骤中引起安装故障。
本实施例具有以下优点:
载体板11具有包括支承主体12和硅酮弹性体层13的层叠体。硅酮弹性体层13的横向弹性模量G′的范围为从5.0×105Pa到5.0×106Pa。因此,利用硅酮弹性体的粘性,在不使用任何粘接带的情况下,可将FPC基底15粘接到硅酮弹性体层13上。由于没有使用粘接带,因此即使当FPC基底15从载体板11上移除时,也不会残留有粘接剂。因此,可以以高工作效率将半导体芯片安装到FPC基底15上,同时防止质量下降。
即使在加热回流焊接步骤等中温度升高时,当将半导体芯片安装到FPC基底15上时,硅酮弹性体层13也不会退化,这是因为它具有良好的耐热性。因此,载体板11可重复使用且十分经济。
硅酮弹性体层13和支承主体12彼此牢固地粘接在一起。因此,它们不可能在使用时分开。此外,当第一孔14工作时,在工作端面上没有剥离发生。
载体板11设有对应于FPC基底15的第二孔16。因此,通过使第二销35穿过通孔34和形成在FPC基底15中的第二孔16,可容易地将FPC基底15定位在载体板11的预定位置处。
载体板11设有对应于安装部分31的第一孔14。因此,通过将第一销33插入第一孔14中,可容易地将载体板11定位在安装部分31的预定位置处。
由于支承主体12由铝板制成,因此它可由易获得的材料形成。此外,它比不锈钢板等轻,并可被容易地处理。
接着,将解释在图1(a)、1(b)和图2中实施例的修改示例。该实施例与上述实施例的区别在于,硅酮弹性体层13的横向弹性模量G′的范围为从5.0×105Pa到5.0×106Pa,而且按照JIS R 2618测量的硅酮弹性体层13的导热率为0.4W/m·K或更大。根据放在硅酮弹性体层13样件中的加热线圈当通以一定电量时温度的升高,来测量按照JIS R 2618的导热率。
例如,通过向硅酮弹性体添加高导热率的填充物,而获得硅酮弹性体层13的优选的导热率。当硅酮弹性体层13的导热率太低时,在安装期间的加热步骤(例如,加热回流焊接步骤)中,载体板11会发生温度变化。然而,通过将硅酮弹性体层13的导热率设为0.4W/m·K或更大,提高了导热率,并防止了在安装期间的加热回流焊接步骤中载体板11发生温度变化。
(实际示例和比较示例)
下面使用实际示例和比较示例来更具体地解释该实施例。
除了硅酮弹性体层13的物理属性值之外,在实际示例2、比较示例2和比较示例3中的各载体板11与在前述实际示例1和比较示例1中相同。在实际示例2、比较示例2和比较示例3中,根据动态粘弹性测量方法以10Hz频率并在20℃温度的条件下,通过使硅酮弹性体层13样件振动来测量硅酮弹性体层13的横向弹性模量G′。此外,按照JIS R 2618来测量硅酮弹性体层13的导热率。硅酮弹性体层13的横向弹性模量G′和导热率的值如下:
|
横向弹性模量G′[Pa] |
导热率[W/m·K] |
实际示例2 |
2.0×106 |
0.8 |
比较示例2 |
1.0×107 |
0.3 |
与实际示例1的情况一样,实际示例2和比较示例2中的各载体板11都设有两个第一孔14和多个第二孔16。通过将FPC基底15粘接到相应载体板11的硅酮弹性体层13上,来实现加热回流焊接步骤。结果,在实际示例2中的载体板11可如在实际示例1的情况一样正常地安装半导体芯片,而比较示例2却发生安装故障。此外,在实际示例2中,与比较示例2相比,载体板11几乎不发生温度变化。
除了上述实施例的优点外,本实施例还具有以下优点:
硅酮弹性体层13的横向弹性模量G′的范围为从5.0×105Pa到5.0×106Pa,并且硅酮弹性体层13的导热率为0.4W/m·K或更大。这种结构提高了硅酮弹性体层13的导热率,并且可防止在安装期间的加热步骤中载体板11的温度发生变化。
