CN1639246A - 包含添加剂的有机导电聚合物的印刷 - Google Patents

包含添加剂的有机导电聚合物的印刷 Download PDF

Info

Publication number
CN1639246A
CN1639246A CNA038050250A CN03805025A CN1639246A CN 1639246 A CN1639246 A CN 1639246A CN A038050250 A CNA038050250 A CN A038050250A CN 03805025 A CN03805025 A CN 03805025A CN 1639246 A CN1639246 A CN 1639246A
Authority
CN
China
Prior art keywords
composition
acid
printing
carbon nanotube
electrical conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA038050250A
Other languages
English (en)
Inventor
G·B·布朗谢芬谢
高峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EIDP Inc
Original Assignee
EI Du Pont de Nemours and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EI Du Pont de Nemours and Co filed Critical EI Du Pont de Nemours and Co
Publication of CN1639246A publication Critical patent/CN1639246A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/26Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
    • B41M5/382Contact thermal transfer or sublimation processes
    • B41M5/385Contact thermal transfer or sublimation processes characterised by the transferable dyes or pigments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/26Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
    • B41M5/382Contact thermal transfer or sublimation processes
    • B41M5/392Additives, other than colour forming substances, dyes or pigments, e.g. sensitisers, transfer promoting agents
    • B41M5/395Macromolecular additives, e.g. binders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/124Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one nitrogen atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • C08G73/1071Wholly aromatic polyimides containing oxygen in the form of ether bonds in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0016Plasticisers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/41Compounds containing sulfur bound to oxygen
    • C08K5/42Sulfonic acids; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/122Ionic conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/124Intrinsically conductive polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/124Intrinsically conductive polymers
    • H01B1/128Intrinsically conductive polymers comprising six-membered aromatic rings in the main chain, e.g. polyanilines, polyphenylenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/288Deposition of conductive or insulating materials for electrodes conducting electric current from a liquid, e.g. electrolytic deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/60Forming conductive regions or layers, e.g. electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/26Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
    • B41M5/382Contact thermal transfer or sublimation processes
    • B41M5/392Additives, other than colour forming substances, dyes or pigments, e.g. sensitisers, transfer promoting agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/04Antistatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/02Polyamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • H05K3/1241Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns by ink-jet printing or drawing by dispensing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/211Fullerenes, e.g. C60
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/221Carbon nanotubes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Nanotechnology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Theoretical Computer Science (AREA)
  • Power Engineering (AREA)
  • Mathematical Physics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Conductive Materials (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)

Abstract

描述了有机导电聚合物的添加剂,其能提高印刷薄膜的粘合性和分辨率,同时保持足够的电导率。该导电聚合物薄膜可用于印刷薄膜晶体管的导电部分,例如源极和漏极。添加剂包括表面活性剂、第二种大分子、增塑剂和过量磺酸。

