CN1283134C - 功率微型组件及其制造方法 - Google Patents

功率微型组件及其制造方法 Download PDF

Info

Publication number
CN1283134C
CN1283134C CN03154861.XA CN03154861A CN1283134C CN 1283134 C CN1283134 C CN 1283134C CN 03154861 A CN03154861 A CN 03154861A CN 1283134 C CN1283134 C CN 1283134C
Authority
CN
China
Prior art keywords
radiator
power
micromodule
circuit substrate
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN03154861.XA
Other languages
English (en)
Other versions
CN1496218A (zh
Inventor
松尾光洋
半田浩之
吉田幸司
池田敏
竹岛由浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Publication of CN1496218A publication Critical patent/CN1496218A/zh
Application granted granted Critical
Publication of CN1283134C publication Critical patent/CN1283134C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
    • H05K7/20436Inner thermal coupling elements in heat dissipating housings, e.g. protrusions or depressions integrally formed in the housing
    • H05K7/20445Inner thermal coupling elements in heat dissipating housings, e.g. protrusions or depressions integrally formed in the housing the coupling element being an additional piece, e.g. thermal standoff
    • H05K7/20463Filling compound, e.g. potted resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/16Fillings or auxiliary members in containers or encapsulations, e.g. centering rings
    • H01L23/18Fillings characterised by the material, its physical or chemical properties, or its arrangement within the complete device
    • H01L23/24Fillings characterised by the material, its physical or chemical properties, or its arrangement within the complete device solid or gel at the normal operating temperature of the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3737Organic materials with or without a thermoconductive filler
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • H05K3/284Applying non-metallic protective coatings for encapsulating mounted components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
    • H05K7/20436Inner thermal coupling elements in heat dissipating housings, e.g. protrusions or depressions integrally formed in the housing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01012Magnesium [Mg]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1203Rectifying Diode
    • H01L2924/12032Schottky diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16152Cap comprising a cavity for hosting the device, e.g. U-shaped cap
    • H01L2924/16153Cap enclosing a plurality of side-by-side cavities [e.g. E-shaped cap]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0201Thermal arrangements, e.g. for cooling, heating or preventing overheating
    • H05K1/0203Cooling of mounted components

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Thermal Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Structure Of Printed Boards (AREA)

Abstract

本发明的功率微型组件,包括装有电子部件、与所述电子部件一起构成功率变换电路的电路底板,散热器,以及具有绝缘性、高导热性的构件,该构件配置在所述电子部件中发热量大的多个元件和所述散热器之间,所述发热量大的多个元件的每一个至少被它部分埋没,并从所述发热量大的多个元件将热传给所述散热器。