接着,将解释图1(a)、1(b)和图2中实施例的另一修改示例。该实施例与上述实施例的区别在于,硅酮弹性体层的横向弹性模量G′的范围为从5.0×105Pa到5.0×106Pa,并且使用按照JIS K 7194的4探针方法测量得到的硅酮弹性体层13的体积电阻率为1.0×1010Ω·cm或更小。这里,按照JIS K 7194的4探针方法是这样的方法,即,通过将四个电极成直线地布置在硅酮弹性体层13的样件上,根据当外侧的两个电极之间通上电流时在内侧的两个电极之间产生的电位差,来计算硅酮弹性体层13的体积电阻率。
例如,通过向硅酮弹性体添加导电性填充物,可获得硅酮弹性体层13的优选的体积电阻率。当硅酮弹性体层13的体积电阻率太高时,灰尘会粘在硅酮弹性体层13的表面上,这从制造步骤考虑是不期望的。然而,通过将硅酮弹性体层13的体积电阻率设为1.0×1010Ω·cm或更小,提高了硅酮弹性体层13的电导率,并防止了由于静电而导致灰尘的粘着。
(实际示例和比较示例)
下面使用实际示例和比较示例来更具体地解释该实施例。
除了硅酮弹性体层13的物理属性值之外,在实际示例3、实际示例4和比较示例3中的各载体板11与在前述实际示例1和比较示例1中的相同。在实际示例3、实际示例4和比较示例3中,根据动态粘弹性测量方法以10Hz频率和在20℃温度的条件下,通过使硅酮弹性体层13的样件振动来测量硅酮弹性体层13的横向弹性模量G′。此外,根据按照JISK 7194的4探针方法来测量硅酮弹性体层13的体积电阻率。硅酮弹性体层13的横向弹性模量G′值和体积电阻率值如下:
|
横向弹性模量G′[Pa] |
体积电阻率[Ω·cm] |
实际示例3 |
3.0×106 |
2.0×103 |
实际示例4 |
3.0×106 |
1.0×108 |
比较示例3 |
1.0×107 |
1.0×1016 |
与实际示例1的情况一样,实际示例3、实际示例4和比较示例3中的各载体板11都进行了加热回流焊接步骤,将FPC基底15粘接到相应的硅酮弹性体层13上。结果,在实际示例3和实际示例4中的载体板11可与实际示例1的情况一样正常地安装半导体芯片,而比较示例3却发生安装故障。此外,在实际示例3和实际示例4中,与比较示例3相比较,几乎不会粘着灰尘。
除了上述实施例的优点外,本实施例还具有以下优点:
硅酮弹性体层13的横向弹性模量G′的范围为从5.0×105Pa到5.0×106Pa,并且硅酮弹性体层13的体积电阻率为1.0×1010Ω·cm或更小。这种结构提高了硅酮弹性体层13的电导率,并且可防止由于静电而导致灰尘的粘着。
下面将根据图3(a)、3(b)和图4来解释本发明的第二实施例。该实施例将主要描述那些与图1(a)、1(b)和图2中实施例不同的部分,相同的部分用相同的附图标记并将省略对其详细的描述。
如在图3(b)中所示,硅酮弹性体层13包括第一层13a和位于其上的第二层13b,第一层13a放在支承主体12上。FPC基底15粘接到第二层13b上。
构成第一和第二层13a、13b的硅酮弹性体可通过交联具有上述硅氧烷骨架的聚硅氧烷而获得。
根据动态粘弹性测量方法以10Hz频率并在20℃温度的条件下,通过使第一层13a的样件振动来测量第一层13a的横向弹性模量G′。第一层13a的横向弹性模量G′的范围为从3.0×104Pa到5.0×106Pa。在相同条件下,根据动态粘弹性测量方法来测量第二层13b的横向弹性模量G′,其范围为从5.0×105Pa到5.0×106Pa。
当第一层13a粘接到支承主体12上时,硅酮弹性体层13就粘接到支承主体12上。这里,在硅酮弹性体层13和支承主体12之间没有使用底层涂料或粘接剂等。