Description

包含添加剂的有机导电聚合物的印刷
技术领域
本发明涉及具有添加剂的导电有机聚合物、尤其是聚苯胺的薄膜的印刷,所述添加剂能提高印刷的薄膜的粘合性和分辨率同时保持足够的导电性。该导电聚合物薄膜可用于印刷导电电器、尤其是被称为源极(sources)和漏极(drains)的薄膜晶体管的部分。
背景技术
Niu(美国6,205,016)描述了用于电化学电容器的包含碳纳米纤维和电化学活性物质的复合电极。
Kenny(美国5,932,643)描述了用于印刷图像的涂料制剂,其包含导电聚合物。
Baude等(美国6,194,119B1)描述了临近于受体上的第二材料的第一材料从第一给体元件的选择性热转移。
Wolk等(美国6,291,116)公开了用于在相同的受体基材上将溶剂涂覆层和溶剂敏感层图案化的热转移元件和方法。
Higashama(JP 05198925)公开了通过将热塑薄膜与电路基材接触和将该材料选择性地热转移到基材上制造的集成电路。
Staral等(美国6,284,425)公开了热转移给体元件,其包括基材、转移层、光-热转换层和底层。
Wolk等(美国6,270,944)公开了用于形成多层器件的热转移元件。
Wolk等(美国6,291,126)公开了用于将电子器件的有机材料在图案化基材上图案化的热转移元件和方法。
Wolk等(美国6214520、美国6140009、美国6114088)公开了形成多层器件的热转移元件。
发明内容
本发明描述了一种组合物,其包含:
a)有机导电聚合物,其选自聚苯胺、聚噻吩、聚吡咯和它们的衍生物以及聚(杂芳族亚乙烯基类),该有机导电聚合物掺杂有具有1到30个碳原子的有机质子酸,使得对于聚合物主链中每个氮或者硫存在0.3到2.0个酸分子,所述聚合物任选地掺杂有过量的具有1到30个碳原子的有机质子酸,使得对于聚合物中每个氮或者硫存在0.15到1分子的过量的有机质子酸;和
b)增塑剂,其浓度在0.01和40%重量之间。
在优选的实施方案中,增塑剂的浓度在5和20%重量之间。
本发明还描述了上述组合物,其还包含0.1到20%重量、优选0.5到10%重量的高度针状的导电体。该高度针状的导电体优选是碳纳米管,其可以是单壁的碳纳米管或者多壁的碳纳米管。该高度针状的导电体可以是电弧增长的、激光增长的或者高压一氧化碳增长的碳纳米管。
在本发明的另一个实施方案中,上述组合物还包含0.001到1重量%的表面活性剂。
上述组合物还可以包含1到30重量%的第二种大分子。
所述组合物可以用于图像转移或者印刷方法。图像转移或者印刷方法可以选自激光转移印刷、墨喷印刷、微接触印刷、胶版印刷和凹版印刷法。
本发明可以用于电子器件,其包含由上述组合物组成的图案化导电体。所述电子器件可以选自互连器件、通路、晶体管、源极和漏极对、栅电极、底板、电感器、电容器和电阻器。
附图说明
图1显示了作为激光功率(瓦)函数的电导率(S/cm)。
图2显示了作为激光功率(瓦)函数的电导率(S/cm)。过量DBSA降低了薄膜电导率。
图3显示了作为激光功率函数的转移的固体条带的电导率。
图4显示了实施例12-17的电导率(S/cm)对激光功率(瓦)。
图5显示了作为激光功率函数的转移固体条带的电导率(S/cm)。
图6显示了将PSMMA(实施例20)和具有5%BP的PSMMA加入L5000对未转移的材料的电导率的影响。
图7显示了作为激光功率函数的固体转移薄膜的电导率(S/cm)。
图8显示了实施例24-27的电导率(S/cm)对激光功率(瓦)。
图9显示了虽然过量酸改进了转移材料对受体的粘合性,但电导率常常被降低。
图10显示了具有5微米通道的导电体的源极和漏极线。
图11显示了10微米线蛇纹图案。
图12显示了换流器器件。
图13显示了换流器器件的电特性。
图14显示了电泳显示器的底板。
详细说明
本发明公开了有机导电聚合物、优选聚苯胺(PANI)的添加剂,该有机导电聚合物用于其中产生的导电层必须是能够以高分辨率热成像的应用。用于该实例的有机导电聚合物的加工性能、粘合性、分辨率和电导率利用特定的酸来调整,使得通过热成像技术、例如激光印刷产生的图案的性能和成像特性得到提高,同时保持了电导率。可选择地,粘合性和图像完整性可以通过以能够保持足够的电导率的比率引入粘结剂和增塑剂来调整。提高的电导率还可以通过加入导电介质例如碳纳米管来获得,所述碳纳米管具有高纵横比和类似于金属的电导率。因为纳米管的浓度与填料所需要的浓度相比很低,因此主体聚合物的加工性能得到保持,同时电导率得到提高,而不需要引入高沸点溶剂。
有机导电体例如聚乙炔,其在主链中具π-电子体系或者类似于聚(对亚苯基),以及聚吡咯,由连续的芳族环组成,在其天然状态下是优良的绝缘体,而在氧化或者还原时可以被转化成具有金属电导率的配合物。特别地,当聚合物用给体或者受体分子掺杂时,聚乙炔(CH)x的电导率提高1011倍。在最近的30年中,对开发具有导电性的、而非绝缘性的聚合物有相当大的兴趣,使得它们可用于有用的电子器件。
利用三种不同的策略已经获得了聚合物的适合的电性能:
1)通过改变起始材料的化学组成和结构来改性固有的本体性质。
2)通过引入掺杂剂,其可以与主体聚合物形成电荷转移配合物,来在分子水平上改变聚合物的性能。
3)在主体聚合物中引入微观的碎片例如碳纳米管、金属薄片、炭黑颗粒,在主体聚合物中形成传导性渗滤传导性网络。
虽然第二种路线明显地提供了形成聚合物合成金属的最有效途径,但是材料在环境条件下倾向于缺乏稳定性。在聚乙炔、聚(1,6-庚二炔)和聚丙炔情况下,非掺杂的聚合物在氧气中是不稳定的。虽然聚对亚苯基、聚对亚苯基醚和聚对亚苯基硫醚在氧气中是稳定的,但是它们只能用强受体例如AsF5掺杂并且一旦掺杂后它们在环境条件下易于快速水解。虽然聚吡咯在环境条件下是稳定的,但是其缺乏某些其他希望的特性,特别是可变的电导率。
可选择地,可以通过用导电体填充惰性聚合物获得更低的电导率值(0.001S/cm)。10-10到10-1S/cm的电导率是易于获得的并且可以按照规定进行调整。电导率取决于填料加入量,并且在临界水平(渗滤阈值)之上在小范围内对填料加入量有很大的相关性。因为为了获得高电导率使用了10-40%的高水平的填料加入量,因此严重地防碍了聚合物的加工性能。典型的填料是PAN-衍生的C纤维、敷金属的玻璃纤维、Al薄片和炭黑。典型的填充量和得到的电导率示于表1中。
表1
复合材料 电导率(S/cm)
聚碳酸酯(PC) 10-16
PC+20%Al薄片 10-15
PC+30%AI薄片 1
PC+10%PAN碳纤维 10-8
PC+40%PAN C纤维 10-2
尼龙6,6(N-6,6) 10-14
N-6,6+40%沥青C纤维 10-4
N-6,6+40%PAN C纤维 1
相反,典型的合成金属例如聚乙炔、聚亚苯基和聚苯硫醚可以显示102-103s/cm的金属范围的电导率。然而,因为这些值通过强氧化或者还原反应材料得到,因此它们在环境条件下倾向于不稳定,限制了实际应用。
寻找环境中稳定的合成金属导致了对聚苯胺(PANI)的深入研究。虽然这些材料在金属状态具有较低的电导率,但是它们在聚合物主链中看起来还具有显著的π离域作用,但是不同于其他的导电聚合物,它们在空气中是长期稳定的。特别地,聚苯胺的翠绿亚胺碱形式可以用稀释的非氧化性酸例如HCl的水溶液掺杂而达到金属导电状态,产生翠绿亚胺盐,其显示金属电导率,但确是空气稳定的并且可以廉价地大量生产。聚苯胺的翠绿亚胺形式据信显示高电导率,因为其主链是高度共轭的。不同于所有其他的共轭聚合物,该材料的电导率取决于两个变量,而非一个,即PANI的氧化程度和质子化程度。然而,大多数聚苯胺具有与聚乙炔相比低102-106的电导率。最高电导率PANI是从PANI莰佛磺酸盐(camphosulfonate)(PANI-CSA)在间甲酚中的溶液流延的那些。观察到了大约4×102S/cm的电导率。这高于用无机酸质子化的PANI大约两个数量级,用无机酸质子化的PANI为10-1到101S/cm。虽然PANI-CSA具有足够高的电导率,但是使用203°沸点的间甲酚严重地限制了其在塑性电子设备中的使用,在该电子设备中,基材例如Mylar在这样高的温度下是不稳定的。