Description

功率微型组件及其制造方法
技术领域
本发明有关运载式功率微型组件。
背景技术
近几年,在应市场对电子设备轻、薄、小的要求所作的研发上,高密度安装在底板上的发热部件(例如半导体元件等电子部件)的散热措施变得日趋重要。尤其是功率微型组件,由于担忧部件散热不够而影响部件的可靠性,所以抑制高密度安装功率变换元件的发热造成温度上升的散热措施就极为重要。
现有的功率微型组件采用风扇的强制风冷方式,或将导热性良好的散热器按压在发热部件上高效地将发热部件产生的热传给散热器再冷却的导热冷却方式等作为散热的对策。
在功率微型组件的底板上,安安装金属·氧化物半导体场效应晶体管(MOSFET)、变压器、扼流圈、电源电路用IC等各种需要散热的电子部件。各种电子部件其形状、高度均不同,各部件间产生高差。各部件的高度及各部件的电路底板上的安装高度都参差不一。因此,即使把散热器压紧在多件发热部件上,对于所有的部件仍然难以使部件和散热器均匀地贴紧。因而,有必要吸收掉发热部件间的高差、和高度的参差不一,使要散热的电子部件和散热器贴紧,确保两者间的传热。
为了解决这一问题,日本特许第2536657号公报揭示一例现有的电气装置,它具有与多层底板上安装的部件位置及高度一致,形成收容其部件的凹部的散热器。以下说明日本特许第2536657号公报揭示的现有例子的电气装置。图19为所述特许公报揭示的电路底板剖视图。
图19中,电路底板21上的规定的图案设置导体21a。发热量多的电气部件即电阻22、尤其是发热量多的自粘性(cement)电阻23、发热量少的电气部件即电解电容26、发热量多的功率微型组件27等软钎焊25在电路底板25上。20为用铝铸件制作的底盘,底盘20上设置根据各部件的位置、高度、形状,将控制部件插入用的凹坑部20a,使电路底板21上的各部件22、23、26、27和底盘20之间的间隙实质上相同。
与自粘性电阻23的外形呈现相同形状的铜罩盖28介于自粘性电阻23和凹坑部20a之间。在发热量大的电阻22、自粘性电阻23、功率微型组件27、及底盘20之间的各间隙(凹坑部20a)中填充入导热性良好的树脂29。发热少的电解电容26和底盘20之间的间隙(凹部20a)中填充入绝热性的树脂30。
31为各部件的端子部、32为使端子部31和电路底板21的导体21a电接合用的螺母,33为使端子部31和电路底板21的导体21a电接合用的紧固螺栓,34为使电路底板21保持在底盘20上的保持件。
即,在现有例子的电气装置中,发热量多外形高的部件、和低的部件都均等地与散热器接触,故就能高效地导热。
但是,在以往的例子中,存在散热器具结构变得复杂的问题。为了合符电路底板上安装的各种各样高度、形状的部件,必须设计具有从大高差到微小的高差为止能与所有的高差对应的凹凸的散热器。形状复杂的散热器模具价格也高。若形状非常复杂,则还要在铝铸件从模具中取出后对其再加工。电路底板的图案及其上所装的部件如未全部决定,则无法设计散热器,并由于复杂的散热器其模具制作颇费时间,会延误商品的上市。一旦散热器的形状得以固定,再要改变多层底板上的电子部件、改变配置就很困难。由于这些问题的存在,使得研发时间拖长、生产成本增加。
本发明的目的为提供一种散热性良好、耐热可靠性高、其构成能廉价大量生产的功率微型组件。
此外,本发明的目的为提供一种利用通用的散热器或形状简单的散热器,能有效地冷却电路底板上安装的具有各种高度的部件产生的热的功率微型组件。
此外,本发明的目的为提供一种利用散热部件的小型、轻、从而功率微型组件的重量也轻的功率微型组件。
发明内容
为了解决上述课题,本发明有以下的构成。本发明的一个方面的功率微型组件包括:具有第一和第二表面的电路底板,所述电路底板的第一表面包含安装在所述电路底板上的多个第一器件和多个第二器件,所述电路底板与所述多个第一器件和多个第二器件一起构成功率变换电路,所述多个第一器件中的每一个都具有高发热量;安装在所述电路底板的第一表面上的第一散热器,以及具有绝缘性和高导热性的第一构件,所述第一构件配置在所述多个第一器件和多个第二器件与所述第一散热器之间,并且所述第一构件具有第一部分和第二部分,所述第一构件的所述第一部分粘接于所述多个第一器件的每一个,以从所述多个第一器件把热传给所述第一散热器,所述第一构件的所述第二部分与所述多个第一器件和多个第二器件以及所述电路底板之间有间隙且不接触,所述第一构件在该第二部分上的厚度为一定。
本发明具有的作用为能实现一种功率微型组件,它通过高导热性构件(例如树脂构件)、散热器将所安装的要散热的电子部件产生的热良好地传开,由此,能抑制部件的温升。
按照本发明,因为在散热器的表面不必形成与多层底板上安装的部件形状相符的凹凸,所以能使用廉价、通用的散热器(例如在一面上带散热片,其另一面为平拉手的通用散热器)或形状简单(例如把铝折面的形状)的散热器。由于不必对散热器作特殊加工,所以能实现可大量生产的便宜的功率微型组件。
廉价的散热器和各种高度的发热部件间,通过用导热性良好的构件(例如树脂构件)固定,任意高度的部件的发热都能保持高度可靠性(部件和高导热性构件可靠地贴紧,高导热性构件和散热器可靠地贴紧)有效地传给散热器。
不必根据电路底板上部件的配置、形状及大小等改变散热器的形状。由于散热器的设计或模具制作不再需要过长的时间,故能加快功率微型组件的研发速度。
本发明具有的作用为能实现散热性好、耐热可靠性高、其构成能廉价地大量生产的功率微型组件。
本发明具有的作用为利用通用的散热器或形状简单的散热器,能实现一种功率微型组件,它能有效冷却装在电路底板上的各种高度的部件产生的热。
随着电子器件的小型化及电路底板部件安装高密度的推进,在部件和底板的边界上残存空隙,因空隙可能会产生发热量大的电子部件和构件不能充分贴紧的问题。按照本发明,因为构件和电路底板之间有间隙,所以不会有空隙存在,本发明能确保发热量大的电子部件和构件贴紧,具有能实现可靠性高的功率微型组件的作用。
本发明另外方面的功率微型组件,前述第一散热器具有凹部,前述第一构件充填入前述凹部。
通过使未固化的构件(例如树脂)流入凹部,而该构件不会流出,能将发热部件埋入该构件中。
本发明又一另外方面的功率微型组件,前述第一构件以热固化树脂和无机填料为主成份。
通过使有高导热系数的热固化树脂组成的构件贴紧电子部件,能降低要散热的电子部件的热阻。通过使高导热系数的构件和散热器粘接成一体,能减少构件和散热器用的接触热阻。由此能提供散热性能优良的功率微型组件。
本发明又一方面的功率微型组件,所述多个第一器件和多个第二器件全部是高度低的器件,且都安装在所述电路底板面对所述第一散热器的一侧。
由此能实现既有良好散热特性,并厚度又薄的功率微型组件。通过降低部件的高度差异,部件和散热器的间隔几乎均匀,能消除散热的不均匀。
本发明又一方面的功率微型组件,所述电路底板的所述第二表面包括安装在该第二表面上的多个第三器件和多个第四器件,所述电路底板以及所述多个第一器件、多个第二器件、多个第三器件和多个第四器件一起构成所述功率变换电路,所述多个第三器件中的每一个都具有高发热量,所述功率微型组件还包括:安装在所述电路底板的所述第二表面上的第二散热器;以及具有绝缘性和高导热性的第二构件,所述第二构件配置在所述多个第三器件和多个第四器件与所述第二散热器之间,并且所述第二构件具有第一部分和第二部分,所述第二构件的所述第一部分粘接于所述多个第三器件的每一个,以从所述多个第三器件把热传给所述第二散热器,所述第二构件的所述第二部分与所述多个第三器件和多个第四器件以及所述电路底板之间有间隙且不接触,所述第二构件在其第二部分上的厚度为一定。。本发明具有的作用为能实现在两面上散热性能良好的功率微型组件。
本发明一方面的功率微型组件的制造方法,包括在电路底板的第一表面上安装多个第一器件和多个第二器件的安装工序,所述电路底板和所述多个第一器件和多个第二器件一起构成功率变换电路,所述多个第一器件中的每一个都具有高发热量;在所述电路底板的第一表面上将有绝缘性和高导热性的未固化的第一构件与第一散热器层迭在一起形成第一层迭体的第一层迭工序,所述第一构件配置在所述多个第一器件和多个第二器件与所述第一散热器之间;以及对所述第一层迭体加压并加热,使所述第一构件固化,并粘接所述电路底板、所述第一构件、以及所述第一散热器的粘接工序,其中,所述第一构件具有第一部分和第二部分,在所述粘接工序中,所述第一构件的所述第一部分粘接于所述多个第一器件的每一个,以从所述多个第一器件把热传给所述第一散热器,在所述粘接工序中,所述第一构件的所述第二部分与所述多个第一器件和多个第二器件以及所述电路底板之间有间隙且不接触,所述第一构件在该第二部分上的厚度为一定。。
本发明具有的作用为能实现一种散热性良好耐热可靠性、具有能廉价大量生产的结构的功率微型组件的制造方法。
本发明具有的作用为能实现一种功率微型组件的制造方法,它利用通用的散热器或形状简单的散热器,能效冷却电路底板上安装的各种高度的部件产生的热。
本发明另外方面的功率微型组件的制造方法,所述安装工序包括在所述电路底板的所述第二表面上安装多个第三器件和多个第四器件的工序,所述电路底板以及所述多个第一器件、多个第二器件、多个第三器件和多个第四器件一起构成所述功率变换电路,所述多个第三器件中的每一个都具有高发热量,所述制造方法还包括在所述电路底板的第二表面上将有绝缘性和高导热性的未固化的第二构件与第二散热器层迭在一起形成第二层迭体的第二层迭工序,所述第二构件配置在所述多个第三器件和多个第四器件与所述第二散热器之间,所述第一层迭工序和所述第二层迭工序同时进行,在所述粘接工序中,除了所述第一层迭体之外还对所述第二层迭体加压并加热,使所述第一构件和第二构件固化,并粘接所述电路底板、所述第一构件、所述第二构件、所述第一散热器和所述第二散热器,所述第二构件具有第一部分和第二部分,在所述粘接工序中,所述第二构件的所述第一部分粘接于所述多个第三器件的每一个,以从所述多个第三器件把热传给所述第二散热器,在所述粘接工序中,所述第二构件的所述第二部分与所述多个第三器件和多个第四器件以及所述电路底板之间有间隙且不接触,所述第二构件在其第二部分上的厚度为一定。。