当第一层13a的横向弹性模量G′太低,(即硅酮弹性体太软)时板的可操作性降低。另一方面,当第一层13a的横向弹性模量G′太高(即硅酮弹性体太硬)时,第一层13a几乎不能粘接到支承主体12上。此外,由于在第一和第二孔14、16的形成或工作期间所施加的应力,支承主体12和第一层13a会分开。
当第二层13b的横向弹性模量G′太低时,第二层13b就过分地粘接到FPC基底15上,使得难于将FPC基底15移除。另一方面,当第二层13b的横向弹性模量G′太高时,第二层13b几乎不能粘接到FPC基底15上,使得难于定位FPC基底。当第一和第二层13a、13b的横向弹性模量G′落在上述范围内时,第一层13a优选地粘接到支承主体12上,而第二层13b优选地粘接到FPC基底15上。
第一层13a的横向弹性模量G′低于第二层13b的横向弹性模量G′。例如,当第一层13a的横向弹性模量G′高于第二层13b的横向弹性模量G′时,第一层13a的粘着力没有第二层13b的粘着力弱。在这种情况下,当FPC基底15从载体板11上剥离时,硅酮弹性体层13可以从支承主体12上剥离。然而,当第一层13a的横向弹性模量G′低于第二层13b的横向弹性模量G′时,第一层13a的粘着力比第二层13b的粘着力强。基于此原因,当FPC基底15从载体板11上剥离时,可防止硅酮弹性体层13从支承主体12上剥离。
通过调节硅酮弹性体的组成成分(例如,聚硅氧烷的类型、分子量、增强填充剂和适当的交联程度)获得优选的第一和第二层13a、13b的横向弹性模量G′。
在将FPC基底15安装到半导体芯片上的步骤中,温度会升高到大约200℃到240℃或者在新的无铅条焊接的情况下升高到大约280℃。基于此原因,对于第一和第二层13a、13b,横向弹性模量G′等的物理属性值优选地直到这些温度是有效的。
接着,将解释通过这种结构使用载体板11将半导体芯片安装到FPC基底15上的方法。注意,图4中示出的安装设备的安装部分31的结构与图2中示出的相同。同时在该实施例中,与图2中实施例的情况一样,载体板11也放置在安装部分31上。
(实际示例和比较示例)
下面使用实际示例和比较示例来更具体地解释该实施例。
在实际示例5和比较示例4中的各载体板11中,准备了这样的样件,即,它具有由0.8mm厚的铝板形成的支承主体12、形成为0.1mm厚的第一层13a和形成为0.2mm厚的第二层13b。根据动态粘弹性测量方法在20℃温度和10Hz频率的条件下,通过使每一样件振动来测量第一和第二层13a、13b的横向弹性模量G′。在实际示例5和比较示例4中的第一层和第二层的横向弹性模量G′值如下所示:
|
硅酮弹性体层 |
横向弹性模量G′[Pa] |
实际示例5 |
第一层 |
8.3×104 |
第二层 |
3.0×106 |
比较示例4 |
第一层 |
6.0×106 |
第二层 |
3.0×106 |
在实际示例5和比较示例4中,相应的FPC基底15粘接到相应的载体板11的预定位置上,并进行加热回流焊接步骤。
结果,在实际示例5中,半导体芯片可正常地安装。此外,在实际示例5中载体板11可重复使用。而且,使用后可用手将硅酮弹性体层13从支承主体12上剥离。
另一方面,在比较示例4中,当形成载体板11的第一孔14时,硅酮弹性体层13从支承主体12浮动。此外,在加热回流焊接步骤中硅酮弹性体层13从支承主体12上剥离,导致安装故障。
本实施例具有以下优点:
载体板11是包括支承主体12、第一层13a和第二层13b的层叠体。第二层13b的横向弹性模量G′的范围为从5.0×105Pa到5.0×106Pa。这种结构可利用第二层13b的粘性优点,在不使用任何粘接带的情况下,将FPC基底15粘接到载体板11上。此外,由于没有使用粘接带,因此即使当FPC基底15从载体板11上移除时,也不会残留有粘接剂。因此,可以高的工作效率将半导体芯片安装到FPC基底15上,同时防止了质量下降。