对于导电聚合物在电子应用中的使用,获得稳定的、即在环境条件下可加工和稳定的具有金属电导率的聚合物材料是重要的。在过去的十年中,在使用廉价的和易于加工的有机材料开发薄膜场效应晶体管(TFT)中存在不断增长的兴趣。原则上,有机材料相对于基于硅的相应物具有更大的柔顺性并且更容易调整。由于可以利用品种繁多的有机材料,因此大量工作集中在开发用于TFT应用的具有高灵活性的半导体材料上。聚(烷基噻吩)、低聚噻吩、并五苯、酞菁只是此类半导体的几个实例。然而,在这类器件中导电层一直通常使用金属。
在有机电子设备中使用PANI需要以高分辨率对材料进行图案化的能力。如果在塑料晶体管中使用有机导电体作为源极和漏极,需要以1到1000、优选5到100微米的宽度和0.5-100微米、优选1-20微米的源极和漏极线之间的间距将源极和漏极导电线路进行成像。对于这类应用,将详细描述通过激光热转移工艺将导电层图案化的方法。如果成像通过转移技术例如热成像来进行,则图像线路的分辨率以及器件性能将通过转移薄膜在介电的或者半导电的层上的粘合来控制。另外,有机导电薄膜的电导率必须在整个成像过程期间得到保护。本发明显示,适用于高分辨率成像的有机导电体制剂可以通过调整转移有机导电层在受体层上的粘合来获得。另外,必须对制剂进行调整使得在转移期间吸收的热不使导电体分解、降低其电导率。在热转移时保持PANI层的电导率是一种挑战,因为激光产生的热将部分地使主链去除质子化,部分地使聚合物变成不导电的翠绿亚胺形式。
利用本发明,有机导电体可以使用热转移方法以高分辨率成像。特别地,已经确定了特定的酸和添加剂,其会导致可以利用热转移技术以高分辨率成像的并且对底层具有优良的粘合的PANI,同时能保持或者提高转移层的电导率。在此公开的材料适于用作微电子器件中塑料TFT晶体管中的栅极、源极、漏极和互连元件。包括源极和漏极或者栅极以及有关互连元件的导电体图案在沉积半导体材料之前被称为底板。本发明可用于制造底板。
本领域技术人员还将认识到,本发明可用于生产其他使用导电体的电路元件。这些元件包括互连元件、通路、电感器、电容器和电阻器。对于电感器,沉积了导电体的回路,然后沉积电绝缘层。然后在绝缘层上沉积第二个回路。对于电容器,沉积导电体的第一层(板极)。继之以沉积介电层。最后,在介电层上沉积第二个导电体层(板极)。电阻器仅仅是具有合适长度和电阻率的导电体的条带,以产生需要的阻抗。
定义
质子酸是指包含质子的酸分子,其在溶剂中与抗衡离子解离。
在此碳纳米管指以六边形图案键合在一起形式长圆筒的碳原子。碳纳米管可以是单壁或者多壁的。单壁碳纳米管描述于Bethune的美国专利5,424,054中。多壁碳纳米管描述于美国专利5,747,161中。碳纳米管可以是电弧增长的、激光增长的或者在高压一氧化碳中增长的。
在此使用的纳米管从Rice University,Houston,TX,美国获得。
有机导电聚合物是指聚苯胺、聚噻吩、聚吡咯和其衍生物和聚(杂芳族亚乙烯基类)。聚苯胺和聚噻吩是优选的。聚苯胺是最优选的。
将酸增塑剂加入有机导电聚合物以提高沉积膜的柔顺性和粘合性。增塑剂可以是,但是不局限于,烷基或者芳基磺酸、烷基或者芳基磷酸和烷基或者芳基羧酸。酸的酯也被用作增塑剂。优选的增塑剂是烷基或者芳基磺酸,包括但不限于,二壬基萘磺酸、十二烷基苯磺酸、二丁基萘磺酸、樟脑磺酸、甲苯磺酸和甲磺酸。二壬基萘磺酸是最优选的。
将表面活性剂加入有机导电聚合物/碳纳米管分散体中以有助于纳米管的分散。表面活性剂可以是,但是不局限于,ZONYL FSO、ZONYLFSN、ZONYL FS-300和ZONYL FSA(DuPont,Wilmington,DE)和TRITON-100、TRITON x-114和IGEPAL CO-520(Aldrich)。
第二种大分子必须可溶于用于溶解有机导电聚合物的相同的溶剂并且是与掺杂的有机导电聚合物可混溶的。这些包括,但是不局限于,ELVALOY HP771、ELVALOY HP441、ELVALOY HP662和ELVALOY4924(DuPont,Wilmington,DE)、CHLOROWAX 50(Occidental ChemicalCorporation,Dallas,TX)、聚苯乙烯、聚酯、聚(苯乙烯-甲基丙烯酸甲酯)和聚丙烯酸酯。
在此优选的溶剂选自二甲苯、甲苯、环己烷、三氯甲烷或者其与极性溶剂例如异丙醇、2-丁氧基乙醇的混合物,其中极性溶剂的含量优选低于25%重量。
实验设备的说明
在以下实施例中成像的源极和漏极使用CREO3244 Trendsetter曝光装置(Creo Inc.Vancouver,加拿大)制备。该系统包括81.2-厘米长的、具有91-厘米周长的转鼓。在一个构造中,将15厘米×20厘米的受体以胶带固定到铝胶印版(71.1厘米×94.5厘米)的右下角上。紧紧地将给体薄膜直接固定在受体上面,使乳液朝向受体。胶印版被自动地加载到trendsetter转鼓上并且依靠磁力夹在适当位置。在另一种构造中,将给体和受体置于盒子中并且自动地加载到转鼓上。给体薄膜用240个5×2微米点的阵列书写,所述点由20瓦最高平均功率的红外二极管激光器光束分解产生,所述光束在830纳米下以1微秒脉冲宽度发射。改变转鼓速度,以获得200到550mJ/cm2的感光度。用于以下实施例的给体薄膜包含3个层:1)4密耳Mylar基材,其用2)薄的金属层加热层涂覆,该加热层用3)导电PANI和各种添加剂的溶液在上面涂覆。
实施例1-3
这些实施例举例说明了加入的过量酸对转移聚苯胺层电导率的影响。使用具有5080 DPI的CREO trendsetter(CREO-Scitex,Vancouver,加拿大)获得图像。可以从Creo Inc.(Vancouver,加拿大)获得的波谱Trendsetter曝光装置使给体元件曝光。激光平均功率为4到12瓦,转鼓速度为100到200RPM。使用包含100埃的Ni层的给体薄膜制造在这些激光功率下转移的0.5厘米乘5厘米实面积,所述Ni层通过Flex,Inc(Santa Rosa,CA)直接在400DMylar上进行电子束沉积来涂覆,达到大约40%透光率。被转移的层是涂覆在Ni基材上的L5000(Ormecon Chemie Gmb Hand Co.KG,Ammersbek,德国)PANI的1.3-微米薄膜。L5000溶液包含在相等分数的异丙醇和甲苯中的8.5%固体。L5000是掺杂的,在购买时显示高电导率。制造商没有公开使用的掺杂剂,但是据信是对甲苯磺酸。该溶液使用Meyer棒#6涂覆在15厘米乘20厘米基材上。实施例1使用了没有添加剂的L5000溶液。在实施例2和3中,PANI层包含50%和100%过量的二壬基萘磺酸,以下称为DNNSA。在涂覆到给体上之前将DNNSA加入L5000溶液。50%的过量表示对于聚苯胺中的每摩尔氮存在0.25摩尔的来自加入的过量酸掺杂剂的硫原子。100%的过量表示对于聚苯胺中的每摩尔氮原子存在0.5摩尔的在酸掺杂剂中加入的硫原子。另外,在该溶液中加入005-.05(重量%)的ZONYL表面活性剂,其购自E.I.Du Pont de Nemours andCompany,Wilmington,DE。受体包含1微米丙烯酸胶乳(55MMA/40BA/3MAA/2GMA,其中MMA是甲基丙烯酸甲酯,BA是丙烯酸丁酯、MAA是甲基丙烯酸甲酯和GMA是甲基丙烯酸缩水甘油酯)),其使用来自DuPont,Wilmington,DE的CV涂布机涂覆在400D Mylar上,所述涂布机装备有#6Meyer棒。涂层在50℃的温度下干燥3分钟。将15厘米×20厘米受体层放置在74.5厘米×91.1厘米铝胶印版的右下角。给体薄膜,其PANI表面面向受体涂层,直接铺设在受体之上。铝胶印版被自动地加载和使用磁性夹具定位。为了形成图案化图像,将激光束聚焦在金属界面上。产生的热开始在邻接界面分解有机物,其导致PANI在不同的激光功率下转移到受体上。在曝光完成之后,受体上的图像由在4到12瓦的激光功率下转移的九个0.5厘米×5厘米的固体条带组成。
使用4-探针测试法测定每一转移固体条带的电导率。通过Dektak外形仪测定厚度。在测定了薄膜厚度之后,通过使用Denton真空装置(Denton Inc.Cherry Hill,NJ)通过铝掩模溅射Ag触点,达到4000埃的厚度。使用标准4-探针测量技术测定薄膜电阻率。在两个外触点测定电流。这些触点分开1″并且连接到与量电表(Keithley,617)串联的Hewlett Packard电源。使用Keithley万用表在两个分开0.25″的内触点测定电压。图1显示了作为激光功率函数的电阻率(欧姆-平方)。电阻率按照下式计算:
                     R=VL/iwt
其中,R是电阻率,V是在内部触点测定的电压,i是通过外触点的电流,L是内触点之间的间距,w是薄膜宽度和t是薄膜厚度。薄膜电导率,S,是1/R。
如图1所示,没有过量酸的L5000的电导率随着激光功率的提高而迅速地降低。没有过量酸的转移薄膜显示非常低的粘合性,使其不适合于电子应用。粘合性通过检验进行测定。在激光曝光之后,在给体从受体分开之后,粘合性差的转移层不能在受体元件上保留。另外,粘合性差的转移层可能在边缘附近出现剥离。由于部分分离,分辨差的转移层显示非常不规则的边缘。当增加过量酸时(实施例2和3),薄膜被更加有效地增塑,使得转移层对受体层的粘合性得到大大提高。如图1所示,在6-8瓦范围中转移的具有过量酸作为添加剂的PANI显示足够的电导率以及提高的粘合性。两种设定含量的过量酸均适用于电子应用。
实施例4-7
实施例4到7举例说明了在L5000 Ormecon PANI中使用过量十二烷基苯磺酸(DBSA)来保持电导率,同时提高热转移层在受体上的粘合性。获得给体层的过程如在实施例1-3中所描述的,其中使用DBSA代替DNNSA。受体层、安装程序、成像过程和电导率测量也如实施例1-3中所描述的。
如图2所示,过量DBSA通常降低薄膜电导率。因为过量酸使薄膜增塑,因此粘合性得到提高。在6-8瓦范围转移的具有33%过量酸的薄膜显示提高的粘合性和合适的电导率。与实施例1-3一样,粘合性通过对转移层进行检查来测定。
实施例8-11
这些实施例举例说明了加入的增塑剂和作为第二种大分子的低Tg(玻璃化转变温度)有机材料对转移聚苯胺层的粘合性和电导率的影响。增塑剂是这样的材料,当其与聚苯胺混合时与聚苯胺主链相互作用而降低得到的材料的机械强度。具有增塑剂的较柔软的材料显示了在热转移时提高的粘合性。合适的增塑剂应该可溶于用于溶解聚苯胺的有机溶剂。合适的溶剂包括二甲苯、甲苯、环己烷、三氯甲烷、异丙醇和2-丁氧基乙醇。合适的增塑剂的例子是烷基或者芳基酯、烷基或者芳基磷酸酯和烷基或者芳基磺酰胺。第二种大分子是蜡或者聚合物,其提高其与聚苯胺的混合物的平均分解温度。包含聚苯胺的转移层在热转移工艺期间经受加热。将高分解温度材料加入聚苯胺,吸收了在转移过程期间产生的某些热量,这样保护聚苯胺避免分解。合适的第二种大分子应该可溶于用于溶解聚苯胺的有机溶剂。合适的第二种大分子的例子是聚丙烯酸酯、聚苯乙烯、聚酯、聚苯乙烯甲基丙烯酸甲酯、乙烯/丙烯酸正丁酯/一氧化碳的共聚物例如ELVALOY HP441和氯化石蜡例如氯化石蜡50。低玻璃化转变材料是以下称为CW50的氯化石蜡50(Occidental Chemical Corporation,Dallas,TX)。增塑剂是邻苯二甲酸二苯基酯(dPP)(Aldrich,Milwaukee,WI)。获得给体层的过程在实施例1-3中预先进行了描述,其中省略了加入过量的DNNSA。代之以将CW50或者CW50和dPP加入L5000溶液,如表2所述。受体层、安装程序、成像过程和电导率测量也如实施例1-3中所描述的。
                                  表2
对比 实施例8 实施例9 实施例10 实施例11
 L5000(8.5%) 50gr. 45gr. 40gr. 35gr. 40gr.
 CW50 0.425 .85 1.275 .425
 dPP .425
 L5000/CW/dPP 100/0/0 90/10/0 80/20/0 70/30/0 80/10/10
作为激光转移功率的函数的转移固体条带的电导率示于图3。
为了获得足够的转移层粘合性和分辨率需要最小7瓦的平均激光功率。如图3所示,当CW50浓度达到30%时,电导率稍微降低。在实施例10和实施例11中转移薄膜在受体上的粘合性是优良的。然而,与实施例10相比具有仅仅稍微较小的粘合性的实施例11显示大于1S/cm的电导率。这对于例如塑料晶体管中的源极和漏极的电子应用是足够的。实施例11是本发明的优选的实施方案。
实施例12-17
这些实施例举例说明加入的增塑剂对转移聚苯胺层的粘合性和电导率的影响。获得给体层的过程在实施例1-3中预先进行了描述,其中省略了加入过量的DNNSA。代之以在涂覆在给体元件上之前将dPP或者邻苯二甲酸二丁酯(dBP)加入L5000溶液,如表3所述。受体层、安装程序、成像过程和电导率测量也如实施例1-3中所描述的。
                                              表3
对比  实施例12 实施例13  实施例14  实施例15  实施例16  实施例17
L5000(8.5%) 50gr.  45gr. 40gr.  35  45gr.  40gr.  35gr.
dBP  0.425  0.85  1.275
dPP  0.425 0.85  1.275
L5000/dBP/dPP 100/0/0  90/0/10 80/0/20  70/0/30  90/10/0  80/20/0  70/30/0
为了转移具有足够的粘合性和分辨率的层,需要在150RPM的转鼓转速下具有大约7瓦的平均激光功率。如图4所示,当dBP浓度达到30%时电导率被显著地降低。相反,dPP的浓度导致足够的粘合性而不降低电导率。在实施例14中转移薄膜的粘合性以及得到的电导率对于例如塑料晶体管中的源极和漏极的电子应用是足够的。实施例14是本发明优选的实施方案。
实施例18-21
这些实施例举例说明了在聚苯胺转移层中加入高分解温度聚合物作为粘结剂的影响。获得给体层的过程在实施例1-3中预先进行了描述,其中省略了DNNSA。代之以在涂覆到给体元件上之前将聚苯乙烯甲基丙烯酸甲酯(PSMMA)或者ELVALOY 441(以下称HP441)加入L5000溶液。受体层、安装程序、成像过程和电导率测量也如实施例1-3中所描述的。聚苯乙烯甲基丙烯酸甲酯(PSMMA)从Polyscience获得,ELVALOY44 1是乙烯/丙烯酸正丁酯/一氧化碳的共聚物,从DuPont,WilmingtonDE得到。
                            表4
对比  实施例18  实施例19
L5000(8.5%) 50gr.  40gr.  40gr.
PSMMA  0.85
HP 441  0.85
L5000/HP441/PSMMA 100/0/0  80/0/20  80/20/0
作为激光转移功率的函数的固体条带的电导率示于图5。
为了在转移层中获得足够的粘合性和分辨率,需要在150RPM的转鼓转速下大约7瓦的平均激光功率。如图5所示,在较高的激光功率下电导率降低到低于1S/cm。为了获得由实施例18和19表示的材料的足够的粘合性和高分辨率成像,应该加入除所描述的粘结剂之外的增塑剂。
图6显示将PSMMA(实施例20)和具有5%dBP的PSMMA(实施例21)加入L5000对未转移材料的电导率的影响。使用四探针测量测定所制备的薄膜。使用相当大的量的PSMMA和具有5%dBP的PSMMA,电导率改变非常微小。在激光转移之后同样薄膜的电导率作为用于转移过程中的激光功率的函数迅速地降低。尽管有该降低,但是电导率对于电子设备中的应用是足够的。
实施例22-33
这些实施例显示加入碳纳米管和过量DNNSA对PANI的激光转移薄膜的影响。据信,加入DNNSA提高了薄膜对受体的粘合性,同时碳纳米管的加入提高了电导率。
在碳纳米管中,碳原子以六边形图案结合在一起,形成1.2纳米直径的长圆筒。纳米管还可以多层壁的形式形成。它们具有优良的导热性和电导率。用于实施例22到33的纳米管由Rice University,Houston,TX美国制造,方法包括在1100℃下在炉中金属/碳靶的脉冲激光蒸发。这样产生了烟炱材料,其包含大约50%的单壁纳米管。其余的材料是无定形碳和残余催化剂粒子。主要的杂质是残留的Ni/Co催化剂粒子。大多数的管的长度在0.2和2微米之间。