本发明具有的作用为能实现一种制造方法,它能以廉价、用工少、制造出散热性良好、耐热可靠性高,在电路底板的两面安装电子部件的功率微型组件。
因为残留于导热性构件内的空气能确实地从导热性构件和电路底板表面间的间隙中排出,所以构件中不留空隙,电子部件和高导热性的构件105均匀贴紧。本发明具有的作用为能实现一种功率微型组件高可靠性的制造方法,它能有效冷却电路底板上安装的、各种高度的部件产生的热。
通过将本发明用于电路底板的两面,电路底板的两面上进行层迭同时具有高可靠性。
能防止未固化的构件(例如树脂)通过多层底板流出。
本发明又一方面的功率微型组件的制造方法,前述第一散热器在与前述电路底板对置的面上有凹部,在前述第一层迭工序,未固化的前述第一构件充填入前述凹部中,在前述电路底板的第一表面上形成前述第一构件和前述第一散热器层迭成的层迭体。
构件不会流出,发热部件能埋在该构件里。
本发明的新颖特征仅限于所附权利要求的范围特别记述的特性,对于本发明的构成及内容通过会同其它的目的、特征,结合附图,经阅读以下的详细说明后,将会更好理解并作出评价。
附图说明
图1为表示本发明实施例1功率微型组件的构成剖视图。
图2为表示本发明实施例2功率微型组件的构成剖视图。
图3为表示本发明实施例3功率微型组件的构成剖视图。
图4为表示本发明实施例4的功率微型组件的制造方法各工序的剖视图。
图5为表示本发明实施例5的功率微型组件的制造方法各工序的剖视图。
图6为表示本发明实施例6的功率微型组件的制造方法各工序的剖视图。
图7为表示本发明实施例7的功率微型组件的制造方法各工序的剖视图。
图8为表示本发明实施例8功率微型组件的构成剖视图。
图9为表示本发明实施例9功率微型组件的构成剖视图。
图10为表示本发明实施例10功率微型组件的构成剖视图。
图11为表示本发明实施例11功率微型组件的构成剖视图。
图12为表示本发明实施例12功率微型组件的构成剖视图。
图13为表示本发明实施例13的功率微型组件的制造方法各工序的剖视图。
图14为表示本发明实施例14的功率微型组件的制造方法各工序的剖视图。
图15为表示本发明实施例15的功率微型组件的制造方法各工序的剖视图。
图16为表示本发明实施例16的功率微型组件的制造方法各工序的剖视图。
图17为表示本发明实施例17的功率微型组件的制造方法各工序的剖视图。
图18为表示本发明实施例18的功率微型组件的制造方法各工序的剖视图。
图19为以往例的电路底板的剖视图。
附图的部分或全部是利用以图示为目的的概要表现而描绘的,谨请注意到不限于忠实地描绘这里示出的要素的实际的相对大小和位置。
具体实施方式
以下结合附图对具体表示实施本发明最佳形态的实施例进行叙述。
《实施例1》
利用图1说明实施例1的功率微型组件。
图1为表示本发明实施例1功率微型组件构成的剖视图。在图1中,107为本发明实施例1的功率微型组件。功率微型组件107具有:有通孔102的多层底板101、要散热的电子部件103(分别有任意的不同的高度)、散热器104、高导热性的构件105、电子部件106。
本实施例的功率微型组件由多层底板101、高导热性的构件105、散热器1043层组成。多层底板101在绝缘底板101b上安装电子部件103、106。多层底板101的另一面上配置利用功率半导体元件的功率变换电路、或驱动这些电路用的控制电路等要散热的电子部件103。高导热性的构件105包围要散热的电子部件103(将其埋入)。散热器104将要散热的电子部件103产生的热向外散出。。
要散热的电子部件103产生的热扩散到高导热性的构件105上后,传给散热器104,由散热器104向空气中散热。
按照本实施例的构成,通过高导热性的构件105将散热器104固定在安安装要发热的特别是发热量大的电子部件103的多层底板101的另一面上,能使要散热的电子部件103产生的热能有效地传给散热器104。
多层底板101有绝缘底板101b、在其两面形成的导体电路图案101a。绝缘底板101b两面的导体电路图案101a靠通孔102电连接。绝缘底板101b的材质例如为玻璃纤维织物浸透环氧树脂的玻璃环氧树脂底板、或陶瓷底板。本实施例中,多层底板101如图1所示;为在绝缘底板101b的两面设置着导体电路图案101a的两面底板。多层底板101还可为多层底板或单面底板。绝缘底板101b厚度方向的电连接并不限于通孔,也可以用整个层IVH结构(层间通路孔结构)。
要散热的电子部件103例如MOSFET、IGBT(绝缘栅型双极晶体管)、肖特基势垒二极管等功率半导体元件、及变压器、电阻体等无源元件。
散热器104最好用有高导热系数的铝或铜构成。特别是铜导热性佳,能得到良好的散热特性。而铝,则价廉、有较高导热系数重量又轻。
高导热性的构件105用以未固化状态的热固化树脂和无机填料为主成分的绝缘物构成。由此,能很好实现发热部件103至散热器104的导热系数,散热特性良好。
最好,高导热的构件105所含的热固化树脂至少具有下述三种在高温时仍然有优良电气绝缘性的树脂即环氧树脂、酚醛树脂、氰酸盐MOCN树脂中的一种。特别是环氧树脂不仅电气绝缘性好、耐化学腐蚀性、机械性能(强度等)俱佳,广泛用于半导体封装树脂、电路底板等。
理想的无机填料有从氧化铝、二氧化硅、氧化镁、氮化铝、及氮化硼中选出的至少一种的粉末。在用氧化铝、氮化铝作无机填料用时,能使高导热性的构件105成为导热性优异的材料。氧化镁能提高构件105的导热系数并增大热膨胀系数。氧化硅(尤其是非晶体氧化硅)由于重量轻能实现介电常数小的构件105,能使构件105的热膨胀系数减小。无机填料的添加量最好在绝缘片材(高导热性构件105)全体的795%重量%左右。在要求导热性良好的电路底板上,更加理想的为无机填料的充填量高达88%重量%以上。绝缘片材105无特别的限定,用刮刀制片法、挤出成形法等方法均可制造。
在功率微型组件107方面,安装在与散热器104对置的电路底板面上的部件最好全部是高度低的部件。通过部件全部选高度低的部件减少部件间高度的高低参差,能使多层基板101和散热器104之间配置的高导热性构件105的厚度减薄。由此,能防止发热部件上无谓的荷重,能防止安装发热部件103的多层底板101的导体电路图案101a破损、或在导体电路图案101a上产生裂缝等。另外,从多层底板101至散热器104厚度能减薄,能得到轻而薄的功率微型组件。
按照本实施例的功率微型组件,能靠高导热性的构件105将装在多层底板101上要散热的电子部件103产生的热有效地传给散热器。利用将散热器104和高导热性构件105之间牢固地粘在一起,从而能减少散热器104和高导热性构件105的接触热阴。高导热性构件105能有效地将功率半导体发出的热传给散热片104。由此,能抑制部件的温升。
按照本实施例的功率微型组件107,在制造时(以后将说明)高导热性构件105内产生的空隙中的空气因为从通孔102及高导热性构件105的侧面排出,所以要散热的电子部件103和高导热性构件105均匀地贴紧。
另外,多层底板101上形成的部分通孔102中填入高导热性构件105,通过把多层底板101和高导热性构件105做成一体,能将高导热性构件105和多层底板101粘接在一起。散热器104和多层底板101不必再用螺栓紧固的固定方法。
《实施例2》
利用图2说明实施例2的功率微型组件。
图2为表示本发明实施例2的功率微型组件的构成剖视图。图2中,207为实施例2的功率微型组件。本实施例的功率微型组件207具备:有通孔102的多层底板101、要散热的电子部件103(分别有任意的不同的高度)、散热器104、高导热性构件105、电子部件106。
实施例2的功率微型组件与实施例1的不同之处为高导热性构件105做成要散热的电子部件103的表面只有一部分埋在构件105中,在高导热性构件105和多层底板101的表面之间设置间隙这一点上。高导热性构件105在没有安装要散热的电子部件103的部分上,厚度实质上一样。此外,实施例2的功率微型组件和实施例1的相同。
电子部件103、106一小型化、它们的安装密度一高,就要确实地除去高导热构件105内的小空隙。按照本实施例的功率微型组件207,在制造时(以后将说明)高导热性构件105内产生的空隙中的空气因能确实地从通孔102及高导热性的构件105和多层底板101的表面之间的间隙中排出,所以要散热的电子部件103和高导热性的构件105能可靠并均匀地贴紧。
利用图2所示的构成,实施例2的功率微型组件,从要散热的电子部件103的表面通过高导热性的构件105将热有效地传给散热器104。另外与实施例1相比,因使用的高导热性构件105的量少,故成本降低、重量减轻。
按照本实施例的功率微型组件207,在制造时(以后将说明)高导热性构件105不会沿着通孔102从多层底板101的一面流入另外的一面。
在使用功率微型组件207的装置上,也可为以下的构成,即高导热性构件105和多层底板101的表面之间的间隙中,沿着高导热性构件105用风扇(未图示)将空气送入,将要散热的电子部件103放出的热排出。
《实施例3》
利用图3说明实施例3的功率微型组件。