第一层13a的横向弹性模量G′的范围为从3.0×104Pa到5.0×106Pa。第一层13a的粘着力允许在不使用任何底层涂料或粘接剂等的情况下,将硅酮弹性体层13坚固地粘接到支承主体12上。此外,当载体板11在使用时,硅酮弹性体层13不可能从支承主体12上剥离,并且即使在第一孔14工作时,在工作端面也不会发生剥离。此外,与使用粘接剂来粘合的结构不同,硅酮弹性体层13可从支承主体12上剥离并被分别处理掉。
第一层13a的横向弹性模量G′低于第二层13b的横向弹性模量G′。基于此原因,使第一层13a粘接到支承主体12上的力比使第二层13b粘接到FPC基底15上的力大,并且当FPC基底15从载体板11上剥离时,硅酮弹性体层13不可能从支承主体12上剥离。
即使当半导体芯片安装到FPC基底15上时,在加热回流焊接等步骤中温度升高,硅酮弹性体层13也几乎不会发生退化,这是因为它具有良好的耐热性。这使得可以重复使用载体板11,并且提供了较高的经济效益。
接着,将根据图5和图6来解释本发明的第三实施例。将主要描述该实施例的那些与图3(a)、3(b)和图4中实施例不同的部分,并将省略对相同部分的描述。
如在图5和图6中所示,载体板25包括胶带23和板主体24,胶带23用于暂时地固定到FPC基底(未示出)上,胶带23粘接到板主体24的表面上。胶带23包括第一和第二层21、22,它们由具有不同的横向弹性模量G′的硅酮弹性体制成。
在没有失去本发明所需的物理属性的范围内,也可向第一和第二层21、22所包括的硅酮弹性体中添加公知领域中的添加剂。该添加剂的示例包括:煅制氧化硅、沉淀氧化硅、硅酮氧化物(例如,石英粉、硅土(silious earth)、碳酸钙、炭黑、氧化铝、氧化镁、氧化锌、氮化硼、氧化铁)等。
硅酮弹性体的耗散因子tanδ是受聚硅氧烷的分子结构和交联状态影响的物理属性值,聚硅氧烷是一种酮弹性体材料并表现出柔软性。调节原材料和交联程度以获得表现出优选的耗散因子tanδ的硅酮弹性体。例如,通过将聚硅氧烷的一些甲基用其他官能团来取代而使用聚硅氧烷时,硅酮弹性体的结晶度由此降低,生成优选的耗散因子tanδ。
在20℃温度时,第一层21的横向弹性模量G′的范围为从3.0×104Pa到5.0×105Pa,并优选地为从5.0×104Pa到3.0×105Pa。当横向弹性模量G′低于5.0×104Pa时,第一层21太软而不能处理。另一方面,当横向弹性模量G′高于3.0×105Pa时,第一层21几乎不能粘接到板主体24上,并且第一层21在将半导体芯片安装到FPC基底上的步骤之前会从板主体24上剥离。在与上述实施例中相同的条件下,根据动态粘弹性测量方法来测量横向弹性模量G′。
第一层21的耗散因子tanδ的范围优选地为从0.15到0.60。例如,如果耗散因子tanδ小于0.15,那么当第一层21粘接到板主体24上时,第一层21的变形在较短时间内恢复,这阻止了足够的粘接。另一方面,当耗散因子tanδ大于0.60时,第一层21的变形在使用时增加,且第一层21不能重复使用。
当使用无铅条焊接而将半导体芯片安装到FPC基底上时,温度升高到280℃。基于此原因,即使在280℃的条件下,第一层21的横向弹性模量G′的范围优选地为从3.0×104Pa到5.0×105Pa,或更优选地,从5.0×104Pa到3.0×105Pa。