使用的聚苯胺(PANI),按照P.J.Kinlen在美国专利5,863,465中描述的过程,通过乳液聚合制备。二壬基萘磺酸(DNNSA)被用作掺杂剂。得到的材料以下称为PANI-DNNSA。控制DNNSA的加入,使得来自酸的硫原子的摩尔数相等PANI主链中的氮原子的摩尔数。这由洗涤、分离和干燥得到的PANI-DNNSA之后的元素分析研究得到证实。
碳纳米管在PANI-DNNSA中的分散使用以下过程用具有喇叭探头的声学Dukane超声波仪进行。对于实施例22,在2盎司瓶子中混合59毫克Rice激光碳纳米管和19.03克二甲苯。使用在一定深度下浸没在混合物中的喇叭探头,使得观察到稳定的混合涡旋,将该混合物分散10分钟。在该混合物中加入具有32.9%固体含量的5.90克PANI-DNNSA在二甲苯中的溶液。将得到的混合物分散另外的5分钟,在此期间,将瓶子摇动两次,以便将碳纳米管从瓶子壁上漂洗下来。然后使用Meyer棒#10将得到的8%总固体的浆液作为1-微米薄膜涂覆。该薄膜在干燥之后包含3%NT和97%聚苯胺。
对于实施例23,在2盎司瓶子中混合60毫克Rice激光碳纳米管和19.01克二甲苯。使用在混合物中浸没到一定深度的喇叭探头,使得观察到稳定的混合涡旋,将该混合物分散10分钟。在该混合物中加入具有32.9%固体含量的5.90克PANI-DNNSA。将得到的混合物分散另外的5分钟,在此期间,将瓶子摇动两次,以便将碳纳米管从瓶子壁上漂洗下来。然后将0.48克Nacure1051(在2-丁氧基乙醇中50%重量DNNSA,来自King Industries)加入到该混合物,通过摇动混合两分钟。然后使用Meyer棒#10将得到的8%总固体的浆液作为1-微米薄膜涂覆。薄膜在干燥之后包含3%NT和97%聚苯胺。存在15%过量的DNNSA。对于实施例24,使用与实施例23相同的过程,然而加入0.78克的Nacure。这导致25%过量的DNNSA。表5汇总了这些实施例的组成。
表5
实施例 实施例22  实施例23  实施例24
PAni-DNNSA 101261-130(g) 5.90  5.90  5.90
碳纳米管(mg) 59  60  61
二甲苯(g) 19.03  19.01  18.99
Nacure 1051(g) 0  0.48  0.78
过量DNNSA(%) 0  15  25
以下图7显示了作为激光功率函数的固体转移薄膜的电导率。成像和电导率测量如实施例1-3所述进行。实施例23和24中的材料的粘合性是足够的。如图7所示,转移薄膜的电导率对于高于大约5瓦的平均激光功率是足够的。实施例24是本发明优选的实施方案。
实施例25到27表明加入碳纳米管对没有过量酸的PANI-DNNSA的电导率的影响。对于实施例25、26和27,按照实施例22所述的相同过程进行。这导致分别具有1、2和3%重量碳纳米管的薄膜。表6汇总了这些
实施例的组成。
表6
实施例 实施例25  实施例26  实施例27
PANI-DNNSA 9.01  6.72  5.90
碳纳米管(mg) 33  45  59
二甲苯(g) 15.94  18.26  19.03
将碳纳米管浓度为0、1、2和3%重量的碳纳米管/PANI-DNNSA溶液使用#10Meyer棒涂覆到前面描述的Ni基材上,并且使用CREO按照实施例1中描述的过程成像。
当转移薄膜的粘合性和电导率得到平衡时,可以获得高分辨率的图像。实施例24到27的薄膜都显示足够的电导率、粘合性和分辨率。实施例27是本发明优选的实施方案。
通过热成像转移导电转移层能够获得非常精确的线宽度和通道宽度的控制。图9显示了100微米宽线、1250微米长度的电导率。同样使用4-探头技术测定15条线的组。触点以及线路被直接成像,成为适合于4-探针测量的图案。在显微镜下使用具有针状钨探头的微型机械手将电压和电流施加到接触线,其可以精确地在线的末端定位。以特定的激光功率将图案转移并且测定其电导率。
在实施例28、29和30中的材料相当于实施例25、26和27中使用的材料。实施例31、32和33使用与实施例24一样的过程进行分散。实施例31、32和33都具有25%的过量酸,但是碳纳米管浓度分别为1、2和3%重量。表7汇总了材料的组成。
表7
实施例 实施例31  实施例32  实施例33
PAni-DNNSA 9.00  6.70  5.90
碳纳米管(mg) 30  44  61
二甲苯(g) 15.98  18.25  18.99
Nacure 1051(g) 1.19  0.89  0.78
过量DNNSA(%) 25  25  25
图9显示了虽然过量酸改进了转移材料对受体的粘合性,但电导率常常被降低。电导率通常随着碳纳米管浓度的提高而提高。然而,加入碳纳米管倾向于降低薄膜的粘合性,在某种程度上抵消酸的加入。为了获得具有合适的粘合性和电导率的转移薄膜,酸和碳纳米管的比率必须平衡。具有3%纳米管和25%过量DNNSA的实施例33是本发明的最佳方式,表示了所需要的平衡。
实施例34
该实施例显示Hipco碳纳米管的分散对具有DNNSA的PANI的激光转移薄膜的影响。Hipco NT来自于Rice University,Houston,Texas,美国。Hipco碳纳米管具有与其他的、前面描述的Rice University纳米管类似的性能,虽然据信Hipco纳米管具有大约50%的单壁纳米管的浓度。使用的PANI用和实施例22中一样的方法制备,使用二壬基萘磺酸作为掺杂酸。这被称为PANI-DNNSA。
Hipco碳纳米管在PANI-DNNSA中的分散使用Branson浴超声波仪进行,然后按照以下过程使用具有喇叭探头的声学Dukane超声波仪进行。对于实施例34,在2盎司瓶子中将45毫克Rice Hipco碳纳米管、20.10克二甲苯和4.86克PANI-DNNSA(29.95%固体)在二甲苯中混合。然后将混合物放入Branson浴超声波仪60分钟,在此期间每15分钟时间将瓶子摇动1分钟。然后使用喇叭超声波仪将得到的混合物分散另外的3分钟,在此期间每1分钟时间将瓶子摇动30秒,以便将碳纳米管从瓶子壁上漂洗下去。然后将2.5μL ZONYL FSO表面活性剂加入到得到的浆液中,其包含6%总固体。然后使用#10Meyer棒将Hipco碳纳米管-PANI-DNNSA涂覆到前面描述的镍基材上,并且按照实施例1中描述的过程使用CREO成像。该薄膜在干燥之后包含3%NT和97%聚苯胺。表8汇总了这些实施例中的分散体的组成。
表8
实施例 实施例34
PAni-DNNSA(E103330-107,g) 4.86
Hipco碳纳米管(mg) 45
二甲苯(g) 20.10
为了举例说明使用所述制剂能够获得很高的分辩率和适合的电导率,印刷了具有5微米(1像素)通道(示于图10)和10微米线路蛇纹图案(示于图11)的源极和漏极线路。通过借助于热成像印刷反相电路的源极和漏极和栅极层,还举例说明了该材料在电子电路的功能化中的应用。使用具有5080DPI的CREO trendsetter(CREO-Scitex,Vancouver,加拿大)获得图像。可以从Creo Inc.(Vancouver,加拿大)获得的波谱Trendsetter曝光装置使给体元件曝光。用于5微米通道(图10)、蛇纹图案(图11)和栅极和源极/漏极层(图12)的曝光的激光功率是3.45瓦。印刷机转鼓速度是100RPM。
受体包含挤出在400D Mylar(DuPont,Towanda,PA)上的5微米Elvax。将PANI/Hipco给体层加载到受体上,并且印刷示于图10和11中的结构。
示于图11中的10微米线路的电导率是800欧-平方和薄膜厚度为大约1微米。图12中的换流器以以下方式制造。首先,用如上所述的给体印刷栅极层。在完成该层的印刷之后,将受体从设备中除去,并且将绝缘材料的条带层压到栅极上,但不在触点位置覆盖栅电极。在层压之后,将受体重新定位,以便进行源极和漏极的印刷。然后除去受体,并且将并五苯蒸发到换流器晶体管上。如图12所示,使用PANI/Hipco组合物的导电线路的转移,显示了在非常精确控制的线宽度和通道宽度条件下的很高的分辩率。对于在左边的5个晶体管和在右边的单一晶体管,通道长度是30微米。
操作换流器的电特性示于图13。印刷的换流器显示1.2的增益,完全适用于电子应用。实施例34中的材料的粘合性是足够的。实施例34是本发明优选的实施方案。图14显示了实施例34的成像导电体的电泳显示器的底板。