图3为表示本发明实施例3的功率微型组件构成的剖视图。图3中,307为本实施例的功率微型组件。实施例3的功率微型组件307具备:有通孔102的多层底板101、要散热的电子部件103(分别有任意的高度)、散热器104、高导热性的构件105、电子部件106。
本实施例的功率微型组件与实施例1不同之处为散热器104呈凹状,用散热器104围住包着(埋没)要散热的电子部件103的高导热性构件105。通过做成这样的结构,让要散热的部件103发出的热高效地传给散热器104。在制造时(以后将说明)通过将未固化的构件105充填入散热器104的凹部,防止构件105的流出。
另外,在多层底板101上形成通孔102时,通过高导热性构件105和多层底板101上形成的通孔102间部分地用高导热性构件105充填,做成一体,高导热性构件105和多层底板101可粘接,不必再用螺栓将散热器104和多层底板101紧固的固定方法。
《实施例4》
利用图4说明图1示出的实施例1的功率微型组件107的制造方法。图4为表示图1所示功率微型组件107的实施例4的制造方法的工序图。
图4(a)所示的第1道工序中,多层底板101的一面上安装包括要散热的电子部件103在内的电子部件。要散热的电子部件103例如为MOSFET、IGBT、肖特基势垒二极管等功率半导体元件。另外变压器、电阻等无源元件。多层底板101的另一面(未安装电子部件103的面)上粘接具有粘性的有机薄膜108。由此,在后道工序配置高导热性构件105时,防止未固化的高导热性构件105沿着多层底板101的通孔从多层底板101的另一面流出。
然后,在图4(b)所示的第2道工序中,在多层底板101安装要散热的电子部件103的面上,配置片状的未固化的高导热性构件105及有一样厚度的散热器104。该道工序中,高导热性的构件105和散热器104分开,从上面开始依次排列成散热器104、片状未固化的高导热性构件105、最底下为多层底板101的状态。高导热性的构件105的材质,在实施例1中已作详细说明。
散热器104如实施例1所说明的,例如是铝板、或铜板等。在散热器104的表面,最好作粗糙处理。粗糙处理的方法可列举例如将氧化铝等粉末和压缩空气一起喷在散热器表面的方法。利用散热器表面变粗糙,能增加高导热性构件105和散热器的粘接强度。粗糙处理后的散热器表面积增大,靠锚爪效应增加粘接强度。由此,能降低散热器104和高导热性构件105的接触热阴,通过高导热性构件105能有效地将功率半导体产生的热传给散热器104。
然后,在图4(c)所示的第3道工序中,多层底板101、高导热性的构件105和散热器104层迭形成层迭体401。其后,在面的方向上(图4的上下方向上)对层迭体401加压,加热,从而使高导热性的构件105固化,要散热的电子部件103、高导热性的构件105、及散热器104相互粘接。这时,多层底板101上安装的要散热的电子部件103为埋入高导热性构件105中的状态。
最后,图4(d)所示的第4道工序中,剥离有机薄膜108,电子部件106安装在多层底板101上粘过有机薄膜108一侧的面上,完成功率微型组件107的制作。
实施例4的第3道工序(图4(c))中,因在面方向上对层迭体加热、加压,所以未固化构件105内部空隙中的空气能从通孔102及构件105的侧面(与加压方向正交的方向)排出,电子部件103能可靠地贴紧构件105。
《实施例5》
利用图5说明图1所示的实施例1的功率微型组件107的其它制造方法。图5为表示图1示出的功率微型组件107的实施例5的制造方法的工序图。
在5(a)所示的第1道工序中,多层底板101的1个面上安装包括要散热的电子部件103在内的电子部件。要散热的电子部件103例如为MOSFET、IGBT、肖特基势垒二极管等功率半导体、或变压器、电阻等无源元件。多层底板101的另一面(未装电子部件103的面)上,粘接具有粘性的有机薄膜108。
然后,在图5(b)所示的第2道工序中,在有相同厚度的散热器104上,印刷至少由无机填料和热固化树脂构成的未固化的糊状高导热性构件105使其厚度保持一定。
高导热性构件105用三根绳子把无机填料和液态的热固化树脂混合成糊状。该高导热性构件105在具有适于涂布的粘度的场合,可以就这样作为糊剂使用。另外,在高导热性构件105粘度大的场合,混入在后道工序中能挥发的溶媒,调整成合适的粘度后涂布。作为溶媒,使用沸点比热固化树脂的固化温度低的溶媒。作为印刷高导热性构件105的方法例如有金属掩膜印刷法,网印法等。
然后,在图5(c)所示第3道工序中,将已形成高导热性构件105后的散热器104、安装好要散热的电子部件103的多层底板101层迭起来,使得高导热热性构件105和要散热的电子部件103分别夹在其间。在形成把散热器104、高导热性构件105、多层底板101依上述次序层迭成的层迭体501后,通过在面方向上(图5的上下方向上)对层迭体501加压并加热,使高导热性构件105固化,要散热的电子部件103、高导热性的构件105及散热器104互相粘接。
最后,图5(d)所示的第4道工序中,剥离有机薄膜108,电子部件106安装在多层底板101上粘过有机薄膜108一侧的面上,完成功率微型组件107的制作。
在实施例5的第3道工序(图5(c))中,因在面方向上对层迭体501加压并加热,所以未固化构件105内空隙中的空气能从通孔102及构件105的侧面(与加压方向正交的方向)排出,能使电子部件103可靠地贴紧构件105。
《实施例6》
利用图6说明图2所示实施例2的功率微型组件207的制造方法。图6为表示图2所示功率微型组件207的实施例6的制造方法的工序图。
在图6(a)所示的第1道工序中,多层底板101的1个面上安装包括要散热的电子部件103在内的电子部件。要散热的电子部件103例如为MOSFET、IGBT、肖特基势垒二极管等功率半导体元件、或变压器、电阻等无源元件。在实施例6中,可不粘接有机薄膜108。
然后,在图6(b)所示的第2道工序中,在有一样厚度的散热器104上,印刷至少由无机填料和热固化树脂构成的未固化的糊状高导热性构件105,使其保持一定厚度。关于未固化状态的高导热性构件105的制造方法在实施例5中已详细说明。
然后,在图6(c)所示第3道工序中,将已形成高导热性构件105后的散热器104、安装好要散热的电子部件103的多层底板101层迭在一起,使高导热性的构件105和要散热的电子部件103分别夹在其间。形成把散热器104、高导热性构件105、多层底板101依上述次序层迭成的层迭体601后,通过在两方向上(图6的上下方向上)对层迭体601加压并加热,使高导热性构件105固化,要散热的电子部件103、高导热性构件105、及散热器104互相粘接。
本实施例的层迭体601做成高导热性构件105覆盖安装在多层底板101上的电子部件的表面(或将电子部件的一部分埋没),高导热性构件105和多层底板101之间存在间隙。这一点与实施例5的制造方法不同,在该法中电子部件整体全部埋在导热性构件105中。
最后,在图6(d)所示的第4道工序中,电子部件106装在多层底板101未装电子部件103的面上,完成功率微型组件207的制作。
在实施例6的第3道工序(图6(c)中),在面方向上对层迭体601加热并加压时,因未固化构件105内部的空隙中空气能从通孔102及高导热性构件105与多层底板101之间的间隙中排出,所以能使电子部件103可靠地贴紧构件105。
在实施例6中,图6(b)所示第2道工序中,在有一样厚度的散热器104上印刷未固化糊状的高导热性构件105使其成一定厚度。当然也可以用以下的方法替代,即在多层底板101已安装要散热的电子部件103的面上,配置片状未固化的高导热性构件105、片状的散热器104(图4(b)),对这些层迭体(在高导热性构件105和多层底板101间设置规定间隙)加压并加热。
《实施例7》
利用图7说明图3所示实施例3的功率微型组件307制造方法。图7表示图3所示功率微型组件307的实施例7的制造方法的工序图。
图7(a)所示的第1道工序中,多层底板101的1个面上安装包括要散热的电子部件103在内的电子部件、要散热的电子部件103例如为MOSFET、IGBT、肖特基势垒二极管等功率半导体元件,或变压器、电阻等无源元件。多层底板101的另一面(未装电子部件103的面)上,粘接着有粘性的有机薄膜108。
然后,在图7(b)所示的第2道工序中,散热器104做成凹形。形成至少由无机填料和热固化树脂构成的未固化糊状的高导热性构件105。关于未固化状态的高导热性构件105的制造方法在实施例5已详细说明。未固化糊状的高导热性构件105充填入散热器104的凹部702内。
也可以用下述方法替代,即把未固化的片状的高导热性构件105截断成凹部的形状后,充填入凹部702内(和图4(实施例4)类似的方法)。
然后,在图7(c)所示的第3道工序中,做成在多层底板101已安装要散热的电子部件103的面与充填入散热器104的凹部702内的高导热性构件105相向对置,散热器104、高导热性的构件105、多层底板101依上述次序层迭。
然后,如图7(d)所示的第4道工序中,利用加热炉,使高导热性的构件105固化,从而由高导热性构件105覆盖安装在多层底板101上全体要散热的电子部件103(埋没在高导热性构件105中),形成层迭体701。
最后,在图7(e)所示的第5道工序中,剥出有机薄膜108,电子部件106装在多层底板101粘接过有机薄膜108一侧的面上,完成功率微型组件的制作。
当然可以代替图7(d)所示的第4道工序,用加热炉,由高导热性构件105覆盖多层底板101上安装的要散热的部分电子部件103(埋没在高导热性构件105中),高导热性构件105和多层底板101间设置规定的间隙形成层迭体701。利用该法,能制造实施例8的功率微型组件807(后述)。