在20℃的环境中,第二层22的横向弹性模量G′的范围优选地为从5.0×105Pa到5.0×106Pa。例如,如果横向弹性模量G′低于5.0×105Pa,那么在第二层22和待固定的FPC基底之间的粘着力变得太强,使得在安装了半导体芯片后不可能容易地移除FPC基底。另一方面,如果横向弹性模量G′高于5.0×106Pa,那么在第二层22和FPC基底之间的粘着力不足,使得难于暂时地固定FPC基底,而暂时地固定FPC基底是最初目的。
与第一层21一样,即使在280℃环境下,第二层22的横向弹性模量G′的范围也优选地为从5.0×105Pa到5.0×106Pa,或者更优选地从5.0×104Pa到3.0×105Pa。
第一和第二层21、22通过将仍未交联的且通过硫化作用粘接的相应层儿层叠在一起。然而,这种方法并非唯一的,也可使用任何其他方法,只要两个层21、22可粘接在一起从而它们的横向弹性模量G′至少落在上述范围内。
第一层21的厚度优选地为从30μm到200μm,或者更优选地为从50μm到100μm。例如,如果第一层21的厚度小于30μm,那么当第一层21粘贴到板主体24上时,不可能获得足够量的变形,这阻止了第一层21充分地粘接到板主体24上。此外,如果第一层21的厚度大于200μm,那么与安装半导体芯片时所施加的应力相对应的变形量过度增加,这使安装精度下降。
如在图6所示,第一层21粘接到板主体24上,且第二层22的上侧露出。FPC基底(未示出)粘接到第二层22上,并且半导体芯片(未示出)安装在FPC基底上。当加热FPC基底以将半导体芯片安装到其上时,FPC基底通过第二层2的粘着力而暂时地固定到载体板25上。此外,尽管没有示出,也可在板中生成针孔以将板定位在安装设备的载体部分上。
板主体24优选地由不锈钢或铝等制成。然而,也可使用其他材料,只要这些材料具有至少足够的耐热性和强度以用作安装半导体芯片时用于FPC基底的加强材料。
板主体24的深度基本与胶带23的厚度相等,并且板主体24设有凹口28,凹口28的宽度足以粘贴胶带23。例如,如果胶带23简单地粘贴到板主体24的表面上而不在板主体24中形成凹口28,那么胶带23自身在载体板25上形成突起,且在FPC基底安装到胶带23上的部分(除了粘贴到胶带23上的部分)和板主体24之间产生间隙。基于此原因,板主体24并没有用作加强材料,而导致安装半导体芯片时产生偏移。
更具体地,胶带23的厚度和凹口28的深度之差X优选地在0m和0.05mm之间。当该差值X大于0.05mm时,在只有胶带23粘贴到板主体24的表面上而没有形成凹口28的情况下,FPC基底和板主体24之间的间隙增加,并且当安装半导体芯片时可能产生偏移。
另一方面,当凹口28的深度大于胶带23的厚度时,差值X优选地为0.05mm或更小,且更优选地为0mm。如果凹口28相对于胶带23的厚度太深,那么有必要弯曲FPC基底从而使其粘接到胶带23上。因此,这样安装的FPC基底可能从目标位置偏移。
此外,如在图7的修改的示例中所示,胶带23也可在不形成图6中的凹口28的情况下粘接到板主体24的表面上。当胶带23容置在由FPC基底26的下侧、设在FPC基底26的下侧上的突起27和板主体24包围的空间中时,具有突起27的FPC基底26也能稳固胶带23,使得在安装半导体芯片时减少偏移。
将FPC基底(未示出)和半导体芯片安装在载体板25上的方法如下。首先,胶带23的第一层21粘贴到板主体24上,从而第二层22布置在载体板25的表面上。FPC基底放在载体板25上,FPC基底通过第二层22的粘着力而得以固定,并执行加热回流焊接步骤以将半导体芯片安装在FPC基底上。通过将FPC基底固定到第二层22上,可将半导体芯片安装在预定位置处,而没有任何偏移。
此外,也可剥离胶带而没有任何粘接剂残留在FPC基底上。而且,也可重复使用胶带23而不必比普通的双面胶带多的次数将它剥离,并且当胶带23最终恶化并需要剥掉时,可手工地将它揭掉而没有任何粘接剂残留在板主体24上。