Claims (15)

1.一种组合物,其包含:
(a)有机导电聚合物,其选自聚苯胺、聚噻吩、聚吡咯和它们的衍生物以及聚(杂芳族亚乙烯基类),该有机导电聚合物掺杂有具有1到30个碳原子的有机质子酸,使得对于聚合物主链中每个氮或者硫存在0.3到2.0个酸分子,所述聚合物任选地掺杂有过量的具有1到30个碳原子的有机质子酸,使得对于聚合物中每个氮或者硫存在0.15到1分子的过量有机质子酸;和
(b)增塑剂,其浓度在0.01和40%重量之间。
2.权利要求1的组合物,其中增塑剂浓度为5到20%重量。
3.权利要求1或者权利要求2的组合物,其还包含0.1到20%重量的高度针状的导电体。
4.权利要求3的组合物,其包含0.5到10%重量的高度针状的导电体。
5.权利要求4的组合物,其中高度针状的导电体是碳纳米管。
6.权利要求5的组合物,其中高度针状的导电体是单壁碳纳米管。
7.权利要求5的组合物,其中高度针状的导电体是多壁碳纳米管。
8.权利要求5的组合物,其中高度针状的导电体是碳纳米管,其选自电弧增长的碳纳米管、激光增长的纳米管和高压一氧化碳-增长的碳纳米管。
9.权利要求1或者权利要求3的组合物,其还包含0.001到1重量%的表面活性剂。
10.权利要求1或者权利要求3的组合物,其还包含1到30%重量的第二种大分子。
11.权利要求1或者权利要求3的组合物,其中增塑剂选自烷基或者芳基磺酸。
12.权利要求11的组合物,其中增塑剂选自二壬基萘磺酸、十二烷基苯磺酸、二丁基萘磺酸、樟脑磺酸、甲苯磺酸和甲烷磺酸。
13.在图像转移或者印刷方法中使用权利要求1或者权利要求3的组合物的方法,所述图像转移或者印刷方法选自激光转移印刷、墨喷印刷、微接触印刷、胶版印刷和凹版印刷。
14.一种电子器件,其包含由权利要求1或者权利要求3的组合物组成的图案化导电体。
15.权利要求14的电子器件,其中该器件选自互连元件、通路、晶体管、源极和漏极对、栅电极、底板、电感器、电容器和电阻器。
CNA038050250A 2002-03-01 2003-02-26 包含添加剂的有机导电聚合物的印刷 Pending CN1639246A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US36099902P 2002-03-01 2002-03-01
US60/360,999 2002-03-01