《实施例8》
利用图8说明实施例8的功率微型组件。
图8为表示本发明实施例8的功率微型组件构成的剖视图。在图8,807为实施例8的功率微型组件。本实施例的功率微型组件807具备:有通孔102的多层底板101、要散热的电子部件103(分别有任意、不同的高度)、散热器104、高导热性构件105、电子部件106。
实施例8的功率微型组件与实施例3的不同处为形成高导热性构件105,使要散热的电子部件103的表面只有一部分埋在构件105中,高导热性构件105和多层底板101的表同之间设置间隙。高导热性构件105在未装要散热的电子部件103的部分厚度实质上一样。除此以外,实施例8的功率型组件和实施例3的一样。
电子部件103、及106一做得小,就要切实地除去高导热性构件105内小空隙。按照本实施例的功率微型组件207,在制造时(以后将说明),高导热性的构件105内产生的空隙中的空气因能从通孔102及高导热性构件105及多层电路底板101的表面间的间隙确实地排出,故要散热的电子部件103和高导热性的构件105均匀地贴紧。
本实施例的功率微型组件807中,散热器104为凹形,用散热器104围住包着(埋没)要散热的电子部件103的高导热性构件105。高导热性构件105在未装要散热的电子部件103的部分,厚度实质上一样。通过这种构成,能有效地使要散热的电子部件103产生的热传给散热器104。通过在制造时(以后将说明)未固化的构件105充填入散热器104的凹部,能防止构件105流出。另外,与实施例3相比,所用的高导热性构件105的量也少,故能降低成本、减轻重量。
按照本实施例的功率微型组件807,在制造时(以后将说明),高导热性的构件105不会沿着通孔102从多层底板101的一面流入另一面。
在组入功率微型组件807的装置中可以为以下的构成,即沿着高导热性构件105由风扇(未图示)把空气送入高导热性构件105和多层底板101的表面之间的间隙里,排出要散热的电子部件103放出的热。
《实施例9》
利用图9说明实施例9的功率微型组件。
图9为表示本发明的实施例9的功率微型组件构成的剖视图。在图9中,907为实施例9的功率微型组件。本实施例的功率微型组件具备:有通孔102的多层底板101、要散势的电子部件103及109(分别有任意、不同的高度)、散热器104、高导热性构件105、电子部件106。
要散热的电子部件109和电子部件103相同,例如为MOSFET、IGBT(绝缘栅型双极晶体管)、肖特间势垒二极管等功率半导体元件、及变压器、电阻等无源元件。
实施例9的功率微型组件907和实施例1的不同处为在多层底101的两面,安装要散热的电子部件103及109,形成高导热性构件105及散热器104。降此以外,实施例9的功率微型组件和实施例1的相同。
本实施例的功率微型组件自上而下依次由散热器104、高导热性构件105、多层底板101、高导热性构件105、散热器104等5层构成。多层底板101在绝缘底板101b上安装电子部件103、106、109。多层底板101两面的面上分别配置要散热的电子部件103及109。高导热性构件105包围要散热的电子部件103、109(埋没)。散热器104把要散热的电子部件103、109上产生的热向外部散发。
要散热的电子部件103、109上产生的热向高导热性构件105扩散后,传给散热器104,从散热器104把热散发到空气中。
按照本实施例的功率微型组件,利用高导热性构件105把安装在多层底板101的两面、要散热的电子部件103、109产生的热高效地传绘画散热器104。通过散热器104和高导热性构件105间牢固地粘接,能降低散热器104和高导热性构件105间的接触热阴。高导热性构件105能有效地将功率半导体产生的热传给散热器104。由此,能抑制部件的温升。
《实施例10》
利用图10说明实施例10的功率微型组件。
图10为表示本发明实施例10的功率微型组件构成的剖视图。在图10中,1007为实施例10的功率微型组件图。本实施例的功率微型组件1007具备:有通孔102的多层底板101、要散热的电子部件103、109(分别有任意、不同的高度)、散热器104、高导热性的构件105、电子部件106。
实施例10的功率微型组件与实施例9的不同处为形成高导热性构件105,使要散热的电子部件103、109的表面仅一部分埋在构件105中,高导热性构件105和多层底板101的表面之间设置间隙。高导热性的构件105在未装要散热的电子部件103及109的部分厚度实质上一样。此外,实施例10的功率微型组件和实施例9的一样。
通孔102及电子部件103、109一做小,则就要切实除去高导热性构件105内的小空隙。按照本实施例的功率微型组件1007,制造时(以后将说明)高导热性构件105内产生的空隙中的空气能确实地从通孔102及高导热性构件105和多层底板101的表面间排出,故要散热的电子部件103、及109和高导热性的构件105均匀地贴紧。
利用图10所示的构成,实施例10的功率微型组件能从要散热的电子部件103、109的表面,通过高导热性构件105有效地将热传给散热器104。另因与实施例9比所用高导热性构件105的量少,故能降低成本、减轻重量。
按照本实施例的功率微型组件1007,在制造时(以后将说明)高导热性构件1005不会沿着通孔102从多层底板101的一面流入另一面。
在使用功率微型组件的装置中可构成为,沿着高导热性构件105由风扇(未图示)将空气送入高导热性构件105和多层底板101的表面之间的间隙里,排出要散热的电子部件103、109放出的热。
《实施例11》
利用图11说明实施例11的功率微型组件。
图11为表示本发明实施例11的功率微型组件构成的剖视图。
在图11,1107为本实施例的功率微型组件。实施例11的功率微型组件1107包括:有通孔102的多层底板101、要散热的电子部件103、109(分别有任意、不同的高度)、散热器104、高导热性构件105、电子部件106。
本实施例的功率微型组件与实施例10不同处为散热器104成凹形,用散热器104围位包着(埋没)要散热的电子部件103、109的高导热性构件105。利用这样的构成,能有效地将要散热的部件103产生的热传给散热器104。在制造时(以后将说明)通过把未固化的构件105充填入散热器104的凹部,防止构件105的流出。
《实施例12》
利用图12说明实施例12的功率微型组件。
图12为表示本发明实施例12的功率微型组件构成的剖视图。在图12,1207为本实施例的功率微型组件。实施例12的功率微型组件1207包括:有通孔1202的多层底板101、要散热的电子部件103、109(分别有任意、不同的高度)、散热器104、高导热性构件105、电子部件106。
实施例12的功率微型组件与实施例11的不同处为形成高导热性构件105,使要散热的电子部件103、109的表面仅一部分埋在构件105中,在高导热性构件105和多层底板101的表面之间设置间隙。高导热性的构件105在未装要散热的电子部件103、109的部分厚度实质上一样。此外,实施例12的功率微型组件和实施例11的一样。
电子部件103、109一小型化,就要切实除去高导热性构件105内的小空隙。按照本实施例的功率微型组件1207在制造时(以后将说明)高导热性构件1 05内产生的空隙中的空气能从通孔102及高导热性构件105和多层底板101的表面间的间隙确实地排出,故要放热的电子部件103、109和高导热性构件105均匀地贴紧。
本实施例的功率微型组件1207散热器104为凹形,用散热器104围住包着(埋没)要散热的电子部件103、109的高导热性构件105,利用这样的构成,要散热的电子部件103、109产生的热能有效地传给散热器104。制造时(以后将说明)通过将未因化的构件105充填写入散热器104的凹部,从而能防止构件105的流出。另因与实施例3比所用高导热性构件105的量少,故能降低成本、减轻重量。
在使用功率微型组件的装置中可构成为,沿着高导热性构件105,由风扇(未图示)地空气送入高导热性构件105和多层底板101的表面之间的间隙里,排出要散热的电子部件103、109放出的热。
《实施例13》
利用图13说明图9所示功率微型组件907的制造方法。图13为表示图9所示功率微型组件907的实施例13的制造方法的工序图。
在图13(a)所示的第1道工序中,要散热的电子部件103、106安装在多层底板101的一个面上,另一面上安装要散热的电子部件109。
然后,在图13(b)所示的第2道工序中,在有一样厚度的散热器104上印刷至少由无机填料和热固化树脂构成的未固化糊状的高导热性构件105使其成一定厚度。关于未固化状态的高导热性构件105的制造方法,在实施例5中已详细说明过。
然后,在图13(c)所示的第3道工序中,多层底板101的各个面上两面同时或每一同依序形成层迭体,该层迭体为把多层底板101和散热器104层迭在一起与散热器104上已形成的高导热性构件105相向设置。这时多层底板101上安装的要散热的电子部件103、109为埋没在高导热性构件105中的状态。在面方向上(图13的上下方向上)对层迭体加压,加热,使高导热性构件105硬化,要散热的电子部件103、109、和高导热性构件105互相粘接,完成功率微型组件907制作。在减压的环境中执行第3道工序,更能防止空隙的发生。
《实施例14》
利用图14说明图10示出的功率微型组件1007的制造方法。图14为表示图10所示的功率微型组件1007的实施例14的制造方法工序图。
图14(a)所示第1道工序中,多层底板101的1个面安装要散热的电子部件103、106。在有一样厚度的散热器104上印刷至少由无机填料和热固化树脂构成的未固化糊状的高导热性构件105使其成一定厚度。关于未固化状态的高导热性构件105的制造方法在实施例5中已详细说明过。