下面将使用实际示例和比较示例来更具体地解释上述实施例。使用由IWAMOTO Quartz GlassLab有限公司生产的分光计VESF-III,在20℃温度和10Hz频率的条件下,测量横向弹性模量G′和耗散因子tanδ的值。
(实际示例6)
首先,将包括第一和第二层的胶带粘贴到一凹口上,该凹口通过部分地切割由1.2mm厚铝板制成的载体板穿过第一层而形成0.3mm深。
实际示例6中的第一层为0.1mm厚的层,它通过交联基于聚二甲基硅氧烷的聚合体(其中引入了聚二甲基硅氧烷)而形成。20℃温度时第一层的横向弹性模量G′为8.3×104Pa,耗散因子tanδ为0.28。
实际示例6中的第二层为0.2mm厚的层,它通过交联由GE ToshibaSilicones制造的TSE2913-U而形成。20℃温度时第二层的横向弹性模量G′为1.0×106Pa。
接着,将FPC基底设在载体板的预定位置上,并执行在240℃温度下安装半导体芯片的加热回流焊接步骤。可将半导体芯片安装在FPC基底上,而不会使FPC基底的位置偏移,并且在安装后没有粘接剂残留在去除的FPC基底上。此外,胶带可至少重复使用30次。而且,在使用30次后,用手可容易地将胶带从板主体上剥离,并且没有粘接剂残留在板主体上。
(比较示例5)
以与实际示例1中相同的方式来评价比较示例5中的第一层,只是除了如下所示改变了物理属性之外,这种改变是因为当通过交联生成基于聚二甲基硅氧烷的聚合体时没有包括聚二甲基硅氧烷单元。
在比较示例5中,第一层的厚度为0.1mm,20℃温度时第一层的横向弹性模量G′为2.0×106Pa,耗散因子tanδ为0.12。
当执行加热回流焊接步骤时,胶带在板主体上偏离,导致安装故障。
该实施例具有以下优点:
具有低横向弹性模量G′的第一层21允许胶带23稳定地粘接到板主体24上,并且具有高横向弹性模量G′的第二层22允许将待固定的FPC基底和胶带23之间的粘着力抑制在只可暂时固定的程度。
由于硅酮弹性体具有高的耐热性,因此即使执行了加热回流焊接步骤以将半导体芯片安装到FPC基底上,也可在没有任何偏移的情况下将半导体芯片安装在预定位置处。
此外,由于硅酮弹性体几乎不退化,因此它可比普通的胶带使用次数多,并且即使当胶带最终退化并必须剥掉时,也可用手将它剥离掉而不留下任何粘接剂。
注意,本发明并非限于上述实施例,它也可作如下修改:
如在图8中所示,使用平板压模等方法,可在分别与FPC基底15的第二孔16相对应的位置处形成突起42。在这种情况下,通过将突起42装配进相应第二孔16中,而将FPC基底15放在载体板11的预定位置上。图9是图8中实施例的修改的示例,其中硅酮弹性体层13包括第一和第二层13a、13b。
当突起42形成在FPC基底15上时,代替第二孔16,也可在载体板11中形成凹口,以将突起42装配在其中。这些凹口通常形成为这样的深度,即,穿透硅酮弹性体层13以到达支承主体12的中间位置,但是凹口也可形成具有没有到达支承主体12的深度。
其中FPC基底15放在载体板11的预定位置的结构,并不限于仅由第二销35或图8和图9中的突起42和第二孔16之间的接合而实现的结构,而是第二销35和突起42也可同时用于FPC基底15。在这种情况下,可在FPC基底15上形成一个通孔34和一个突起42。
在图1(a)、1(b)和图2的实施例中,硅酮弹性体层13可具有在上述范围内的导热率和体积电阻率,即,导热率可以为0.4W/m·K或更大,体积电阻率可以为1.0×1010Ω·cm或更小。通过向硅酮弹性体同时添加高导热率的填充物和导电的填充物,可获得优选的导热率和体积电阻率。
在图1(a)、1(b)和图2的实施例的修改的示例中,硅酮弹性体层13的导热率不必为0.4W/m·K或更大,但是导热率优选地为0.4W/m·K或更大,从而防止在安装期间的加热步骤中载体板11的温度发生变化。
在图1(a)、1(b)和图2的实施例的另一修改的示例中,硅酮弹性体层13的体积电阻率不必为1.0×1010Ω·cm或更小,但是体积电阻率优选地为1.0×1010Ω·cm或更小,从而防止由于静电而导致灰尘的粘着。
在图1(a)、1(b)到图4的实施例中,硅酮弹性体层13的横向弹性模量G′、导热率和体积电阻率的物理属性值不必保持为基本200℃到240℃或在近年无铅条焊接的情况下为大约280℃。例如,如果在加热回流焊接等步骤中温度低于200℃,那么硅酮弹性体层13的物理属性值所保持的温度也可低于200℃。
在图1(a)、1(b)到图9的实施例中,将半导体芯片安装到FPC基底15、26(FPC基底15、26粘接到载体板11、25上)上的步骤并不限于加热回流焊接步骤。例如,也可使用流体焊接步骤(波动焊接)等。
在图1(a)、1(b)到图4的实施例中,当使用第二销35将FPC基底15布置在载体板11的预定位置上时,该实施例并不限于在载体板11中形成有第二孔16的结构,而是例如,也可形成有凹口。该凹口穿透硅酮弹性体层13并到达支承主体12的中间位置。
在图1(a)、1(b)到图4的实施例中,载体板11不必设有多个对应于FPC基底15的第二孔16或凹口,但是形成这些部分便于将FPC基底15定位在载体板11的预定位置处。
在图1(a)、1(b)到图4的实施例中,载体板11不必设有对应于安装设备的安装部分31的第一孔14,但是形成这些部分便于将载体板11定位在安装设备的安装部分31的预定位置处。
在图1(a)、1(b)到图4的实施例中,支承主体12并不限于铝板,而是可以为诸如不锈钢板、镁合金板或塑料板(例如,浸渍环氧树脂的玻璃纤维板或浸渍聚酯的玻璃纤维板)的金属板。此外,其他材料也可用于非伸缩的支承主体12,只要它具有足够的机械强度、耐热性和光滑度,但是前述诸如不锈钢板或塑料板(例如,浸渍环氧树脂的玻璃纤维板)的金属板是尤为优选的。
在图1(a)、1(b)到图9的实施例中,将硅酮弹性体层13和胶带23的第一和第二层21、22的横向弹性模量G′调节为适当值的方法,也可通过例如,随意地混合多个商业上可获得的硅酮化合物而实现。
在图1(a)、1(b)到图4的实施例中,将硅酮弹性体层13和支承主体12粘接在一起的方法并不限于通过硫化作用来粘接,而是也可使用基于硅酮的粘接剂来将交联的硅酮弹性体板粘接到支承主体12上。
在图1(a)、1(b)到图4的实施例中,也可在没有失去本发明的横向弹性模量G′、导热率和体积电阻率等物理属性的范围内,将在常规情况下要添加到硅酮弹性体合成物的添加剂添加到硅酮弹性体层13中。这些添加剂的示例包括:煅制氧化硅、沉淀氧化硅、硅酮氧化物(例如,石英粉、硅土、碳酸钙、炭黑、氧化铝、氧化镁、氧化锌、氮化硼、氧化铁)等。
在图1(a)、1(b)到图4的实施例中,粘接到载体板11上的FPC基底15的数量并不限于六个,但是可根据载体板11或FPC基底15的尺寸适当地改变。例如,当FPC基底15较大时,减少可粘接到载体板11上的FPC基底15的数量。此外,当载体板11较大时,增加可粘接到其上的FPC基底15的数量。第二孔16改变到对应于FPC基底15的位置处并适当地形成。
在图1(a)、1(b)到图4的实施例中,第二孔16所形成的位置并不限于对应于一个FPC基底15的一条对角线的两个角的位置,而是可适当地改变。此外,第一孔14所形成的位置并不限于对应于载体板11的纵向的两端的位置,而是可适当地改变。