Publications (1)

Publication Number Publication Date
CN1639246A true CN1639246A (zh) 2005-07-13

Family

ID=27789056

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA038050250A Pending CN1639246A (zh) 2002-03-01 2003-02-26 包含添加剂的有机导电聚合物的印刷

Country Status (7)

Country Link
US (2) US20050116202A1 (zh)
EP (1) EP1483320A2 (zh)
JP (1) JP2005526876A (zh)
KR (1) KR20040096630A (zh)
CN (1) CN1639246A (zh)
AU (1) AU2003223198A1 (zh)
WO (1) WO2003074601A2 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102576576A (zh) * 2009-09-04 2012-07-11 巴斯夫欧洲公司 用于印刷导电迹线的组合物以及制备太阳能电池的方法
CN103182877A (zh) * 2011-12-30 2013-07-03 第一毛织株式会社 热转印膜和用该膜制造的有机电致发光装置
CN104520383A (zh) * 2012-07-31 2015-04-15 国际商业机器公司 用于光刻法的水分散性导电性含氟聚苯胺组合物
CN111601855A (zh) * 2018-01-22 2020-08-28 出光兴产株式会社 组合物、和使用其的氧化还原材料

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004029176A1 (en) 2002-09-24 2004-04-08 E.I. Du Pont De Nemours And Company Electrically conducting organic polymer/nanoparticle composites and methods for use thereof
US7317047B2 (en) 2002-09-24 2008-01-08 E.I. Du Pont De Nemours And Company Electrically conducting organic polymer/nanoparticle composites and methods for use thereof
AU2003275203A1 (en) 2002-09-24 2004-04-19 E.I. Du Pont De Nemours And Company Water dispersible polythiophenes made with polymeric acid colloids
KR101148285B1 (ko) 2002-09-24 2012-05-21 이 아이 듀폰 디 네모아 앤드 캄파니 전기적 응용을 위한 중합체성 산 콜로이드로 제조된수분산성 폴리아닐린
KR100720628B1 (ko) * 2002-11-01 2007-05-21 미츠비시 레이온 가부시키가이샤 탄소 나노튜브 함유 조성물, 이를 포함하는 도막을 갖는복합체, 및 이들의 제조 방법
US7390438B2 (en) 2003-04-22 2008-06-24 E.I. Du Pont De Nemours And Company Water dispersible substituted polydioxythiophenes made with fluorinated polymeric sulfonic acid colloids
US20050165155A1 (en) * 2003-10-21 2005-07-28 Blanchet-Fincher Graciela B. Insulating polymers containing polyaniline and carbon nanotubes
DE102004003784B4 (de) * 2004-01-23 2011-01-13 Ormecon Gmbh Dispersion intrinsisch leitfähigen Polyanilins und deren Verwendung
WO2005088289A1 (en) * 2004-03-03 2005-09-22 Koninklijke Philips Electronics N.V. Detection of no with a semi-conducting compound and a sensor and device to detect no
US7351358B2 (en) 2004-03-17 2008-04-01 E.I. Du Pont De Nemours And Company Water dispersible polypyrroles made with polymeric acid colloids for electronics applications
US20090154059A1 (en) * 2004-03-18 2009-06-18 Ormecon Gmbh Composition comprising a conductive polymer in colloidal form and carbon
WO2005114324A2 (en) * 2004-03-23 2005-12-01 University Of Dayton Coatings containing nanotubes, methods of applying the same and substrates incorporating the same
US8147962B2 (en) 2004-04-13 2012-04-03 E. I. Du Pont De Nemours And Company Conductive polymer composites
DE102004030388A1 (de) * 2004-06-23 2006-01-26 Ormecon Gmbh Artikel mit einer Beschichtung von elektrisch leitfähigem Polymer und Verfahren zu deren Herstellung
WO2007011369A2 (en) * 2004-08-23 2007-01-25 E.I. Dupont De Nemours And Company Method for preparing cnt/pani dispersions
KR20070061552A (ko) * 2004-08-27 2007-06-13 이 아이 듀폰 디 네모아 앤드 캄파니 반도전성 침투 네트워크
US20060062983A1 (en) * 2004-09-17 2006-03-23 Irvin Glen C Jr Coatable conductive polyethylenedioxythiophene with carbon nanotubes
TWI323901B (en) * 2004-11-26 2010-04-21 Hon Hai Prec Ind Co Ltd Anisotropic conductive material
FR2879347A1 (fr) * 2004-12-14 2006-06-16 Commissariat Energie Atomique Dispositif electronique a deux composants assembles et procede de fabrication d'un tel dispositif
US20060181600A1 (en) * 2005-02-15 2006-08-17 Eastman Kodak Company Patterns formed by transfer of conductive particles
US20060188721A1 (en) * 2005-02-22 2006-08-24 Eastman Kodak Company Adhesive transfer method of carbon nanotube layer
DE102005010162B4 (de) * 2005-03-02 2007-06-14 Ormecon Gmbh Leitfähige Polymere aus Teilchen mit anisotroper Morphologie
CN101208369B (zh) 2005-06-28 2013-03-27 E.I.内穆尔杜邦公司 高功函数透明导体
CN101595532B (zh) 2005-06-28 2013-07-31 E.I.内穆尔杜邦公司 缓冲组合物
KR101121203B1 (ko) * 2005-07-27 2012-03-23 삼성전자주식회사 고농도 탄소나노튜브 용액용 분산제 및 이를 포함한 조성물
DE102005039608A1 (de) * 2005-08-19 2007-03-01 Ormecon Gmbh Zusammensetzung mit intrinsisch leitfähigem Polymer
WO2007050460A2 (en) * 2005-10-25 2007-05-03 Inorganic Specialists, Inc. Carbon nanofiber paper and applications
JP2007138112A (ja) * 2005-11-22 2007-06-07 Tokai Rubber Ind Ltd 導電性ポリマー組成物およびそれを用いた電子写真機器用導電性部材
US8216680B2 (en) 2006-02-03 2012-07-10 E I Du Pont De Nemours And Company Transparent composite conductors having high work function
US7528448B2 (en) * 2006-07-17 2009-05-05 E.I. Du Pont De Nemours And Company Thin film transistor comprising novel conductor and dielectric compositions
US8308886B2 (en) * 2006-07-17 2012-11-13 E I Du Pont De Nemours And Company Donor elements and processes for thermal transfer of nanoparticle layers
US7744717B2 (en) 2006-07-17 2010-06-29 E. I. Du Pont De Nemours And Company Process for enhancing the resolution of a thermally transferred pattern
DE102006035750A1 (de) * 2006-07-28 2008-01-31 Polylc Gmbh & Co. Kg Material zur Herstellung einer Funktionsschicht eines organischen elektronischen Bauelements
EP2062467B1 (en) * 2006-09-13 2012-02-15 Enthone, Inc. Article with a coating of electrically conductive polymer and precious/semiprecious metal and process for production thereof
US8153029B2 (en) 2006-12-28 2012-04-10 E.I. Du Pont De Nemours And Company Laser (230NM) ablatable compositions of electrically conducting polymers made with a perfluoropolymeric acid applications thereof
US8062553B2 (en) 2006-12-28 2011-11-22 E. I. Du Pont De Nemours And Company Compositions of polyaniline made with perfuoropolymeric acid which are heat-enhanced and electronic devices made therewith
US20080191172A1 (en) 2006-12-29 2008-08-14 Che-Hsiung Hsu High work-function and high conductivity compositions of electrically conducting polymers
US8241526B2 (en) 2007-05-18 2012-08-14 E I Du Pont De Nemours And Company Aqueous dispersions of electrically conducting polymers containing high boiling solvent and additives
KR100891517B1 (ko) * 2007-06-18 2009-04-06 주식회사 하이닉스반도체 플립 칩 패키지 및 그의 제조방법
US7763187B1 (en) * 2007-08-23 2010-07-27 Oceanit Laboratories, Inc. Carbon nanotubes-reinforced conductive silver ink
JP2010538444A (ja) * 2007-09-07 2010-12-09 インオーガニック スペシャリスツ インク リチウム二次バッテリー用アノード材料としてのシリコン変性ナノファイバー紙
US7879678B2 (en) * 2008-02-28 2011-02-01 Versatilis Llc Methods of enhancing performance of field-effect transistors and field-effect transistors made thereby
US8206537B2 (en) * 2008-08-27 2012-06-26 Carnegie Mellon University Method for forming a conducting multi-polymer nanostructure
JP2012520381A (ja) 2009-03-12 2012-09-06 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー コーティング用途向け導電性ポリマー組成物
WO2010112680A1 (fr) * 2009-03-31 2010-10-07 Hutchinson Films ou revetements transparents conducteurs
JP5587980B2 (ja) 2009-04-21 2014-09-10 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 導電性ポリマー組成物およびそれから作製されたフィルム
WO2010124166A2 (en) 2009-04-24 2010-10-28 E. I. Du Pont De Nemours And Company Electrically conductive polymer compositions and films made therefrom
US8802761B2 (en) 2009-06-12 2014-08-12 Idemitsu Kosan Co., Ltd. π-conjugated polymer composition
KR100969172B1 (ko) * 2009-06-22 2010-07-14 한국기계연구원 마스크 템플릿을 이용한 미세패턴 형성방법
US20120154980A1 (en) * 2009-11-17 2012-06-21 Lumimove, Inc., D/B/A Crosslink Conductive polymer composites
US10074453B2 (en) * 2014-08-21 2018-09-11 Council Of Scientific & Industrial Research P-toluenesulfonate doped polypyrrole/carbon composite electrode and a process for the preparation thereof
US20160137875A1 (en) * 2014-11-13 2016-05-19 Rice University Conductive polymer coating composition
JP2022509022A (ja) 2018-10-29 2022-01-20 ポリジュール・インコーポレイテッド 高収率貯蔵材料
KR20220128399A (ko) * 2020-01-15 2022-09-20 후아웨이 테크놀러지 컴퍼니 리미티드 레이어 증착 방법