然后,在图14(b)所示的第2道工序中,已形成高导热性构件105的散热器104和安装好要散热的电子部件103的多层底板101层迭在一起,分别使高导热性构件105和要散热的电子部件103夹在其间。在散热器104、高导热性构件105、多层底板101依上述次序层迭形成层迭体1401后,通过在面方向上(图14的上下方向上)对层迭体1401加压并加热,从而使高导热性构件105固化,要散热的电子部件103、高导热性构件105、及散热器104相互粘接。层迭体1401形成为高导热性构件105覆盖多层底板101上安装的电子部件的表面(或埋没电子部件的一部分),高导热性构件105和多层底板101间有间隙存在。高导热性构件105在未装要散热的电子部件103的部分,厚度实质上一样。
然后,在图14(c)所示的第3道工序中,多层底板101的、在第1道工序中未装电子部件103及106的面上,安装要散热的电子部件109。在有着一样厚度的散热器104上印刷至少由无机填料和热固化性树脂构成的未固化糊状的高导热性构件105使其成一定厚度。
最后,在图14(d)所示的第4道工序中,将已形成高导热性构件105的散热器104、和安装好要散热的电子部件109的多层底板101层迭,使高导热性构件105和要散热的电子部件109分别夹在其间。尔后通过在面方向上(图14的上下方向上)对这些层迭体加压并加热,使高导热性构件105固化,要散热的电子部件109、高导热性构件105、及散热器104互相粘接,完成功率微型组件1007的制作。
功率微型组件1007做成高导热性构件105覆盖在多层底板101上安装的电子部件的表面(或电子部件部分埋没),高导热性构件105和多层底板101之间有间隙。
实施例14的第2(图14(b))及第4道工序(图14(d)中,在面方向上对层迭体加压并加热时,因未硬化的构件105内空隙中的空气从通孔102和高导热性构件105与多层底板101间的间隙中排出,能牢靠地使电子部件103及109贴紧在构件105上。
《实施例15》
利用图15说明图10所示的功率微型组件1007的其它制造方法。图15表示图10所示功率微型组件1007的实施例15的制造方法的工序图。
实施例15的第1(图15(a))及第(图15(b))道工序和实施例13的第1(图13(a)及第2(图13(b))道工序分别相同,故不再说明。
图15(c)所示的第3道工序中,在多层底板101的各个面上同时形成层迭体,该层迭体为多层底板101和散热器104层迭在一起,与散热器104上已形成的高导热性构件105相向设置。层迭体做成高导热性构件105覆盖多层底板101上安装的电子部件的表面(或电子部件部分埋没),高导热性构件105和多层底板101之间有间隙。高导热性构件105在未装要散热的电子部件103、109的部分,厚度实质上一样。然后,在现方向上(图15的上下方向上)对层迭体加压并加热,使高导热性构件105固化,要散热的电子部件103、109和高导热性构件互相粘接,完成功率组件1007的制作。
用实施例15的方法,多层底板101的两面同时粘接散热器104及高导热性构件105。与实施例14的制造方法相比,工序道次减少,故能廉价地制造实施例10的功率微型组件1007。
《实施例16》
利用图16说明图11所示功率微型组件1107的制造方法。图16为表示图11所示功率微型组件1107的实施例16的制造方法的工序图。
图16(a)所示的第1道工序中,在多层底板101的1个面上安装要散热的电子部件103、106,其它的面安装要散热的电子部件109。
然后,在图16(b)所示的第2道工序中,散热器104做成凹形。形成至少由无机填料和热固化树脂构成的未固化糊状的高导热性构件105。未固化状态的高导热性构件105的制造方法在实施例5中已详细说明。该未固化糊状的高导热性构件105充填在散热器104的凹部内。
也可以把未固化的片状的高导热性构件105裁断成凹部的形状后,填入凹部内(和图4(实施例4)类似的方法),以此代替前述的方法。
然后,将多层底板101和两片散热器104层迭,使得多层底板101的各个面和散热器104的凹部内充填的高导热性构件105相向对置。
最后,在图16(c)所示的第3道工序中,利用加热炉,通过逗留同导热性构件105在两面上同时(或每一面依次)固化,从而用高导热性构件105将多层底板105上安装的要散热的全体电子部件覆盖起来(埋在高导热性构件105内),完成功率微型组件1107的制作。
实施例16的制造方法的全部工序都在其空槽内实施。据此,高导热性构件105内部不留空隙,电子部件103、109能牢靠地贴紧构件105。
《实施例17》
利用图17说明图12所示功率微型组件1207的制造方法。图17为表示图12所示功率微型组件1207的实施例17的制造方法的工序图。
图17(a)所示的第1工序中,在多层底板101的1个面上,安装要散热的电子部件103、106。
然后,散热器104做成凹形。形成至少由无机填料和热固化树脂构成的未固化糊状的高导热性构件105。未固化状态的高导热性构件105的制造方法在实施例5中已详细说明。把未固化糊状的高导热性构件105充填在散热器104的凹部内。
也可以将未固化的片状的高导热性构件105裁断后,填入凹部内(和图4(实施例4)类似的方法),以此代替前述的方法。
然后,在图17(b)所示的第2道工序中,将多层底板101、散热器104配置成与多层底面101已安装电子部件103的面、充填在散热器104凹部内的高导热性构件105相向设置、并层迭。高导热性构件105在未装要散热的电子部件103的部分厚度实质上一样。通过用加热炉子,使高导热性的构件105固化,用高导热性构件105覆盖多层底板101上安装的要散热的电子部件103的表面(或埋没电子部件的一部分)。
然后,在图17(c)所示的第3道工序中,在多层底板101的、第1道工序中未安装电子部件的面上,安装要散热的电子部件109。
然后,散热器104做成凹形,形成至少由无机填料和热固化树脂构成的未硬化糊状的高导热性构件105。将未固化糊状的高导热性部件105充填入散热器104的凹部内。
最后,在图17(d)所示的第4道工序中,将多层底板101、散热器104配置成和多层底板101安装电子部件109的面、充填入散热器104的凹部内的高导热性构件105相向设置、并层迭。高导热性构件105在未装要散热的电子部件109的部分,厚度实质上一样。通过用加热炉子,使高导热性构件105固化,由高导热性构件105覆盖多层底板上安装的要散热的电子部件109的表面(或者埋没电子部件的一部分),完成功率微型组件1207的制作。
《实施例18》
利用图18说明图12所示功率微型组件1207的其它制造方法。图18为表示图12所示的功率微型组件1207的实施例18的制造方法的工序图。
实施例18的第1(图18(a))及第2(图18(b))道工序和实施例16的第1(图16(a))及第2(图16(b))道工序分别相同,故不再说明。
图18(c)所示的第3道工序中,将多层底层101、散热器104配置成与多层底板101的各个面、充填在散热器104内的高导热性构件105对置,两个面同时层迭。高导热性构件105在装要散热的电子部件103及109的部分厚度实质上一样。通过用加热炉,使高导热性构件105固化,由高导热性构件105覆盖多层底板101上安装的要散热的电子部件1-3及109的表面(或埋没电子部件的一部分),完成功率微型组件1207的制作。
用实施例18的方法,多层底板101的两面同时粘接散热器104及高导热性的构件105。和实施例17的制造方法比,工序道次减少,故能廉价地制造实施例12的功率微型组件1207。
实施例18的制造方法的全部工序在常压下实施。因未固化构件105内空隙中的空气能从通孔102及高导热性的构件105与多层底板101间的间隙中排出,所以电子部件103、109能与构件105牢靠地贴紧。
通过用实施例4-实施例7及实施例13-实施例18的方法制造功率微型组件,从而能使有任意、不同高度的电子部件103(或103及109)产生的热通过可靠性好、高导热性构件105传给散热器104。据此,能实现有良好用热特性的功率微型组件的制造方法。另外,通过高导热性构件105和散热器104粘接成一体,能降低接触热阴,能实现一种散热特性良好的功率微型组件的制造方法。
还有,当然可以在实施例9-实施例12的功率微型组件中,多层底板101配置要散热的电子部件109的面上安装电子部件106。
在实施例13、14、15中,在有一样厚度的散热器104上将未固化糊状的高导热性构件105印刷成一定厚度,把已形成高导热性构件105的散热器104配置在多层底板101安装好电子部件的面上,对这些层迭体加压并加热。当然可以将片状未固化的高导热性构件105、片状的散热器104配置在多层底板101安装电子部件的面上,对这些层迭体加压并加热(图4(实施例4)的方法),以此代替上述方法。
利用本发明能获得十分有益的效果,即能制造散热性良好、耐热可靠性高、其结构适于廉价生产的功率微型组件。
利用本发明能获得十分有益的效果,即能制造出靠通用的散热器或形状简单的散热器,可有效地对电路底板上安装的、各种高度的部件产生的热进行冷却的功率微型组件。
利用本发明能获得十分有益的效果,即通过散热部件小型化、减轻重量,能制造出重量轻的功率微型组件。
对于本发明较佳的形态在某种程度上作了详细的说明,但该适合形态现在揭示的内容在构成的细节上可作变化,各要素的组合、顺序的变化只要不脱离所申请的发明范围及构思均可实现。

Claims (8)

1.一种功率微型组件,其特征在于,包括:
具有第一和第二表面的电路底板,所述电路底板的第一表面包含安装在所述电路底板上的多个第一器件和多个第二器件,所述电路底板与所述多个第一器件和多个第二器件一起构成功率变换电路,所述多个第一器件中的每一个都具有高发热量;
安装在所述电路底板的第一表面上的第一散热器,以及
具有绝缘性和高导热性的第一构件,所述第一构件配置在所述多个第一器件和多个第二器件与所述第一散热器之间,并且所述第一构件具有第一部分和第二部分,
所述第一构件的所述第一部分粘接于所述多个第一器件的每一个,以从所述多个第一器件把热传给所述第一散热器,
所述第一构件的所述第二部分与所述多个第一器件和多个第二器件以及所述电路底板之间有间隙且不接触,所述第一构件在该第二部分上的厚度为一定。
2.如权利要求1所述的功率微型组件,其特征在于,
所述第一散热器有凹部,所述第一构件充填在所述凹部内。
3.如权利要求1所述的功率微型组件,其特征在于,
所述第一构件以热固化树脂及无机填料为主成分。
4.如权利要求1所述的功率微型组件,其特征在于,
所述多个第一器件和多个第二器件全部是高度低的器件,且都安装在所述电路底板面对所述第一散热器的一侧。
5.如权利要求1所述的功率微型组件,其特征在于,
所述电路底板的所述第二表面包括安装在该第二表面上的多个第三器件和多个第四器件,所述电路底板以及所述多个第一器件、多个第二器件、多个第三器件和多个第四器件一起构成所述功率变换电路,所述多个第三器件中的每一个都具有高发热量,
所述功率微型组件还包括:
安装在所述电路底板的所述第二表面上的第二散热器;以及
具有绝缘性和高导热性的第二构件,所述第二构件配置在所述多个第三器件和多个第四器件与所述第二散热器之间,并且所述第二构件具有第一部分和第二部分,
所述第二构件的所述第一部分粘接于所述多个第三器件的每一个,以从所述多个第三器件把热传给所述第二散热器,
所述第二构件的所述第二部分与所述多个第三器件和多个第四器件以及所述电路底板之间有间隙且不接触,所述第二构件在其第二部分上的厚度为一定。
6.一种功率微型组件的制造方法,其特征在于,包括下述工序:
在电路底板的第一表面上安装多个第一器件和多个第二器件的安装工序,所述电路底板和所述多个第一器件和多个第二器件一起构成功率变换电路,所述多个第一器件中的每一个都具有高发热量;
在所述电路底板的第一表面上将有绝缘性和高导热性的未固化的第一构件与第一散热器层迭在一起形成第一层迭体的第一层迭工序,所述第一构件配置在所述多个第一器件和多个第二器件与所述第一散热器之间;以及
对所述第一层迭体加压并加热,使所述第一构件固化,并粘接所述电路底板、所述第一构件、以及所述第一散热器的粘接工序,
其中,所述第一构件具有第一部分和第二部分,
在所述粘接工序中,所述第一构件的所述第一部分粘接于所述多个第一器件的每一个,以从所述多个第一器件把热传给所述第一散热器,
在所述粘接工序中,所述第一构件的所述第二部分与所述多个第一器件和多个第二器件以及所述电路底板之间有间隙且不接触,所述第一构件在该第二部分上的厚度为一定。
7.如权利要求6所述的功率微型组件的制造方法,其特征在于,
所述安装工序包括在所述电路底板的所述第二表面上安装多个第三器件和多个第四器件的工序,所述电路底板以及所述多个第一器件、多个第二器件、多个第三器件和多个第四器件一起构成所述功率变换电路,所述多个第三器件中的每一个都具有高发热量,
所述制造方法还包括在所述电路底板的第二表面上将有绝缘性和高导热性的未固化的第二构件与第二散热器层迭在一起形成第二层迭体的第二层迭工序,所述第二构件配置在所述多个第三器件和多个第四器件与所述第二散热器之间,
所述第一层迭工序和所述第二层迭工序同时进行,
在所述粘接工序中,除了所述第一层迭体之外还对所述第二层迭体加压并加热,使所述第一构件和第二构件固化,并粘接所述电路底板、所述第一构件、所述第二构件、所述第一散热器和所述第二散热器,
所述第二构件具有第一部分和第二部分,
在所述粘接工序中,所述第二构件的所述第一部分粘接于所述多个第三器件的每一个,以从所述多个第三器件把热传给所述第二散热器,
在所述粘接工序中,所述第二构件的所述第二部分与所述多个第三器件和多个第四器件以及所述电路底板之间有间隙且不接触,所述第二构件在其第二部分上的厚度为一定。
8.如权利要求6所述的功率微型组件的制造方法,其特征在于,
所述第一散热器在与所述电路底板对置的面上有凹部,
所述第一层迭工序中,向所述凹部中填充未固化的所述第一构件,在所述电路底板的第一表面上形成所述第一构件和所述第一散热器层迭成的层迭体。
CN03154861.XA 2002-08-21 2003-08-21 功率微型组件及其制造方法 Expired - Fee Related CN1283134C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002241235 2002-08-21
JP2002241235 2002-08-21

Publications (2)

Publication Number Publication Date
CN1496218A CN1496218A (zh) 2004-05-12
CN1283134C true CN1283134C (zh) 2006-11-01

Family

ID=32051349

Family Applications (1)

Application Number Title Priority Date Filing Date
CN03154861.XA Expired - Fee Related CN1283134C (zh) 2002-08-21 2003-08-21 功率微型组件及其制造方法

Country Status (2)

Country Link
US (1) US7057896B2 (zh)
CN (1) CN1283134C (zh)

Families Citing this family (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1784785A (zh) * 2003-05-09 2006-06-07 松下电器产业株式会社 电路元件内置模块
US7180008B2 (en) * 2004-01-23 2007-02-20 Pitney Bowes Inc. Tamper barrier for electronic device
US7532481B2 (en) * 2004-04-05 2009-05-12 Mitsubishi Materials Corporation Al/AlN joint material, base plate for power module, power module, and manufacturing method of Al/AlN joint material
JP2005341630A (ja) * 2004-05-24 2005-12-08 Mitsubishi Electric Corp 電力変換装置
US20060018098A1 (en) * 2004-07-22 2006-01-26 Adrian Hill PCB board incorporating thermo-encapsulant for providing controlled heat dissipation and electromagnetic functions and associated method of manufacturing a PCB board
US7365273B2 (en) * 2004-12-03 2008-04-29 Delphi Technologies, Inc. Thermal management of surface-mount circuit devices
US7236368B2 (en) * 2005-01-26 2007-06-26 Power-One, Inc. Integral molded heat sinks on DC-DC converters and power supplies
US20060186104A1 (en) * 2005-02-22 2006-08-24 Winter John A Fluid deposition of electrically conductive strips and articles having solid electrically conductive strips obtained therefrom
WO2006095436A1 (ja) * 2005-03-11 2006-09-14 Fujitsu Limited 吸熱部材、冷却装置及び電子機器
JP2006303106A (ja) * 2005-04-19 2006-11-02 Denso Corp 電子回路装置
US7382620B2 (en) * 2005-10-13 2008-06-03 International Business Machines Corporation Method and apparatus for optimizing heat transfer with electronic components
KR100677620B1 (ko) * 2005-11-22 2007-02-02 삼성전자주식회사 전자기기의 냉각 방법 및 냉각 효율이 향상된 전자기기
US8159828B2 (en) * 2007-02-23 2012-04-17 Alpha & Omega Semiconductor, Inc. Low profile flip chip power module and method of making
US7492594B2 (en) * 2007-05-03 2009-02-17 Hamilton Sundstrand Corporation Electronic circuit modules cooling
JP2009182095A (ja) * 2008-01-30 2009-08-13 Fujifilm Corp 光電変換素子及び固体撮像素子
JP5248151B2 (ja) * 2008-03-12 2013-07-31 株式会社マキタ 電動工具
FR2953094B1 (fr) * 2009-11-20 2011-12-09 Thales Sa Dispositif de dissipation thermique, notamment pour composants verticaux et/ou de forme complexe
US20120314390A1 (en) * 2010-03-03 2012-12-13 Mutual-Tek Industries Co., Ltd. Multilayer circuit board
US8427828B2 (en) * 2010-07-20 2013-04-23 Themis Computer Printed circuit board module enclosure and apparatus using same
JP5716972B2 (ja) 2013-02-05 2015-05-13 株式会社デンソー 電子部品の放熱構造およびその製造方法
WO2014142245A1 (ja) * 2013-03-14 2014-09-18 矢崎総業株式会社 電子部品の組付構造及び電気接続箱
KR101407194B1 (ko) * 2013-05-10 2014-06-12 현대오트론 주식회사 차량의 전자제어장치
JP6079461B2 (ja) 2013-06-12 2017-02-15 富士通株式会社 伝熱構造板、伝熱構造板モジュール及び海中機器
US9560737B2 (en) 2015-03-04 2017-01-31 International Business Machines Corporation Electronic package with heat transfer element(s)
US9883612B2 (en) 2015-06-02 2018-01-30 International Business Machines Corporation Heat sink attachment on existing heat sinks
US10426037B2 (en) 2015-07-15 2019-09-24 International Business Machines Corporation Circuitized structure with 3-dimensional configuration
US9578764B1 (en) 2015-09-25 2017-02-21 International Business Machines Corporation Enclosure with inner tamper-respondent sensor(s) and physical security element(s)
US10175064B2 (en) 2015-09-25 2019-01-08 International Business Machines Corporation Circuit boards and electronic packages with embedded tamper-respondent sensor
US10172239B2 (en) 2015-09-25 2019-01-01 International Business Machines Corporation Tamper-respondent sensors with formed flexible layer(s)
US9591776B1 (en) 2015-09-25 2017-03-07 International Business Machines Corporation Enclosure with inner tamper-respondent sensor(s)
US9911012B2 (en) 2015-09-25 2018-03-06 International Business Machines Corporation Overlapping, discrete tamper-respondent sensors
US10098235B2 (en) 2015-09-25 2018-10-09 International Business Machines Corporation Tamper-respondent assemblies with region(s) of increased susceptibility to damage
US9924591B2 (en) 2015-09-25 2018-03-20 International Business Machines Corporation Tamper-respondent assemblies
US9894749B2 (en) 2015-09-25 2018-02-13 International Business Machines Corporation Tamper-respondent assemblies with bond protection
CN105261597B (zh) * 2015-10-10 2018-01-12 惠州智科实业有限公司 一种管道散热模组
US10143090B2 (en) 2015-10-19 2018-11-27 International Business Machines Corporation Circuit layouts of tamper-respondent sensors
US9978231B2 (en) 2015-10-21 2018-05-22 International Business Machines Corporation Tamper-respondent assembly with protective wrap(s) over tamper-respondent sensor(s)
CN105338794B (zh) * 2015-11-18 2018-07-31 成都雷电微力科技有限公司 一种相控阵雷达t/r模块及其散热组件
US9913389B2 (en) 2015-12-01 2018-03-06 International Business Corporation Corporation Tamper-respondent assembly with vent structure
US10327343B2 (en) 2015-12-09 2019-06-18 International Business Machines Corporation Applying pressure to adhesive using CTE mismatch between components
US9555606B1 (en) 2015-12-09 2017-01-31 International Business Machines Corporation Applying pressure to adhesive using CTE mismatch between components
US9554477B1 (en) 2015-12-18 2017-01-24 International Business Machines Corporation Tamper-respondent assemblies with enclosure-to-board protection
US9916744B2 (en) 2016-02-25 2018-03-13 International Business Machines Corporation Multi-layer stack with embedded tamper-detect protection
US9904811B2 (en) 2016-04-27 2018-02-27 International Business Machines Corporation Tamper-proof electronic packages with two-phase dielectric fluid
US9881880B2 (en) 2016-05-13 2018-01-30 International Business Machines Corporation Tamper-proof electronic packages with stressed glass component substrate(s)
US9913370B2 (en) 2016-05-13 2018-03-06 International Business Machines Corporation Tamper-proof electronic packages formed with stressed glass
EP3255665B1 (en) 2016-06-08 2022-01-12 AT & S Austria Technologie & Systemtechnik Aktiengesellschaft Electronic device with component carrier and method for producing it
US9858776B1 (en) 2016-06-28 2018-01-02 International Business Machines Corporation Tamper-respondent assembly with nonlinearity monitoring
US10321589B2 (en) 2016-09-19 2019-06-11 International Business Machines Corporation Tamper-respondent assembly with sensor connection adapter
US10271424B2 (en) 2016-09-26 2019-04-23 International Business Machines Corporation Tamper-respondent assemblies with in situ vent structure(s)
US10299372B2 (en) 2016-09-26 2019-05-21 International Business Machines Corporation Vented tamper-respondent assemblies
EP3302006A1 (en) 2016-09-30 2018-04-04 AT & S Austria Technologie & Systemtechnik Aktiengesellschaft Component carrier comprising at least one heat pipe and method for producing said component carrier
US9999124B2 (en) 2016-11-02 2018-06-12 International Business Machines Corporation Tamper-respondent assemblies with trace regions of increased susceptibility to breaking
CN106376201A (zh) * 2016-11-08 2017-02-01 天津深之蓝海洋设备科技有限公司 一种rov推进器尾盖、rov推进器及rov
US10327329B2 (en) 2017-02-13 2019-06-18 International Business Machines Corporation Tamper-respondent assembly with flexible tamper-detect sensor(s) overlying in-situ-formed tamper-detect sensor
US10306753B1 (en) 2018-02-22 2019-05-28 International Business Machines Corporation Enclosure-to-board interface with tamper-detect circuit(s)
US11122682B2 (en) 2018-04-04 2021-09-14 International Business Machines Corporation Tamper-respondent sensors with liquid crystal polymer layers
US20200286712A1 (en) * 2019-03-05 2020-09-10 Advanced Energy Industries, Inc. Single-turn and laminated-wall inductively coupled plasma sources
US11063495B2 (en) 2019-07-01 2021-07-13 Nidec Motor Corporation Heatsink clamp for multiple electronic components
DE102019213962A1 (de) * 2019-09-13 2021-03-18 Vitesco Technologies Germany Gmbh Getriebesteuergerät, Kraftfahrzeug und Verfahren zur Umspritzung einer Leiterplatte eines Getriebesteuergeräts
DE102020215148A1 (de) 2020-12-01 2022-06-02 Vitesco Technologies Germany Gmbh Leistungshalbleitermodul und Antriebsstrang für ein Fahrzeug aufweisend ein derartiges Leistungshalbleitermodul

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4712160A (en) * 1985-07-02 1987-12-08 Matsushita Electric Industrial Co., Ltd. Power supply module
JP2536657B2 (ja) 1990-03-28 1996-09-18 三菱電機株式会社 電気装置及びその製造方法
US5172213A (en) * 1991-05-23 1992-12-15 At&T Bell Laboratories Molded circuit package having heat dissipating post
DE4326207A1 (de) * 1992-10-06 1994-04-07 Hewlett Packard Co Mechanisch schwimmendes Mehr-Chip-Substrat
KR100307465B1 (ko) * 1992-10-20 2001-12-15 야기 추구오 파워모듈
JPH09246433A (ja) 1996-03-04 1997-09-19 Fujitsu Ten Ltd モジュールの放熱構造
US5835350A (en) * 1996-12-23 1998-11-10 Lucent Technologies Inc. Encapsulated, board-mountable power supply and method of manufacture therefor
CA2255441C (en) * 1997-12-08 2003-08-05 Hiroki Sekiya Package for semiconductor power device and method for assembling the same
JP4121185B2 (ja) * 1998-06-12 2008-07-23 新電元工業株式会社 電子回路装置

Also Published As

Publication number Publication date
CN1496218A (zh) 2004-05-12
US20040070946A1 (en) 2004-04-15
US7057896B2 (en) 2006-06-06

Similar Documents

Publication Publication Date Title
CN1283134C (zh) 功率微型组件及其制造方法
CN1146988C (zh) 半导体功率器件的封装及其组装方法
CN1157105C (zh) 内装电路器件组件及其制造方法
CN1863434A (zh) 零件安装基板结构及其制造方法
CN1204610C (zh) 安装电子元件后的零件的制造方法及其制造装置
CN1815719A (zh) 半导体器件及其制造方法和装置
CN1216419C (zh) 布线基板、具有布线基板的半导体装置及其制造和安装方法
CN1244139C (zh) 半导体器件和半导体组件
CN1495893A (zh) 半导体器件及其制造方法
CN1303677C (zh) 电路基板、带凸块的半导体元件的安装结构和电光装置
CN1205662C (zh) 内置电元件的组件及其制造方法
CN1832163A (zh) 摄像模块及其制造方法
CN1977399A (zh) Led部件及其制造方法
CN1390088A (zh) 电力组件及其制造方法
CN1492521A (zh) 半导体器件和一种使用该半导体器件的光学器件
CN1877824A (zh) 半导体器件、层叠式半导体器件和半导体器件的制造方法
CN1882224A (zh) 配线基板及其制造方法
CN101055857A (zh) 半导体器件及其制造方法
CN1759492A (zh) 固体元件装置及其制造方法
CN1649149A (zh) 三维半导体封装,以及用于其中的间隔芯片
CN1551312A (zh) 半导体芯片的制造方法、半导体装置的制造方法、半导体芯片及半导体装置
CN101076884A (zh) 半导体器件及其制造方法、线路板及其制造方法、半导体封装件和电子装置
CN1893051A (zh) 半导体器件
CN1497709A (zh) 电路基板、焊球网格陈列的安装结构和电光装置
CN1649098A (zh) 半导体器件

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20061101

Termination date: 20160821