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5217649A (en) * 1991-01-31 1993-06-08 Americhem, Inc. Electrically conductive blends of intrinsically conductive polymers and thermoplastic polymers containing sulfonamide plasticizer and acidic surfactant
EP0545729B1 (en) * 1991-12-05 2002-05-08 Neste Oy Process for producing conducting polymer material
JPH05187825A (ja) 1992-01-10 1993-07-27 Nippon Steel Corp 異形棒鋼の形状計測方法及び装置
JPH05198925A (ja) 1992-01-21 1993-08-06 Matsushita Electric Ind Co Ltd 厚膜回路の製造方法
JP3056001B2 (ja) * 1992-02-18 2000-06-26 日本ゼオン株式会社 導電性プラスチゾル成形品
US5320780A (en) * 1993-01-11 1994-06-14 Tech Spray, Inc. Composition and process for preventing electrostatic discharge
JPH0710992A (ja) * 1993-06-04 1995-01-13 Neste Oy 加工可能な導電性ポリマー材料およびその製造方法
US5783111A (en) * 1993-09-03 1998-07-21 Uniax Corporation Electrically conducting compositions
FR2718140B1 (fr) * 1994-03-31 1996-06-21 France Telecom Compositions polymériques électriquement conductrices, procédé de fabrication de telles compositions, substrats revêtus avec ces compositions et solutions oxydantes pour leur fabrication.
US5520852A (en) * 1994-06-08 1996-05-28 Neste Oy Processible electrically conducting polyaniline compositions
US5595689A (en) * 1994-07-21 1997-01-21 Americhem, Inc. Highly conductive polymer blends with intrinsically conductive polymers
FR2751660B1 (fr) * 1996-07-29 1998-08-28 Commissariat Energie Atomique Composition pour la fabrication d'un materiau composite conducteur contenant une polyaniline et materiau composite obtenu a partir de cette composition
US5932643A (en) 1997-04-11 1999-08-03 Ncr Corporation Thermal transfer ribbon with conductive polymers
US6205016B1 (en) * 1997-06-04 2001-03-20 Hyperion Catalysis International, Inc. Fibril composite electrode for electrochemical capacitors
AU9629298A (en) * 1997-10-02 1999-04-27 Basf Aktiengesellschaft Mixtures with special softening agents suited as a solid electrolyte or separator for electrochemical cells
US6703163B2 (en) * 1998-03-31 2004-03-09 Celanese Ventures Gmbh Lithium battery and electrode
US6114088A (en) 1999-01-15 2000-09-05 3M Innovative Properties Company Thermal transfer element for forming multilayer devices
EP1144197B1 (en) * 1999-01-15 2003-06-11 3M Innovative Properties Company Thermal Transfer Method.
DE60007914T2 (de) * 1999-05-13 2004-12-23 Union Carbide Chemicals & Plastics Technology Corp., Danbury Halbleitfähiger Kabelschirm
US6284425B1 (en) 1999-12-28 2001-09-04 3M Innovative Properties Thermal transfer donor element having a heat management underlayer
GB2360524B (en) * 2000-03-24 2004-02-11 Council Scient Ind Res Melt or solution processable doped polyaniline
WO2002080195A1 (en) * 2001-02-16 2002-10-10 E.I. Dupont De Nemours And Company High conductivity polyaniline compositions and uses therefor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102576576A (zh) * 2009-09-04 2012-07-11 巴斯夫欧洲公司 用于印刷导电迹线的组合物以及制备太阳能电池的方法
CN102576576B (zh) * 2009-09-04 2014-08-06 巴斯夫欧洲公司 用于印刷导电迹线的组合物以及制备太阳能电池的方法
CN103182877A (zh) * 2011-12-30 2013-07-03 第一毛织株式会社 热转印膜和用该膜制造的有机电致发光装置
CN103182877B (zh) * 2011-12-30 2016-08-03 第一毛织株式会社 热转印膜和用该膜制造的有机电致发光装置
CN104520383A (zh) * 2012-07-31 2015-04-15 国际商业机器公司 用于光刻法的水分散性导电性含氟聚苯胺组合物
CN104520383B (zh) * 2012-07-31 2016-10-05 国际商业机器公司 用于光刻法的水分散性导电性含氟聚苯胺组合物
CN111601855A (zh) * 2018-01-22 2020-08-28 出光兴产株式会社 组合物、和使用其的氧化还原材料

Also Published As

Publication number Publication date
US20040021131A1 (en) 2004-02-05
JP2005526876A (ja) 2005-09-08
WO2003074601A2 (en) 2003-09-12
US20050116202A1 (en) 2005-06-02
EP1483320A2 (en) 2004-12-08
US7351357B2 (en) 2008-04-01
KR20040096630A (ko) 2004-11-16
AU2003223198A1 (en) 2003-09-16
WO2003074601A3 (en) 2004-07-29

Similar Documents

Publication Publication Date Title
CN1639246A (zh) 包含添加剂的有机导电聚合物的印刷
Blanchet et al. Polyaniline nanotube composites: A high-resolution printable conductor
CN1867626A (zh) 含有聚苯胺和碳纳米管的绝缘聚合物
KR101223718B1 (ko) 나노 도전성 막의 패터닝 방법
CN1245769C (zh) 溶液加工
KR100261971B1 (ko) 처리가능한 형의 전기전도성 폴리아닐린 및 그로부터 형성된 전도성 제품
KR20040030506A (ko) 고전도성 폴리아닐린 조성물 및 그의 용도
Denneulin et al. The influence of carbon nanotubes in inkjet printing of conductive polymer suspensions
JP2005535120A (ja) 有機電子デバイス
WO2004029133A1 (en) Water dispersible polyanilines made with polymeric acid colloids for electronics applications
EP1756219A2 (en) Non-aqueous dispersions comprising electrically doped conductive polymers and colloid-forming polymeric acids
JP2006093699A (ja) 有機半導体組成物
JP2005526876A5 (zh)
CN101356651B (zh) 层叠结构、使用其的电子元件、其制造方法、电子元件阵列和显示单元
US8696941B2 (en) Material for functional layer of organic electronic component
CN2653833Y (zh) 有机电致发光元件
Whiting et al. Chemically modified ink-jet printed silver electrodes for organic field-effect transistors
CN102610754A (zh) 半导体组合物、其制法及包含其的电子器件
WO2004063277A1 (en) Variable resistance poly(3,4-ethylenedioxythiophene)/poly (styrene sulfonate) for use in electronic devices
CN1672264A (zh) 场效应晶体管
US20050234280A1 (en) Material for a thin and low-conductive funtional layer for an oled and production method therefor
WO2016118536A2 (en) Printable high dielectric constant and self-healable dielectric polymer composition
JP4572515B2 (ja) 電界効果トランジスタ
CN101050268A (zh) 半导体和由其产生的电子器件
JP2005529474A (ja) 導電性有機機能層を製造するための材料および該材料の使用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication